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A junction of two 2/3 fractional quantum Hall (FQH) edges, with no charge tunneling between them, may 
exhibit Anderson localization of neutral modes. Manifestations of such localization in transport properties of 
the junction are explored. There are two competing localization channels, “neutral-mode superconductivity” and 
“neutral-mode backscattering.” Localization in any of these channels leads to an effective theory of the junction 
that is characteristic for FQH effect of bosons, with a minimal integer excitation charge equal to 2, and with 
elementary quasiparticle charge equal to 2/3. These values can be measured by studying shot noise in tunneling 
experiments. Under the assumption of ballistic transport in the arms connecting the junction to contacts, the two-
terminal conductance of the junction is found to be 4/3 for the former localization channel and 1/3 for the latter. 
The four-terminal conductance matrix reveals in this regime a strong quantized drag between the edges induced 
by neutral-mode localization. The two localization channels lead to opposite signs of the drag conductance, equal 
to ±1/4, which can also be interpreted as a special type of Andreev scattering. Coherent random tunneling in 
arms of the device (which are segments of 2/3 edges) leads to strong mesoscopic fluctuations of the conductance 
matrix. In the case of fully equilibrated arms, transport via the junction is insensitive to neutral-mode localization: 
The two-terminal conductance is quantized to 2/3 and  the drag is absent.

I. INTRODUCTION

The fractional quantum Hall (FQH) effect [1–5] gives
rise to a remarkable variety of topological states of matter.
The topological order, as well as the associated properties of
the excitations, can be detected and explored by investigations
of transport properties of FQH edges in various, appro-
priately designed geometries [6,7]. The primary transport
observables—the electric and thermal conductances—have
been intensively studied theoretically [8–14]. The emergent
picture is particularly rich for FQH edges supporting counter-
propagating modes; in that case, transport observables depend
crucially on intermode dynamics (including presence or ab-
sence of intermode scattering and equilibration) determining
the transport regime. A paradigmatic example is the ν = 2/3
state, with the electric conductance equal to G = (4/3)e2/h
in the ballistic regime and G = (2/3)e2/h in the inelastically
equilibrated regime [12]. Importantly, both these values are
governed by the topology of the state, i.e., by its K matrix
and t vector. Specifically, K = diag(1,−3) and tT = (1, 1)
for the ν = 2/3 state in the basis of 1 and 1/3 modes. The
conductance in the equilibrated regime is G = (tT K−1t )e2/h,
while in the ballistic regime G = (tT K̃−1t )e2/h, where K̃ =
diag(1, 3) is obtained from the diagonal matrix K by making
both matrix elements positive.

Regarding experiments, there has been major progress
recently in studies of transport in FQH edges with coun-
terpropagating modes in GaAs and graphene based devices

[15–21]. Moreover, platforms for engineering of “artificial”
FQH edges at interfaces between FQH states have been de-
veloped [22–28]. These remarkable experimental advances
motivate further theoretical work on transport in complex
FQH edges and edge junctions.

FQH edges with counterpropagating modes can be topo-
logically unstable [29]. For two-mode edges, this is the case
only for edges with two identical counterpropagating modes
(except in the absence of charge conservation [30]). For states
with three-mode edges, there are already nontrivial examples,
such as the ν = 9/5 state [31]. For edges with four and more
modes, topological instability becomes ubiquitous. A topolog-
ically unstable edge may undergo a binding transition [31]. In
the presence of disorder-induced random tunneling between
the edge modes, this takes the form of Anderson localization.
As a result of localization, the number of propagating modes
is reduced by 2 (or by an integer multiple of 2). This reduces
the field theory of the edge, which is characterized by a K
matrix and a charge vector t to an effective theory (Kred, t red )
describing propagating modes. The localization is reflected in
transport via the FQH edge, as was studied in Ref. [32] for the
ν = 9/5 state. Very recently, a framework for calculating the
conductance of a generic FQH edge undergoing localization
was developed in Ref. [33].

Here we investigate transport characteristics underlined by
a specific type of Anderson localization processes at the edge.
Such processes take place at a junction, the latter referring to a
section of the system where two FQH edges (that we denote A
and B) may interact. The assumption is that charge tunneling
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between the edges A and B is suppressed, so that the dominant
localization process involves charge transfer only between the
modes within each of the edges A and B, but not between A
and B. We refer to this physics as “neutral-mode localization.”

More specifically, we focus on a “minimal” realization
of such neutral-mode localization, with both edges A and
B being of ν = 2/3 type. Such a junction is prone to two
competing localization channels (which, loosely speaking,
correspond to “neutral-mode backscattering” and “neutral-
mode superconducting scattering”). We study the implications
of the localization in each of these channels for charge trans-
port via the junction in two-terminal and four-terminal setups.
The four-terminal setup reveals a localization-induced drag
between the edges, which can be alternatively viewed as a
particular type of Andreev reflection.

The paper is organized as follows. In Sec. II, the notion
of neutral-mode localization is introduced. Applying it to a
junction of two 2/3 edges, we identify two competing lo-
calization channels. In Sec. III, we derive the reduced field
theory describing the junction for localization in one of these
channels. This yields, in particular, the elementary charges
of the excitations that can be probed in tunneling experi-
ments. Section IV contains a discussion of transport setups
analyzed in subsequent sections. In Sec. V, we calculate the
two-terminal conductance of the junction, assuming ballistic
transport in arms (2/3 edge segments) connecting the junction
to the contacts. This analysis is extended in Sec. VI, where the
four-terminal conductance matrix is determined. In Sec. VII,
we include into consideration coherent random tunneling in
the arms and find that it leads to strong mesoscopic fluctua-
tions of the conductance matrix. Our results are summarized
in Sec. VIII

We set e = h̄ = kB = 1 throughout the paper. The di-
mensional conductance G is expressed in units of e2/h, in
accordance with the common convention.

II. NEUTRAL-MODE LOCALIZATION

We consider an interface between two FQH states A and
B described by (KA, tA) and (KB, tB), respectively. Within
Wen’s K-matrix formalism [6], the resulting FQH edge junc-
tion is described by the effective action

S0 = 1

4π

∫
dt dx

d∑
a,b=1

∂xφa(Kab∂tφb − Vab∂xφb), (1)

with a block-diagonal K-matrix and a combined t-vector,

KAB =
(

KA 0
0 −KB

)
, tAB =

(
tA

tB

)
. (2)

In Eq. (1), Vab is a nonuniversal positive-definite matrix of
mode velocities and intermode interactions. At variance with
K , the matrix V is not block-diagonal due to interedge in-
teraction. Upon canonical quantization, Eq. (1) implies the
commutation relations

[ρa(x), φb(x′)] = iK−1
ab δ(x − x′), (3)

where ρa = ∂xφa/2π is the particle density of the mode a; The
corresponding charge density is taρa.

In the presence of disorder, processes of random tunnel-
ing between the modes are possible [34]. Such processes are
described by terms in the Hamiltonian of the form

Htun =
∫

dx g(x) cos(MT φ(x) + ζ (x)), (4)

where ξ (x) = g(x)eiζ (x) is the disorder amplitude [with mag-
nitude g(x) and phase ζ (x)]. The vectors M are integer-valued
and satisfy a charge-conservation condition

QM = 0, (5)

where the charge QM is given by

QM = taK−1
ab Mb ≡ tT K−1M, (6)

For a junction of edges A and B, we have M = (MA, MB),
and the charge conservation condition (5) can be rewritten as
QMA = −QMB . If the two edges, A and B, belong to different
FQH systems and thus are separated by a vacuum, only elec-
trons can tunnel between them, which implies an additional
constraint: MA = KALA and MB = KBLB, where LA and LB

are integer-valued vectors.
We note that Ref. [30] relaxed the charge-conservation

condition (5) because it considered a FQH edge coupled to
a superconductor. Here, we assume that charge in the edge
junction is conserved, so that Eq. (5) must hold.

The tunneling process (4) characterized by a vector M may
induce localization if M satisfies, in addition to the charge
conservation (5), Haldane’s null-vector condition [29], given
by [35]

MT K−1M = 0. (7)

For the localization to be operative, the tunneling (4) should
be relevant in the renormalization-group (RG) sense. For any
null vector M, this is indeed the case in a certain region of
parameters of the interaction matrix V . A general analysis of
transport in FQH edges with localization was carried out in
Ref. [33].

Here, we consider the case when the vector M governing
the localization corresponds to no charge transfer between the
edges A and B, i.e.,

QMA = QMB = 0. (8)

We term this case “neutral-mode localization.” Processes
involving zero charge transfer between the edges may be dom-
inant for several reasons. First, the neutral-mode localization
can be induced by the interedge interaction, given by

H = 1

2

∫
dr dr′ρA(r)V (r − r′)ρB(r′). (9)

Here the local particle density operator ρA/B can be written as

ρi=A/B =
∑

a

ρa,i +
∑
a �=b

ψ
†
a,iψb,i, (10)

where ψa,i (ψ†
a,i) is the electron annihilation (creation) oper-

ator of mode a on edge i = A/B. Following the bosonization
of the electron operators, the interedge interaction (9) has the
form of (4) and satisfies the condition (8) for the neutral-
mode localization. Generically, V (r − r′) is a power-law
function of distance, and thus the interedge interaction may



remain sufficiently strong for realistic setups. By contrast,
charge tunneling between edges drops exponentially with
the distance, thus quickly becoming negligible. Second, one
can engineer edge modes at an interface that have oppo-
site spin polarizations [36]. This can be achieved by using
a double-quantum-well structure [27,28]. In this situation,
charge tunneling will necessarily involve spin flip and thus
may be strongly suppressed.

We focus on a specific realization of neutral-mode local-
ization: an interface of spin-polarized ν = 2/3 FQH regions
separated by a “vacuum” strip. Thus, each of the edges A and
B is a 2/3 FQH edge consisting of counterpropagating 1 and
1/3 modes, which is described by the following K-matrix and
t-vector:

KA = KB = K0 =
(

1 0
0 −3

)
, tA = tB = t0 =

(
1
1

)
. (11)

For this edge junction, there are two vectors M that satisfy the
above conditions (5), (7), and (8), namely

Mback = (1, 3, 1, 3)T (12)

and

Msup = (1, 3,−1,−3)T . (13)

The random intermode tunneling in each of these two chan-
nels can therefore induce neutral-mode localization. The
tunneling process described by Mback can be viewed as
backscattering of neutral excitations, while the process Msup

can be understood as a “superconducting” neutral-mode tun-
neling between the edges A and B [36]. This motivates the
subscripts that we use to label these two processes.

Importantly, these two null vectors are competing, which
follows from the fact that MT

supK−1Mback �= 0. Thus, once one
of these null vectors drives the localization, so that the cor-
responding bosonic field in the argument of cosine in Eq. (4)
is pinned to a minimum, the bosonic field described by the
other null vector is fluctuating in position and time. Which of
the null vectors wins depends on their bare strengths and RG
scaling exponents, where the latter generically depend on the
interaction matrix V . An RG analysis in a certain subspace of
matrices V , and with an assumption of correlated disorder, has
been carried out in Ref. [36].

We emphasize that the localization induced by either Mback

or Msup is only partial, in the sense that, out of four modes, two
are localized while two propagating modes remain. We will
derive a reduced theory for the propagating modes in the next
section. Clearly, a junction of two 2/3 edges is in principle
fully unstable topologically, i.e., all four modes can get local-
ized if one allows all possible tunneling processes. However,
as discussed above, we allow only processes without interedge
charge transfer, Eq. (8), and the reduced two-mode theory is
stable with respect to such processes.

The neutral-mode localization can be also considered in the
case when both 2/3 edges A and B belong to the same FQH
system and thus are separated by a strip of FQH bulk. Our
analysis below for the conductances of the junction equally
applies to this case.

While, in this paper, we will focus on the neutral-mode lo-
calization at the junction of two spin-polarized ν = 2/3 edges,
such a localization may also take place for a junction of two

spin-unpolarized ν = 2/3 edges, where neutral modes carry
spin. Note that if spin is conserved, only the Mback localization
channel (12) is operative.

It is also worth noting that an artificial FQH edge at an
interface between the spin-polarized and spin-unpolarized 2/3
states has been experimentally realized in Ref. [23] and the-
oretically studied in Refs. [33,37]. This setup is essentially
different from the one considered in the present paper, since it
crucially involves a charge tunneling between the 2/3 edges.

III. REDUCED THEORY

We now derive a reduced theory of the junction after
neutral-mode localization induced by either (12) or (13). A
general procedure for determining the reduced theory of an
edge undergoing localization was presented in Ref. [33]; see,
in particular, Appendix D there. Applying it to our model, we
find that the localization in any of the two channels (12) or
(13) results in the same reduced theory,

Kred =
(

0 3
3 0

)
, t red =

(
2
0

)
. (14)

The basis vectors that span the two-dimensional lattice of
allowed excitations m of the reduced theory are, in terms of
the original theory,

ered
1 = (1, 2, 0,−1)T , ered

2 = (0,−1, 0, 1)T (15)

for the null vector Msup, and

ered
1 = (0,−1, 0,−1)T , ered

2 = (1, 2, 0, 1)T (16)

for Mback. The theory (14) is written in this basis.
Importantly, the edge theory with (Kred, t red) as given by

Eq. (14) is bosonic; all diagonal elements of Kred are even
and the components of t red are all even. A generic excitation
described by an integer-valued vector mT = (m1, m2) in the
reduced theory has charge and statistics given by

Qm ≡ mT K−1
red t red = 2

3 m2,

θm ≡ πmT K−1
red m = 2π

3 m1m2. (17)

For charged excitations, the minimal charge corresponds to
m2 = 1 that yields Qm = 2/3. This is twice the charge of the
elementary excitation of the original theory. Furthermore, the
minimal integer charge of an excitation corresponds to m2 = 3
and is Qm = 2. All integer-charge excitations (that correspond
to m = Kredl with an integer-valued vector l) have an even
charge Qm and bosonic statistics (θm is an integer multiple of
2π ). The doubling of the charge as a result of localization can
be observed by measuring the shot noise in experiments on
tunneling to the edge junction. For tunneling through the ν =
2/3 FQH liquid, the elementary charge is now 2/3 (instead of
1/3 in the absence of localization), and for tunneling via the
vacuum it is 2 (instead of 1 in the absence of localization).

We turn now to the analysis of manifestations of local-
ization in conductances of the edge junction. We begin this
analysis by discussing possible experimental transport setups
in Sec. IV.
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FIG. 1. Schematic setups for studying transport through a junc-
tion of two 2/3 edges (depicted as a shaded blue region). In edge
A (the upper one), mode 1 propagates to the right and mode 1/3 to
the left; in edge B the directions are reversed. Localization occurs
in the junction (blue central region), either in the neutral back-
scattering channel Mback or in the neutral superconducting channel
Msup. (a) Two-terminal setup, with four arms LA, LB, RA, and RB
that are segments of the 2/3 edges that connect the junction to the
metallic contact regions (depicted as green regions). In general, the
transport through these segments may be either coherent (which
in turn is subdivided into ballistic and involving random tunneling
leading to mesoscopic fluctuations), or equilibrated (incoherent).
(b) Four-terminal setup with analogous arm segments LA, LB, RA,
and RB. (c) Modification of four-terminal setup that does not contain
segments of 2/3 edges in the arms.

IV. TRANSPORT SETUPS

In Fig. 1, we show setups that can be used in transport ex-
periments to explore signatures of neutral-mode localization
in the junction. Figure 1(a) presents a two-terminal conduc-
tance setup, which involves two contacts (metallic electrodes)
at electrochemical potentials μL and μR. The junction is
connected to the contact regions by four arms representing
segments of the 2/3 edges. The localization (driven either
by the neutral backscattering term Mback or by the neutral
superconducting coupling term Msup, as discussed above)
takes place in the junction. In the arm segments, intraedge
tunneling might take place [which corresponds to Mintra,A =
(1, 3, 0, 0)T for the edge A and to Mintra,B = (0, 0, 1, 3)T

for the edge B]. These intraedge tunneling processes do not
satisfy the null vector condition (7) and thus cannot induce
localization. At the same time, they may lead, in the coher-
ent regime, to mesoscopic fluctuations or, at sufficiently high
temperatures, to incoherent equilibration. Below, we will ana-
lyze how the conductance is influenced by different transport
regimes in the arm segments.

A four-terminal version of the transport setup is depicted
in Fig. 1(b). This setup allows one to independently control
or measure voltages and currents in four electrodes (with
potentials μLA, μRA, μLB, and μRB), which provides much
more information about transport in the junction. In partic-
ular, this setups makes it possible to explore how a current
driven through, say, edge A induces current (or voltage) in
edge B; the effect that can has a character of drag and can
also be interpreted in terms of crossed Andreev reflection.
Finally, in Fig. 1(c) we propose an alternative realization of
the four terminal setup, with the 2/3 edges in the junction
are artificially engineered from counterpropagating 1 and 1/3
edges. Such an artificial 2/3 edge has been already realized
in Refs. [24,26,28] In this setup, μ1

LA, μ
1/3
RA , μ

1/3
LB , and μ1

RB
play the same role as μLA, μRA, μLB, and μRB in Fig. 1(b).
The difference is that the setup of Fig. 1(c) does not involve
segments of 2/3 edges in the arms that affect the conductance
if tunneling there is operative.

V. TWO-TERMINAL CONDUCTANCE

We now proceed by calculating the two-terminal con-
ductance in the setup depicted in Fig. 1(a) for each of the
competing localization channels [i.e., the null vectors M; see
Eqs. (12) and (12)] governing the neutral-mode localization in
the junction. In general, the value of the conductance depends
not only on the localization channel in the junction, but also
on the transport regimes in the arms connected to the junc-
tion. We consider here two limiting transport regimes in the
segments LA, LB, RA, and RB: (i) ballistic transport (tunnel-
ing not operative in the arms) and (ii) the fully equilibrated
regime, where the length of the arms Larm is much larger than
the inelastic equilibration length �eq. In Sec. VII below, we
supplement the present analysis by considering an additional
important regime involving coherent random tunneling in the
arms.

According to Ref. [33], the two-terminal conductance of
the junction reads

G = 1

2

⎛⎝ 2∑
a,b=1

t a
red(W T U T UW )−1

ab tb
red − B2/C

⎞⎠, (18)

with

B = t red(U T UW )−1M, (19)

C = MT (U T U )−1M. (20)

Here M is the null vector governing the localization pro-
cess, i.e., either Mback or Msup, while W ∈ SL(4,Z) is a
transformation that brings K-matrix of the original theory
to a block-diagonal form, separating the sector that under-
goes localization from the remaining sector (Kred, t red ); see
Eq. (14). Further, the matrix U has the form U = ORK , where
the matrix RK [38] brings K to the form K = RT

K
RK with

 = diag(1,−1,−1, 1), i.e.,

RK = diag(1,
√

3, 1,
√

3). (21)

The matrix O ∈ SO(2, 2) depends on the degree of equili-
bration in the edge segments LA, LB, RA, and RB. It is



parametrized by two “angles” ϑA and ϑB as

O =
(

cosh ϑA sinh ϑA

sinh ϑA cosh ϑA

)
⊕

(
cosh ϑB sinh ϑB

sinh ϑB cosh ϑB

)
. (22)

Note that Eq. (18) contains an additional overall factor of
1/2 in comparison with the general formula (70) in Ref. [33].
This is because we consider here the conductance of a single
junction, while Eq. (70) of Ref. [33] was derived for a two-
terminal conductance of a structure including two composite
edges (which would mean two junctions in the present case).
It should also be emphasized that, since the total filling factor
of a junction considered here is 2/3 − 2/3 = 0, there is no
anomaly in the current, i.e., the current from the contact L to
the contact R through the junction is

J = (μL − μR)
G

2π
. (23)

The factor 1/2π here is due to the fact that G is defined as
measured in units of e2/h and we set e = 1 and h̄ = 1.

For the case of localization in the Msup channel, we obtain
from Eq. (18):

Gsup =
(

1 + 7 cosh[2(ϑA + ϑB)] − 4
√

3 sinh[2(ϑA + ϑB)]

6 cosh(ϑA + ϑB) − 3
√

3 sinh(ϑA + ϑB)

)
× 1

cosh(ϑA − ϑB)
(24)

In the same way, we get for the case when the localization
develops in the Mback channel:

Gback = 2 cosh[2(ϑA − ϑB)]

6 cosh(ϑA + ϑB) − 3
√

3 sinh(ϑA + ϑB)
. (25)

We next discuss these two-terminal conductance formulas in
the two limiting cases of transport through the connecting
arms mentioned above. The angles ϑA and ϑB can be deter-
mined by diagonalizing the equilibration matrix ϒAB,

ϒAB = ϒA ⊕ ϒB,

(ϒA/B)ab = δab

(
�a

ta
+

∑
c

t−1
a γactc

)
− γab, (26)

with the matrix U , i.e., by finding ϑA and ϑB such that
UϒABU T is diagonal. Here γab are intermode tunneling
rates and �a are tunneling rates to metallic contacts; see
Appendix A in Ref. [33] for more details.

When the the transport in the arms is ballistic, γab in
Eq. (26) vanish and thus ϑA = ϑB = 0. It yields

Gsup = 4
3 , Gback = 1

3 . (27)

We thus see that, under the assumption of ballistic transport
in the arms, the conductance G clearly distinguishes between
the two localization channels. We also note that the value
Gsup = 4/3 is the same as the ballistic conductance in the
absence of any localization [12], i.e., the neutral-mode lo-
calization in the “superconducting” channel does not affect
the two-terminal ballistic conductance G = 4/3. On the other
hand, the localization in the “neutral backscattering” channel
reduces the conductance down to G = 1/3.

Since the localization in the “neutral-superconducting”
channel does not manifest itself in the two-terminal conduc-
tance, one can ask whether it affects at all transport through
the junction. The answer is yes, as we will show in in Sec. VI
where the four-terminal terminal conductance will be studied.

For the case of inelastic equilibration in the arms, γab � �a

in Eq. (26). In this limit, we find ϑA = ϑB = 1
2 ln(2 + √

3),
resulting in the conductance

Gsup = Gback = 2
3 , (28)

The value of the conductance is thus the same, G = 2/3, as
in the equilibrated regime without any coupling of the two
2/3 edges [12,13]. Thus, the neutral-mode localization has no
signatures in the conductance in the regime of strong inelastic
equilibration in the arms. We will show in Sec. VI that this ap-
plies also to the four-terminal conductance matrix. In order to
eliminate (or, at least, strongly suppress) the effect of inelastic
equilibration in the arms, one can use the setup shown in
Fig. 1(c). One can study the two-terminal conductance in this
setup by, e.g., applying voltages μ1

LA = μ
1/3
LB and grounding

other contacts.

VI. FOUR-TERMINAL CONDUCTANCE

We turn now to the analysis of the conductance in a
four-terminal setup, see Fig. 1(b), which provides more infor-
mation about transport through the junction. For this purpose,
we extend the formalism of Ref. [33] to the calculation of
four-terminal conductance.

We denote by Ijun
� with � = LA, LB, RA, RB the two-

component particle-current vectors that flow in the junction
(or out of the junction) via the corresponding arms. The first
and second components of Ijun

� represent the particle currents
in the ν = 1 and ν = 1/3 modes, respectively. The sign choice
for Ijun

� is such that these currents are positive when they flow
in the positive direction of x axis (i.e., from left to right in the
figures). It is convenient to write these currents in terms of the
respective chemical potentials μ

jun
� defined via

Ijun
LA = 1

2π
K−1

0 μ
jun
LA, Ijun

LB = − 1

2π
K−1

0 μ
jun
LB,

Ijun
RA = 1

2π
K−1

0 μ
jun
RA, Ijun

RB = − 1

2π
K−1

0 μ
jun
RB. (29)

As shown in Ref. [33], the localization in channel M in the
junction implies that μ

jun
� can be written in the form⎛⎝μ

jun
LA

μ
jun
LB

⎞⎠ =
2∑

a=1

μred
a ered

a + μloc
L M,

⎛⎝μ
jun
RA

μ
jun
RB

⎞⎠ =
2∑

a=1

μred
a ered

a + μloc
R M. (30)

Here ered
a=1,2 are two basis vectors of the reduced theory [see

Eqs. (15) and (16) for their explicit form], μred
a are the cor-

responding chemical potentials, while μloc
R and μloc

L are the
chemical potentials of the localized modes. Note that while
{μjun

� } contain eight (scalar) parameters, they are expressed
in Eq. (30) in terms of four chemical-potential variables. The



reason for this is that the derivation of Eq. (30) used four
constraints following from the localization in the junction.
There are two conditions

MT
(
Ijun

LA, Ijun
LB

) = 0, MT
(
Ijun

RA, Ijun
RB

) = 0 (31)

expressing the localization in channel M and two conditions
expressing continuity of the remaining modes.

Further, the currents in the arms in the direct vicinity of
metallic contacts (depicted as green regions) can be expressed
as [33]

Icon
LA = μLA

2π
K−1

0 t0 + R−1
K0

P1/3CLA,

Icon
LB = −μLB

2π
K−1

0 t0 + R−1
K0

P1CLB,

Icon
RA = μRA

2π
K−1

0 t0 + R−1
K0

P1CRA,

Icon
RB = −μRB

2π
K−1

0 t0 + R−1
K0

P1/3CRB. (32)

We have used the same sign convention as above for Ijun
� . Here,

μ� with � = LA, LB, RA, RB denote the chemical potentials
of the respective contacts, RK0 = diag(1,

√
3), and P1 (P1/3) is

a projection operator on the ν = 1 (respectively, 1/3) mode,
i.e., P1 = (1 + σz )/2 and P1/3 = (1 − σz )/2 in the basis of 1
and 1/3 modes that we use. In each of the formulas (32),
the first term corresponds to the mode propagating out of the
contact, which is thus equilibrated with the chemical potential
of the contact. The second term corresponds to the mode going
in the contact, so that the corresponding coefficients C� are not
specified by Eq. (32).

We assume now that the arm segments are clean, so that
the transport there is ballistic. (We will relax this condition in
Sec. VII.) In this case, each individual component of currents
is conserved, i.e.,

Ijun
� = Icon

� , (33)

with � = LA, LB, RA, RB. Applying RK0 P1 (RK0 P1/3) to the
equations for the arms in region A (respectively, B), we obtain
four equations

μLAP1RK0 K−1
0 t = P1RK0 K−1

0 μ
jun
LA,

μLBP1/3RK0 K−1
0 t = P1/3RK0 K−1

0 μ
jun
LB,

μRAP1/3RK0 K−1
0 t = P1/3RK0 K−1

0 μ
jun
RA,

μRBP1RK0 K−1
0 t = P1RK0 K−1

0 μ
jun
RB. (34)

Substituting here μ
jun
� from Eq. (30), we obtain a system of

four linear equations for four variables μred
a (with a = 1, 2)

and μloc
i (with i = R, L).

For each contact � with � = LA, LB, RA, RB, we denote
by J� the corresponding total charge current. The sign conven-
tion here is such that J� > 0 if the current flows to the contact
and J� < 0 for current flowing out of the contact. We have

J� = −tT
0 · Ijun

� = −tT
0 · Icon

� , � = LA, LB,

J� = tT
0 · Ijun

� = tT
0 · Icon

� , � = RA, RB, (35)

where we used, in the last expressions, the condition (33) of
the ballistic transport in the arms. The minus sign in the first
line of Eq. (35) is related to our sign conventions.

For each of our two null vectors M, we solve Eqs. (34)
and (30), and then use Eq. (35) to determine the conductance
matrix G��′ that connects currents J� with the applied bias
voltages μ�′ , ⎛⎜⎜⎝

JLA

JRA

JRB

JLB

⎞⎟⎟⎠ = G

⎛⎜⎜⎝
μLA

μRA

μRB

μLB

⎞⎟⎟⎠. (36)

We find that G [in units of e2/h = 1/(2π )] generically takes
the block matrix form as

G =
(

G0 Goff[g1]

Goff[g2] G0

)
, (37)

with

G0 =
(−(1 − g0) 1/3 − g0

(1 − g0) −(1/3 − g0)

)
, Goff[g] =

(
g −g

−g g

)
,

(38)

Note that the conductance matrix is determined by three
real numbers g0, g1, and g2, which parametrize the diagonal
and off-diagonal blocks, respectively. The diagonal blocks
G0 describe the current induced in the same edge to which
the voltage is applied, while the off-diagonal blocks Goff[g]
characterize the current induced in the other edge. Since
there is no tunneling between the edges, the current in each
of the edges is conserved separately, i.e., JLA = −JRA and
JLB = −JRB, which is evident in the form of the conductance
matrix, Eqs. (37) and (38). We recall that the minus sign
here comes from our sign convention: J� > 0 corresponds to
currents flowing into the contact for all �.

For the case of the localization driven by the null vector
Msup, we obtain

g0 = g1 = g2 = 1
4 . (39)

On the other hand, for the case of localization via the Mback

channel, we obtain instead

g0 = −g1 = −g2 = 1
4 . (40)

Thus, the current induced in the other edge has the same
magnitude but the opposite sign in comparison to the Msup

localization.
Note that g1 = g2 for the localization in any of the chan-

nels, Eqs. (39) and (40). We introduced distinct parameters g1

and g2 in Eq. (37) because below, in Sec. VII, where coherent
random tunneling in the arms is included, we will encounter
situations with g1 �= g2.

From the four-terminal conductance matrix, one can also
obtain the value of the two-terminal conductance studied in
Sec. V. This is done by setting μLA = μLB = μL and μRA =
μRB = μR, and calculating the total current from left to right,
J = JRA + JRB. Using Eqs. (37) and (38) for the matrix G,
we get

G = 4
3 − 2g0 + g1 + g2. (41)



TABLE I. Two-terminal conductance G and four-terminal con-
ductance matrix G��′ (all in units of e2/h) in the case of clean
(ballistic) arms, for either superconducting neutral-mode localiza-
tion (null vector Msup) or neutral back-scattering localization (null
vector Mback) in the junction. An element G��′ of the four-terminal
conductance matrix is defined as J�/μ�′ , where J� is the current from
the junction into the contact � in response to the electrochemical
potential μ�′ of contact �′; see Eq. (36). Other elements of the
conductance matrix follow from the current conservation in each of
the edges, implying GLA,�′ = −GRA,�′ and GLB,�′ = −GRB,�′ , and from
the symmetry of the device with respect to rotation by 180◦ (i.e., the
transformation LA ↔ RB and RA ↔ LB).

M G G��′

GRA,LA = 3/4 GRB,LB = 1/12Msup 4/3
GLB,LA = −1/4 GLA,LB = −1/4

GRA,LA = 3/4 GRB,LB = 1/12
Mback 1/3 GLB,LA = 1/4 GLA,LB = 1/4

Substituting here the values of g0, g1 and g2 for each of the
localization channels, Eqs. (39) and (40), we reproduce the
results (27) for the two-terminal conductance. In Table I, we
summarize the results for the two-terminal conductance and
for elements of the four-terminal conductance matrix for both
neutral-mode localization channels.

The mechanism of generation of the current in edge B
when the voltage is applied to one of the edge-A contacts is
illustrated in Fig. 2. The tunneling process corresponding to
the null vector M that governs localization (i.e., either Msup or
Mback) involves a backscattering in edge A and simultaneously
creation of a neutral excitation in edge B. The electron and
hole components of this neutral excitations (one of them in the
mode 1 and another in the mode 1/3) propagate in opposite
directions and are collected in different contacts (LB and RB),
thus implying a current induced in the edge B.

This phenomenon is analogous to the Coulomb drag effect
that happens in double-layer electronic systems; see Ref. [39]
for a review. In most of the cases, the Coulomb drag is weak
and explicitly depends on the interaction strength. In our case,
the drag blocks Goff of the conductance matrix are of order
unity (i.e., of the same order as the blocks G0 corresponding
to the conductance within the edge). Furthermore, the drag
conductance has a quantized value ±1/4. This is related to
the fact that we consider not a perturbative regime but rather a
strong localization of neutral modes. In this connection, there
is a certain similarity with FQH bilayers with total filling
factor ν = 1, where exciton condensation may take place,
leading to strong and quantized drag [40–42]. There are, how-
ever, many obvious differences between the system that we
consider and the ν = 1 bilayers. In particular, we study here
the edge physics, while the exciton condensation in bilayers is
a bulk effect.

In the last few years, a number of remarkable experiments
on transport in FQH edge junctions with counterpropagat-
ing modes were interpreted in terms of Andreev scattering
[24,43,44]. Conventionally, the term “Andreev scattering” is
used to describe scattering in SN or SNS structures (with
“S” and “N” denoting superconductor and normal metal,

= /

= /

Vacuum Vacuum

(a)

(b)

Vacuum Vacuum

FIG. 2. Drag induced by neutral-mode localization at the junc-
tion (depicted as shaded blue region) for the localization in the
(a) Msup channel and (b) Mback channel. Bias is applied to the upper
left arm (via the LA contact; see Fig. 1). Incoming electrons (de-
picted in green) from this arm are partially reflected at the junction.
At the same time, a neutral excitation in the bottom edge (edge B) is
created in accordance with the respective null vector, Msup for (a) and
Mback for (b). This induces an electron-like excitation (green) and
a hole-like excitation (yellow) in two modes of the edge B, which
propagate in opposite directions, and arrive at different drains. Thus,
a potential applied to the electrode LA induces a current in the edge
B, amounting to a drag. The sign of the drag is positive for Msup

localization and negative for Mback localization. The effect can also
be interpreted as a nonlocal Andreev reflection.

respectively). In this case, the total charge of excitations is not
conserved (since a Cooper pair can go to the condensate). As
a result, an electron can be backscattered as a hole, which is
the Andreev scattering. In FQH experiments mentioned above
there is no superconductor involved, so that the total charge
of excitations is conserved. The term “Andreev scattering”
has been used in a broader sense in this context, describing
situations when, say, a positive charge impinging on a device
induces a negative charge flowing from the device to one of
the contacts (charge conservation is maintained by charges
propagating to other contacts). The transport in junctions with
neutral-mode localization that we consider can be also in-
terpreted in this fashion. Indeed, consider, e.g., the case of
localization in the Msup channel, with a bias applied to the
LA electrode and other contacts grounded. Then electrons
impinging on the junction from the LA arm produce hole-like
excitations propagating from the junction into the contact LB;
see Fig. 2(a). For the case of localization in the Mback channel,
the hole-like excitations move to contact RB; see Fig. 2(b).

We finally consider the four-terminal conductance in the
case of fully equilibrated arms. As was discussed in Sec. V,
the effect of incoherent equilibration in each of the arms can
be effectively taken into account by replacing RK0 with U =
ORK0 in Eq. (34), where O ∈ SO(1,1) is

O =
(

cosh ϑ sinh ϑ

sinh ϑ cosh ϑ

)
. (42)



We find ϑ = 1
2 ln(2 + √

3) in the fully equilibrated limit of
γab � �a; see Eq. (26). By solving Eqs. (34) and (30) with
this replacement, and then using Eq. (35), we obtain

g0 = 1
3 , g1 = g2 = 0. (43)

Thus, neutral-mode localization does not affect the four-
terminal conductance matrix in the regime of equilibrated
transport in the arms. In particular, the two-terminal conduc-
tance is G = 2/3 [as was already found above, see Eq. (28)]
and the drag is absent.

It is worth noting that the drag should remain non-zero in
the partially equilibrated regime (i.e., in the crossover between
the ballistic and equilibrated regimes). In this regime, |g1| and
|g2| are expected to be between 0 [Eq. (43)] and 1

4 [Eqs. (39)
and (40)], interpolating between the two limiting transport
regimes, fully equilibrated and ballistic.

VII. MESOSCOPIC FLUCTUATIONS

In Sec. VI, we determined the four-terminal conductance
matrix for each of the neutral-mode localization channels by
assuming that the transport in the arms is ballistics (i.e., the
arms are clean). If the arms are disordered and the transport
there is incoherent, neutral-mode localization does not affect
the transport; see Sec. V. In this section, we consider a regime
that is intermediate between these two limits, namely there
is random tunneling in the arms but transport is coherent.
This is the case when the length of the arms is larger than
the zero-temperature mean-free path and, at the same time,
the temperature is low enough, so that the inelastic equili-
bration length is larger than the arm length. In this regime,
the interaction in the random edge is renormalized towards
the Kane-Fisher-Polchinski fixed point at which eigenmodes
diagonalizing the interaction matrix are the charge and neutral
modes [8]. Furthermore, transport properties in this regime
depend on realization of disorder, implying mesoscopic fluc-
tuations of conductances [11,12].

In the mesoscopic regime, a specific realization of random
tunneling in a 2/3 edge segment (representing any of the arms
of our setup) affects transport through total phase factor eiθ ,
i.e., via a single parameter θ ∈ [0, 2π ]. If the modes of such
a segment are directly connected to contacts, the transport is
characterized by a 2 × 2 matrix [12]

Garm =
(

1 − garm garm

garm
1
3 − garm

)
, (44)

with an only backscattering parameter garm which should sat-
isfy 0 � garm � 1/2. The matrix (44) connects the outgoing
currents (i.e., those flowing to the leads) in the 1 and 1/3
modes with the potentials applied to incoming 1 and 1/3
modes. Combining two such arms, one obtains a two-terminal
conductance G = 4/3 − gt

arm − gb
arm, with superscripts “t”

and “b” for top and bottom arms. When the disorder is
modified, the conductance thus experiences mesoscopic fluc-
tuations in the range 1/3 � G � 4/3. This mesoscopic regime
was observed in a recent experiment [26]. Analytical cal-
culation of the conductances for a generic θ ∈ [0, 2π ] is a
highly challenging task since the bosonized action is no more
quadratic in this situation. The analysis becomes simpler in
the cases θ = 0 (which is the same as no disorder, garm = 0)

and θ = π , for which one finds the largest possible value
garm = 1/2. For θ = π , the bosonic action remains quadratic
but the boundary condition is modified: the sign of the neutral
mode is flipped. If one includes in consideration sufficiently
long contact regions (“leads”) where 1 and 1/3 modes are
non-interacting, the parameter θ gets renormalized, with θ =
0 and θ = π being stable and unstable fixed points, respec-
tively [12].

We extend now the calculation of four-terminal conduc-
tance of Sec. VI by allowing for random tunneling in the arms.
We consider first the case when all θ� are either 0 or π , so
that an exact calculation is possible, and then discuss what
happens for other values.

Restricting ourselves to either θ� = 0 or θ� = π for each
of the arms, � = LA, RA, LB, RB, we get 16 possible com-
binations. We have evaluated the four-terminal conductance
matrix for all of them. The random tunneling with θ� = π on
an arm � leads to a modification of the analysis of boundary
matching of currents (Sec. VI) by a flip of sign of the neutral
bosonic mode in the corresponding arm. We find that, for both
localization channels, the conductance matrix retains its form,
Eqs. (37) and (38), for all 16 cases. The parameters g0, g1,
g2 get, however, affected by random tunneling in the arms.
Specifically, we obtain

g0 = g1 = g2 = 1
4 for θLA = θLB and θRA = θRB,

g0 = −g1 = −g2 = 1
4 for θLA �= θLB and θRA �= θRB,

g0 = 2
5 , g1 = −g2 = 1

5 for θLA = θLB and θRA �= θRB,

g0 = 2
5 , g2 = −g1 = 1

5 for θLA �= θLB and θRA = θRB

(45)

for the case of localization in the junction via the Msup channel
and

g0 = −g1 = −g2 = 1
4 for θLA = θLB and θRA = θRB,

g0 = g1 = g2 = 1
4 for θLA �= θLB and θRA �= θRB,

g0 = 2
5 , g2 = −g1 = 1

5 for θLA = θLB and θRA �= θRB,

g0 = 2
5 , g1 = −g2 = 1

5 for θLA �= θLB and θRA = θRB

(46)

for the case of Mback localization.
The first and second lines of Eqs. (45) and (46) can be un-

derstood by inspecting the condition of localization in channel
M, Eq. (31), which has the form MT I(x) = 0 on each side
(left and right) of the junction, or, writing explicitly A and B
components,

MT
AIA(x) + MT

BIB(x) = 0. (47)

When expressed in the charge-neutral basis, the condition (47)
has the form

MT
AInA(x) + MT

BInB(x) = 0, (48)

since the localization considered here takes place in the neu-
tral sector, as expressed by Eq. (8). As shown in Ref. [12]
and discussed above, θ = π in an edge segment leads to a
flip of the sign (i.e., the π phase shift) of the neutral bosonic
mode, φn → −φn and hence In(x) → −In(x). For the Msup

localization and clean arms (i.e., θ� = 0 for all �), we had the



values g0 = g1 = g2 = 1/4; see Eq. (39). This result holds
more generally for θLA = θLB and θRA = θRB, see the first
line of Eq. (45), since the condition (48) remains the same
when the signs of both currents InA and InB are flipped.
The same arguments explain the first line of Eq. (46) for
the case of Mback localization. For θLA �= θLB and θRA �= θRB,
either InA or InB changes sign on each side (L and R) of
the junction. Upon such a transformation, the condition (48)
becomes

MT
AInA(x) − MT

BInB(x) = 0, (49)

i.e., the vector MT = (MT
A, MT

B ) is mapped onto M̃
T =

(MT
A,−MT

B ). This maps Msup onto Mback and vice versa,
thus explaining the second lines of Eqs. (45) and (46): The
conductances for Msup localization with arms characterized
by θLA �= θLB and θRA �= θRB are the same as those for Mback

localization with clean arms, and vice versa.
The last two lines of Eqs. (45) and (46) represent a more

tricky scenario: The condition on one side (e.g., left) of the
junction retains its form (48) while on the other side (corre-
spondingly, right) of the junction the sign is flipped, Eq. (49).
In other words, on one side, the condition is similar to a
system with ballistic arms and Msup localization, while on
the other side it is similar to a system with ballistic arms
and Mback localization. This explains the emergence of values
(g0, g1, g2) different from those in the cases of localization
in any of the two localization channels with clean arms. It
is further instructive to inspect implications of the 180◦ rota-
tion transformation (which exchanges LA ↔ RB and RA ↔
LB). Since this transformation interchanges the left and right
sides, the conditions in the third and fourth lines of Eq. (45)
are exchanged, and analogously for Eq. (46). At the same
time, this transformation interchanges the parameters g1 ↔
g2 of the conductance matrix, Eqs. (37) and (38). We see
that the results for the parameters gi in the last two lines
of Eqs. (45), (46) are in agreement with this symmetry: g1

in the third line is equal to g2 in the fourth line and vice
versa.

In general, if the disorder in the arms is continuously
changed, the values of θ� continuously change as well. As
a result, the conductance matrix will exhibit mesosocopic
fluctuations, interpolating between its values calculated above
for θ� equal to 0 or π . This will in particular imply meso-
scopic fluctuations of the drag, including both its magnitude
and the sign. Specifically, by analyzing general properties of
the four-terminal conductance matrix, we find that the drag
conductances g1 and g2 vary in the range from − 1

4 to 1
4 ; see the

Appendix for details. Thus, the first two lines in Eqs. (45) and
(46) correspond to extreme values of the drag conductances.

As discussed above, the effect of random tunneling in the
arms can be reduced if a setup with engineered 2/3 edges (as
realized in Refs. [24,26,28]) is used; see Fig. 1(c).

VIII. SUMMARY

We have explored manifestations of Anderson localiza-
tion of neutral modes in transport properties of a junction
of two 2/3 FQH edges. Localization in one of the two
competing channels (“neutral-mode superconductivity” and
“neutral-mode backscattering,” governed by null vectors Msup

and Mback, respectively) reduces the original four-mode the-
ory of the junction to an effective two-mode theory. This
effective theory has a bosonic character: The minimal integer-
charge excitations are bosons with charge 2, and elementary
fractional excitations have charge 2/3 (i.e., twice larger than
the charge 1/3 in the absence of localization). These values of
the charge can be probed in tunneling experiments.

We have determined the two-terminal and four-terminal
conductances of a junction with neutral-mode localization.
For the case of ballistic transport in the arms connecting the
junction to contacts, the two-terminal conductance is G = 4/3
for Msup localization and G = 1/3 for Mback localization.
The four-terminal conductance provides more information on
transport through the junction. In particular, it reveals the drag
phenomenon: A bias applied to edge A induces a transport in
edge B, even though there is no tunneling of charge between
the edges. The drag conductances are quantized and equal to
±1/4(e2/h); the sign of the drag is opposite in two localiza-
tion channels. This phenomenon implies, in particular, that
electrons approaching the junction from one of the contacts
induce hole-like excitations propagate from the junction to
another contact, which can be viewed as a special type of
nonlocal Andreev scattering.

We have also studied the effect of coherent random tunnel-
ing in arms of the device (which are segments of 2/3 edges) on
the four-terminal conductance matrix. Such random tunneling
leads to strong mesoscopic fluctuations of the conductances.
Interestingly, the random tunneling may effectively transform
one of the neutral localization channels into the other one.

We emphasize that Anderson localization is a coherent
phenomenon, so that its experimental observation in FQH de-
vices is certainly a challenging task. At the same time, recent
years have witnessed remarkable advances in FQH device
engineering and experimental studies of quantum-coherent
transport in FQH regime. Thus, experimental detection
and investigation of localization in FQH edges and edge
junctions—including the neutral-mode localization studied
theoretically in this paper—appears to be feasible. We hope
that the present work will stimulate experimental research in
this direction, which may be expected to provide further im-
portant insights into remarkably rich physics of FQH quantum
matter.
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APPENDIX: RANGE OF DRAG CONDUCTANCE

In this Appendix, we determine the range of possible val-
ues of the drag conductances g1 and g2 and of the two-terminal



conductance G. By employing energy conservation argument,
as in Refs. [45,46], we show that g1 and g2 are bounded to the
range [− 1

4 , 1
4 ]; at the same time, G is limited to the interval

[ 1
3 , 4

3 ].
We consider a generic form of the four-terminal conduc-

tance matrix G, parametrized by four parameters g1, g2, gA,
and gB,

G =
(
G0[gA] Goff[g1]
Goff[g2] G0[gB]

)
, (A1)

with

G0[g] =
(−(1 − g) 1/3 − g

(1 − g) −(1/3 − g)

)
, (A2)

and Goff[g] given by Eq. (38). This conductance matrix gen-
eralizes Eq. (37) that includes three parameters g1, g2, and
gA = gB = g0. To motivate Eq. (A1), we note that G is a
4 × 4 matrix and thus has 16 matrix elements. Current con-
servation in each edge (i.e., JLA = −JRA and JLB = −JRB)
implies that the first and second rows of G0[g] and of Goff[g]
are identical up to an opposite sign, yielding eight constraints.
Furthermore, for μLA = μLB = μRA = μRB = μ, the currents
in the arms should be equal to their equilibrium values,
JRA = JLB = −JLA = −JRB = 2

3 ( μ

2π
). It thus follows from

J� = 1
2π

∑
�′ G��′μ�′ = μ

2π
(
∑

�′ G��′ ) that the sum
∑

�′ G��′ of
the components in row � is fixed to −2/3 for � = LA, RB (and
correspondingly to 2/3 for two other rows). This yields fur-
ther two constraints. Finally, when each edge is separately in
equilibrium, i.e., μLA = μRA and μLB = μRB, neutral-mode
localization is not operative, since the corresponding tunnel-
ing operator (4) does not couple to the total charge density
of each edge, and thus the drag should be absent. This leads
to two additional constraints that the sum of two columns of
each of the off-diagonal (drag) blocks of G vanishes. These
latter constraints imply that the off-diagonal blocks have the
form (38), as has been verified in all the cases for which we
calculated G explicitly in Sec. VII. Since we have in total
8 + 2 + 2 = 12 independent constraints, the matrix G is ex-
pressed in terms of four parameters, which explains Eq. (A1).

We consider a generic four-terminal setup depicted in
Fig. 3. Here, the whole system [i.e., the junction together with
the arms in Fig. 1(b)] is represented as one “black box,” with
four incoming and four outgoing modes. The idea [45,46]
is to calculate the incoming and outgoing power carried by
the currents. The total incoming power (energy per unit time)
reads

Pin = 1

4π

(
μ2

LA + μ2
RB + 1

3
μ2

RA + 1

3
μ2

LB

)
. (A3)

On the other hand, the total power associated with outgoing
currents is given by

Pout = π
[(

Jout
1,A

)2 + (
Jout

1,B

)2 + 3
(
Jout

1/3,A

)2 + 3
(
Jout

1/3,B

)2
]
.

(A4)

FIG. 3. Generic four-terminal setup with four incoming incom-
ing and four outgoing modes. The blue region is a “black box” that
includes both the junction and the arms in Fig. 1(b). The currents
in outgoing modes, Jout

1,A, Jout
1,B, Jout

1/3,A, and Jout
1/3,B are indicated, with

subscripts referring to the edge (A or B) and the type of the mode
(1 or 1/3).

By using the conductance matrix (A1) and the relations be-
tween currents

JLA = Jout
1/3,A − μLA

2π
, JRA = Jout

1,A − 1

3

μRA

2π
,

JRB = Jout
1/3,B − μRB

2π
, JLB = Jout

1,B − 1

3

μLB

2π
, (A5)

we obtain the power difference, �P = Pin − Pout, expressed
as a quadratic form

�P = 1

4π
μT G̃μ, (A6)

with respect to the vector or chemical potentials,
μT = (μLA, μRA, μRB, μLB). Here, the matrix G̃ is found
to be

G̃ =
(
G̃0[gA, g2] G̃off

G̃off G̃0[gB, g1]

)
, (A7)

with

G̃0[g, g′] = [−4g′2 + 2(1 − 2g)g]

(
1 −1

−1 1

)
,

G̃off = [g1 + g2 − 4(g2gB + g1gA)]

(
1 −1

−1 1

)
. (A8)

The energy difference �P is dissipated (transformed into
heat) in scattering processes in the system. Thus, �P �
0. This inequality should hold for any choice of μ, and
hence the matrix G̃ should be positive semidefinite, which
imply constraints on possible values of the parameters
g1, g2, gA, and gB. In particular, the positive semi-
definiteness of G̃ results in the following constraints on drag
conductances:

− 1
4 � g1, g2 � 1

4 . (A9)

Further, the two-terminal conductance G = 4
3 − gA − gB +

g1 + g2 is bounded to the range [ 1
3 , 4

3 ], which is the same as
in the absence of any coupling between two 2/3 edges.



The upper and lower bounds (A9) on g1 and g2,
exactly correspond to the first two lines of Eqs. (45)
and (46), which means that they are the optimal

bounds. Thus, the drag conductances vary within the
range (A9) in the regime of mesoscopic fluctuations,
Sec. VII.
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