

HTS power applications and cooling system developments in Europe

Steffen Grohmann & Mathias Noe, Karlsruhe Institute of Technology 4th IWC-HTS, 23-25 October 2024, Matsue, Japan

KIT – The Research University in the Helmholtz Association

Outline

Overview on HTS power applications in Europe

- HTS power transmission cables
- HTS busbars
- HTS fault current limiters

Specific cooling system developments

- State-of-the-art cooling systems
- CMRC: An emerging cryogenic technology

HTS POWER TRANSMISSION CABLES 110 kV AC 500 MVA cable, SWM SuperLink, Munich 1.5 kV DC cable at Railway Station, SuperRail, Paris

23.10.2024 3

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

SWM SuperLink Project, Munich

- Urging problem of the city utility
 - Necessary change in cable technology Non-availability of gas-pressure cables
 - Strong renewal pressure
 - 80+ % cables installed before 1980
 - Enormous volume >90 HV cable sections
 - Connection of gas power station in the south to transmission grid (NW) across the city
 - **Avoidance** of new 400/110 kV main substation
 - Space, cost

Rebuilding the distribution grid and establishing a 500 MVA connection across the city

SuperLink – Project options

Alternative solutions for transport of 500 MVA over 12 km

400 kV XLPE cable system

400 kV overhead line

E.g. tunnel solution, as in Berlin, London, etc. Not feasible in the city

Multiple 110 kV XLPE 110 kV HTS cable cable systems

Five systems and routes Limited bending radii Soil warming (spacing)

Novel technology

SuperLink – Project assessment

Alternative solutions – Assessment by the network operator

Criteria	400 kV XLPE	400 kV OHL	Multiple 110 kV	110 KV HTS
Minimum space				
Public acceptance				
Economic feasibility				•••
Technical maturity				•••
City grid integration				
Power density				
Low loss		•••		

The **HTS option** is very attractive, but needs development

23.10.2024

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

SuperLink – Consortium

23.10.2024

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

SuperLink – Objectives

Cable design

- Three HTS phases in one cryostat
- 110 kV, 500 MVA, 2.6 kArms (3.7 kApeak)
- Low AC-losses < 0.5 W/m/phase
- Separate LN₂ return pipe (single, one-way cable)

Distributed closed cooling system

- LN₂ sub-cooling with Turbo Brayton coolers Efficiency target $\eta = 30 \%$ Carnot
- Specific cooling power: 6 kW/km
- Intermediate cooling and pumping stations
 - $igstarrow \dot{Q}_0 \approx 30 \,\mathrm{kW} @ (64...74) \,\mathrm{K} \,\mathrm{per \, station}$
- Long lifetime of components 20-50 years
- Redundancy

SuperLink – Status

Commissioning of 150 m DEMO in 10/2024 🔽

- Contains all major cable components
- No cooling station prototype within the project

Long-time testing until 04/2025

Press release: <u>https://www.swm.de/unternehmen/presse/pressemitteilungen/2024/10-2024/swm-supralink</u>

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

SuperRail, Gare Montparnasse, Paris

- Need to increase the traffic on the railway network in densely populated areas with high constraint to comply with 2030 carbon reduction objectives
 - ▶ 50 Mio. passengers in 2020 \rightarrow 90 Mio. in 2030
- Conventional **Cu cables not possible** due to limitations in existing rights of ways
 - Many spacial constraints; Very high risks with century old constructions and presence of many other networks (water, gas, telecom)

Innovative solution: Two HTS 3500 A @ 1500 VDC cables

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Source: A. Allais et al., SuperRail – HTS Installation am Gare Montparnasse, ZIEHL IX Workshop, Berlin, 11.04.2024

SuperRail – Cooling system

LN₂ sub-cooling with Turbo-Brayton cooler

Cooling power of 1.7 kW @ 67 K for the entire cable system 70 % required for the terminations

Supply flow in first HTS cable; return flow in second cable

Source: A. Allais et al., SuperRail – World-First HTS Cable to be Installed on a Railway Network in France, IEEE TASC (2024), DOI: 10.1109/TASC.2024.3356450

Cold power generation loop (helium gas)

Cold power distribution loop to the HTS cables (liquid nitrogen)

- Skid for LN₂ handling

CAD model of helium Turbo-Brayton

SuperRail – Status

- Type test in SNCF laboratory completed
- Cable system installed in 2024 🔽
- Cooling system production ongoing
- Commissioning planned in 2025

Source: A. Allais et al., SuperRail – HTS Installation am Gare Montparnasse, ZIEHL IX Workshop, Berlin, 11.04.2024

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

EU project SCARLET Superconducting CAbles foR sustainabLe Energy Transition

- the gigawatt level, bringing them to the last qualification step before commercialization
- Expertise from 15 industry and research organizations in the fields of material sciences, cryogenics, energy systems and electrical engineering

Project website: <u>https://scarlet-project.eu/</u> \bigcirc

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Goal: develop and industrially manufacture MVDC superconducting cable systems at

HTS BUSBARS 200 kA DC Current Return, TRIMET Aluminum Factory, Hamburg

14 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Application

Source: W. Reiser, DEMO200 und Perspektiven, ZIEHL IX Workshop, Berlin, 11.04.2024

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Operation

- 365 d/a
- 24 h/d
- 200 kA DC

Technical concept

Electrical layout

Blue: Current return via 2. hall Yellow: Current retur via busbar

Source: W. Reiser, DEMO200 und Perspektiven, ZIEHL IX Workshop, Berlin, 11.04.2024

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

New concept

Superconductor parallel to existing aluminum return busbar

Superconductor

Impact of HTS

Al return busbar

- Length 600 m
- Nominal current 200 kA
- Voltage drop 12 V
- Electric losses 20 GWh/a
- Equiv. cost 1 M€/a

HTS busbar

- ▶ Losses < 10 %
- Reduction by 8.000 t CO₂ equivalent/a

Source: W. Reiser, DEMO200 und Perspektiven, ZIEHL IX Workshop, Berlin, 11.04.2024

Cooling concept

200 kA terminations cooled by evaporation of LN₂ • 600 m HTS busbar cooled with helium at 20 K

Source: W. Vorbuchner, 20 K Kälteanlagen

18 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

für Supraleiter,	ZIEHL	IX	Workshop,	Berlin,	11	.04	2024
				,			

Refrigerant	Heliu
LN ₂ pre-cooling	Ν
Cooling capacity	1.2 kW @ 20
Power input	95 k
Efficiency	18 % Carno

Test results & outlook

DEMO200 setup tested in **09/2024**

- 170 kA current test at TRIMET passed
- HTS busbar carried 189 kA @ 77 K (200 kA @ 70 K will be achieved in final system)
- A 600 m 200 kA permanent installation will be realized by 2027 within the realworld lab SuprAL

TRIMET aluminum plant in Hamburg

19 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Al return HTS busba

Successful test of a 20 kA module at KIT

High-current industrial applications

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Aluminum mill 200 kA, Dubai

Current	Lenght
20 kA	30-300 m
10-40 kA	40-500 m
40-80 kA	200-400 m
(120-) 200 kA	100-300 m
200-350 (500) kA	100-1200 m

All electrolysis, e.g. Na, Mg, F / furnaces / graphitization

Zinc electrolysis 200 kA, India

minter 11

and the second

Source: W. Reiser, DEMO200 und Perspektiven, ZIEHL IX Workshop, Berlin, 11.04.2024

HTS FAULT CURRENT LIMITERS 220 kV AC SFCL in Moscow 380 kV AC SFCL Feasibility Study

21 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

220 kV SFCL by SuperOx

Pilot SFCL 220 kV (2019)

- Customer: JSC "UNECO" Federal Grid Company
- Position: 220/20 kV Substation, Moscow (West)
- Voltage class: 220 kV
- Quantity: 1 (3-phases)
- **Continuous operation** in electrical grid **since 2019**
- SuperOx provides full maintenance of HTS SFCL

HTS SFCL placement at Mnevniki substation

Source: Mikhail Moyzykh, Development of applied superconducting technologies in SuperOx, EUCAS, Bologna, 2023

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

New Series-type 220 kV SFCLs

- Customer: JSC "UNECO" Federal Grid Company
- Position: 220/20 kV Substation, Moscow (East)
- Quantity: 2 (6-phases)
- Voltage class: 220 kV
- SuperOx provides consulting during engineering (ongoing)

Proposed SFCL placement

Cryogenic system design

Each SFCL phase is equipped with its own cooling sub-system By-passes between phases provide redundancy

Source: Sergey Samoilenkov et al., First Russian 220 kV superconducting fault current limiter for application in city grid, ASC Virtual Conference, 2020

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Cooling power for LN₂ sub-cooling $3 \times 2 \, \text{kW} @ 70 \, \text{K}$

Pilot SFCL – Cooling system maintenance

SFCL Layout

- 3 phases (HV HTS part)
- **Cryogenic system** (LV auxiliaries), including:
 - 3 Turbo Brayton coolers (one per phase)
 - 1 LN₂ distribution system
 - 1 water chiller

Statistics 2019-2023

- Phases (HV HTS part) operated correctly
- Cryogenic system (LV auxiliaries)
 - Several malfunctions occurred and successfully recovered

Source: Mikhail Moyzykh, Development of applied superconducting technologies in SuperOx, EUCAS, Bologna, 2023

List of cryogenic system malfunctions

N٥	Failure description	Solution
1	Shutdown of the cryogenic cooling system	Implementation of automatic restart
2	LN2 leakage – control system error	Control system software update
3	Cryocooler failure – manufacturing defect	Compressor turbine replacement
4	Chiller failure – manufacturing defect	Condenser repair (leak fixing)
5	LN ₂ level sensor failure	Gas fittings replacement
6	Chiller failure – manufacturing defect	Pump replacement
7	Wear of cryopump bearings	Bearings replacement

German Network Extension Plan NEP2037/2045 (2023)

Installed power	Status (2020/2021)	2037 (NEP 2023)	2045 (NEP 2023)
PV	59 GW	345 GW	400-445 GW
Offshore Wind	8 GW	51-59 GW	70 GW
Onshore Wind	56 GW	158-162 GW	160-180 GW

Additional scenario B 2037	Line length	Investment
Offshore	9.300 km	103,5 Mrd. €
Onshore	12.430 km	94,5 Mrd. €
Summe	21.730 km	198,0 Mrd. €

Source: Transmission System Operators

There will be a **huge grid extension** due to the energy transition

Motivation for 380 kV SFCL

Development of short-circuit currents (SCC) in parts of the German 380 kV grid

26 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Additional HV grid extension \bigcirc

Scenario B 2037	Total line length	Invest.
Offshore	9300 km	103.5 Mrd. €
Onshore	12430 km	94.5 Mrd. €
Total	21730 km	198.0 Mrd. €

Source:

Network development plan NEP2037/2045 (2023) dated 24 March 24 2023

Grid extension leads to **increase of SSC** at certain grid connection points

12

_11

Requirements on 380 kV SFCL

Electrical SFCL requirements

Parameter

Nominal voltage Un

Temporary highest voltage for equipment

Nominal current *I*_n

Max. short-circuit current without limiter I_1

Max. limited current with FCL $I''_{k,lim}$

Fault duration t_d

Source: https://www.ksp.kit.edu/site/books/series/karlsruher-schriftenreihe-zur-supraleitung-3/

	AIS Bus Coupler
	380 kV
U _{max}	440 kV
	5.0 kA
// K	63 kA
	19 kA
	0.25 s

Complete study available

System layout for one phase

Sub-cooled LN₂ for electric insulation

Parameter	Value
Amount of HTS	235 km
Total weight	142 t
Thereof LN ₂	94 t

Source: https://www.ksp.kit.edu/site/books/series/karlsruher-schriftenreihe-zur-supraleitung-3/

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Cooling of 380 kV SFCL

Conceptual cooling layout by F. Herzog, Messer

(1 pump in standby)

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Coolant	LI
Tank operating pressure	5 to 8 b
Cooling power	18 kW @ 68
SFCL supply temperature	< 71
SFCL return temperature	~ 77
Coolant circulation	3 x 30 kg/m
Average LN ₂ consumption	~ 120 kg/h @ 4.5 k

Source: https://www.ksp.kit.edu/site/books/series/karlsruher-schriftenreihe-zur-supraleitung-3/

Economic feasibility

Capital expenditure (CapEx)

	Minimum	Medium	Maximum
Total invest	19.0 M€	25.8 M€	37.5 M€

There are no technical showstoppers for the further development of 380 kV / 5 kA resistive type SFCL

Operating expenses (OpEx)

Load factor	0.7	1
AC loss	786 MWh	2057 MV
Current lead thermal	104 MWh	104 MV
Current lead ohmic	40 MWh	65 MV
Cryostat	119 MWh	119 MV
Others	8 MWh	8 MV
Pumps	18 MWh	18 MV
Total energy loss per year	1075 MWh	2371 MV
Cost per year for losses	315.000 €	695.000

Source: https://www.ksp.kit.edu/site/books/series/karlsruher-schriftenreihe-zur-supraleitung-3/

380 kV SFCL outlook

- - Economic assessment
 - Technical design
 - Cryogenic bushing
 - High voltage design
 - Current limiting module

Technology **Arts Sciences** TH Köln

New R&D project on key technologies for 380 kV SFCL (Start: March 2025)

STATE-OF-THE-ART COOLING SYSTEMS

32 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

State-of-the-art cooling systems

Most common solution: LN₂ sub-cooling with Turbo Brayton cooler

How to overcome common issues?					
Availability	Cost	Space requirements	LN ₂ logistics	Efficiency	Reliability

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Cooling power	Temperature
30 kW	64-74 K
2 kW	67 K
$2 \times 6 \text{ kW}$	77 K
1.2 kW	20 K
$3 \times 2 \text{ kW}$	70 K
18 kW	68 K

The role of the refrigerant

The simplest cycle (Level 1 System Complexity)

• Linde-Hampson cycle operated with e.g. N₂ Does not work {He, Ne} due to $\mu_{IT}(RT) < 0$

34 23.10.2024

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Reasons for low efficiency

- Different capacity flows $\dot{C} = \dot{M} c_p(T, p)$ ⇐ First Law yield increasing ΔT
- Entropy production by heat transfer $\dot{S}_{\text{irr},\Delta T} \propto \frac{T_{\text{h}} - T_{\text{c}}}{T_{\text{h}} T_{\text{c}}} dq$ ⇐ Second Law
- ... further impact on irreversibility
- Entropy production by expansion $\dot{S}_{\rm irr,\Delta p} \propto -\frac{v}{T} dp$ ⇐ Second Law
 - i.e. the specific volume v_4 is relevant

Limitations of the Turbo-Brayton cycle

Process modification (Level 2)

- Replace expansion valve by turbo expander
 - Operation with {He, Ne} possible independent of Joule-Thomson coefficient $\mu_{\rm IT}$

Characteristics of the working fluids

- {He, Ne} show nearly ideal gas behavior in the application range
 - Very good match of temperature profiles in the CFHX due to $c_p \neq f(p)$
- However, the ideal gas behavior implies the **least efficiency** of all refrigerants!
 - Largest isentropic coefficient
 - Use {He, Ne} only at very low temperature
- Single-phase operation yields the **lowest** power density
 - Heat transfer coefficients about E-02 smaller compared to vapor/liquid phase change
 - Very large heat exchangers determine space **requirements** in HTS power applications

Alternatives for cooling system improvement

36 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Historical perspective of refrigerant design

- The refrigerant is the key component in any cooling system!
 - In principle, there is one "ideal" refrigerant for each application/process topology
- In the past, refrigerants have been synthesized to optimize the efficiency of all kind of applications
 - All synthetic refrigerants have been causing ecological problems \rightarrow restriction, phase-out
 - Ozone depletion, global warming, PFAS

The only sustainable approach is the use of natural refrigerant mixtures Large increase of parameter space (number of components, concentrations, pressure levels, ...) The use of flammable components (HCs) is inevitable \rightarrow safe handling in closed cycles \checkmark

CMRC: AN EMERGING CRYOGENIC TECHNOLOGY Cryogenic Mixed-Refrigerant Cycles

38 23.10.2024 S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Development levels of CMRC technology

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

- Current leads/terminations for superconducting magnets/power cables
- Cooling stations for superconducting power cables
- Technology transfer to non-superconducting applications

Heat exchanger technology and system modeling

- Evaluation and validation of transport correlations

- Measurement of fluid state and transport properties
- Modeling of phase behavior by equations of state (EOS)

Properties of cryogenic fluid mixtures 1

- Cryogenic phase equilibria test stand (CryoPHAEQTS)
 - Validation/development of equations of state (EOS) for cryogenic fluid mixtures
 - Operation within T = 8...300 K and p = 0...150 bar

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Heat exchanger tools and technology 2

Modeling framework

- Classical ε-NTU models inappropriate due to changing fluid properties
- Extensive numerical framework
 - Compatible with numerous correlations
 - Single- and **two-phase flow**
 - Pure fluids and **zeotropic mixtures**
 - Longitudinal and parasitic heat loads
 - Inclusion of electric modeling

- Prototype development and testing
 - Micro-channel heat exchangers with diffusion-bonded metal foils
 - **Large spec. surface** $A_{\rm HX}/V_{\rm HX} \approx 10^3 \dots 10^4 \,{\rm m^2/m^3}$ i.e. \geq E+01 compared to plate heat exchangers
 - **Clean technology** suitable for cryogenic systems

Refrigerant design by genetic algorithm 2

Differential Evolution (DE)

More details in 2nd poster session on Friday: <u>F. Boehm</u>, J. Arnsberg, S. Grohmann: Application of Cryogenic Mixed-Refrigerant Cycles in HTS Systems

- No derivatives needed
- Global optimization \rightarrow "Exploration & Exploitation"

- o candidates
- former populations
- current population

Sc. current leads/power cable terminations 3

Theoretical power demand

Cooling of conduction cooled (CC-CL) vs continuously cooled (∞-CL) current leads

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

Real system comparison

C		
Ĵ	C	-

Parameter	CC-CL	CMRC-CL
Temperature at cold end	79.3	79.3
Design current	10 kA	10 kA
Mass flow of mixed refrigerant	-	17 g/s
Heat load due to ohmic losses	424 W	70 W
Total power demand	8.1 kW	2.1 kW
Carnot efficiency	15 %	35 %

Source: J. Arnsberg, F. Boehm, S. Grohmann: Mixed-refrigerant cooled 10 kA current leads for superconducting applications. ICEC29/ICMC 2024, Geneva (2024)

HTS power cable cooling stations 3

Example: Cooling station with 30 kW (a) (64...74) K for SWM SuperLink

CMRC cascade with optimization of pre-cooling temperature

S. Grohmann, M. Noe - HTS power applications and cooling system developments in Europe

timization parameters	
-cooling temperature T _{pre}	80200 K
v-pressures p _{LP}	120 bar
h-pressures p _{HP}	1060 bar
mponent concentrations	01

CMRC reaching 40% Carnot ! Turbo Brayton ≤ 30% Carnot

Cryocooler ~10% Carnot

More details in 2nd poster session on Friday: F. Boehm, J. Arnsberg, S. Grohmann: Application of Cryogenic Mixed-Refrigerant Cycles in HTS Systems

Source: F. Boehm, W. Batista de Sousa, S. Grohmann: Optimization of cryogenic mixed-refrigerant cascades for intermediate cooling stations of the long-distance superconducting power cable SuperLink. ICEC29/ICMC 2024, Geneva (2024)

COMPASS test facility 3

- **Comp**act Accelerator Systems Test Stand
 - Platform for prototype developments up to TRL6
 - Single or cascade operation of two CMRC circuits
 - **Cryocooler** for LTS operation down to **4 K**
 - Power supply up to 10 kA
 - Commissioning until the end of 2024

Conclusions

THANK YOU FOR YOUR ATTENTION !

