
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Analyzing Scientific Workflow Management
Systems

Bachelor’s Thesis of

Daniel Scheerer

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr-Ing. Anne Koziolek

Second examiner: Prof. Dr. Ralf Reussner

First advisor: M.Sc. Larissa Schmid

Second advisor: M.Sc. Timur Sağlam

15. January 2024 – 15. May 2024

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Karlsruhe, 15.05.2024

. .

(Daniel Scheerer)

Abstract

Over the last 20 years, scientific workflows have emerged as an important aspect of modern

sciences. The abstraction provided by workflows has become a regular aid to handle the

high complexity of simulation and computations in many scientific domains. To deal

with ever-rising amounts of data and challenges posed by new technologies, scientific

workflowmanagement systems have become a valuable tool to orchestrate and monitor the

execution of workflows on distributed execution environments. An abundance of research

presents new systems, features for those systems, or aims to create synthetic workflows for

benchmarking purposes. However, little research focuses on the performance differences

of workflow applications when executed with different workflow management systems.

This thesis aims to provide benchmarks for multiple workflows and workflowmanagement

systems in order to help domain scientists make an informed choice about what system

to use. Our measurements show that different workflow management systems do not

significantly impact the execution time of workflow tasks.

i

Zusammenfassung

Über die letzten 20 Jahre haben sich wissenschaftliche Workflows zu einem wichtigen

Aspekt moderner Forschung entwickelt. Die von Workflows gebotene Abstraktion ist zu

einer regelmäßigen Hilfe im Umgang mit der hohen Komplexität von Simulationen und

Berechnungen in vielen wissenschaftlichen Bereichen geworden. Um die immer stärker an-

steigende Menge an Daten und die Herausforderungen neuer Technologien zu bewältigen,

sind wissenschaftliche Workflow-Managment-Systeme ein wertvolles Werkzeug zur Or-

chestrierung und Überwachung von Workflows auf verteilten Rechensystemen geworden.

Ein großer Teil neuer Forschung beschäftigt sich mit neuen Systemen und ihren Features.

Andere verwandte Arbeiten beschäftigen sich mit der Erstellung von synthetischen Work-

flows für Benchmarking-Zwecke. Jedoch gibt es nur wenig Forschung, die sich mit dem

möglicherweise unterschiedlichen Performance-Verhalten von Workflow-Anwendungen

beschäftigen, wenn diese mit unterschiedlichen Workflow-Management-Systemen aus-

geführt werden. Diese Arbeit zielt darauf ab, Benchmarks für mehrere Workflows und

Workflow-Management-Systeme bereitzustellen. Diese ermöglichen es Wissenschaftlern

dann idealerweise, eine bessere Entscheidung zu treffen, wenn es um die Wahl eines

Workflow-Systems geht. Unsere Messungen ergeben, dass unterschiedliche Workflow-

Managment-Systeme keinen signifikanten Einfluss auf die Ausführungszeit von Workflow-

Anwendungen haben.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Scientific Workflows . 3

2.1.1. Abstract Workflows . 3

2.1.2. Concrete Workflows . 4

2.1.3. Advanced Characteristics . 5

2.2. Scientific Workflow Management Systems 6

2.2.1. Core Features . 6

2.2.2. Other Features . 8

3. Approach 9
3.1. Performance Metrics . 9

3.2. Selection of WMS . 10

4. Related Work 11
4.1. Workflows . 11

4.2. Workflow Management Systems . 12

5. Workflow Management Systems 13
5.1. Pegasus . 13

5.1.1. Workflow Composition . 13

5.1.2. Workflow Execution . 14

5.2. Snakemake . 14

5.2.1. Workflow Composition . 15

5.2.2. Workflow Execution . 16

5.3. Makeflow . 16

5.3.1. Workflow Composition . 16

5.3.2. Workflow Mapping and Execution 17

5.4. Comparison of Core Features . 18

6. Scientific Workflows 19
6.1. Montage . 19

6.2. 1000 Genome Workflow . 20

v

Contents

6.3. Orcasound Workflow . 21

7. Performance Evaluation 23
7.1. Methodology . 23

7.2. Montage . 24

7.2.1. Input Instances . 24

7.2.2. Characterization . 25

7.2.3. Workflow Management System Profiles 29

7.3. 1000Genome . 35

7.3.1. Input Instances . 35

7.3.2. Characterization . 35

7.3.3. Workflow Management System Profiles 38

7.4. Orcasound . 39

7.4.1. Input Instances . 39

7.4.2. Characterization . 40

7.4.3. Workflow Management System Profiles 43

7.5. Threats to Validity . 46

8. Discussion 49
8.1. Goal Question Metric Plan . 49

8.2. Comparison of WMS Features . 50

8.3. Comparison of WMS Performance . 50

9. Conclusion 53
9.1. Summary . 53

9.2. Future Work . 53

Acknowledgments 55

Bibliography 57

A. Appendix 61
A.1. Detailed Profiling Data . 61

A.1.1. Montage . 61

A.1.2. 1000Genome . 67

A.1.3. Orcasound . 69

vi

List of Figures

2.1. Workflows tasks with data dependencies 4

2.2. An example of an abstract workflow . 5

2.3. An example of a concrete workflow . 5

2.4. The core features of a workflow management system 6

6.1. Montage workflow structure . 20

6.2. 1000Genome workflow structure . 21

6.3. Orcasound workflow structure . 22

7.1. Montage: mConcatFit performance model by Extra-P 26

7.2. Montage: mBgModel performance model by Extra-P 27

7.3. Montage: mImgtbl performance model by Extra-P 28

7.4. Montage: mAdd performance model by Extra-P 28

7.5. Montage: mViewer performance model by Extra-P 29

7.6. Montage: mProject WMS comparison 30

7.7. Montage: mDiffFitWMS comparison . 31

7.8. Montage: mConcatFitWMS comparison 31

7.9. Montage: mBgModel WMS comparison 32

7.10. Montage: mBackgroundWMS comparison 33

7.11. Montage: mImgtblWMS comparison . 33

7.12. Montage: mAdd WMS comparison . 34

7.13. Montage: mViewerWMS comparison . 35

7.14. 1000Genome: individuals performance model by Extra-P 36

7.15. 1000Genome: individuals_merge performance model by Extra-P 37

7.16. 1000Genome: individualsWMS comparison 38

7.17. 1000Genome: individuals_mergeWMS comparison 39

7.18. Orcasound: convert2wav performance model by Extra-P 41

7.19. Orcasound: convert2spectrogram performance model by Extra-P . . . 42

7.20. Orcasound: inference performance model by Extra-P 42

7.21. Orcasound: merge performance model by Extra-P 43

7.22. Orcasound: convert2wav WMS comparison 44

7.23. Orcasound: convert2spectrogramWMS comparison 45

7.24. Orcasound: inference WMS comparison 45

7.25. Orcasound: merge WMS comparison . 46

vii

List of Tables

5.1. Comparison of WMS features . 18

7.1. Input instances of the Montage workflow in this thesis 24

7.2. Numbers of jobs by job type for all Montage instances 25

7.3. Montage Workflow Level . 25

7.4. Montage: mProject job data . 25

7.5. Montage: mDiffFit job data . 26

7.6. Montage: mConcatFit job data . 26

7.7. Montage: mBgModel job data . 27

7.8. Montage: mBackground job data . 27

7.9. Montage: mImgtbl job data . 27

7.10. Montage: mAdd job data . 28

7.11. Montage: mViewer job data . 29

7.12. Montage: mProject execution time with WMSs 30

7.13. Montage: mDiffFit execution time with WMSs 30

7.14. Montage: mConcatFit execution time with WMSs 31

7.15. Montage: mBgModel execution time with WMSs 32

7.16. Montage: mBackground execution time with WMSs 32

7.17. Montage: mImgtbl execution time with WMSs 33

7.18. Montage: mAdd execution time with WMSs 34

7.19. Montage: mViewer execution time with WMSs 34

7.20. Numbers of jobs by job type for all 1000Genome instances 35

7.21. 1000Genome Workflow Level . 36

7.22. individuals job data . 36

7.23. individuals_merge job data . 37

7.24. other job data . 37

7.25. other job data . 38

7.26. 1000Genome: individuals execution time with WMSs 38

7.27. 1000Genome: individuals_merge execution time with WMSs 39

7.28. Input instances of the Orcasound workflow 40

7.29. Numbers of jobs by job type for all Orcasound instances 40

7.30. Orcasound Workflow Level . 40

7.31. Orcasound: convert2wav job data . 41

7.32. Orcasound: convert2spectrogram job data 41

7.33. Orcasound: inference job data . 42

7.34. Orcasound: merge job data . 43

7.35. Orcasound: convert2wav execution time with WMSs 44

ix

List of Tables

7.36. Orcasound: convert2spectrogram execution time with WMSs 44

7.37. Orcasound: inference execution time with WMSs 45

7.38. Orcasound: merge execution time with WMSs 46

A.1. mProject job data with Pegasus . 61

A.2. mDiffFit job data with Pegasus . 61

A.3. mConcatFit job data with Pegasus . 61

A.4. mBgModel job data with Pegasus . 62

A.5. mBackground job data with Pegasus . 62

A.6. mImgtbl job data with Pegasus . 62

A.7. mAdd job data with Pegasus . 62

A.8. mViewer job data with Pegasus . 63

A.9. mProject job data with snakemake . 63

A.10.mDiffFit job data with snakemake . 63

A.11.mConcatFit job data with snakemake 63

A.12.mBgModel job data with snakemake . 64

A.13.mBackground job data with snakemake 64

A.14.mImgtbl job data with snakemake . 64

A.15.mAdd job data with snakemake . 64

A.16.mViewer job data with snakemake . 65

A.17.mProject job data with makeflow . 65

A.18.mDiffFit job data with makeflow . 65

A.19.mConcatFit job data with makeflow . 65

A.20.mBgModel job data with makeflow . 66

A.21.mBackground job data with makeflow 66

A.22.mImgtbl job data with makeflow . 66

A.23.mAdd job data with makeflow . 66

A.24.mViewer job data with makeflow . 67

A.25. individuals job data with pegasus . 67

A.26. individuals_merge job data with pegasus 67

A.27. individuals job data with snakemake . 67

A.28. individuals_merge job data with snakemake 68

A.29. other job data . 68

A.30. individuals job data with makeflow . 68

A.31. individuals_merge job data with makeflow 68

A.32. other job data . 68

A.33. convert2wav job data with pegasus . 69

A.34. convert2spectrogram job data with pegasus 69

A.35. inference job data with pegasus . 69

A.36.merge job data with pegasus . 69

A.37. convert2wav job data with snakemake 70

A.38. convert2spectrogram job data with snakemake 70

A.39. inference job data with snakemake . 70

A.40.merge job data with snakemake . 70

A.41. convert2wav job data with makeflow . 71

x

List of Tables

A.42. convert2spectrogram job data with makeflow 71

A.43. inference job data with makeflow . 71

A.44.merge job data with makeflow . 71

xi

1. Introduction

In modern times, data science, computation and simulation have become an integral

aspect of science besides the established methods of theory and experiment [13]. In

this new e-Science, software no longer exists exclusively in the form of large monolithic

applications [9]. Instead, results are computed by running a complex series of independent

tasks on appropriate input data. With this approach, the ability to trace provenance data of

results and repeat calculations to reproduce results is an important aspect of the scientific

method. To simplify and document this process, the use of scientific workflows has been
established as an efficient way to model complex processes in an abstract and reproducible

way [16]. In recent years, many scientific workflows have analyzed large amounts of data

and require ever higher computing capacity [23]. Consequently, most scientific workflows

rely on high-performance computing systems like computer clusters, grid networks [15]

or high-performance cloud computing. Such systems often provide a heterogeneous

computing environment, which necessitates more focus on resource management and

workflow orchestration, especially for highly parallel workflows. With this trend, the use of

so-calledworkflowmanagement systems (WMS) has becomemandatory in order to compose

and manage scientific workflows [10, 19]. But since specific requirements concerning the

features of such systems differ for each scientific domain, many domains have created

their own WMS. This has lead to a plethora of available scientific workflow management

systems [29], each with their own format to represent workflows but generally overlapping

features. However, it is not clear that all projects from the same scientific domain present

the same challenges to a WMS. Additionally, there is a lack of existing benchmarks for

different types of workflows to compare the performance of different WMSs. For a scientist

who is composing a new workflow to deal with a new set of problems, the best choice of

management system regarding performance is not obvious.

This thesis aims to provide benchmarks for a number of selected workflow management

systems and workflows. Comparable benchmarking data allows further insight into differ-

ent classes of workflows and which WMS they work best with. Ideally, this knowledge

can help researchers pick a suitable workflow management system for their individual use

case. However, since workflow management systems offer different sets of features, per-

formance is not the only quality of WMSs to consider. Concretely, this thesis investigates

the following research questions:

RQ1: How can scientific workflows be characterized regarding resource requirements and

resource utilization?

RQ2: How do different scientific workflow management systems compare in regard to

performance?

1

1. Introduction

RQ3: Is there a class of workflows for which a given management system achieves better

performance results than others?

RQ4: What other features, besides performance, have to be considered when selecting a

scientific workflow management system?

This thesis is organized as follows: Chapter 2 of this paper explains the foundations of

scientific workflows and scientific workflow management systems in more detail. Chapter 3

details the approach we take for measuring performance metrics and the workflows and

systems we choose to analyze. Chapter 4 presents the related work and how this thesis

discerns itself from it. In chapter 5, we describe the features and characteristics of the

workflow management systems we evaluate. Chapter 6 lists the workflows we characterize

along with their structure. All benchmarking data we collect is depicted in chapter 7. The

same chapter also details the input instances we use and the limitations of our approach.

Chapter 8 discusses the results of our performance evaluation and the different features of

WMSs. Finally, chapter 9 summarizes our results and gives an outlook for future work.

The dataset containing the input data and results generated during the work on this thesis

are available on Zenodo [27].

2

2. Foundations

The following chapter gives an overview of the foundations of the central entities in the

thesis: Section 2.1 explains the concept of scientific workflows. Section 2.2 describes the

purpose of scientific workflow management systems.

2.1. Scientific Workflows

A scientific workflow in its most general form is an abstract representation of a scientific data

processing routine [14]. Large scientific simulations or computations are often executed

in heterogeneous computation environments. In this case, managing the data transfers to

and from the execution sites becomes a complex process [11]. The abstraction provided

by scientific workflows allows domain scientists to concentrate on their research instead

of the computation management [13, 14].

Aworkflow consists of tasks (also called jobs) and the data dependencies between them [13].

A task involves the execution of a binary file or shell script to perform computations,

data transfers or other auxiliary functions. Data dependencies are usually represented

on the file level: Each task takes input in the form of one or multiple files and produces

one or multiple output files after it has finished. If a task must wait for the output file

of a previous task, they are connected by a data dependency, which implies a temporal

ordering. The most widely used representations of workflows are directed acyclic graphs
(DAGs), but within this framework multiple formats exist. Each task is represented by a

node and data dependencies are represented by directed edges between tasks. Figure 2.1

depicts a basic DAG representation. In some formats, files are also depicted as nodes, while

edges imply that the file is produced or consumed by a task. Representations other than

DAGs exist but are not widely used [13].

Scientific workflows are often further classified into abstract workflows and concrete work-
flows [9]. An abstract workflow, detailed in subsection 2.1.1, is independent from a concrete

execution environment. Subsection 2.1.2 introduces the concept of concrete workflows,

which contain mappings to a specific environment, binaries and input files.

2.1.1. Abstract Workflows

An abstract workflow definition abstracts from an execution environment and the physical

locations of the used binaries and input files [9]. For that purpose, all files are referred

3

2. Foundations

Task 1 Task 2 Task 3

Figure 2.1.: Workflows tasks with data dependencies

to by a logical filename or path relative to the workflow execution directory. Logical

filenames offer an even higher level of abstraction than relative paths because they allow

to change the structure of the data directory without modifying the workflow definition [9].

Consequently, the DAG of an abstract workflow contains mainly computational tasks

decoupled from any specific execution environment. Figure 2.2 depicts the abstract graph

representation of an example workflow. This workflow features a classic diamond structure:

An input file is scattered, processed in chunks and the results finally merged together.

Since it is an abstract workflow, there is no notion of where the tasks are executed and

how the data is transferred there. One of the largest advantages of wrapping a procedure

in an abstract workflow is the ability to reuse it and reproduce the results on a different

infrastructure. This allows scientists to easily verify their results, while sharing them with

a community for discussion.

Abstract workflows can also feature additional control structures like conditional branches

or loops. In most cases, those structures are just a syntactical convenience, and the values

defining the conditional execution must be known while mapping to a concrete workflow.

Subsection 2.1.3 goes into more detail concerning workflows that have to adapt their

structure during runtime. Another important construct are sub-workflows: these are

complete workflows that can be embedded as a part of a larger workflow. This design

leads to a more compact workflow definition while not reducing the complexity.

2.1.2. Concrete Workflows

In order to be executed, a workflow must contain specific information about the execution

infrastructure, data transfers and physical file locations involved. A workflow represen-

tation which includes this information is called a concrete workflow [9]. Since including

this information nullifies the aforementioned advantages of abstraction, a concrete work-

flow is often created only directly ahead of the workflow execution. Depending on how

distributed an execution system is, input data can be accessed directly through a shared

file system or must be transferred to a local storage location first. The same holds true

for output data. Intermediate data does not have to be staged out of the execution site if

4

2.1. Scientific Workflows

process

process

scatter mergeinput.file

b.file

a.file

pb.file

pa.file

out.file

Figure 2.2.: An example of an abstract workflow

process

process

scatter merge

stage_out

stage_in

cleanup
./input.txt

./output.txt

Figure 2.3.: An example of a concrete workflow

it is not an important part of the results. Figure 2.3 depicts a concrete workflow, which

includes additional auxiliary jobs to transfer data to and from a remote execution site.

2.1.3. Advanced Characteristics

The demands for what can be represented with a workflow definition are increasing due

to rising scale of computations and new technologies [29, 14]. When selecting a WMS,

support for certain workflow requirements can play a more important role than pure

performance. While the workflows we profile in this thesis do not display the following

characteristics, they are important to know about when talking about the features of

WMSs.

Adaptive Workflows In some cases, workflows need to be adjusted during their runtime

according to the results of their jobs. An example of such workflows are those that

utilize machine learning to improve simulation parameters [29]: The workflow structure

must be modified during execution to fit a new configuration. This confronts workflow

5

2. Foundations

User Abstract Workflow

Composition Mapping

Concrete Workflow

Computing
Environment

Workflow Management System
Provenance

Execution

Results

Figure 2.4.: The core features of a workflow management system

management systems with a new challenge since the complete workflow structure is not

known while mapping the workflow to the resources of an execution site.

In Situ Workflows In situ workflows are workflows defined by tightly coupled tasks which

exchange information [12] during their execution. Especially in the context of extreme-

scale computing, the volume of simulation data that has to be analyzed can become too

large for the storage bandwidth [14]. In this case, integrating the data analysis within the

simulation on the compute site is a necessary step. However, the communication of tightly

coupled tasks is often done via memory [14]. In contrast to this, most WMSs only support

data transfers through files.

2.2. Scientific Workflow Management Systems

A scientific workflow management system (WMS) is a piece of software designed to help

with the creation and execution of scientific workflows. Especially for distributed and

heterogeneous execution sites, a WMS offers abstraction and automation features that

free an user from considering the requirements of a specific site or execution engine.

Subsection 2.2.1 lists the core features which can be found in most workflow management

systems, while subsection 2.2.2 introduces additional features that have proven to be useful

for researchers.

2.2.1. Core Features

Figure 2.4 depicts the central features of workflow management systems. These core

features were structured in more detail in previous work [13]:

6

2.2. Scientific Workflow Management Systems

Workflow Composition The WMS helps with workflow creation by providing either a

graphical or textual interface [4]. Graphical interfaces help researchers without program-

ming experience define and visualize their workflow by directly modifying the workflow

graph [4]. Textual interfaces work through either a higher-level scripting language or a

command line interface. This approach offers higher scalability and more control over

complex structures than graphical interfaces, for example if the problem has to be split up

into multiple sub-workflows [14, 13].

Workflow Mapping is the process of assigning specific physical computing resources to

the different tasks of a workflow, essentially turning an abstract workflow into a concrete

one. This can be done statically or dynamically during runtime. The output of this stage

can range from complex files, which can only be executed by a specific engine or scheduler

to simple batch scripts. If the abstract workflow definition references files by logical file

names, this step is responsible for associating them with a real physical file and path. If

the WMS has access to multiple different execution sites, it has to choose an appropriate

site for each task. In any case, the abstract workflow tasks must be wrapped in a format

compatible with the available sites.

Workflow Execution refers to the actual processing of the mapped workflow. Large or

distributed execution environments make use of so-called batch systems. These systems

work as execution engines and are responsible for monitoring the available compute

resources and scheduling user requests for computing power in a fair and efficient man-

ner [2]. However, the interfaces for scheduling jobs, checking their status and collecting

the outputs differ for each execution engine. WMSs usually offer support for a variety of

execution engines and environments. During execution, they are responsible for submit-

ting workflow jobs in a correct manner and periodically checking their status to resume

jobs that depend on their output.

Provenance Recording is the task of collecting additional metadata about the workflow

and the results. This involves checking the return values of workflow jobs for errors and

saving the log files of the respective execution engine. This practice is important to verify

research results and increase their reproducibility.

In practice, most WMSs were created by scientific communities from a certain domain

and influenced by the specific needs of that domain. Thus, the features of WMSs apart

from core features can differ.

Presently, WMSs have to deal with a new set of challenges arising from advanced tech-

nology [29]. The development of exascale computing makes efficient management and

coordination between compute resources, especially for parallel applications, more im-

portant than ever. New AI-aided workflows require more flexible and dynamic systems,

which are able to react to changing parameters and adapt the structure of the workflow

during execution.

7

2. Foundations

2.2.2. Other Features

Apart from the set of core features that most management systems support in some way,

WMSs can offer a multitude of additional features. These often allow for more robust or

versatile workflow execution and should be considered when choosing a WMS.

Active monitoring Assuming that a workflow is not executed on the local machine, which

is also running the engine of a WMS, management systems have no direct control over the

individual jobs that have been submitted to an execution engine. Some systems can prevent

this by submitting a pool of worker threads to the batch system and communicating with

these workers directly over a network connection. This approach allows for finer control

over the execution on site. Another benefit is the reduced overhead from the batch system,

since new jobs do not have to be submitted separately [2]. This is especially helpful for

workflows with thousands of short jobs with an execution time below a minute.

Fault Tolerance Especially for workflows with hundreds of thousands of jobs and hetero-

geneous execution environments, failures during execution have to be expected [2]. While

all systems can detect a failed job within a workflow execution, not all of them are able to

automatically recover from such an occurrence. The most basic tool for recovering is to

simply restart any failed jobs. If available, restarting it in a different execution environ-

ment can be helpful to prevent the failure. Other means include keeping a logging file of

the execution to resume a workflow even after the execution engine of the management

system was shut down or crashed [2].

8

3. Approach

The primary research goal of this thesis is to offer comparable performance benchmarks for

scientific workflows and workflowmanagement systems. For this purpose, we characterize

three scientific workflows from different domains and analyze the performance of three

workflow management systems with each workflow.

The characterization segment in chapter 7 focuses on the resource requirements and

resource utilization of the respective workflow. To understand the scaling of these charac-

teristics for varying input sizes, we use 5 different problem instances for each workflow.

We choose this number according to related work [6] in order to allow modeling of perfor-

mance behavior depending on input parameters. We execute each workflow instance on a

single compute node of the cluster without the help of a workflow management system.

By running the workflow tasks in parallel on the same node, we analyze the negative

performance impact of having multiple task instances share the same main memory and

CPU. This allows us to evaluate the potential performance gain by submitting each job

individually in contrast to an increase in submission overhead.

We compare workflow management systems by executing each workflow instance with

each system. For this, we create a distinct workflow definition according to the demands

of each WMS. We then compare the runtime for the different systems per task.

3.1. Performance Metrics

In order to evaluate the performance of software, multiple metrics can be observed. Char-

acterizations in previous work have measured time [19, 2, 7], CPU utilization [19], peak

memory usage [19], and I/O throughput [19, 2, 21, 7]. In this work, we focus on the fol-

lowing performance metrics when characterizing workflows and comparing the different

management systems to each other:

Execution Time is the most practical performance metric, since a fast execution is the

desired outcome of any performance optimization process. Measuring the elapsed time

during a workflow run allows the results to be compared to other workflow management

systems.

9

3. Approach

Floating Point Operations per Second (FLOPS) are the primary measure of computing

efficiency. The theoretical maximum of FLOPS for a given CPU depends on the clock

frequency and architecture. Whenever a process has to wait, for example, for slower I/O

operations to complete, the number of FLOPS falls below this optimum. Consequently,

FLOPS are a useful performance metric to measure how well a workflow utilizes the given

CPU time.

Load/Store Instructions per Second (LSPS) are a measure of data transfer load. A high

number of load/store instructions together with a lower than average number of FLOPS

indicates an I/O intensive task.

Main Memory Usage denotes the peak RAM usage of a process. Although the memory

usage of a workflow is hard to improve for a management system, it is still a relevant

characteristic for improving the overall wall clock time of a workflow run. If multiple

workflow jobs require the same data, grouping and executing them on nodes with shared

memory or caches can reduce the I/O overhead. The higher the memory usage of a job,

the more impactful the reduction of this overhead can be.

3.2. Selection of WMS

In this work, we focus on three established workflow management systems with different

design philosophies. Since we execute all workflow instances on a high-performance

cluster with the Slurm batch system, support for this specific computing environment and

execution engine is a necessary feature. We try to select systems that have relevance in

actual research, have been used for comparison or characterization attempts before, and

come from different scientific domains.

Pegasus [10] is one of the most commonly used scientific workflow management systems.

For example, the execution of the famous LIGO [1] workflow that detected gravitational

waves was performed with the Pegasus system. It has been the subject of multiple papers

analyzing its characteristics [14, 32, 22] andwas used for the purpose of profiling workflows

before [19].

Makeflow [2] is a workflow system with a focus on large distributed systems and data-

intensive parallel workflows. The workflow definition syntax used is similar to Make.

Makeflow has been primarily used in the physics domain and has been the subject of

previous characterizations [14].

Snakemake [20] is a Python-based workflow engine from the bioinformatics domain,

which composes workflows via its own definition language. It can run on all kinds of

computing environments without modifying the workflow. It also hosts a repository of

public workflows that fulfill the Snakemake standards [31].

10

4. Related Work

This chapter presents the scientific work related to the topic of this thesis. A number of

related works deals with the characterization and profiling of workflows and workflow

management systems. Section 4.1 introduces the work which has addressed the charac-

terization of scientific workflows. Section 4.2 presents the work that has concerned itself

with the comparison and analysis of scientific workflow management systems. For each

work, we will detail what sets our contribution apart from the other approach.

4.1. Workflows

This section deals with the related work, which focuses on the characterization and

benchmarking of scientific workflows.

Albrecht et al. [2] present a suite of workflow benchmarks with the name workbench.
These benchmarks are small synthetic workflow definitions that aim to cover different pos-

sible workflow structures and characteristics. The characteristics include dispatch overhead

of the execution engine, job throughput, I/O throughput, and interprocess communication.

Each workbench workflow isolates and focuses on one of these characteristics. They argue

that workflows with a long runtime and few I/O operations are unfit to determine the

performance. Albrecht et al. then evaluate the benchmarks for two different execution site

architectures and with four different execution engines. However, they only use their own

Makeflow workflow management system for execution, which they also present in their

paper. Their results show that the dispatch overhead of the execution system determines

the upper limit for job throughput. Local execution shows a very low dispatch latency of

under 0.05 seconds, while batch systems like HTCondor [18] and Hadoop show high latency

values up to 30 seconds. They also show that their own WorkQueue execution engine

has low latency times of under 0.1 seconds, close to local execution. The WorkQueue

system can be seen as an active monitoring tool, as described in subsection 2.2.2. Our

work discerns itself from this approach by analyzing and comparing multiple workflow

management systems, not just one. We also focus more on the performance of the isolated

workflow tasks themselves rather than the job throughput on a workflow level. Another

difference is our use of real scientific workflows, while workbench only offers synthetic

workflows.

11

4. Related Work

Coleman et al. [8] present a framework for the creation of synthetic workflows modeled

after real examples that are given as input. They introduce a set of tools that can analyze

the characteristics of a given workflow execution log and extract relevant parameters.

This is used as input to a generator which can then create synthetic instances of the real

workflow.

Ramakrishnan et al. [26] present and characterize a number of workflows from the

meteorology, bioinformatics, physics and computer science domains. Their profiling data

is limited to the execution time for each subtask and the file sizes passed along the data

dependencies. They discuss characteristics like degree of parallelism or number of I/O

operations. However, the work does not include the influence of the WMSs in its analysis.

Instead, workflows were executed with varying systems like Taverna or Kepler, which

makes a comparison impossible. In contrast, our work executes each workflow with each

WMS.

Krol et al. [21] created performance profiles for a single example workflow. This work

focuses on the distribution of resource requirements over time, not only the peak re-

quirement. The executions were performed with the Pegasus workflow management

system [10].

Juve et al. [19] presented and characterized six workflows from various scientific domains.

The focus of this work was to create task-level performance profiles of the workflows by

using novel profiling tools that capture data about runtime, memory usage, CPU utilization

and I/O workload. However, the profiling was performed using only the Pegasus workflow
management system and different execution environments for each workflow.

4.2. Workflow Management Systems

Much related work in regard to the characterization of WMSs focuses on features other

than performance. WMSs have been characterized in regard to their conditional workflow

capabilities [3], parallelization and scheduling techniques [4, 23], or general workflow

representations [32].

Da Silva et al. [14] characterized and compared workflow management systems in regard

to their extreme-scale computing capabilities. This work included the comparison of rele-

vant attributes like workflow execution models, capabilities for heterogeneous computing

environments, and the data access methods supported by the compared systems.

In summary, our work contrasts itself by the following points: We use only a singular

execution engine, Slurm, and a single execution site, namely a high-performance cluster,

to evaluate the performance. However, we analyze multiple real workflows instead of syn-

thetic ones and observe and compare the performance of multiple workflow management

systems.

12

5. Workflow Management Systems

The following chapter contains an overview of the workflow management systems that

we analyze in more detail in this thesis. Each section gives detailed information about the

options for workflow composition and execution for the respective management system.

At the end of this chapter, section 5.4 gives a summary of the important core features and

characteristics of each system. For each WMS, we give a short workflow composition

example for the diamond structure workflow presented in subsection 2.1.1.

5.1. Pegasus

Pegasus [10] is an open-source workflow management system for composing, mapping

and executing scientific workflows on different computational infrastructures [10]. It has

been used in multiple scientific domains like astronomy, seismology, bioinformatics and

physics [10]. The design of Pegasus puts a strong emphasis on differentiating abstract

from concrete workflow definitions, which leads to improved scalability and flexibility.

5.1.1. Workflow Composition

Pegasus offers no graphical user interface for workflow composition. Abstract workflows

are defined in a textual fashion in the YAML format. Since directly writing a definition

in YAML is complicated, Pegasus instead offers programming APIs for the Python, Java

and R languages. Pegasus strictly discerns abstract workflow definitions from concrete

workflow mappings, as explained in subsection 2.1.2. Abstract definitions are universal

and can be executed on any environment, like local computers, high-performance clusters,

grids or cloud services. To achieve this separation, abstract workflows do not associate

executable and input files with file system paths. Instead, they are only referenced by a

logical filename. This also means that the abstract definition does not change when the

storage layout of data changes.

The following code shows the workflow definition for the example workflow from Fig-

ure 2.2 with the Pegasus Python API:

1 wf = Workflow("Example")

2

3 input_file = File("input.file")

4 out_file = File("out.file")

5 filenames = ["a", "b"]

13

5. Workflow Management Systems

6

7 scatter_job = Job("scatter")

8 scatter_job.add_inputs(input_file)

9 scattered_files = []

10 for filename in filenames:

11 output = File(filename + ".file")

12 scattered_files.append(output)

13 scatter_job.add_outputs(output)

14

15 scatter_job.add_args(input_file)

16 wf.add_jobs(scatter_job)

17

18 processed_files = []

19 for input in scattered_files:

20 process_job = Job("process")

21 process_job.add_inputs(input)

22 processed_file = File("p" + input.lfn)

23 processed_files.append(processed_file)

24 process_job.add_outputs(processed_file)

25 process_job.add_args(input)

26 wf.add_jobs(process_job)

27

28 merge_job = Job("merge")

29 for input in processed_files:

30 merge_job.add_inputs(input)

31 merge_job.add_args(input)

32 merge_job.add_outputs(out_file)

33 wf.add_jobs(merge_job)

Listing 5.1: Pegasus workflow definition

5.1.2. Workflow Execution

Before an abstract Pegasus workflow can be executed, it must be transformed into a

concrete workflow which includes mappings to compute resources, physical files and

even additional data transfer jobs inserted by Pegasus itself. This transformation is done

by the Pegasus-plan tool. Since for some environments the physical locations of files

or executables can deviate from the abstract definition, Pegasus uses multiple so-called

catalogs during the mapping process. The resulting workflow is ready to be submitted,

but if the environment changes, the planning must be repeated.

5.2. Snakemake

Snakemake is a workflow management system from the bioinformatics domain [20]. It

requires a Python installation to work. Snakemake offers no graphical user interface.

Instead, workflow composition is performed with a domain-specific language in a textual

14

5.2. Snakemake

way in so-called Snakefiles. Snakemake workflows can be used in different execution

environments without changing their definition.

5.2.1. Workflow Composition

The syntax of the domain-specific Snakemake language is similar to the Python language,

and the design philosophy of workflows is based on the build systemmake. Workflows are

defined by a set of rules with corresponding input and output files. Each rule provides a

shell command or Python script to generate its output files. A complete workflow requires

the definition of target files or rules. Those files, or the output files of the target rules

respectively, are the desired final output of the workflow. When building the concrete

workflow, Snakemake works with a backwards approach starting from the target output.

If any output file does not already exist in the file system, Snakemake searches for a

rule capable of providing this output. If the input files of this next rule do not exist, the

process is repeated recursively. This approach leads to a directed acyclic graph defining the

dependencies and inputs of all rules necessary to create the final output, which implicitly

defines the complete workflow.

The following code shows the workflow definition for the example workflow from Fig-

ure 2.2 in Snakemake specific syntax:

1 FILENAMES = ["a", "b"]

2 rule scatter:

3 input:

4 "input.file"

5 output:

6 expand("{id}.file", id=FILENAMES)

7 shell:

8 "scatter -i {input} -o {output}"

9

10 rule process:

11 input:

12 "{id}.file"

13 output:

14 "p{id}.file"

15 shell:

16 "process -i {input} -o {output}"

17

18 rule merge:

19 input:

20 expand("p{id}.file", id=FILENAMES)

21 output:

22 "out.file"

23 shell:

24 "merge -i {input} -o {output}"

Listing 5.2: Snakemake workflow definition

The merge and scatter jobs use expand-syntax to allow varying sizes of intermediate jobs.

The process rule utilizes a wildcard to offer dynamic behavior.

15

5. Workflow Management Systems

The above code can be executed with the following command, specifying the desired target

output:

snakemake out.file

A noteworthy aspect of Snakemake is that "it is the first system to support the use of

automatically inferred multiple named wildcards (or variables) in input and output file-

names" [20]. The benefit of this feature is that a single rule in the abstract workflow can

be used to create multiple jobs in the concrete workflow. Consequently, the workflow

definition in the Snakefile can stay the same while executing input instances of varying

size.

5.2.2. Workflow Execution

Snakemake performs the workflow execution directly in the directory of the Snakefile. It

requires all jobs to have direct access to a shared file system. Thus, it is not compatible

with distributed execution environments like grids. This restriction allows Snakemake to
perform without dedicated stage-in or stage-out jobs of intermediate data. It does support

local and cluster execution with different batch systems. When evoking Snakemake, the
user needs to specify a target file or rule. The Snakemake engine then constructs the

workflow execution and dependency graph in a backwards fashion: If the input files for

the target rule do not exist, Snakemake searches for rules capable of producing those files.

This pattern is applied recursively until every required input is already available. If a

required file does not exist and there is no rule to produce it, the workflow planning fails.

After successful planning, the workflow is immediately executed. Additionally, Snakemake
is able to perform dry-runs to build and display the workflow plan without executing it.

It is also possible to print out the workflow DAG in the dot format to create a graphical

representation.

5.3. Makeflow

Makeflow [2] is an open-sourceworkflow enginewhich is part of theCooperative Computing
Tools software package developed by the Cooperative Computing Lab at the University

of Notre Dame. It is designed for large-scale distributed computing on local clusters or

remote machines. Makeflow is used in multiple scientific domains, like bioinformatics [2]

or high-energy physics [14].

5.3.1. Workflow Composition

Makeflow offers no graphical user interface for workflow composition. Instead, it offers

two different textual approaches: The first is a custom language inspired by classic make

syntax. The second is the JX workflow language, which is an extended form of JSON.

16

5.3. Makeflow

Classic make style For this approach, the workflow definition consists of rules and as-

signments [2] with a syntax very similar to classic make. Each rule specifies how to create

a single or multiple intermediate target files that are part of the workflow. For this, the

rule names all required input files and a shell command that specifies how to create the

target file. Makeflow assumes that if all input files are present on the local file system,

the target rule can be executed. Since Makeflow also supports execution sites without

shared file systems, in this case the syntax of rules differs from classic make [2]: The rules

must declare all input files as dependencies without exception. This allows the Makeflow
execution engine to copy required data to remote sites if necessary. By using the LOCAL
keyword, users can instructMakeflow to execute individual tasks locally [2]. While simple,

the make style workflow definitions offer no abstract concepts like jobs, files or wildcards.

As a consequence, a user has to create a "hard-coded" definition, and for each job in the

final workflow, a matching rule is required. For example, the process task from Figure 2.2

in chapter 2 requires a new rule for each execution. The number of parallel process tasks
cannot be extended without modifying the definition. In practice, the user has to write a

custom generation script which generates the make file. In this paper, we use this option

for defining workflows.

JX workflow language This definition approach describes the workflow with a single

JSON object. In this object, rules are defined as a list of rule objects stored under the "rules"

key. Rule objects can represent single commands or complete sub-workflows. The JX

language can be combined with the JX expression language extension. This allows for

more flexibility when defining workflows.

The following code shows the workflow definition for the example workflow from Fig-

ure 2.2 in Makeflow make syntax:

1 out.file: pa.file pb.file

2 merge pa.file pb.file

3

4 pa.file: a.file

5 process a.file

6

7 pb.file: b.file

8 process b.file

9

10 a.file b.file: input.file

11 scatter input.file

Listing 5.3: Makeflow workflow definition

5.3.2. Workflow Mapping and Execution

Once a Makeflow workflow is composed, it can be executed in different computing envi-

ronments without adjusting the workflow definition. Makeflow combines the mapping and

execution phase in the Makeflow command. Execution is supported for local machines,

17

5. Workflow Management Systems

WMS Pegasus Snakemake Makeflow

Composition Python-API domain-specific language make

Wildcards ✗ ✓ ✗

Cluster Support ✓ ✓ ✓

Grid Support ✓ ✗ ✓

Cloud Support ✓ ✓ ✓

Job Grouping ✓ ✓ ✓

Auxillary Jobs ✓ ✗ ✗

DAG visualization ✓ ✓ ✓

Table 5.1.: Comparison of WMS features

high performance clusters with batch systems, grids and cloud services. Through config-

uration, Makeflow can be instructed to exclusively use an execution site or dynamically

choose a suitable site for the tasks individually. Makeflow keeps track of submitted jobs

through the interface of the execution engine in use. During execution, all submissions

and their return values are stored in a transaction log. Furthermore,Makeflow offers a high

level of fault tolerance: Failed jobs are automatically resubmitted and if the whole engine

crashes, a Makeflow workflow can be picked up again mid-execution after a restart.

For cluster or grid execution, Makeflow can be used together with the Taskvine system,

another tool in the Cooperative Computing Tools software package. In this mode, single

jobs are not submitted through the batch system. Instead, a number of worker jobs is

submitted and tasks are dispatched to the workers directly over a network connection. This

approach allows for job grouping and can significantly reduce the submission overhead of

batch systems, which is usually up to 30 seconds per job. Additionally, this can reduce the

amount of duplicate data transfers if multiple jobs share the same input data.

5.4. Comparison of Core Features

Table 5.1 compares the core features of the three workflowmanagement systems we choose

to examine. We will discuss these features in more detail in chapter 8.

18

6. Scientific Workflows

This chapter details the scientific workflows that we characterized and used for perfor-

mance benchmarks in this thesis. For each workflow, the workflow graph structure and

different job types are examined.

6.1. Montage

Montage1 is a toolkit of image processing applications from the astronomy domain. Montage
is capable of creating high-resolution mosaics of wide areas of the sky, which are too large

to be captured by a single telescope image.

Chaining the different tools together results in a workflow structure. The Montage work-
flow takes a set of astronomical Flexible Image Transport System (FITS) images with a

common frequency band as input and creates a complete custom mosaic image of the sky

as output. This output can either be in the FITS format itself or in a common image format

like PNG or JPG. If more than one frequency band is used for the input images, Montage
can create colored output images by associating each frequency band with a color in the

visual spectrum.

Montage was initially released in 2003. Due to its age and open-source nature,Montage has
been used regularly as a benchmark to assess the performance and structure of scientific

workflows.

Figure 6.1 depicts the structure of a Montage workflow graph along with its jobs. To

begin, each input image must be reprojected to fit the viewing plane of the desired output

mosaic. This is done by mProject jobs, one for each input image. The projection jobs are

independent and can be executed in parallel. Next, mDiffFit jobs calculate the differences
between each pair of overlapping images. These jobs are again independent for each

image pair. A single mConcatFit job merges these differences together. The mBgModel job
uses the merged differences to compute a global background correction, which is then

applied to each reprojected image by mBackground jobs. Like the initial projection jobs,

all mBackground jobs can be run in parallel. The mImgtbl job simply constructs a new

metadata table for the corrected images. The actual mosaic assembly is performed by the

mAdd job, which outputs the final mosaic in FITS format. Finally, the mViewer job creates
a visual representation, in the case of our workflow, a grayscale PNG image.

1
https://github.com/Caltech-IPAC/Montage

19

6. Scientific Workflows

mProject

mAdd

mViewer

mImgtbl

mBackground

mBgModel

mConcatFit

mDiffFit
Input images

Output Mosaic

Figure 6.1.: Montage workflow structure

6.2. 1000 Genome Workflow

The 1000Genome2 workflow is an example workflow from the bioinformatics domain hosted

on the official GitHub of the Pegasus-WMS project. This workflow uses data on human

variation acquired by the 1000 genomes project to identify mutational overlaps and allow a

statistical evaluation of potentially disease-related mutations. For each chromosome to be

examined, the workflow takes a file listing all Single nucleotide polymorphisms (SNPs)

variants located in that chromosome and information about which individual has which

variant.

Figure 6.2 depicts the structure of a 1000Genome workflow graph along with its jobs. Each

workflow instance has a set number of individuals jobs. These jobs parse the chromosome

data and a file describing the columns of the data table. If more than one individuals job is

used, they each parse only a chunk of the input data. The individuals_merge job merges

these chunks together. Independent of the individuals jobs, the sifting jobs compute the

so-called SIFT score of all SNPs variants present in a chromosome. The SIFT score of a

mutation indicates how harmful it is. Both the SIFT score and the individuals data extracted

are then utilized by two different job types: mutation_overlap jobs compute the overlap in

SNPs variants among pairs of individuals, while frequency jobs measure the frequency of

mutational overlaps.

2
https://github.com/pegasus-isi/1000genome-workflow

20

6.3. Orcasound Workflow

individuals

frequency

mutation_overlap

sifting

individuals_merge

Outputs

Figure 6.2.: 1000Genome workflow structure

6.3. Orcasound Workflow

The Orcasound3 workflow is a workflow from the bio acoustics domain hosted on the

official GitHub of the Pegasus-WMS. This workflow uses audio stream data provided by

the Orcasound Project [24], which maintains multiple hydrophones in the pacific northwest

to record and monitor southern resident orcas. The Orcasound workflow aims to recognize

orca sounds in the live-streamed audio with the help of machine learning models.

Figure 6.3 depicts the structure of an Orcasound workflow graph along with its jobs. The

audio data provided by the Orcasound Project is divided into chunks, which are about six

hours long each. Each chunk is identified by a timestamp that represents the start time

of the audio. Since the data is taken directly from the live stream, each chunk consists

of thousands of small audio files in the transport stream format (.ts), stored in a single

directory. The convert2WAV jobs of the workflow each take a directory of a timestamp as

input and convert all transport stream files within into WAV files. Convert2spectrogram
jobs then create visual representations of the frequency spectrum for each directory of

WAV files. Independently, the inference jobs use the WAV files and a pre-trained machine

learning model to predict the probability that an orca can be heard for each timestamp.

The confidence of predictions is stored in a JSON file. Finally, all predictions from all

timestamps are merged together into a single JSON file.

3
https://github.com/pegasus-isi/orcasound-workflow

21

6. Scientific Workflows

convert2wav

merge

inference

convert2spectrogram

Input audio

Output predictions

Figure 6.3.: Orcasound workflow structure

22

7. Performance Evaluation

The following chapter presents the collected profiling data. We profile each workflow in

more detail without a workflow management system to investigate its inherent character-

istics. We then perform performance measurements for each combination of workflow

management system and scientific workflow.

To begin with, we detail our methodology when evaluating performance in section 7.1.

We then present the performance metrics of our workflow runs, grouped by workflow:

section 7.2 shows the results for the Montage workflow, section 7.3 the results for the

1000Genome workflow and finally section 7.4 the results of the Orcasound workflow

execution runs. At the end of this chapter, section 7.5 examines the threats to validity of

our approach.

7.1. Methodology

We perform all computations on the bwUniCluster 2.0 high-performance cluster [5]. All

jobs are submitted in the form of batch jobs with the Slurm [30] workload manager

(version 23.02.6). To characterize the workflows without a workflow management system,

we execute all input instances on a single cluster node with two CPU sockets and 20

cores per socket, for a total of 40 cores per node. All nodes in use are equipped with Intel
Xeon Gold 6230 processors. We use the Score-P [28] measurement infrastructure (version

7.1) and the PAPI [25] interface to collect all profiling data, for both characterization

of workflows and comparison of management systems. For workflow tasks in Python,
we use the Python Score-P bindings [17] (version 4.4.0). With Score-P, we use manual

instrumentation of only the main method. By not profiling all call paths of the workflow

tasks, we reduce the measurement overhead. All performance data in the tables in this

section is averaged over five repetitions to eliminate the effects of variation caused by, for

example, system noise. We calculate the coefficient of variation (CoV) for this average and

note when it has a value greater than 0.1.

During characterization, the different workflows stages are executed sequentially, while

parallel jobs within a stage are executed concurrently. For instances where the number of

parallel jobs of the same type exceeds the number of cores, we execute at most 40 jobs

concurrently and wait for their execution to finish before resuming with the rest.

For workflow runs with workflow management systems, we follow a different execution

model. All workflow management systems queue each task as an individual submission in

23

7. Performance Evaluation

Instance ID Square area size in degrees Input images Total Jobs

0 0.25 6 28

1 0.50 19 91

2 1.50 99 497

3 2.00 162 830

4 2.50 245 1268

Table 7.1.: Input instances of the Montage workflow in this thesis

the Slurm batch system. We configure the systems to always request a complete node with

all cores and memory to prevent the side effects of other jobs influencing the measurements.

We also limit each workflow management system to only submit a maximum of 25 jobs

at a time. This approach increases the dispatch overhead on a workflow level. However,

since we work on a shared high-performance cluster with other users, we do not measure

the wall clock time of a workflow due to the varying wait times for job submissions to

start.

The following sections present the results of our measurements in the form of tables and

graphs. Where meaningful, we present a performance model created by Extra-P and name

the adjusted coefficient of determination (𝑅2
), which indicates how well the model fits the

data points.

7.2. Montage

This section presents the performance evaluation of the Montage workflow. We compile

the Montage binaries with the GNU compiler collection (version 11.2).

7.2.1. Input Instances

We profile the Montage workflow with five different input instances of varying angular

size, but all centered on the astronomical object Messier 51 (also known as theWhirlpool
Galaxy). The input images used were taken by the Sloan Digital Sky Survey (SDSS) at

ultraviolet wavelengths of around 354.3 nm. Since only one frequency band is used as

input, the output image is generated in grayscale. The resolution of the output is one pixel

per arcsecond.

Table 7.1 shows the individual characteristics of the input instances that were used for the

Montage workflow. The main parameter influencing the number of images per instance is

the size of the observed area in the final mosaic. This parameter is given in degrees and

applies to both the horizontal and vertical axes. The number of different jobs corresponds

to the number of pairs of overlapping images. Table 7.2 shows the number of all jobs by

job type for all instances.

24

7.2. Montage

Instance ID mProject mDiffFit mConcatFit mBgModel mBackground mImgtbl mAdd mViewer

0 6 11 1 1 6 1 1 1

1 19 48 1 1 19 1 1 1

2 99 294 1 1 99 1 1 1

3 162 501 1 1 162 1 1 1

4 245 773 1 1 245 1 1 1

Table 7.2.: Numbers of jobs by job type for all Montage instances

7.2.2. Characterization

This section characterizes the montage workflow regarding resource utilization. All

Montage instances are executed on cluster nodes with 96 GB of memory.

Workflow Level Table 7.3 depicts general data of the workflow runs for all five input

instances. Note that the walltime values contain an overhead of roughly 30 seconds due to

the Slurm batch system. For our input instances, Montage has an overall short runtime,

which is below 10 minutes, even for the largest instance. However, it features numerous

small jobs. The memory usage is low, with a peak usage of 1.4 GB.

Instance ID Total Jobs Workflow Walltime (s) Peak Memory Usage (MB)

0 28 62.2 86.3

1 91 70.2 321.1

2 497 183.4 547.4

3 830 288.6 908.0

4 1268 416.9 1414.0

Table 7.3.: Montage Workflow Level

The following paragraphs and tables examine the Montage workflow on a job level by

observing the isolated performance metrics of all jobs independently.

mProject Table 7.4 depicts the performance metrics of mProject jobs. These projection

jobs represent the largest portion of the workflow walltime. Executing up to 40 jobs

in parallel raises the runtime of an individual job by up to 15 seconds, probably due to

limiting memory bandwidth. With a CPU usage of around 1GFLOPS, this job type can be

considered compute-intensive.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 199.87 33.31 33.01 33.65 1.07 × 10
9

3.91 × 10
9

76 12 12

1 714.48 37.60 34.88 38.59 9.43 × 10
8

3.53 × 10
9

76 12 12

2 3739.62 46.75 39.19 49.64 7.60 × 10
8

2.79 × 10
9

76 12 12

3 7461.17 46.63 39.75 49.17 7.63 × 10
8

2.81 × 10
9

76 12 12

4 11 454.69 47.73 40.33 51.31 7.46 × 10
8

2.73 × 10
9

76 12 12

Table 7.4.: Montage: mProject job data

25

7. Performance Evaluation

mDiffFit Table 7.5 depicts the performance metrics of mDiffFit jobs. Each one of these

jobs has a short runtime of under 0.5 seconds. They still read more file data than mProject

jobs and have high L/SPS values. These jobs can be considered I/O-intensive.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 2.42 0.27 0.23 0.31 6.16 × 10
6

8.04 × 10
8

4 24 1

1 12.19 0.37 0.25 0.48 4.70 × 10
6

5.34 × 10
8

4 24 1

2 85.77 0.36 0.21 0.54 4.84 × 10
6

5.71 × 10
8

4 24 1

3 145.27 0.35 0.20 0.56 4.88 × 10
6

5.83 × 10
8

4 24 1

4 230.82 0.36 0.20 0.62 4.86 × 10
6

5.68 × 10
8

4 24 1

Table 7.5.: Montage: mDiffFit job data

mConcatFit Table 7.6 depicts the performance metrics of mConcatFit jobs. This is a

short job, its runtime scaling up with the number of input images. This job has a low

number of FLOPS while maintaining average numbers of Load/Store instructions per

second. Consequently, it can be considered I/O-intensive.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 0.14 - - - 856.40 2.43 × 10
9

4 <1 1

1 0.33 - - - 1360.81 1.16 × 10
9

4 <1 1

2 1.34 - - - 2035.04 4.98 × 10
8

4 1 1

3 2.24 - - - 2064.64 4.18 × 10
8

16 2 1

4 3.53 - - - 2032.78 3.72 × 10
8

132 3 1

Table 7.6.: Montage: mConcatFit job data

0 200 400 600 800
Number of overlaps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.995

0 200 400 600 800
Number of overlaps

800

1000

1200

1400

1600

1800

2000

2200

FL
OP

S

(b) FLOPS, R
2
=0.855

0 200 400 600 800
Number of overlaps

0.5

1.0

1.5

2.0

2.5

L/
SP

S

×109

(c) L/SPS, R
2
=0.514

Figure 7.1.: Montage: mConcatFit performance model by Extra-P

mBgModel Table 7.7 depicts the performance metrics of mBgModel jobs. This is another

short job. However, it has the second-highest number of FLOPS among all jobs in the

Montage workflow and can be considered CPU-intensive.

26

7.2. Montage

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 0.19 - - - 7.66 × 10
7

4.14 × 10
9

4 <1 <1

1 0.25 - - - 2.12 × 10
8

4.06 × 10
9

4 <1 <1

2 0.61 - - - 8.00 × 10
8

4.84 × 10
9

4 <1 <1

3 0.97 - - - 9.05 × 10
8

4.95 × 10
9

4 <1 <1

4 1.38 - - - 1.00 × 10
9

5.11 × 10
9

4 <1 <1

Table 7.7.: Montage: mBgModel job data

0 200 400 600 800
Number of overlaps

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.999

0 200 400 600 800
Number of overlaps

0.2

0.4

0.6

0.8

1.0

FL
OP

S
×109

(b) FLOPS, R
2
=0.916

0 200 400 600 800
Number of overlaps

4.2

4.4

4.6

4.8

5.0

5.2

L/
SP

S

×109

(c) L/SPS, R
2
=0.785

Figure 7.2.: Montage: mBgModel performance model by Extra-P

mBackground Table 7.8 depicts the performance metrics of mBackground jobs.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 1.43 0.24 0.23 0.25 1.97 × 10
7

3.34 × 10
9

4 12 12

1 5.98 0.31 0.27 0.39 1.49 × 10
7

2.55 × 10
9

4 12 12

2 34.43 0.43 0.25 0.51 1.12 × 10
7

1.87 × 10
9

6 12 12

3 72.23 0.45 0.22 0.63 1.08 × 10
7

1.83 × 10
9

4 12 12

4 109.60 0.46 0.23 0.64 1.08 × 10
7

1.83 × 10
9

4 12 12

Table 7.8.: Montage: mBackground job data

mImgtbl Table 7.9 depicts the performance metrics of mImgtbl jobs.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 0.12 - - - 9.21 × 10
4

3.28 × 10
9

4 64 <1

1 0.17 - - - 1.98 × 10
5

3.12 × 10
9

4 201 <1

2 0.54 - - - 3.45 × 10
5

3.45 × 10
9

4 1100 <1

3 0.69 - - - 4.17 × 10
5

3.57 × 10
9

4 1700 <1

4 1.03 - - - 4.23 × 10
5

3.58 × 10
9

4 2600 <1

Table 7.9.: Montage: mImgtbl job data

27

7. Performance Evaluation

0 100 200 300
Number of images

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.982

0 100 200 300
Number of images

100000

150000

200000

250000

300000

350000

400000

450000

FL
OP

S

(b) FLOPS, R
2
=0.978

0 100 200 300
Number of images

3.1

3.2

3.3

3.4

3.5

3.6

3.7

L/
SP

S

×109

(c) L/SPS, R
2
=0.238

Figure 7.3.: Montage: mImgtbl performance model by Extra-P

mAdd Table 7.10 depicts the performance metrics of mAdd jobs.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 0.21 - - - 1.71 × 10
7

3.64 × 10
9

4 64 13

1 0.58 - - - 2.82 × 10
7

3.56 × 10
9

4 201 52

2 3.72 - - - 3.69 × 10
7

3.24 × 10
9

57 1100 467

3 6.49 - - - 3.72 × 10
7

3.14 × 10
9

79 1700 829

4 10.03 - - - 3.75 × 10
7

3.19 × 10
9

81 2600 1296

Table 7.10.: Montage: mAdd job data

0 100 200 300
Number of images

0

2

4

6

8

10

12

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.999

0 100 200 300
Number of images

2.0

2.5

3.0

3.5

4.0

FL
OP

S

×107

(b) FLOPS, R
2
=0.619

0 100 200 300
Number of images

3.1

3.2

3.3

3.4

3.5

3.6

L/
SP

S

×109

(c) L/SPS, R
2
=0.780

Figure 7.4.: Montage: mAdd performance model by Extra-P

mViewer Table 7.11 depicts the performance metrics of mViewer jobs.

28

7.2. Montage

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 0.35 - - - 4.67 × 10
7

3.98 × 10
9

4 13 <1

1 1.18 - - - 2.02 × 10
7

4.27 × 10
9

4 52 1

2 9.78 - - - 1.04 × 10
7

4.46 × 10
9

573 467 12

3 17.49 - - - 9.70 × 10
6

4.46 × 10
9

950 829 21

4 27.35 - - - 9.40 × 10
6

4.46 × 10
9

1400 1296 34

Table 7.11.: Montage: mViewer job data

0 100 200 300
Number of images

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.999

0 100 200 300
Number of images

4.0

4.1

4.2

4.3

4.4

4.5

L/
SP

S

×109

(b) L/SPS, R
2
=0.442

Figure 7.5.: Montage: mViewer performance model by Extra-P

7.2.3. Workflow Management System Profiles

The following paragraphs and tables compare the execution time with all workflow man-

agement systems for the Montage workflow. In each table, we highlight the system with

the lowest average time per instance.

mProject Table 7.12 and Figure 7.6 depict the execution times of the mProject jobs.

29

7. Performance Evaluation

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 189.20 31.53 <0.01 189.37 31.56 <0.01 189.57 31.59 0.01

1 598.05 31.48 <0.01 597.44 31.44 <0.01 597.37 31.44 <0.01

2 3113.47 31.45 <0.01 3119.39 31.51 <0.01 3112.53 31.44 <0.01

3 5111.70 31.55 <0.01 5114.30 31.57 <0.01 5114.83 31.57 <0.01

4 7731.90 31.56 <0.01 7747.75 31.62 <0.01 7731.94 31.56 <0.01

Table 7.12.: Montage: mProject execution time with WMSs

0 1 2 3 4
Instance

0

1000

2000

3000

4000

5000

6000

7000

8000

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

5

10

15

20

25

30
Av

er
ag

e
Ti

m
e

(s
)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.6.: Montage: mProjectWMS comparison

mDiffFit Table 7.13 and Figure 7.7 depict the execution times of the mDiffFit jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 2.65 0.29 0.10 2.34 0.26 0.09 2.60 0.29 0.09

1 12.20 0.30 0.03 10.28 0.26 0.07 12.32 0.31 0.03

2 108.83 0.43 0.09 66.28 0.26 0.05 102.37 0.41 0.03

3 195.61 0.46 0.04 117.52 0.27 0.05 182.84 0.43 0.05

4 280.52 0.42 0.07 229.31 0.35 0.14 282.96 0.43 0.07

Table 7.13.: Montage: mDiffFit execution time with WMSs

30

7.2. Montage

0 1 2 3 4
Instance

0

50

100

150

200

250

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.7.: Montage: mDiffFitWMS comparison

mConcatFit Table 7.14 and Figure 7.8 depict the execution times of the mConcatFit jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 0.22 0.22 0.13 0.16 0.16 0.08 0.22 0.22 0.23

1 0.65 0.65 0.16 0.46 0.46 0.21 0.65 0.65 0.10

2 5.57 5.57 0.03 4.17 4.17 0.26 5.59 5.59 0.09

3 10.17 10.17 0.03 5.65 5.65 0.22 9.41 9.41 0.05

4 15.37 15.37 0.06 14.39 14.39 0.06 15.29 15.29 0.11

Table 7.14.: Montage: mConcatFit execution time with WMSs

0 1 2 3 4
Instance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.8.: Montage: mConcatFit WMS comparison

mBgModel Table 7.15 and Figure 7.9 depict the execution times of the mBgModel jobs.

31

7. Performance Evaluation

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 0.23 0.23 0.21 0.18 0.18 0.05 0.20 0.20 0.15

1 0.24 0.24 0.06 0.23 0.23 0.06 0.25 0.25 0.10

2 0.63 0.63 0.02 0.62 0.62 0.06 0.61 0.61 0.02

3 0.94 0.94 0.02 0.96 0.96 0.03 0.96 0.96 0.01

4 1.38 1.38 0.01 1.39 1.39 0.01 1.39 1.39 0.01

Table 7.15.: Montage: mBgModel execution time with WMSs

0 1 2 3 4
Instance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Av

er
ag

e
Ti

m
e

(s
)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.9.: Montage: mBgModelWMS comparison

mBackground Table 7.16 and Figure 7.10 depict the execution times of the mBackground-

jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 1.48 0.25 0.12 1.29 0.21 0.01 1.36 0.23 0.02

1 5.34 0.28 0.08 4.05 0.21 0.01 4.29 0.23 0.02

2 30.72 0.31 0.01 21.16 0.21 <0.01 27.81 0.28 0.08

3 51.89 0.32 0.02 35.06 0.22 0.01 50.01 0.31 0.06

4 79.02 0.32 0.05 62.89 0.26 0.01 77.07 0.31 0.02

Table 7.16.: Montage: mBackground execution time with WMSs

32

7.2. Montage

0 1 2 3 4
Instance

0

10

20

30

40

50

60

70

80
To

ta
l T

im
e

(s
)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.10.: Montage: mBackgroundWMS comparison

mImgtbl Table 7.17 and Figure 7.11 depict the execution times of the mImgtbl jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 0.14 0.14 0.08 0.12 0.12 0.11 0.20 0.20 0.66

1 0.42 0.42 0.38 0.26 0.26 0.48 0.28 0.28 0.15

2 2.95 2.95 0.13 1.76 1.76 0.63 2.82 2.82 0.34

3 4.73 4.73 0.09 2.07 2.07 0.60 4.44 4.44 0.07

4 7.23 7.23 0.09 6.07 6.07 0.03 7.41 7.41 0.03

Table 7.17.: Montage: mImgtbl execution time with WMSs

0 1 2 3 4
Instance

0

1

2

3

4

5

6

7

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

1

2

3

4

5

6

7

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.11.: Montage: mImgtblWMS comparison

33

7. Performance Evaluation

mAdd Table 7.18 and Figure 7.12 depict the execution times of the mAdd jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 0.49 0.49 0.20 0.37 0.37 0.24 0.32 0.32 0.15

1 1.87 1.87 0.21 1.28 1.28 0.30 1.13 1.13 0.30

2 12.70 12.70 0.12 9.43 9.43 0.25 12.06 12.06 0.16

3 20.12 20.12 0.08 14.22 14.22 0.25 18.34 18.34 0.05

4 30.71 30.71 0.03 28.18 28.18 0.02 30.01 30.01 0.06

Table 7.18.: Montage: mAdd execution time with WMSs

0 1 2 3 4
Instance

0

5

10

15

20

25

30

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

5

10

15

20

25

30

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.12.: Montage: mAddWMS comparison

mViewer Table 7.19 and Figure 7.13 depict the execution times of the mViewer jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 0.40 0.40 0.01 0.27 0.27 0.03 0.41 0.41 0.04

1 1.33 1.33 0.01 1.44 1.44 0.03 1.33 1.33 0.04

2 10.53 10.53 <0.01 13.07 13.07 0.02 10.61 10.61 <0.01

3 18.90 18.90 <0.01 22.79 22.79 <0.01 18.90 18.90 0.01

4 29.55 29.55 <0.01 35.63 35.63 <0.01 29.67 29.67 0.01

Table 7.19.: Montage: mViewer execution time with WMSs

34

7.3. 1000Genome

Instance ID individuals individuals_merge sifting mutation_overlap frequency total jobs

0 2 1 1 7 7 18

1 4 1 1 7 7 20

2 10 1 1 7 7 26

3 20 1 1 7 7 36

4 40 1 1 7 7 56

Table 7.20.: Numbers of jobs by job type for all 1000Genome instances

0 1 2 3 4
Instance

0

5

10

15

20

25

30

35

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

5

10

15

20

25

30

35

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.13.: Montage: mViewer WMS comparison

7.3. 1000Genome

This section presents the performance evaluation of the 1000Genome workflow. We execute

all scripts with Python 3.6.8.

7.3.1. Input Instances

We profile the 1000Genome workflow with five different input instances. For the different

instances, we do not vary the size of the input but increase the number of parallel jobs

that parse the chromosome data. Table 7.20 shows the numbers of jobs by job type for all

instances.

7.3.2. Characterization

This section characterizes the 1000Genome workflow regarding resource utilization. All

1000Genome instances are executed on cluster nodes with 180 GB of memory.

35

7. Performance Evaluation

7.3.2.1. Workflow Level

Table 7.21 depicts general data of the workflow runs for all five input instances. Note that

the walltime numbers contain an overhead of roughly 30 seconds due to the Slurm batch

system. The runtime of 1000Genome is primarily influenced by the degree of parallelism

in the individuals jobs. However, the more individuals jobs we use, the higher the peak

memory usage is.

Instance ID Total Jobs Workflow Walltime (s) Peak Memory Usage (MB)

0 18 36 353.2 11 656.0

1 20 18 616.4 16 402.0

2 26 8299.0 30 732.0

3 36 4801.9 54 589.0

4 56 3472.0 102 343.0

Table 7.21.: 1000Genome Workflow Level

The following paragraphs and tables examine the 1000Genome workflow on a job level by

observing the isolated performance metrics of all jobs independently.

individuals Table 7.22 and Figure 7.14 depict performance metrics of individuals jobs.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 71 343.45 35 671.72 35 521.49 35 821.96 2610.51 4.73 × 10
9

6017 2539 93

1 71 290.47 17 822.61 17 595.38 18 070.41 2625.63 4.72 × 10
9

4238 2539 47

2 75 067.81 7506.78 7404.28 7567.83 2532.38 4.47 × 10
9

3170 2539 16

3 81 470.26 4073.51 3977.91 4152.27 2392.50 4.09 × 10
9

2814 2539 6

4 103 913.25 2597.83 2480.10 2669.64 1970.65 3.21 × 10
9

2641 2539 2

Table 7.22.: individuals job data

0 20 40 60
Number of individuals jobs

0

10000

20000

30000

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.230

0 20 40 60
Number of individuals jobs

1400

1600

1800

2000

2200

2400

2600

FL
OP

S

(b) FLOPS, R
2
=0.993

0 20 40 60
Number of individuals jobs

2.5

3.0

3.5

4.0

4.5

L/
SP

S

×109

(c) L/SPS, R
2
=0.994

Figure 7.14.: 1000Genome: individuals performance model by Extra-P

36

7.3. 1000Genome

individuals_merge Table 7.23 and Figure 7.15 depict performance metrics of individu-

als_merge jobs.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 242.64 - - - 1150.79 1.07 × 10
9

1670 185 184

1 259.75 - - - 1315.27 1.01 × 10
9

1670 186 184

2 378.57 - - - 1395.18 7.15 × 10
8

1672 160 184

3 374.47 - - - 2243.22 7.32 × 10
8

1680 117 184

4 541.34 - - - 2704.84 5.23 × 10
8

1674 82 184

Table 7.23.: individuals_merge job data

0 20 40 60
Number of individuals jobs

250

300

350

400

450

500

550

600

650

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.831

0 20 40 60
Number of individuals jobs

1500

2000

2500

3000

FL
OP

S

(b) FLOPS, R
2
=0.845

0 20 40 60
Number of individuals jobs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L/
SP

S

×109

(c) L/SPS, R
2
=0.828

Figure 7.15.: 1000Genome: individuals_merge performance model by Extra-P

other jobs Since all sifting, mutation_overlap and frequency jobs in our choice of instances

use the same inputs and sizes, we choose to only show the values for the instances with

the lowest CoV. The peak memory values for sifting jobs have too high variance, so we

omitted them.

Time (s) FLOPS

Job Instance Total Avg Min Max CoV Avg CoV

sifting 3 4.00 - - - 0.08 67 875 0.08

mutation_overlap 4 130.37 18.62 11.71 43.67 0.01 3.61 × 10
6

0.01

frequency 1 1069.58 152.80 131.41 181.96 <0.01 1.52 × 10
6

<0.01

Table 7.24.: other job data

37

7. Performance Evaluation

L/SPS Memory (MB) File I/O

Job Instance Avg CoV Peak In Out

sifting 2 8.81 × 10
8

0.08 - 1580 2

mutation_overlap 4 1.03 × 10
9

0.01 152 184 17

frequency 1 1.80 × 10
9

<0.01 170 184 1

Table 7.25.: other job data

7.3.3. Workflow Management System Profiles

The following paragraphs and tables compare the execution time with all workflow man-

agement systems for the 1000Genome workflow. In each table, we highlight the system

with the lowest average time per instance.

individuals Table 7.26 and Figure 7.16 depict the execution times of the individuals jobs.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 87 194.70 43 597.35 <0.01 87 449.89 43 724.95 <0.01 86 991.98 43 495.99 <0.01

1 86 095.58 21 523.89 <0.01 86 128.50 21 532.13 <0.01 86 035.68 21 508.92 <0.01

2 85 319.39 8531.94 <0.01 85 392.58 8539.26 <0.01 85 273.12 8527.31 <0.01

3 85 024.73 4251.24 <0.01 85 115.27 4255.76 <0.01 85 065.07 4253.25 <0.01

4 84 978.91 2124.47 <0.01 85 111.25 2127.78 <0.01 85 060.58 2126.51 <0.01

Table 7.26.: 1000Genome: individuals execution time with WMSs

0 1 2 3 4
Instance

0

20000

40000

60000

80000

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

10000

20000

30000

40000

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.16.: 1000Genome: individualsWMS comparison

38

7.4. Orcasound

individuals_merge Table 7.27 and Figure 7.17 depict the execution times of the individ-

uals_merge jobs. For higher instances, the average time of executions with Snakemake
increases more than those with other systems.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 285.83 285.83 0.01 296.55 296.55 0.02 288.73 288.73 0.02

1 313.18 313.18 0.01 307.51 307.51 0.03 304.37 304.37 0.01

2 382.41 382.41 0.05 370.61 370.61 0.03 355.30 355.30 0.01

3 471.44 471.44 0.07 482.05 482.05 0.07 447.10 447.10 0.02

4 586.54 586.54 0.03 649.93 649.93 0.05 618.99 618.99 0.07

Table 7.27.: 1000Genome: individuals_merge execution time with WMSs

0 1 2 3 4
Instance

0

100

200

300

400

500

600

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

100

200

300

400

500

600
Av

er
ag

e
Ti

m
e

(s
)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.17.: 1000Genome: individuals_mergeWMS comparison

7.4. Orcasound

This section presents the performance evaluation of the Orcasound workflow. We execute

all scripts with Python 3.6.8.

7.4.1. Input Instances

We profile the Orcasound workflow with five different input instances of varying duration.

Table 7.28 shows the individual characteristics of the input instances that we use for the

Orcasound workflow. For each instance, we double the amount of timestamps we use

as input. The audio batches of each timestamp do not have the exact same runtime, but

each instance roughly doubles the length of the previous one. Table 7.29 presents a more

39

7. Performance Evaluation

detailed breakdown of the number of jobs of each type per instance. Since instance 0 only

has one inference job, we do not need a merge job in this case.

Instance ID Number of Timestamps Begin TS End TS Total length

0 1 1601188222 1601188222 6 hours

1 2 1601188222 1601209820 12 hours

2 4 1601188222 1601253021 24 hours

3 8 1601188222 1601339419 48 hours

4 16 1601188222 1601512219 96 hours

Table 7.28.: Input instances of the Orcasound workflow

Instance ID

Job 0 1 2 3 4

convert2wav 1 2 4 8 16

convert2spectrogram 1 2 4 8 16

inference 1 2 4 8 16

merge 0 1 1 1 1

total jobs 3 7 13 25 49

Table 7.29.: Numbers of jobs by job type for all Orcasound instances

7.4.2. Characterization

This section characterizes the Orcasound workflow regarding resource utilization.

Workflow Level Table 7.3 depicts general data of the workflow runs for all five input

instances. Note that the walltime numbers contain an overhead of roughly 30 seconds due

to the Slurm batch system. The memory and walltime numbers are all averaged over five

different runs.

Instance ID Total Jobs Workflow Walltime (s) Peak Memory Usage (MB)

0 3 1143.5 604.4

1 7 1169.0 1075.0

2 13 1208.7 2043.0

3 25 1309.9 3971.0

4 49 1561.2 7800.0

Table 7.30.: Orcasound Workflow Level

The following paragraphs and tables examine the Orcasound workflow on a job level by

observing the isolated performance metrics of all jobs independently.

40

7.4. Orcasound

convert2wav Table 7.31 and Figure 7.18 depict the performance metrics of convert2wav

jobs. These jobs have a low number of under 40 FLOPS. They read thousands of small

sound files each and output them in a converted format. Consequently, this job type

can be considered I/O-intensive. Increasing the number of parallel jobs reduces the

performance.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 106.04 106.04 106.04 106.04 38.30 1.35 × 10
7

98 223 2000

1 210.45 105.22 104.27 106.19 38.94 1.31 × 10
7

96 223 2000

2 468.45 117.11 111.88 120.14 34.43 1.22 × 10
7

98 223 2000

3 1019.07 127.38 123.95 130.28 31.58 1.16 × 10
7

98 222 2000

4 2156.02 134.75 127.80 138.72 29.86 1.09 × 10
7

98 221 2000

Table 7.31.: Orcasound: convert2wav job data

0 10 20 30
Parallel Jobs

110

120

130

140

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.835

0 10 20 30
Parallel Jobs

28

30

32

34

36

38

40

FL
OP

S

(b) FLOPS, R
2
=0.652

0 10 20 30
Parallel Jobs

1.05

1.10

1.15

1.20

1.25

1.30

1.35

L/
SP

S

×107

(c) L/SPS, R
2
=0.942

Figure 7.18.: Orcasound: convert2wav performance model by Extra-P

convert2spectrogram Table 7.32 and Figure 7.19 depict the performance metrics of con-

vert2spectrogram jobs. This job takes up the largest portion of the Orcasound runtime.

It is both CPU- and I/O-intensive. Increasing the number of parallel jobs reduces the

performance.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 674.34 674.34 674.34 674.34 3.31 × 10
8

1.87 × 10
9

222 2000 311

1 1363.59 681.79 680.40 683.19 3.28 × 10
8

1.85 × 10
9

224 2000 310

2 2780.95 695.24 690.05 702.67 3.22 × 10
8

1.81 × 10
9

223 2000 308

3 5972.76 746.60 738.49 756.88 3.00 × 10
8

1.69 × 10
9

221 2000 307

4 13 815.74 863.48 854.19 872.94 2.58 × 10
8

1.45 × 10
9

222 2000 307

Table 7.32.: Orcasound: convert2spectrogram job data

41

7. Performance Evaluation

0 10 20 30
Parallel Jobs

700

800

900

1000

1100

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.999

0 10 20 30
Parallel Jobs

2.0

2.2

2.4

2.6

2.8

3.0

3.2

FL
OP

S

×108

(b) FLOPS, R
2
=0.990

0 10 20 30
Parallel Jobs

1.0

1.2

1.4

1.6

1.8

L/
SP

S

×109

(c) L/SPS, R
2
=0.995

Figure 7.19.: Orcasound: convert2spectrogram performance model by Extra-P

inference Table 7.33 and Figure 7.20 depict the performance metrics of inference jobs.

Inference jobs have the highest peak memory usage of all Orcasound jobs. They read

around 2GB of data each, but output only a small file. Both the number of FLOPS and

L/SPS are above average. As with both other parallel jobs, the performance decreases with

more jobs running in parallel.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

0 335.73 335.73 335.73 335.73 1.23 × 10
8

2.02 × 10
9

661 2000 <1

1 676.17 338.08 336.78 339.39 1.23 × 10
8

1.91 × 10
9

663 2000 <1

2 1427.35 356.84 353.76 360.71 1.17 × 10
8

1.95 × 10
9

663 2000 <1

3 3123.20 390.40 384.65 398.34 1.06 × 10
8

1.72 × 10
9

663 2000 <1

4 8217.46 513.59 487.89 524.58 8.05 × 10
7

1.35 × 10
9

662 2000 <1

Table 7.33.: Orcasound: inference job data

0 10 20 30
Parallel Jobs

400

500

600

700

800

900

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.997

0 10 20 30
Parallel Jobs

0.2

0.4

0.6

0.8

1.0

1.2

FL
OP

S

×108

(b) FLOPS, R
2
=0.998

0 10 20 30
Parallel Jobs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L/
SP

S

×109

(c) L/SPS, R
2
=0.945

Figure 7.20.: Orcasound: inference performance model by Extra-P

42

7.4. Orcasound

merge Table 7.34 and Figure 7.21 depict the performance metrics of merge jobs. Since

this is a data aggregation job, it is the only Orcasound task which is not executed in parallel.

It also has the highest number of L/SPS and can be considered I/O intensive.

Time (s) FLOPS L/Sps Memory (MB) File I/O

Instance Total Avg Min Max Avg Avg Peak In Out

1 0.18 - - - 9.05 × 10
5

2.77 × 10
9

4 <1 <1

2 0.25 - - - 1.27 × 10
6

3.34 × 10
9

4 1 1

3 0.44 - - - 1.42 × 10
6

3.61 × 10
9

4 3 3

4 0.77 - - - 1.61 × 10
6

3.98 × 10
9

4 5 5

Table 7.34.: Orcasound: merge job data

0 10 20 30
Parallel Jobs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

(a) Avg Time (s), R
2
=0.990

0 10 20 30
Parallel Jobs

0.8

1.0

1.2

1.4

1.6

1.8

FL
OP

S

×106

(b) FLOPS, R
2
=0.696

0 10 20 30
Parallel Jobs

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

L/
SP

S

×109

(c) L/SPS, R
2
=0.831

Figure 7.21.: Orcasound: merge performance model by Extra-P

7.4.3. Workflow Management System Profiles

The following paragraphs and tables compare the execution time with all workflow man-

agement systems for the Orcasound workflow. In each table, we highlight the system with

the lowest average time per instance.

convert2wav Table 7.35 and Figure 7.22 depict the execution times of the convert2wav

jobs. Apart from instance 0, Pegasus has the highest average time for this job type.

Executions with Makeflow have the lowest average time for all instances except the last

one.

43

7. Performance Evaluation

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 101.16 101.16 0.13 108.66 108.66 0.17 82.57 82.57 0.07

1 217.47 108.74 0.01 199.77 99.89 0.01 166.31 83.15 0.05

2 434.90 108.73 0.02 400.77 100.19 0.08 373.93 93.48 0.07

3 910.80 113.85 0.06 854.88 106.86 0.05 732.35 91.54 0.05

4 1811.50 113.22 0.04 1726.93 107.93 0.05 1747.56 109.22 0.04

Table 7.35.: Orcasound: convert2wav execution time with WMSs

0 1 2 3 4
Instance

0

250

500

750

1000

1250

1500

1750

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

20

40

60

80

100
Av

er
ag

e
Ti

m
e

(s
)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.22.: Orcasound: convert2wavWMS comparison

convert2spectrogram Table 7.36 and Figure 7.23 depict the execution times of the con-

vert2spectrogram jobs. For this job type, Makeflow offers the lowest execution time for all

instances after instance 0. However, the differences in time are not significant.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 684.71 684.71 0.01 695.89 695.89 0.04 691.63 691.63 0.01

1 1396.80 698.40 0.03 1386.65 693.32 0.01 1375.191 687.59 0.01

2 2778.47 694.62 0.01 2831.78 707.94 0.03 2731.32 682.83 0.01

3 5560.20 695.03 0.01 5555.06 694.38 <0.01 5475.73 684.47 0.01

4 11 156.45 697.28 0.01 11 237.08 702.32 <0.01 11 014.18 688.39 0.01

Table 7.36.: Orcasound: convert2spectrogram execution time with WMSs

44

7.4. Orcasound

0 1 2 3 4
Instance

0

2000

4000

6000

8000

10000

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

100

200

300

400

500

600

700

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.23.: Orcasound: convert2spectrogramWMS comparison

inference Table 7.37 and Figure 7.24 depict the execution times of the inference jobs.

Generally, Snakemake offers the lowest execution time, but there is no clear performance

advantage over all instances.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

0 430.64 430.64 0.11 409.89 409.89 0.07 411.45 411.45 0.05

1 783.21 391.60 0.06 894.75 447.38 0.03 794.91 397.46 0.03

2 1610.04 402.51 0.05 1534.18 383.55 0.06 1498.47 374.62 0.01

3 3352.33 419.04 0.06 3155.15 394.39 0.02 3215.1 401.89 0.06

4 6491.08 405.69 0.03 6024.46 376.53 0.01 6302.33 393.90 0.04

Table 7.37.: Orcasound: inference execution time with WMSs

0 1 2 3 4
Instance

0

1000

2000

3000

4000

5000

6000

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

0 1 2 3 4
Instance

0

100

200

300

400

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.24.: Orcasound: inferenceWMS comparison

45

7. Performance Evaluation

merge Table 7.38 and Figure 7.25 depict the execution times of the merge jobs. For

this job type, the systems perform equally, with a slight time advantage on the side of

Makeflow.

Time (s)

Instance Pegasus Snakemake Makeflow
Total Avg CoV Total Avg CoV Total Avg CoV

1 0.21 0.21 0.06 0.19 0.19 0.09 0.19 0.19 0.11

2 0.36 0.36 0.13 0.31 0.31 0.08 0.29 0.29 0.22

3 0.59 0.59 0.08 0.57 0.57 0.09 0.49 0.49 0.20

4 1.05 1.05 0.06 1.01 1.01 0.07 0.89 0.89 0.07

Table 7.38.: Orcasound: merge execution time with WMSs

1 2 3 4
Instance

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l T
im

e
(s

)

Pegasus
Snakemake
Makeflow

(a) Total Time (s)

1 2 3 4
Instance

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ti
m

e
(s

)

Pegasus
Snakemake
Makeflow

(b) Average Time (s)

Figure 7.25.: Orcasound: merge WMS comparison

7.5. Threats to Validity

While evaluating the validity of the results of this thesis, a number of internal and external

threats have to be considered. Our performance profiling relies on the correctness of the

metrics measured by Score-P and PAPI. Another internal threat to validity is the parallel

file system which is present on the cluster. Since we store input, intermediate and output

data on this shared file system, high traffic caused by other users can negatively impact

the I/O throughput of the workflow tasks. Furthermore, the workflow systems we choose

to compare use fundamentally different execution engines. Pegasus, for example, always

uses HTCondor DAGman [18] to interface with a cluster, even when the cluster uses a

different batch system like Slurm [10]. In contrast, Snakemake and Makeflow use special

built-in executors to interface with Slurm or other batch systems [20, 2]. These different

approaches could affect the measured metrics.

46

7.5. Threats to Validity

For external threats to validity, we have to consider that the workflows we chose may

not be representative of the variety of workflow classes that are used in real science

applications. This makes a generalization of our results difficult. Another impediment

to the generalization of our findings are the different workflow composition concepts of

the management systems: We have to create a custom definition for each workflow and

system combination. This may lead to hidden optimizations that we have unintentionally

included in the definition.

47

8. Discussion

In this chapter, we discuss the features, execution procedures and performance profiles of

the different workflow management systems from the perspective of a scientist looking

for an appropriate system for their research. Section 8.1 presents the goal question metric

plan we use to answer our research questions. This plan lists the primary goals of the

thesis and the questions we answer in order to achieve these goals.

8.1. Goal Question Metric Plan

G1: Analyze scientific workflows to characterize them with regard to their resource

requirements and resource utilization from a performance perspective.

(Research Question 1)

Q1.1: How do individual workflow tasks utilize the CPU?

M1.1.1: Total and average execution time

M1.1.2: Floating point operations per second (FLOPS)

Q1.2: How much main memory does a workflow task require?

M1.2.1: Peak main memory usage

Q1.3: How many I/O operations does a workflow task perform?

M1.3.1: Load/Store instructions per second (L/SPS)

M1.3.2: Size of input and output files

G2: Compare workflow management systems with regard to performance to help scien-

tists choose an appropriate system for their individual needs.

(Research Questions 2 and 3)

Q2.1: How fast does a workflow complete when executed with different workflow

management systems?

M2.2.1: Total and average execution time

Q2.2: How do workflows tasks utilize the CPU when executed with different

workflow management systems?

M2.2.1: Floating point operations per second (FLOPS)

49

8. Discussion

8.2. Comparison of WMS Features

This section discusses the features of workflow management systems, as detailed in

chapter 5. These characteristics of WMSs are not directly related to their performance but

can still play an important role in the decision-making process.

Level of Abstraction The level of abstraction provided by an abstract workflow definition

is very important when defining workflows that need to be executed in different execution

environments. It also allows for more changes to the workflow itself, if, for example,

the workflow is still under development while writing the abstract definition. In this

regard, Pegasus offers the highest level of abstraction because of its stringent separation

of abstract and concrete workflows [9]. Through the use of catalogs, a Pegasus user can
change everything, from environment variables to the execution engine, without editing

the abstract workflow definition. In comparison, Makeflow offers a very low level of

abstraction concerning aspects like logical filenames. If the location of data in the working

directory of a workflow changes, these changes have to be made to the Makflow definition

too.

Structural Flexibility The structures of workflows can have varying complexity. In prac-

tice, the ability to define complex behaviour in a concise way is important when writing

workflow definitions for a workflow management system. When comparing the flexibility

of the three WMSs we examine in this thesis, we find that Snakemake offers the highest
structural flexibility. The concept of wildcards allows for short and generalized rules which

then can represent thousands of actual tasks. Makeflow, on the other hand, offers the

lowest structural flexibility: Since every task in Makeflow requires a separate rule, writing

the workflow by hand becomes impossible for large workflows. In this case the user is

required to write a custom script to generate the workflow definition automatically. For

Pegasus, the advantages of catalogs and abstraction become a disadvantage in terms of

simplicity: even for small workflows, the pegasus definition code is substantially larger,

which can be seen in chapter 5.

Workflow Execution The ability to execute workflows on a variety of execution environ-

ments is especially useful when sharing workflow definitions with a community. From

the systems we examined, both Pegasus andMakeflow offer full support for local, cluster,

grid and cloud execution. Snakemake, on the other hand, requires a shared file system and

is not suitable for distributed sites like grids. All three systems that we examined allow

for some form of job grouping, which means submitting a set of short running tasks as a

single batch job.

8.3. Comparison of WMS Performance

For profiling runs with workflow management systems, we have seen that most of the

workflow tasks have an almost equal runtime. In the cases where we do see significant

50

8.3. Comparison of WMS Performance

variations, it is not possible to determine a connection between job characteristics and

execution time. To give an example: We see lower a execution time for Snakemake
executions of I/O-intensive jobs from the Montage workflow. For more compute-intensive

jobs like the mProject job however, the times are almost identical. This could lead to the

hypothesis that Snakemake performs better with I/O-intensive jobs. But when considering

the results of the 1000Genome workflow runs, Snakemake offers the worst performance for

the I/O-intensive individuals_merge task, which challenges this hypothesis. Consequently,

the differences must have more complex reasons than a simple classification in CPU- or

I/O-bound tasks.

With the results of our research, it is not possible to recommend a workflow management

system for a certain type of workflow class with regard to the performance of the work-

flow jobs. However, for workflows with thousands of short running jobs, the overhead

introduced by the batch system plays a more significant role [2]. This overhead is not

reflected in the performance of the workflow tasks, but rather in the overall workflow

wall time. Systems like Pegasus, which add multiple auxiliary jobs to transfer data be-

tween directories, add more overhead per job than systems with straightforward execution

models, like Snakemake. The trade-off is that the auxiliary jobs allow for more flexibility

when choosing an execution environment. Snakemake requires a shared file system, while

Pegasus can be used for heterogeneous distributed execution sites like grids.

51

9. Conclusion

This chapter gives a brief summary of our results in section 9.1. Finally, section 9.2 offers

an outlook on possible future work.

9.1. Summary

In this thesis, we have presented and compared three workflow management systems. For

this purpose, we characterized three different workflows from different scientific domains

regarding their resource requirements and utilization. While doing so, we focused on

five input instances of varying complexity. The workflows were then used to evaluate

the performance of the management systems and compare them to each other. With

this approach, our research differentiates itself from related work that either examined

only one system or used varying workflows and execution environments, which makes a

comparison difficult. Our measurements have shown that the performance of workflow

applications is not significantly influenced by the workflow management system in use.

Instead, the overall wall time depends more on the dispatch overhead of the batch system

or varying job grouping techniques in use.

Apart from performance, we have discussed the features and limitations of the Pega-
sus, Snakemake and Makeflow management systems to help researchers understand the

capabilities and strengths of each system.

9.2. Future Work

In order to get a complete picture of the runtime behavior of scientific workflows, further

research could focus on the overall wall time of workflow executions in an isolated

environment, which offers more consistent wait times than a cluster shared with other

users.

Furthermore, future work could utilize the task-level workflow characteristics that we

collected to try and improve the process of job grouping that is performed by workflow

management systems. A deeper understanding of the requirements can help to find a

scheduling strategy that minimizes the overall execution time.

53

Acknowledgments

The authors acknowledge support by the state of Baden-Württemberg through bwHPC.

This research made use of Montage. It is funded by the National Science Foundation under

Grant Number ACI-1440620, and was previously funded by the National Aeronautics

and Space Administration’s Earth Science Technology Office, Computation Technolo-

gies Project, under Cooperative Agreement Number NCC5-626 between NASA and the

California Institute of Technology.

This research used the Pegasus Workflow Management Software funded by the National

Science Foundation under grant #1664162.

55

Bibliography

[1] B. P. Abbott et al. “LIGO: the Laser Interferometer Gravitational-Wave Observatory”.

In: Reports on Progress in Physics 72.7 (June 2009), p. 076901. issn: 0034-4885. doi:
10.1088/0034-4885/72/7/076901. url: https://dx.doi.org/10.1088/0034-

4885/72/7/076901 (visited on 01/12/2024).

[2] Michael Albrecht et al. “Makeflow: a portable abstraction for data intensive comput-

ing on clusters, clouds, and grids”. In: Proceedings of the 1st ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies. SWEET ’12. New York, NY,

USA: Association for Computing Machinery, 2012, pp. 1–13. isbn: 978-1-4503-1876-1.

doi: 10.1145/2443416.2443417. url: https://dl.acm.org/doi/10.1145/2443416.

2443417 (visited on 12/12/2023).

[3] Emir Bahsi, Emrah Ceyhan, and Tevfik Kosar. “Conditional Workflow Management:

A Survey and Analysis”. In: Scientific Programming 15 (Jan. 1, 2007), pp. 283–297.

doi: 10.1155/2007/680291.

[4] Marc Bux and Ulf Leser. Parallelization in Scientific Workflow Management Systems.
Mar. 28, 2013. doi: 10.48550/arXiv.1303.7195. url: http://arxiv.org/abs/1303.

7195 (visited on 12/23/2023).

[5] bwHPC Wiki. url: https://wiki.bwhpc.de/e/Main_Page (visited on 01/05/2024).

[6] Alexandru Calotoiu et al. “Fast Multi-parameter Performance Modeling”. In: 2016
IEEE International Conference on Cluster Computing (CLUSTER). 2016 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER). ISSN: 2168-9253. Sept. 2016,

pp. 172–181. doi: 10.1109/CLUSTER.2016.57. url: https://ieeexplore.ieee.org/

abstract/document/7776507?casa_token=T3u9f6BzgpYAAAAA:eNhP2U5EooqlmOs-

cSClCiEe1Y2mEjS3Lyx_xuJMDizjMzvRbJGVvnJKNyBivdG9c2f9YAbM (visited on 05/10/2024).

[7] Tainã Coleman et al. “WfBench: Automated Generation of Scientific Workflow

Benchmarks”. In: 2022 IEEE/ACM International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS). 2022
IEEE/ACM International Workshop on Performance Modeling, Benchmarking and

Simulation of High Performance Computer Systems (PMBS). Nov. 2022, pp. 100–

111. doi: 10.1109/PMBS56514.2022.00014. url: https://ieeexplore.ieee.org/

abstract/document/10024036 (visited on 01/08/2024).

[8] Tainã Coleman et al. “WfCommons: A framework for enabling scientific workflow

research and development”. In: Future Generation Computer Systems 128 (Mar. 1,

2022), pp. 16–27. issn: 0167-739X. doi: 10.1016/j.future.2021.09.043. url:

https://www.sciencedirect.com/science/article/pii/S0167739X21003897

(visited on 05/08/2024).

57

https://doi.org/10.1088/0034-4885/72/7/076901
https://dx.doi.org/10.1088/0034-4885/72/7/076901
https://dx.doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1145/2443416.2443417
https://dl.acm.org/doi/10.1145/2443416.2443417
https://dl.acm.org/doi/10.1145/2443416.2443417
https://doi.org/10.1155/2007/680291
https://doi.org/10.48550/arXiv.1303.7195
http://arxiv.org/abs/1303.7195
http://arxiv.org/abs/1303.7195
https://wiki.bwhpc.de/e/Main_Page
https://doi.org/10.1109/CLUSTER.2016.57
https://ieeexplore.ieee.org/abstract/document/7776507?casa_token=T3u9f6BzgpYAAAAA:eNhP2U5EooqlmOs-cSClCiEe1Y2mEjS3Lyx_xuJMDizjMzvRbJGVvnJKNyBivdG9c2f9YAbM
https://ieeexplore.ieee.org/abstract/document/7776507?casa_token=T3u9f6BzgpYAAAAA:eNhP2U5EooqlmOs-cSClCiEe1Y2mEjS3Lyx_xuJMDizjMzvRbJGVvnJKNyBivdG9c2f9YAbM
https://ieeexplore.ieee.org/abstract/document/7776507?casa_token=T3u9f6BzgpYAAAAA:eNhP2U5EooqlmOs-cSClCiEe1Y2mEjS3Lyx_xuJMDizjMzvRbJGVvnJKNyBivdG9c2f9YAbM
https://doi.org/10.1109/PMBS56514.2022.00014
https://ieeexplore.ieee.org/abstract/document/10024036
https://ieeexplore.ieee.org/abstract/document/10024036
https://doi.org/10.1016/j.future.2021.09.043
https://www.sciencedirect.com/science/article/pii/S0167739X21003897

Bibliography

[9] Ewa Deelman et al. “Mapping Abstract Complex Workflows onto Grid Environ-

ments”. In: Journal of Grid Computing 1.1 (Mar. 1, 2003), pp. 25–39. issn: 1572-9184.

doi: 10.1023/A:1024000426962. url: https://doi.org/10.1023/A:1024000426962

(visited on 12/23/2023).

[10] Ewa Deelman et al. “Pegasus, a workflow management system for science automa-

tion”. In: Future Generation Computer Systems 46 (May 1, 2015), pp. 17–35. issn: 0167-

739X. doi: 10.1016/j.future.2014.10.008. url: https://www.sciencedirect.

com/science/article/pii/S0167739X14002015 (visited on 01/08/2024).

[11] Ewa Deelman et al. “The Evolution of the Pegasus WorkflowManagement Software”.

In: Computing in Science & Engineering 21.4 (July 2019), pp. 22–36. issn: 1558-366X.

doi: 10.1109/MCSE.2019.2919690. url: https://ieeexplore.ieee.org/abstract/

document/8725518 (visited on 01/08/2024).

[12] Ewa Deelman et al. “The future of scientific workflows”. In: The International Journal
of High Performance Computing Applications 32.1 (Jan. 1, 2018), pp. 159–175. issn:
1094-3420. doi: 10.1177/1094342017704893. url: https://doi.org/10.1177/

1094342017704893 (visited on 01/05/2024).

[13] Ewa Deelman et al. “Workflows and e-Science: An overview of workflow system

features and capabilities”. In: Future Generation Computer Systems 25.5 (May 1,

2009), pp. 528–540. issn: 0167-739X. doi: 10.1016/j.future.2008.06.012. url:

https://www.sciencedirect.com/science/article/pii/S0167739X08000861

(visited on 12/23/2023).

[14] Rafael Ferreira da Silva et al. “A characterization of workflow management systems

for extreme-scale applications”. In: Future Generation Computer Systems 75 (Oct. 1,
2017), pp. 228–238. issn: 0167-739X. doi: 10.1016/j.future.2017.02.026. url:

https://www.sciencedirect.com/science/article/pii/S0167739X17302510

(visited on 11/27/2023).

[15] Ian Foster and Carl Kesselman, eds. The grid: blueprint for a new computing infras-
tructure. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Sept. 1998.

572 pp. isbn: 978-1-55860-475-9.

[16] Dennis Gannon et al. “Workflows for e-Science”. In: Jan. 1, 2007, pp. 1–8. isbn:

978-1-84628-519-6.

[17] Andreas Gocht, Robert Schöne, and Jan Frenzel. “Advanced Python Performance

Monitoring with Score-P”. In: Tools for High Performance Computing 2018 / 2019. Ed.
by Hartmut Mix et al. Cham: Springer International Publishing, 2021, pp. 261–270.

isbn: 978-3-030-66057-4. doi: 10.1007/978-3-030-66057-4_14.

[18] HTCondor. url: https://htcondor.org/ (visited on 05/15/2024).

[19] Gideon Juve et al. “Characterizing and profiling scientific workflows”. In: Future
Generation Computer Systems. Special Section: Recent Developments in High Perfor-

mance Computing and Security 29.3 (Mar. 1, 2013), pp. 682–692. issn: 0167-739X.

doi: 10.1016/j.future.2012.08.015. url: https://www.sciencedirect.com/

science/article/pii/S0167739X12001732 (visited on 11/27/2023).

58

https://doi.org/10.1023/A:1024000426962
https://doi.org/10.1023/A:1024000426962
https://doi.org/10.1016/j.future.2014.10.008
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://doi.org/10.1109/MCSE.2019.2919690
https://ieeexplore.ieee.org/abstract/document/8725518
https://ieeexplore.ieee.org/abstract/document/8725518
https://doi.org/10.1177/1094342017704893
https://doi.org/10.1177/1094342017704893
https://doi.org/10.1177/1094342017704893
https://doi.org/10.1016/j.future.2008.06.012
https://www.sciencedirect.com/science/article/pii/S0167739X08000861
https://doi.org/10.1016/j.future.2017.02.026
https://www.sciencedirect.com/science/article/pii/S0167739X17302510
https://doi.org/10.1007/978-3-030-66057-4_14
https://htcondor.org/
https://doi.org/10.1016/j.future.2012.08.015
https://www.sciencedirect.com/science/article/pii/S0167739X12001732
https://www.sciencedirect.com/science/article/pii/S0167739X12001732

[20] Johannes Köster and Sven Rahmann. “Snakemake—a scalable bioinformatics work-

flow engine”. In: Bioinformatics 28.19 (Oct. 1, 2012), pp. 2520–2522. issn: 1367-

4803. doi: 10.1093/bioinformatics/bts480. url: https://doi.org/10.1093/

bioinformatics/bts480 (visited on 01/12/2024).

[21] Dariusz Król et al. “Workflow Performance Profiles: Development and Analysis”. In:

Euro-Par 2016: Parallel Processing Workshops. Ed. by Frédéric Desprez et al. Lecture

Notes in Computer Science. Cham: Springer International Publishing, 2017, pp. 108–

120. isbn: 978-3-319-58943-5. doi: 10.1007/978-3-319-58943-5_9.

[22] Chee Sun Liew et al. “Scientific Workflows: Moving Across Paradigms”. In: ACM
Computing Surveys 49.4 (2016), 66:1–66:39. issn: 0360-0300. doi: 10.1145/3012429.
url: https://dl.acm.org/doi/10.1145/3012429 (visited on 01/05/2024).

[23] Ji Liu et al. “A Survey of Data-Intensive Scientific Workflow Management”. In:

Journal of Grid Computing 13.4 (Dec. 1, 2015), pp. 457–493. issn: 1572-9184. doi:

10.1007/s10723-015-9329-8. url: https://doi.org/10.1007/s10723-015-9329-

8 (visited on 12/23/2023).

[24] Orcasound Project. Orcasound. url: https : / / www . orcasound . net/ (visited on

05/15/2024).

[25] PAPI. url: https://icl.utk.edu/papi/.

[26] Lavanya Ramakrishnan. A Survey of Distributed Workflow Characteristics and Re-
source Requirements.

[27] Daniel Scheerer. Analyzing Scientific Workflow Management Systems - Dataset.
Sept. 27, 2024. doi: 10.5281/zenodo.13850444. url: https://zenodo.org/records/

13850444.

[28] Score-P. url: https://www.vi-hps.org/projects/score-p/.

[29] Rafael Ferreira da Silva et al. “A Community Roadmap for Scientific Workflows

Research andDevelopment”. In: 2021 IEEEWorkshop onWorkflows in Support of Large-
Scale Science (WORKS). Nov. 2021, pp. 81–90. doi: 10.1109/WORKS54523.2021.00016.
url: http://arxiv.org/abs/2110.02168 (visited on 11/27/2023).

[30] Slurm Workload Manager - Documentation. url: https://slurm.schedmd.com/
documentation.html (visited on 01/11/2024).

[31] Snakemake workflow catalog. url: https://snakemake.github.io/snakemake-
workflow-catalog/ (visited on 01/12/2024).

[32] Jia Yu and Rajkumar Buyya. “A Taxonomy of Workflow Management Systems for

Grid Computing”. In: Journal of Grid Computing 3.3 (Sept. 1, 2005), pp. 171–200. issn:
1572-9184. doi: 10.1007/s10723-005-9010-8. url: https://doi.org/10.1007/

s10723-005-9010-8 (visited on 12/04/2023).

59

https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1007/978-3-319-58943-5_9
https://doi.org/10.1145/3012429
https://dl.acm.org/doi/10.1145/3012429
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.1007/s10723-015-9329-8
https://www.orcasound.net/
https://icl.utk.edu/papi/
https://doi.org/10.5281/zenodo.13850444
https://zenodo.org/records/13850444
https://zenodo.org/records/13850444
https://www.vi-hps.org/projects/score-p/
https://doi.org/10.1109/WORKS54523.2021.00016
http://arxiv.org/abs/2110.02168
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://snakemake.github.io/snakemake-workflow-catalog/
https://snakemake.github.io/snakemake-workflow-catalog/
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1007/s10723-005-9010-8

A. Appendix

A.1. Detailed Profiling Data

A.1.1. Montage

Time (s)

Instance Total Avg Min Max Var

0 189.20 31.53 31.21 31.88 <0.01

1 598.05 31.48 29.22 32.41 <0.01

2 3113.47 31.45 26.08 32.86 <0.01

3 5111.70 31.55 26.61 33.61 <0.01

4 7731.90 31.56 26.33 33.92 <0.01

Table A.1.:mProject job data with Pegasus

Time (s)

Instance Total Avg Min Max Var

0 2.65 0.29 0.21 0.40 0.10

1 12.20 0.30 0.20 0.57 0.03

2 108.83 0.43 0.18 0.88 0.09

3 195.61 0.46 0.19 1.09 0.04

4 280.52 0.42 0.18 0.99 0.07

Table A.2.: mDiffFit job data with Pegasus

Time (s)

Instance Total Avg Min Max Var

0 0.22 - - - 0.13

1 0.65 - - - 0.16

2 5.57 - - - 0.03

3 10.17 - - - 0.03

4 15.37 - - - 0.06

Table A.3.:mConcatFit job data with Pegasus

61

A. Appendix

Time (s)

Instance Total Avg Min Max Var

0 0.23 - - - 0.21

1 0.24 - - - 0.06

2 0.63 - - - 0.02

3 0.94 - - - 0.01

4 1.38 - - - 0.01

Table A.4.:mBgModel job data with Pegasus

Time (s)

Instance Total Avg Min Max Var

0 1.48 0.25 0.22 0.29 0.12

1 5.34 0.28 0.21 0.37 0.08

2 30.72 0.31 0.20 0.46 0.01

3 51.89 0.32 0.20 0.57 0.02

4 79.02 0.32 0.20 0.55 0.05

Table A.5.:mBackground job data with Pegasus

Time (s)

Instance Total Avg Min Max Var

0 0.14 - - - 0.08

1 0.42 - - - 0.38

2 2.95 - - - 0.13

3 4.73 - - - 0.09

4 7.23 - - - 0.09

Table A.6.: mImgtbl job data with Pegasus

Time (s)

Instance Total Avg Min Max Var

0 0.49 - - - 0.20

1 1.87 - - - 0.21

2 12.70 - - - 0.12

3 20.12 - - - 0.08

4 30.71 - - - 0.03

Table A.7.:mAdd job data with Pegasus

62

A.1. Detailed Profiling Data

Time (s)

Instance Total Avg Min Max Var

0 0.40 - - - 0.01

1 1.33 - - - 0.01

2 10.53 - - - <0.01

3 18.90 - - - <0.01

4 29.55 - - - <0.01

Table A.8.:mViewer job data with Pegasus

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 189.37 31.56 31.28 31.83 <0.01 1.13 × 10
9

<0.01

1 597.44 31.44 29.26 31.97 <0.01 1.13 × 10
9

<0.01

2 3119.39 31.51 26.08 32.86 <0.01 1.13 × 10
9

<0.01

3 5114.30 31.57 26.76 33.00 <0.01 1.13 × 10
9

<0.01

4 7747.75 31.62 26.51 33.68 <0.01 1.12 × 10
9

<0.01

Table A.9.:mProject job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 2.34 0.26 0.22 0.35 0.09 6.20 × 10
6

0.08

1 10.28 0.26 0.18 0.42 0.07 6.76 × 10
6

0.04

2 66.28 0.26 0.18 0.81 0.05 6.66 × 10
6

0.03

3 117.52 0.27 0.18 0.74 0.05 6.38 × 10
6

0.04

4 229.31 0.35 0.19 0.90 0.14 5.37 × 10
6

0.12

Table A.10.:mDiffFit job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.16 - - - 0.08 740.42 0.09

1 0.46 - - - 0.21 983.91 0.19

2 4.17 - - - 0.26 695.85 0.30

3 5.65 - - - 0.22 845.76 0.18

4 14.39 - - - 0.06 497.61 0.06

Table A.11.:mConcatFit job data with snakemake

63

A. Appendix

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.18 - - - 0.05 7.80 × 10
7

0.05

1 0.23 - - - 0.06 2.33 × 10
8

0.05

2 0.62 - - - 0.06 7.89 × 10
8

0.06

3 0.96 - - - 0.03 9.10 × 10
8

0.03

4 1.39 - - - 0.01 9.95 × 10
8

0.01

Table A.12.: mBgModel job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 1.29 0.21 0.21 0.22 0.01 2.18 × 10
7

0.01

1 4.05 0.21 0.20 0.23 0.01 2.17 × 10
7

0.01

2 21.16 0.21 0.20 0.24 <0.01 2.17 × 10
7

<0.01

3 35.06 0.22 0.20 0.29 0.01 2.16 × 10
7

0.01

4 62.89 0.26 0.20 0.40 0.01 1.87 × 10
7

0.01

Table A.13.:mBackground job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.12 - - - 0.11 8.94 × 10
4

0.11

1 0.26 - - - 0.48 1.51 × 10
5

0.32

2 1.76 - - - 0.63 1.34 × 10
5

0.51

3 2.07 - - - 0.60 1.76 × 10
5

0.47

4 6.07 - - - 0.03 7.18 × 10
4

0.03

Table A.14.:mImgtbl job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.37 - - - 0.24 1.04 × 10
7

0.19

1 1.28 - - - 0.30 1.37 × 10
7

0.32

2 9.43 - - - 0.25 1.53 × 10
7

0.24

3 14.22 - - - 0.25 1.77 × 10
7

0.21

4 28.18 - - - 0.02 1.33 × 10
7

0.02

Table A.15.:mAdd job data with snakemake

64

A.1. Detailed Profiling Data

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.27 - - - 0.03 6.02 × 10
7

0.03

1 1.44 - - - 0.03 1.66 × 10
7

0.03

2 13.07 - - - 0.02 7.77 × 10
6

0.02

3 22.79 - - - <0.01 7.44 × 10
6

<0.01

4 35.63 - - - <0.01 7.22 × 10
6

<0.01

Table A.16.: mViewer job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 189.57 31.59 31.22 32.24 0.01 1.13 × 10
9

0.01

1 597.37 31.44 29.24 32.27 <0.01 1.13 × 10
9

<0.01

2 3112.53 31.44 26.03 32.62 <0.01 1.13 × 10
9

<0.01

3 5114.83 31.57 26.71 33.16 <0.01 1.13 × 10
9

<0.01

4 7731.94 31.56 26.34 33.15 <0.01 1.13 × 10
9

<0.01

Table A.17.:mProject job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 2.60 0.29 0.24 0.36 0.09 5.59 × 10
6

0.06

1 12.32 0.31 0.22 0.47 0.03 5.61 × 10
6

0.03

2 102.37 0.41 0.21 0.99 0.03 4.65 × 10
6

0.02

3 182.84 0.43 0.20 1.15 0.05 4.45 × 10
6

0.04

4 282.96 0.43 0.19 1.53 0.07 4.49 × 10
6

0.07

Table A.18.: mDiffFit job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.22 - - - 0.23 548.08 0.21

1 0.65 - - - 0.10 681.62 0.11

2 5.59 - - - 0.09 490.39 0.10

3 9.41 - - - 0.05 492.51 0.05

4 15.29 - - - 0.11 471.46 0.10

Table A.19.:mConcatFit job data with makeflow

65

A. Appendix

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.20 - - - 0.15 7.13 × 10
7

0.14

1 0.25 - - - 0.10 2.16 × 10
8

0.09

2 0.61 - - - 0.02 8.01 × 10
8

0.02

3 0.96 - - - 0.01 9.12 × 10
8

0.01

4 1.39 - - - 0.01 9.92 × 10
8

0.01

Table A.20.:mBgModel job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 1.36 0.23 0.21 0.24 0.02 2.06 × 10
7

0.02

1 4.29 0.23 0.21 0.26 0.02 2.06 × 10
6

0.02

2 27.81 0.28 0.20 0.42 0.08 1.71 × 10
7

0.08

3 50.01 0.31 0.20 0.53 0.06 1.56 × 10
7

0.06

4 77.07 0.31 0.20 0.49 0.02 1.52 × 10
7

0.03

Table A.21.:mBackground job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.20 - - - 0.66 6.82 × 10
4

0.35

1 0.28 - - - 0.15 1.25 × 10
5

0.14

2 2.82 - - - 0.34 7.08 × 10
4

0.44

3 4.44 - - - 0.07 6.52 × 10
4

0.07

4 7.41 - - - 0.03 5.88 × 10
4

0.03

Table A.22.: mImgtbl job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.32 - - - 0.15 1.18 × 10
7

0.13

1 1.13 - - - 0.30 1.54 × 10
7

0.27

2 12.06 - - - 0.16 1.17 × 10
7

0.20

3 18.34 - - - 0.05 1.32 × 10
7

0.05

4 30.01 - - - 0.06 1.26 × 10
7

0.06

Table A.23.: mAdd job data with makeflow

66

A.1. Detailed Profiling Data

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 0.41 - - - 0.04 4.00 × 10
7

0.04

1 1.33 - - - 0.04 1.79 × 10
7

0.04

2 10.61 - - - <0.01 9.58 × 10
6

<0.01

3 18.90 - - - 0.01 8.98 × 10
6

0.01

4 29.67 - - - 0.01 8.67 × 10
6

0.01

Table A.24.:mViewer job data with makeflow

A.1.2. 1000Genome

Time (s)

Instance Total Avg Min Max Var

0 87 194.70 43 597.35 43 421.35 43 773.35 <0.01

1 86 095.58 21 523.89 21 254.03 21 763.72 <0.01

2 85 319.39 8531.94 8418.35 8578.85 <0.01

3 85 024.73 4251.24 4160.20 4275.24 <0.01

4 84 978.91 2124.47 2043.91 2141.54 <0.01

Table A.25.: individuals job data with pegasus

Time (s)

Instance Total Avg Min Max Var

0 285.83 - - - 0.01

1 313.18 - - - 0.01

2 382.41 - - - 0.05

3 471.44 - - - 0.07

4 586.54 - - - 0.03

Table A.26.: individuals_merge job data with pegasus

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 87 449.89 43 724.95 43 609.20 43 840.70 <0.01 2127.51 <0.01

1 86 128.50 21 532.13 21 232.27 21 767.01 <0.01 2168.87 <0.01

2 85 392.58 8539.26 8417.74 8607.33 <0.01 2214.85 <0.01

3 85 115.27 4255.76 4177.82 4282.07 <0.01 2267.48 <0.01

4 85 111.25 2127.78 2042.77 2140.20 <0.01 2357.47 <0.01

Table A.27.: individuals job data with snakemake

67

A. Appendix

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 296.55 - - - 0.02 1837.60 0.02

1 307.51 - - - 0.03 3149.88 0.02

2 370.61 - - - 0.03 6043.58 0.03

3 482.05 - - - 0.07 9071.36 0.07

4 649.93 - - - 0.05 1.32 × 10
4

0.05

Table A.28.: individuals_merge job data with snakemake

Time (s) FLOPS

Job Instance Total Avg Min Max CoV Avg CoV

sifting 3 3.98 - - - 0.02 6.79 × 10
4

0.02

mutation_overlap 0 183.25 26.18 16.67 56.02 0.04 9.38 × 10
5

0.03

frequency 3 1437.36 205.34 173.32 260.45 <0.01 9.05 × 10
5

<0.01

Table A.29.: other job data

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 86 991.98 43 495.99 43 429.83 43 562.15 <0.01 2138.72 <0.01

1 86 035.68 21 508.92 21 234.76 21 752.27 <0.01 2171.18 <0.01

2 85 273.12 8527.31 8415.84 8590.58 <0.01 2217.96 <0.01

3 85 065.07 4253.25 4168.02 4277.51 <0.01 2268.90 <0.01

4 85 060.58 2126.51 2045.41 2139.96 <0.01 2358.87 <0.01

Table A.30.: individuals job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 288.73 - - - 0.02 1887.49 0.02

1 304.37 - - - 0.01 3181.00 0.01

2 355.30 - - - 0.01 6299.78 0.01

3 447.10 - - - 0.02 9744.52 0.02

4 618.99 - - - 0.07 1.39 × 10
4

0.07

Table A.31.: individuals_merge job data with makeflow

Time (s) FLOPS

Job Instance Total Avg Min Max CoV Avg CoV

sifting 2 4.72 - - - 0.05 5.74 × 10
4

0.05

mutation_overlap 3 245.84 26.18 16.67 56.02 0.04 9.38 × 10
5

0.03

frequency 3 1437.36 205.34 173.32 260.45 <0.01 9.05 × 10
5

<0.01

Table A.32.: other job data

68

A.1. Detailed Profiling Data

A.1.3. Orcasound

Time (s)

Instance Total Avg Min Max Var

0 101.16 - - - 0.13

1 217.47 108.74 107.74 109.73 0.01

2 434.90 108.73 103.58 113.69 0.02

3 910.80 113.85 108.75 118.05 0.06

4 1811.50 113.22 107.68 118.55 0.04

Table A.33.: convert2wav job data with pegasus

Time (s)

Instance Total Avg Min Max Var

0 684.71 - - - 0.01

1 1396.80 698.40 689.17 707.64 0.03

2 2778.47 694.62 679.16 723.32 0.01

3 5560.20 695.03 684.50 711.67 0.01

4 11 156.45 697.28 673.47 731.52 0.01

Table A.34.: convert2spectrogram job data with pegasus

Time (s)

Instance Total Avg Min Max Var

0 430.64 - - - 0.11

1 783.21 391.60 364.50 418.71 0.06

2 1610.04 402.51 364.37 425.26 0.05

3 3352.33 419.04 407.72 457.68 0.06

4 6491.08 405.69 361.37 447.75 0.03

Table A.35.: inference job data with pegasus

Time (s)

Instance Total Avg Min Max Var

1 0.21 - - - 0.06

2 0.36 - - - 0.13

3 0.59 - - - 0.08

4 1.05 - - - 0.06

Table A.36.: merge job data with pegasus

69

A. Appendix

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 108.66 - - - 0.17 38.12 0.22

1 199.77 99.89 96.88 102.89 0.01 40.24 0.01

2 400.77 100.19 90.73 107.78 0.08 40.49 0.08

3 854.88 106.86 100.81 110.22 0.05 37.69 0.05

4 1726.93 107.93 98.28 114.37 0.05 37.34 0.05

Table A.37.: convert2wav job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 695.89 - - - 0.04 3.21 × 10
8

0.04

1 1386.65 693.32 690.52 696.13 0.01 3.22 × 10
8

0.01

2 2831.78 707.94 690.03 722.41 0.03 3.16 × 10
8

0.03

3 5555.06 694.38 677.12 727.81 <0.01 3.22 × 10
8

<0.01

4 11 237.08 702.32 676.76 737.01 <0.01 3.17 × 10
8

<0.01

Table A.38.: convert2spectrogram job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 409.89 - - - 0.07 1.01 × 10
8

0.06

1 894.75 447.38 439.42 455.34 0.03 9.27 × 10
7

0.03

2 1534.18 383.55 357.43 416.64 0.06 1.09 × 10
8

0.05

3 3155.15 394.39 355.18 450.28 0.02 1.06 × 10
8

0.02

4 6024.46 376.53 336.08 421.07 0.01 1.10 × 10
8

0.01

Table A.39.: inference job data with snakemake

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

1 0.19 - - - 0.09 8.41 × 10
5

0.10

2 0.31 - - - 0.08 1.03 × 10
6

0.08

3 0.57 - - - 0.09 1.10 × 10
6

0.09

4 1.01 - - - 0.07 1.22 × 10
6

0.06

Table A.40.:merge job data with snakemake

70

A.1. Detailed Profiling Data

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 82.57 82.57 82.57 82.57 0.07 48.87 0.07

1 166.31 83.15 82.01 84.30 0.05 48.47 0.05

2 373.93 93.48 87.39 98.65 0.07 43.28 0.06

3 732.35 91.54 85.87 102.34 0.05 44.19 0.06

4 1747.56 109.22 94.23 116.99 0.04 37.04 0.04

Table A.41.: convert2wav job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 691.63 - - - 0.01 3.23 × 10
8

0.01

1 1375.19 687.59 685.81 689.38 0.01 3.25 × 10
8

0.01

2 2731.32 682.83 676.17 688.97 0.01 3.28 × 10
8

0.01

3 5475.73 684.47 677.57 695.12 0.01 3.27 × 10
8

0.01

4 11 014.18 688.39 674.40 706.66 0.01 3.24 × 10
8

0.01

Table A.42.: convert2spectrogram job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

0 411.45 - - - 0.05 1.01 × 10
8

0.05

1 794.91 397.46 387.66 407.25 0.03 1.04 × 10
8

0.03

2 1498.47 374.62 364.59 384.72 0.01 1.11 × 10
8

0.01

3 3215.14 401.89 390.68 425.40 0.06 1.04 × 10
8

0.06

4 6302.33 393.90 362.91 427.14 0.04 1.05 × 10
8

0.04

Table A.43.: inference job data with makeflow

Time (s) FLOPS

Instance Total Avg Min Max Var Avg Var

1 0.19 - - - 0.11 8.56 × 10
5

0.10

2 0.29 - - - 0.22 1.11 × 10
6

0.17

3 0.49 - - - 0.20 1.31 × 10
6

0.16

4 0.89 - - - 0.07 1.40 × 10
6

0.08

Table A.44.: merge job data with makeflow

71

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Scientific Workflows
	Abstract Workflows
	Concrete Workflows
	Advanced Characteristics

	Scientific Workflow Management Systems
	Core Features
	Other Features

	Approach
	Performance Metrics
	Selection of WMS

	Related Work
	Workflows
	Workflow Management Systems

	Workflow Management Systems
	Pegasus
	Workflow Composition
	Workflow Execution

	Snakemake
	Workflow Composition
	Workflow Execution

	Makeflow
	Workflow Composition
	Workflow Mapping and Execution

	Comparison of Core Features

	Scientific Workflows
	Montage
	1000 Genome Workflow
	Orcasound Workflow

	Performance Evaluation
	Methodology
	Montage
	Input Instances
	Characterization
	Workflow Management System Profiles

	1000Genome
	Input Instances
	Characterization
	Workflow Management System Profiles

	Orcasound
	Input Instances
	Characterization
	Workflow Management System Profiles

	Threats to Validity

	Discussion
	Goal Question Metric Plan
	Comparison of WMS Features
	Comparison of WMS Performance

	Conclusion
	Summary
	Future Work

	Acknowledgments
	Bibliography
	Appendix
	Detailed Profiling Data
	Montage
	1000Genome
	Orcasound

