KIT | KIT-Bibliothek | Impressum | Datenschutz

Demo: Testing AI-driven MAC Learning in Autonomic Networks

Paeleke, Leonard; Keshtiarast, Navid; Seehofer, Paul ORCID iD icon 1; Bless, Roland ORCID iD icon 1; Karl, Holger; Petrova, Marina; Zitterbart, Martina 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

6G networks will be highly dynamic, re-configurable, and resilient. To enable and support such features, employing AI has been suggested. Integrating AI in networks will likely require distributed AI deployments with resilient connectivity, e.g., for communication between RL agents and environment. Such approaches need to be validated in realistic network environments. In this demo, we use ContainerNet to emulate AI-capable and autonomic networks that employ the routing protocol KIRA to provide resilient connectivity and service discovery. As an example AI application, we train and infer deep RL agents learning medium access control (MAC) policies for a wireless network environment in the emulated network.


Postprint §
DOI: 10.5445/IR/1000175480
Veröffentlicht am 25.03.2025
Originalveröffentlichung
DOI: 10.1109/ICNP61940.2024.10858521
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000175480
Erschienen in 32nd IEEE International Conference on Network Protocols (ICNP), Charleroi, 28.10-31.10.2024
Veranstaltung 32nd International Conference on Network Protocols (2024), Charleroi, Belgien, 28.10.2024 – 31.10.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Projektinformation Open6GHub (BMFTR, 16KISK010)
Bemerkung zur Veröffentlichung in press
Nachgewiesen in OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page