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Abstract
We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is
partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on
similar parameters for various problems. With this paper, we take a first step towards computing
clique-partitioned tree decompositions.

Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given
tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The
goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is
NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm.
Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good
baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms
allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks.
A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising
parameter for graphs with high clustering.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases treewidth, weighted treewidth, algorithm engineering, cliques, clustering,
complex networks

Supplementary Material https://github.com/marcwil/cptw_code

1 Introduction

The treewidth is a measure for how treelike a graph is in terms of its separators. It is defined
via a tree decomposition, a collection of vertex separators called bags that are arranged in a
tree structure. The size of the largest bag determines the width of the decomposition and
the treewidth of a graph is the minimum width over all tree decompositions.

The concept of treewidth has its origins in graph theory with some deep structural
insights [22, 24]. Additionally, there are algorithmic implications. Intuitively speaking, the
separators of a tree decomposition split the graph into pieces that can be solved independently
except for minor dependencies at the separators. This is often formalized using a dynamic
program over the tree decomposition, yielding an FPT-algorithm (fixed-parameter tractable)
with the treewidth as parameter [9]. As this is a versatile framework that can be applied to
many problems, it comes to no surprise that there has been quite a bit of effort to develop
algorithms for computing low-width tree decompositions (see, e.g., [15, 16]).

A major obstruction for low treewidth are large cliques, which inevitably lead to large
separators. This is particularly true for so-called complex networks, i.e., graphs with strong
community structure and heterogeneous degree distribution, which appear in various domains
such as communication networks, social networks, or webgraphs. One could, however, hope
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for two aspects that together mitigate this negative effect of large cliques. First, though some
separators need to be large, these separators are structurally simple, e.g., they form a clique
or can be covered with few cliques. Second, separators that are large but structurally simple
still let us solve the separated pieces individually with low dependence between them. The
first hope is supported by the fact that the treewidth is asymptotically equal to the clique
number in hyperbolic random graphs [5]; a popular model for complex networks [21]. This
indicates that cliques are indeed the main obstruction for low treewidth in these kinds of
networks. The second hope is supported by the results of de Berg et al. [14], who introduced
the concept P-flattened tree decompositions. There, the graph is partitioned into cliques
and the width of the tree decomposition is measured in terms of the (weighted) number of
cliques in a bag. Thus, the width does measure the complexity of separators rather than
their size. Based on this definition, the authors then show that these structurally simple
separators help to solve various graph problems efficiently.

To the best of our knowledge, these extended concepts have not yet been studied from
a practical perspective. With this paper, we want to initiate this line of research by
addressing two questions. First, can such clique-partitioned tree decompositions lead to
substantially smaller width values than classical tree decompositions? Second, how can such
tree decompositions be computed? For the second question, we design and evaluate different
algorithmic strategies for computing a novel yet closely related variant of tree decompositions.
Our experiments yield some interesting algorithmic insights and provide a good starting point
for further development. On networks that do exhibit clique structures, the constructed tree
decompositions indeed have sufficiently low width to answer the first question affirmatively.
We believe that there is plenty of room for improvement in our approaches, which may yield
even better insights into the applicability of the new parameter. In the following, we discuss
related work before stating our contribution more precisely.

1.1 Related Work
There are multiple lines of research that investigate variants of treewidth where additional
structural properties are taken into account. As mentioned above, De Berg et al. [14] propose
a variant of tree decompositions where the initial graph is partitioned into cliques (or unions
of constantly many connected cliques) that are contracted into weighted vertices. The weight
of a clique of size s is log(s + 1) and the weight of a bag of the tree decomposition is the
sum of its weights. Using this technique, they give subexponential algorithms for a range of
problems on geometric intersection graphs, including Independent Set, Steiner Tree and
Feedback Vertex Set. For some of these problems, the algorithms are also representation
agnostic, while for most others, the geometric representation is required. They also prove
that the running time of the algorithms is tight under the exponential-time-hypothesis
(ETH). Kisfaludi-Bak [20] applied the same algorithmic framework to intersection graphs of
constantly sized objects in the hyperbolic plane.

A similar parameter called tree clique width has been proposed by Aronis [2]. Here, the
idea is to consider tree decompositions where each bag is annotated with an edge clique cover
(ecc) and where the size of the cover determines the width of a bag. The paper shows several
hardness results and adapts common treewidth algorithms to the newly proposed parameter.

Another approach to capture graph structures that lead to high treewidth despite being
structurally simple has been proposed by Dallard, Milanič, and Štorgel. They define the
independence number of a tree decomposition as the size of the largest independent set of
any of its bags and the tree-independence number of a graph as the minimum independence
number of any tree decomposition [13]. This parameter connects to the more theoretical
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study of (tw, ω)-bounded graphs, i.e., graph classes in which the treewidth depends only on
the clique number [11, 12]. This line of research is mostly concerned with the classification
and characterization of the considered graph classes both in terms of graph theory and
algorithmic exploitability. However, apart from a factor 8 approximation with running time
2O(k2) ·nO(k) due to Dallard, Fomin, Golovach, Korhonen, and Milanič [10], we are not aware
of any work that tries to actually build algorithms for this or similar parameters.

1.2 Contribution
In this paper, we propose clique-partitioned treewidth as a parameter that captures struc-
turally simple separators in graphs. It can be seen as a close adaptation of P-flattened
treewidth [14], where we first compute a tree decomposition and then determine clique
partitions of the subgraphs induced by the bags. Thus, instead of using a global clique
partition of the whole graph, we consider clique partitions that are local to a single bag.

The remainder of this paper is structured as follows. In Section 2, we formalize our
definition for clique-partitioned treewidth and prove several statements comparing it with
P-flattened treewidth. In Section 3, we present multiple approaches to compute low-weight
clique partitions for the bags of a tree decomposition. They include various heuristic methods,
as well as an exact branch-and-bound algorithm for which we propose several adjustments
with the potential to improve its running time in practice. Afterwards, in Section 4 we
combine an implementation of our approaches with existing methods for computing tree
decompositions and study the upper bounds on the clique-partitioned treewidth of real-world
networks. Furthermore, we evaluate the performance of the exact and heuristic clique
partition solvers proposed in Section 3.

2 Clique-partitioned treewidth

We first introduce some basic notation and give the definition for traditional tree decomposi-
tions. We write [n] = {1, . . . , n} for the first n natural numbers. Throughout the paper, we
assume graphs G = (V,E) to be simple and undirected and write V (G) and E(G) for the
sets of vertices and edges, respectively. For a subset X ⊆ V we write G[X] for the subgraph
of G induced by X.

A tree decomposition of G is a pair (T,B), for a tree T and a function B mapping vertices
of T to subsets of V called bags such that T and B have the following three properties: (1)
every vertex of G is contained in some bag, (2) for every edge, there is a bag containing both
endpoints, and (3) for any vertex v of G, the set of bags containing v forms a connected
subtree of T . The width of a tree decomposition is the size of the largest bag minus 1. The
treewidth tw(G) is the smallest width obtainable by any tree decomposition of G.

We define a clique-partitioned tree decomposition of G as a tree decomposition where for
every t ∈ V (T ) we have a partition Pt of the subgraph induced by the corresponding bag
(i.e., the graph G[B(t)]) into cliques. Following de Berg et al. [14], we define the weight of a
clique C as log(|C|+ 1) and the weight of a bag B(t) as the sum of weights of the cliques in
its partition Pt. Throughout this paper we assume 2 to be the default base of logarithms.
The weight of a clique-partitioned tree decomposition is the maximum weight of any of its
bags and the clique-partitioned treewidth (short: cp-treewidth) of G, denoted by cptw(G), is
the minimum weight of any clique-partitioned tree decomposition.

As mentioned before, the clique-partitioned treewidth is closely related to the parameter
defined by de Berg et al. [14]. For a clique partition P of the whole graph G, we say that
a P-flattened tree decomposition is a clique-partitioned tree decomposition of G where the
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partition into cliques within a bag is induced by the global partition P. As before, the
weight of a P-flattened tree decomposition is the maximum total weight of the cliques in
any of its bags. In reference to the authors [14], we call the minimum weight over all P the
BBKMZ-treewidth.

We note that our parameter can also be seen as an adaptation of tree clique width [2],
where instead of considering the size of an edge clique cover of each bag, we consider the
logarithmically weighted sum of clique sizes of a clique partition. That is, we are using the
weight function of the P-flattened treewidth to define a parameter which considers individual
clique partitions, similar to tree clique width.

In the following, we compare the clique-partitioned treewidth to the more closely related
BBKMZ-treewidth. First, as a global partition P can also be used locally in each bag of a
clique-partitioned tree decomposition, we obtain that the clique-partitioned treewidth of a
graph is at most its BBKMZ-treewidth. Additionally, the clique-partitioned treewidth can
also be substantially smaller than the BBKMZ-treewidth, as shown in the following lemma.

I Lemma 1. There is an infinite family of graphs G such that a graph G ∈ G with n vertices,
has clique-partitioned treewidth in O (log logn) and BBKMZ-treewidth in Ω (logn).

Proof. The family G contains for every h ∈ N one graph Gh. The Graph Gh is a complete
binary tree of height h, where additionally for every leaf ` we connect all h vertices that lie
on a path between the root r and ` into a clique. Note that we have h ∈ Θ(logn).

Let Ph be a clique partition of Gh. Then, via a simple induction over h, it is easy to see
that in Gh there is a path between the root r and some leaf ` of Gh such that every vertex
on the path belongs to a different partition class. These vertices form a clique in Gh that
has to be prosent in some bag of any Ph-flattened tree decomposition of Gh. This bag thus
contains all h partition classes on the path and has weight h · log(1 + 1) ∈ Ω(logn).

At the same time we can construct a clique-partitioned tree decomposition (T, σ), that
has one bag for every path between the root r and each leaf `. Then, T forms a path. As
every bag consists of a single clique on h vertices, there is a clique partition of this tree
decomposition with weighted width log(h+ 1) ∈ O(log logn). J

Finally, we show the algorithmic usefulness of clique-partitioned treewidth in the following
lemma, which is an extension of the one proposed by de Berg et al. [14].

I Lemma 2. Let G be a graph with a clique-partitioned tree decomposition (T, σ) of weight τ .
Then a smallest independent set of G can be found in O(2τ · poly(n)) time.

Proof. We use a standard dynamic programming approach on tree decompositions based on
introduce, forget, and join nodes (see for example Cygan et. al [9]). For each node t ∈ V (T ),
we store a number of partial solutions for the subgraph of G induced by the bags of nodes in
the subtree below t.

A partial solution consists of a subset of the vertices in the current bag as well as the size
of the total partial independent set for the subgraph induced by the subtree below the current
bag. This makes it easy to initialize partial solutions for leaf nodes in the tree decomposition.

In an introduce node, two new partial solutions are created, one where the new vertex
is in the independent set and one where it is not. In a forget node, the removed vertex is
removed from each partial solution. In a join node, the partial solutions from the child-nodes
are combined by taking their union.

In a traditional tree decomposition of width k, this leads to at most 2k partial solutions
per bag. In a clique-partitioned tree decomposition, this is even smaller, as there are only
k+1 ways an independent set can intersect a clique of size k. Thus, assuming {Pt | t ∈ V (T )}
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denotes the clique partition of weight τ , the number of partial solutions that need to be
considered per bag t are at most∏

C∈Pt

(|C|+ 1) = 2
∑

C∈Pt
log(|C|+1) = 2τ .

As the number of bags and time spent per bag is polynomial, this concludes the proof. J

By the above argumentation, it follows that the clique-partitioned treewidth introduced
in this paper is upper bounded by the version of de Berg et al. and can be exponentially
lower. Additionally, it retains some power in solving NP-hard problems in FPT-time.

3 The weighted clique partition problem

We split the task of computing a clique-partitioned tree decomposition in two phases. First,
we compute a tree decomposition, minimizing the traditional tree width. Secondly, fixing the
structure and bags of this decomposition, we compute a clique partition for every bag. We
note that we already lose optimality by this separation, i.e., the result may be suboptimal
even if we get optimal solutions in each of the two phases. However, we expect that small
bags should also allow for low-weight clique partitions.

In the first phase, we use established algorithms for the computation of tree decompositions.
Consequently, we focus on the second step in this section. To this end, we define the
Weighted Clique Partition problem, short Clique Partition. For a given graph
G and an integer w, decide if there is a partition of V (G) into cliques P1, . . . , Pk such
that

∏
i∈[k](|Pi|+ 1) ≤ w. Note that this function differs from the one in the definition of

clique-partitioned treewidth, but is equivalent, as
∑
i∈[k] log(|Pi|+ 1) = log(

∏
1≤i≤k(|Pi|+ 1))

and the logarithm is monotonic.
In the following, we prove some technical lemmas that are useful throughout the section,

before showing that Weighted Clique Partition is NP-complete (Section 3.1). Afterwards,
we give different heuristic approaches (Section 3.2) and an optimal branch-and-bound
algorithm in (Section 3.3). We start with following lemma, which intuitively states that the
weight of a partition is smaller the more imbalanced the individual weights are, i.e., moving
a vertex from a smaller to a larger clique reduces the total weight.

I Lemma 3. Let a, b, c, d ∈ N0 such that a + b = c + d and a ≥ b, c ≥ d, d > b. Then
(a+ 1)(b+ 1) < (c+ 1)(d+ 1).

Proof. There is an x > 0 such that c = a − x and d = b + x. As c ≥ d, x can be at most
(a− b)/2. We derive

(c+ 1)(d+ 1) = (a− x+ 1)(b+ x+ 1)
= ab− bx+ b+ ax− x2 + x+ a− x+ 1
= (ab+ a+ b+ 1) + ax− bx− x2

= (a+ 1)(b+ 1) + x(a− b− x).

We have x(a− b− x) > 0, as 0 < x ≤ a−b
2 and thus the claimed strict inequality follows. J

With the above lemma (i.e., repeated applications thereof) we can compare the weight of
two partitions.
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I Lemma 4. Let 〈s1, . . . , sk〉 and 〈r1, . . . , r`〉 be different non-increasing sequences of natural
numbers such that 2 ≤ k ≤ `,

∑
i∈[k] si =

∑
i∈[`] ri, and si ≥ ri for all i ∈ [k − 1]. Then∏

i∈[k](si + 1) <
∏
i∈[`](ri + 1).

Proof. This follows from repeatedly applying Lemma 3 to go from R = 〈r1, . . . , r`〉 to
S = 〈s1, . . . , sk〉 while reducing the product in each step. To make this precise let i be the
first index where si > ri. We adjust R by adding 1 to ri ans subtracting 1 from r`. Note that
this maintains the sum. We apply Lemma 3 with a = ri + 1, b = r` − 1, c = ri, and d = r`.
Then, we have (a+ 1)(b+ 1) < (c+ 1)(d+ 1), i.e., the product of the adjusted sequence is
smaller than that of the original sequence R. Moreover, after a finite number of steps, we
reach S and thus the product for S is smaller than the product for R. J

3.1 Hardness
To prove that Weighted Clique Partition is NP-complete, we perform a reduction in two
steps. We start with the NP-hard problem 3-Coloring. It asks for a given graph whether
each vertex can be colored with one of three colors such that no two neighbors have the same
color. As an intermediate problem in the reduction, we introduce Weighted Independent
Set Partition. It is defined equivalently to Weighted Clique Partition, but instead
of partitioning the graph into cliques, we partition it into independent sets, i.e., sets of
pairwise non-adjacent vertices. Note that independent sets are cliques in the complement
graph and vice versa. Thus, Weighted Independent Set Partition and Weighted
Clique Partition are computationally equivalent. Thus, to obtain the following theorem,
it remains to reduce 3-Coloring to Weighted Independent Set Partition.

I Theorem 5. Weighted Clique Partition is NP-complete.

Proof. Membership in NP is easy to see as polynomial time verification of a solution is
straightforward. For hardness, we reduce from 3-Coloring to Weighted Independent
Set Partition. Thus, we now assume that we are given a graph G and need to transform
it into a graph G′ and integer w such that such that G can be colored with three colors if
and only if G′ has a partition into independent sets of weight at most w. We construct G′ as
follows. For every vertex v of G, we add two new vertices v1 and v2 that form a triangle
together with v, but have no other edges. We denote n = |V (G)| and set w = (n + 1)3.
Note that any independent set in G′ can contain at most n vertices, because every appended
triangle admits only one independent vertex.

Assume that G admits a proper three-coloring. This coloring directly translates to a
three-coloring of G′ as follows. Every vertex v of G keeps its color in G′. moreover, v1 and
v2 each get one of the two other colors. Thus, the coloring classes in G′ have size exactly n
each and form an independent set partition with weight (n+ 1)3.

If otherwise G does not admit a proper three-coloring, then neither does G′ and there is
no partition of G′ into at most three independent sets. Any partition of V (G′) into more
than three independent sets has a weight larger than (n+ 1)3 by Lemma 4, as no independent
set in G′ can have more than n vertices. Consequently, G is three-colorable if and only if
there is a partition of V (G′) into independent sets with weight at most (n+ 1)3. J

3.2 Heuristic approaches
We now explain different approaches to solving the optimization variant of Weighted
Clique Partition both optimally and heuristically.
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Throughout this section we make use of the fact that enumerating all maximal cliques of
a graph is not only output polynomial [19], but also highly feasible in practice as shown by
Eppstein, Löffler, and Strash [17]. We use an implementation of their algorithm from the
igraph1 library.

Maximal clique heuristic. Recall from Lemma 3 that the weight function favors imbalanced
clique sizes over more balanced ones. It therefore makes sense to try to find few large cliques
that cover all vertices. A basic greedy heuristic that tries to achieve this works as follows.
First, we enumerate all maximal cliques C of the graph. Then we iteratively add one clique to
the partition by greedily selecting the clique with the largest number of remaining uncovered
vertices. We call this the maximal clique heuristic.

In order to efficiently implement this heuristic, we use a priority queue to fetch the
largest clique and keep track of the cliques Cv ⊆ C that a vertex v is part of. This way, after
choosing the remaining vertices of a clique C ∈ C as a partition, we have to update the sizes
of O(

∑
v∈C |Cv|) cliques. The total number of such updates throughout the whole algorithm

is at most the sum of clique sizes in C. Thus, using a Fibonacci Heap, a total running time of
O(|V | log |C|+

∑
C∈C |C|) can be achieved. In our implementation we use a binary heap due

to it being faster in practice. This costs an additional factor of log |C| for the second term.

Repeated maximal clique heuristic. Note that the MC heuristic does not recompute the
maximal cliques of the remaining graph after selecting a clique. As deleting the vertices
of one clique can have the effect that a non-maximal clique becomes maximal, the MC
heuristic might miss a clique we would want to select. The repeated maximal clique heuristic
recomputes the set of maximal cliques after each decision, i.e., it selects a maximum clique
of the remaining graph in each step.

Set Cover heuristics. Observe that for the Weighted Clique Partition problem, we
have to choose a set of cliques of minimum weight that cover all vertices. Thus, we essentially
have to solve a weighted Set Cover problem. As there are reasonably efficient solvers for
Set Cover (or the equivalent Hitting Set problem), it seems like a promising approach
to use those. However, this has the disadvantage, that we would need to list all cliques and
not only the maximal cliques. Nonetheless, it seems like a good heuristic to just consider
maximal cliques and find a minimum set cover (unweighted or weighted).

The heuristic consists of two steps. First, we compute a minimum set cover, using
the maximum cliques as sets and the vertices as elements. We consider two variants for
this steps; weighted (a set of size k has weight log(k + 1)) and unweighted (each set has
weight 1). Afterwards, in the second step, we convert the cover into a partition by assigning
the overlap between selected cliques to only one clique. We call the resulting two approaches
the (maximal clique) set cover and (maximal clique) weighted set cover heuristics.

For the first step, i.e., solving Set Cover, we use a state of the art branch-and-bound
solver [6] for the unweighted case. Additionally, for the weighted case, we use the straight-
forward formulation of set cover as an ILP and solve it with Gurobi [18]. To the best of our
knowledge, ILP solvers are currently the state-of-the-art for weighted set cover.

For the second step, we have to compute clique partitions from the resulting set covers
by assigning each vertex that is covered by multiple cliques to a single one of these cliques.

1 https://igraph.org/

https://igraph.org/
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The goal is to minimize the weight of the resulting cliques, i.e., by Lemma 3, we want to
distribute them as unevenly as possible. We employ a simple greedy heuristic, assigning each
vertex to the largest clique it is part of and braking ties arbitrarily in case of ambiguity.

At a first glance it seems possible that doing both steps optimally (solving set cover and
resolving the overlaps) could yield an overall optimal solution. However, this is not the case,
as briefly discussed in Appendix A.

3.3 Exact branch-and-bound solver
Our branch-and-bound branches on which clique to select next. How to branch is described
in Section 3.3.1 where we show that we can, in each step, select a maximal clique and that the
cliques of the resulting sequence are non-increasing in size. In Section 3.3.2 and Section 3.3.3,
we describe lower bounds for pruning the search space, i.e., if the best solution found so far
is better than the lower bound in the current branch, we can prune that branch.

3.3.1 Branching
The following structural insight enables us to branch on the maximal cliques.

I Lemma 6. Let P be a minimum weight clique partition of a graph G and let C ∈ P be the
largest clique of P. Then C is maximal clique in G.

Proof. Assume that C is a non-maximal clique. That is, there is a vertex v ∈ V (G) \C with
C ⊆ N(v). Let C ′ ∈ P be the clique containing v. We construct a clique partition P ′ by
removing v from C ′ and adding it to C. As C was the largest clique in P, via Lemma 3 we
have (|C|+ 2)(|C ′|) < (|C|+ 1)(|C ′|+ 1), contradicting the optimality of P. J

Thus, even though not all cliques of an optimal solution might be maximal, we at least
know that the largest one is. We can use the decision of which maximal clique to select
as the largest one as the branching decision of our algorithm. This way, we can solve the
optimization variant of Weighted Clique Partition, i.e., the algorithm takes a graph G
and finds a minimum weight clique partitioning.

After a clique C has been selected as the largest one, the remaining problem is to find a
clique partition of G[V \ C] that does not use any clique larger than C. This means that we
can view our algorithm as a simple recursive subroutine that solves the same problem at
every node of the recursion tree. As input it gets the graph G and the cliques 〈C1, . . . , Ci〉
that have already been selected by previous recursive calls. It then tries to compute an
optimal clique partition of the remaining graph G′ := G \

⋃
j∈[i] Cj . This is done by either

returning a trivial solution if G′ can be covered with a single clique or by branching on the
decision of which maximal clique to select as the largest one for the partition of G′. Note
that for this decision, only maximal cliques that are at most as large as any of the previously
selected cliques 〈C1, . . . , Ci〉 need to be considered. The result of the subroutine call is then
the cheapest solution found in any of the branches.

In order to quickly obtain a good upper bound, we explore branches corresponding to
larger cliques first. This way, the first leaf of the search tree constructs the same solution as
the repeated maximal clique heuristic.

3.3.2 Size lower bound
We call the lower bound given by the following lemma the size lower bound.
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I Lemma 7. Let G be a graph with n vertices and P be a clique partition of G consisting of
cliques of size at most s. Then P has weight at least (s+ 1)bn/sc · ((n mod s) + 1).

Proof. The stated minimum weight is achieved by a partitioning P ′ that uses as many
cliques of size s as possible and one clique with all remaining vertices. Any other partitioning
P using only cliques of size at most s is at least as expensive, as it can be transformed into
P ′ by of Lemma 4. J

Note that the size lower bound can trivially be evaluated in constant time. Even though
it is rather basic, we expect this lower bound to be effective at pruning branches in which
very small cliques are selected early on.

3.3.3 Valuable sequence lower bound
Note that the size lower bound optimistically assumes that there are bn/sc non-overlapping
cliques of size s. This yields a bad lower bound if, e.g., there is only one clique of size s while
all other cliques are much smaller. In the following, we describe an improved bound based
on this observation. We note that we have to be careful when considering what clique sizes
are available for the following reason. Assume the branching has already picked a clique of
size s, i.e., subsequent selected cliques have to have size at most s. Then it seems natural
to derive a lower bound by summing over the sizes of all maximal cliques of size at most s.
However, we have to account for the fact that selecting (and deleting) one clique can shrink
a maximal clique that was larger than s to become a clique of size s. Thus, there might me
more cliques of size s available than initially thought. In order to formalize this, we first
introduce a different problem that considers only sizes of the cliques without making any
assumptions on the overlap between the cliques.

In the Valuable Sequence problem, we are given a multiset A of natural numbers and
a natural number n. The task is to construct a sequence of total value n and minimum weight.
Such a sequence S = 〈s1, s2, . . . , sk〉 consists of elements si ∈ A such that each number is
repeated at most as often as it appears in A. In the following, we define value and weight of
a sequence and give additional restrictions to what constitutes a valid sequence. To this end,
let Si = 〈s1, . . . , si〉 for i ≤ k denote a prefix of S. We define a value val(si) for each si in
the sequence as follows. The first element s1 has value val(s1) = s1. For subsequent elements
si+1, we have val(si+1) = min{si+1, val(si), n − val(Si)}, where val(Si) =

∑
j∈[i] val(sj) is

the total value of the prefix Si.2 If val(si) = si, we say that the element contributes fully to
the sequence. Otherwise, it contributes partially. The weight of S is

∏
i∈[k](val(si) + 1). For

the subsequence Si, we call the next element si+1 eligible if si+1 − val(Si) ≤ val(si); s1 is
always eligible. The sequence S is valid if each element is eligible.

To make the connection back to Weighted Clique Partition, interpret the numbers
in A as the clique sizes. The total value n corresponds to the number of vertices that have
to be covered. The value val(si) corresponds to the number of vertices from the maximal
clique of size si in G that have not been covered by previous cliques, i.e., the number of
vertices that are newly covered in step i. Note that in step i + 1, at least si − val(Si)
new vertices are covered as only val(Si) have been covered previously. Thus, the eligibility
requirement ensures that the number of vertices covered in step i+ 1 is not larger than the
number of vertices covered in step i (recall, that we can assume the chosen cliques to form a
non-increasing sequence). Moreover, for the definition of val(si+1), note that the minimum

2 Note that val(si+1) only depends on values of previous elements in S, i.e., the definition is not cyclic.
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with val(si) ensures that the sequence of values is non-increasing and the minimum with
n− val(Si) ensures that the total value is n.

The following two lemmas formalize this connection between Valuable Sequence and
Weighted Clique Partition. Afterwards, we discuss how Valuable Sequence can be
solved optimally.

I Lemma 8. Let P be a minimum weight clique partition of a graph G and let C be the set
of maximal cliques in G. Then, any mapping f : P → C with P ⊆ f(P ) for each P ∈ P is
injective and there exists at least one such mapping.

Proof. There are mappings from P to C, because each clique P ∈ P is either a maximal
clique or a subset of a larger maximal clique. Assume that a mapping f : P 7→ C is not
injective. Then, there are two partition classes P and P ′ that are mapped to the same clique
C ∈ C. Thus, these partition classes could be merged, contradicting the optimality of P . J

I Lemma 9. Let G be a graph with maximal cliques C = {C1, . . . , Ck} and let (A,n) with
A = {|C1|, . . . , |Ck|} and n = |V (G)| be an instance of Valuable Sequence. The weight of
a minimum solution of (A,n) is a lower bound for the weight of every clique partition of G.

Proof. We now show that for a minimum clique partition P of G, we find a solution S of
(A,n) whose weight is at most the weight of P.

Let P1, . . . , Pk′ be the cliques of P sorted by size in decreasing order. We can think of P as
constructed iteratively in that order, so that each Pi is a maximal clique in G[V \(

⋃
j∈[i−1] Pj)].

We construct S iteratively until val(S) = n. For each element si in the sequence, we
prove by induction that val(si) ≥ |Pi| except for the last element. This then lets us use
Lemma 4 to obtain that the weight of S is at most the weight of P. For i = 1, we simply
choose s1 = |P1| ∈ A. Since the first element always contributes fully, we have val(s1) = |P1|.

Assuming we constructed the sequence until i, we continue with step i+ 1 as follows. If
Pi+1 is one of the initial maximal cliques in C, then we can simply choose si+1 = |Pi+1| ∈ A.
Note that si+1 is eligible, as si+1 = |Pi+1| ≤ |Pi| ≤ val(si), which in particular implies
si+1 − val(Si) ≤ val(si). In this case, si+1 contributes fully, i.e., val(si+1) = |Pi+1|, which
implies the claim.

Otherwise, if Pi+1 is not in C, it is at least a subset of some clique C ∈ C such that
Pi+1 = C \

⋃
j∈[i] Pj . We choose si+1 = |C|. The eligibility of si+1 follows from the facts

that the cliques in P are ordered non-increasingly, i.e. |Pi| ≥ |Pi+1|, and that val(sj) ≥ |Pj |
holds by induction for all j < i+ 1:

val(si) ≥ |Pi| ≥ |Pi+1| =
∣∣∣C \ ⋃

j∈[i]

Pj

∣∣∣ ≥ |C|−∑
j∈[i]

|Pj | ≥ si+1−
∑
j∈[i]

val(sj) = si+1−val(Si).

Note that si+1 contributes partially, i.e., val(si+1) = val(si) unless this is the last item in S.
As we just argued, we have val(si) ≥ |Pi+1| and thus val(si+1) ≥ |Pi+1|, proving the claim.

To conclude, observe that our construction of S implicitly defines a mapping from P to C
as in Lemma 8. As such a mapping is injective, no number in A is chosen twice. Moreover
as we have val(si) ≥ |Pi| for i < k, but both sum to n, the weight of P is at least the weight
of S by Lemma 4. J

Valuable Sequence can be solved optimally with a simple greedy algorithm. We call
the resulting lower bound the valuable sequence bound.

I Theorem 10. An instance (A,n) of Valuable Sequence can be solved in O(|A|+ n)
time.
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Proof. We construct a solution S = s1, . . . , si by iteratively choosing an eligible and not yet
chosen number a ∈ A with maximum value, until the value of the sum reaches n.

We note that this greedy strategy maximizes how many numbers in A are eligible, as the
corresponding upper bound val(S) + val(si) decreases as slowly as possible. The optimality
of the produced sequence S = s1, . . . , si follows, again, via Lemma 4 as for j ∈ [i], the value
val(sj) is at least as large as the value of any other number that can be chosen in round j.

Regarding the running time, the greedy strategy can be implemented by sorting the
numbers in A (in O(|A|+ n) time) and keeping track of the largest unchosen number that is
eligible and contributes fully, as well as the smallest unchosen number that can contribute
partially (which is larger than the ones that can contribute fully). Both of these values can
be updated in constant time each time a number has been chosen. J

3.3.4 Sufficient weight reduction
To speed-up the computation of clique partitions for all bags of a tree decomposition, we
additionally apply the following reduction rule. In the sufficient weight reduction, we
immediately accept the first solution that is lighter or equally light as the largest weight of
any of the already considered bags.

4 Evaluation

With our evaluation, we aim to answer the following questions.

1. How do the different algorithms compare in regards to run time and quality?
2. How do the algorithms scale?
3. What is the impact of the lower bounds and the reduction rules on the performance of

the exact branch-and-bound solver?
4. How do different network properties influence the performance of the algorithms?
5. How do the resulting upper bounds on the clique-partitioned treewidth compare to

traditional treewidth?

Experimental setup. Our implementation is written in Python. The source code along
with all evaluation scripts and results is available on our public GitHub repository3. The
experiments were run with Python 3.10.1 on a Gigabyte R282-Z93 (rev. 100) server (2250MHz)
with 1024GB DDR4 (3200MHz) memory.

For each input graph, we perform the following two steps. First, we compute a tree
decomposition using the heuristics implemented in the HTD library [1]. Specifically, we use
the min-fill-in heuristic, which is known to provide a good tradeoff between run time and
solution quality [23]. Secondly, we solve the Weighted Clique Partition problem for
each bag of the tree decomposition using all algorithms proposed in Section 3.

We use a time limit of five minutes for the heuristic computation of low-weight tree
decompositions with the HTD library. For the Weighted Clique Partition algorithms,
we set a time limit of three minutes per bag and five minutes in total.

To discern the different solvers from Sections 3.2 and 3.3, in our plots, we use the following
abbreviations: branch and bound solver (B&B), maximal clique set cover heuristic (SC),
maximal clique weighted set cover heuristic (WSC), maximal clique heuristic (MC), and
repeated maximal clique heuristic (RMC).

3 https://github.com/marcwil/cptw_code

https://github.com/marcwil/cptw_code
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(a) Number of solved instances
with 500 (bright) 5 k (medium)
and 50 k (dark) vertices.

(b) Distribution of run time rel-
ative to fastest solver within time
limit on a given graph.

(c) Distribution of obtained
width relative to best found solu-
tion on a given graph.

Figure 1 Comparison of run time and solution quality of the different exact (red), greedy (green,
blue) and set cover based (violet) solvers for the Weighted Clique Partition problem on GIRGs.

Input instances. For the input, we use a large collection of real-world networks as well
as generated networks. For the latter, we use geometric inhomogeneous random graphs
(GIRGs) [8], which resemble real-world networks in regards to important properties and have
been shown to be well suited for the evaluation of algorithms [3]. GIRGs can be generated
efficiently [4] and allow to vary the power-law exponent (ple) of the degree distribution
controlling its heterogeneity, as well as a parameter α controlling the locality by either
strengthening the influence of the geometry (high values of α) or increasing the probability
for random edges not based on the geometry (low values of α). We mainly use the following
two datasets, where each graph has been reduced to its largest connected component.

A collection of 2967 real-world networks [7] that essentially consists of all networks with
at most 1 M edges from Network Repository [25]; see [3] for details.
GIRGs with n ∈ {500, 5000, 50000} vertices, expected average degree 10, dimension 1,
ple ∈ {2.1, 2.3, 2.5, 2.7, 2.9}, and α ∈ {1.25, 2.5, 5,∞}. For each parameter configuration,
we generate ten networks with different random seeds, to smooth out random variations.

4.1 Performance comparison
Here, we evaluate the performance of our Clique Partition approaches on the two datasets.

Generated instances. In Figure 1, we compare the run times as well as the solution quality
of the different considered Clique Partition algorithms on the dataset of generated
networks. In Figure 1a, we show how many of the 600 instances were solved within the time
limit by each solver. While the greedy heuristics are able to finish on almost all instances,
the set cover heuristic and the branch-and-bound solver get timed on some of the larger
networks with 5 k and 50 k vertices. The weighted set cover heuristic performs much worse,
finishing only on few networks. We therefore exclude it from the other comparisons.

In Figures 1b and 1c, we compare the performance for all instances that were solved
within the time limit by all other algorithms. Figure 1b shows the run time of each algorithm
relative to the fastest one on each instance. Figure 1c shows the obtained upper bound on
the cp-treewidth relative to the optimal solution computed by the branch-and-bound solver.

Our findings are as follows. The branch-and-bound solver solves the fewest instances
of the four considered algorithms, but is quick on most of the instances it is able to solve
within the time limit. Both greedy heuristics (MC and RMC) are similarly fast, significantly
outcompeting the other approaches. In terms of quality, all three heuristics perform well,
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Figure 2 Distribution of run time relative
to fastest solver within time limit on our set
of real-world networks.

Table 1 Distribution of obtained cp-treewidth
relative to optimum clique partition on our set of
real-world networks.

Measure MC RMC SC
Mean 1.008 1.009 1.002

Median 1 1 1
90th percentile 1.035 1.036 1.000
99th percentile 1.108 1.121 1.046

Maximum 1.254 1.192 1.113

achieving solutions within few percent of the optimum. The set cover heuristic slightly
outperforms the greedy heuristics in terms of quality, but pays for this with substantially
higher running time.

Real-world networks. We complement the above evaluation of our Clique Partition
algorithms, by comparing their performance on the collection of real-world networks. As
above, we exclude the weighted set cover heuristic. The other four approaches were able to
finish on 1243 (B&B), 2619 (MC), 2622 (RMC), and 2204 (SC) of the 2967 networks within
the time limit. We compare our algorithms on the 1237 networks that were solved by all
four approaches. Figure 2 shows the run time of each solver relative to the fastest solver on
each instance. In Table 1 we describe the distribution of the obtained upper bounds on the
cp-treewidth relative to the optimal solution found by the branch-and-bound solver.

Our results are the following. In general, our observations on generated networks are
replicated on the real-world networks. Even though the branch-and-bound algorithm solved
fewer instances than the set cover heuristic, it is comparatively faster on the networks it is able
to solve. Both approaches are, however, considerably slower than the greedy heuristics and
this difference is more pronounced than on the generated networks. Regarding the solution
quality, all three heuristic solvers perform even better than on the generated networks, with
only a tiny fraction of instances not being solved almost optimally.

Discussion. We find that the proposed algorithms show good performance both on generated
and real-world instances. Although, the branch-and-bound solver was only able to solve
about half of the considered networks, it’s run time typically beats the set cover heuristic on
the networks it can solve. In addition, it is a valuable tool for evaluating the solution quality
of the other approaches. We find that especially the set cover heuristic, but also the greedy
heuristics (MC and RMC) often find close to optimal clique partitions. Due to their excellent
trade-off between speed and solution quality, the greedy heuristics are probably the best
approach in most practical settings. In general, we do not expect that there is substantial
room for improvement in the engineering of Clique Partition solvers for the computation
of cp-treewidth. Instead, in order to achieve better upper bounds, we suggest future research
to optimize the tree decomposition and the partition into cliques at the same time.

4.2 Run time scaling
Next, we consider the scaling behavior of our solvers. For this, we generated GIRGs of
varying sizes up to around 50 k vertices for various parameters. As in Section 4.1, we did
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Figure 3 Scaling behavior of Clique Partition algorithms on GIRGs with different parameters.

Figure 4 Run time of different variants of the branch-and-bound solver on GIRGs with 5 k
vertices and different values for the power-law exponent (left to right) and α (top / bottom).

not evaluate the weighted set cover heuristic. Figure 3 shows the run times for GIRGs with
two different parameter configurations. On the networks with high locality (α =∞), all four
approaches seem to have close to linear run time, despite enumerating all maximal cliques
present in each bag of the tree decomposition. However, as we decrease the locality (α = 5)
the performance of the branch-and-bound solver deteriorates while the greedy heuristics and
especially the set cover heuristic are only slightly affected. In the logarithmic plot, we observe
clearly super-polynomial scaling behavior only for the branch-and-bound solver. Further
experiments on a larger grid of parameter settings confirm the above findings.

4.3 Branch-and-bound: lower bounds and reduction rule
In the following, we evaluate the effectiveness of the lower bounds and the reduction rule in
speeding up our branch-and-bound solver. For this, we use the dataset of generated networks.
As the performance without lower bounds does not allow for the timely evaluation on larger
instances, we consider only graphs generated with 5 k vertices. Figure 4 shows the average
run time without lower bounds (none), with only the size lower bound (S) and with the
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Figure 5 Total clique count (number of maximal cliques) per network, and highest clique count
in any bag of a greedy tree decomposition as well in the lowest weight clique partition of any bag,
and clique-partitioned treewidth (lowest upper bound) of the entire instance on GIRGs with 5 k
vertices and varying parameters. Note the logarithmic y-axes on all except the first plot.

valuable sequence bound in addition to the size bound (S+V) as well as with and without
the sufficient weight reduction for different network parameters. We only show α ∈ {5,∞},
as for lower values the variant without lower bounds did not finish within the time limit.

We find that especially for smaller power-law exponents, the lower bounds bring large
speed-ups of up to multiple orders of magnitude. The additional gain of using the size lower
bound is much larger than that of the much simpler valuable sequence bound. The sufficient
weight reduction yields similar speed-ups for all settings. Overall, we conclude that the lower
bounds are effective in speeding up the branch-and-bound solver. On a more general note, it
is striking how strongly all variants of the solver are affected by lower values of α, especially
also below the values shown in Figure 4. In additional experiments we found that the above
observations also apply to the remainder of the dataset, even though for 50 k vertices the
time limit is reached even more frequently.

4.4 Impact of network properties
At multiple points throughout the last sections, we found that, especially for the branch-and-
bound algorithm, the performance strongly depended on the parameter α controlling the
locality of the generated networks.

In order to better understand this, we study the structure of cliques in the generated
networks depending on their parameters. Specifically, for each network we count the number
of maximal cliques in the graph, we count the number of maximal cliques in each bag of the
tree decomposition and take the maximum, we count the number of cliques used per bag in
the clique-partitioned tree decomposition and take the maximum, and consider the width of
the clique-partitioned tree decomposition. The clique-partitioned tree decompositions are
obtained using the MC and MCR heuristic. Figure 5 shows these values for GIRGs with
varying power-law exponent and α.

We see that with decreasing values of α, all considered measures increase. However, while
the total number of maximal cliques in the network only increases by a factor of roughly 4 to
10, the highest number of cliques intersecting some bag of the tree decomposition as well as
the highest number of cliques in a lowest-weight clique partition increase by multiple orders
of magnitude. Intuitively, this can be explained by cliques starting to fray if the locality is
too low. This explains, why the Clique Partition problem is harder on GIRGs with lower



16 Partitioning the Bags of a Tree Decomposition Into Cliques

(a) Dependency between clustering coefficient
and heuristic upper bounds on clique-partitioned
treewidth and treewidth.

(b) Dependency between clustering coefficient
and relative difference between clique-partitioned
treewidth and treewidth.

Figure 6 Upper bounds for clique-partitioned treewidth on large real-world networks.

values of α, which slows down the branch-and-bound algorithm. We also observe, that the
obtained upper bounds on the cp-treewidth are not much lower than the highest number of
cliques per bag of a solution, explaining the good performance of the set cover heuristic.

4.5 Clique-partitioned treewidth compared to traditional treewidth

Here we consider the data set of real-world networks. As we have seen in Section 4.1, the
maximal clique and repeated maximal clique heuristics are efficient and tend to perform
well in terms of quality. Thus, we use these two heuristics to find an upper bound on the
clique-partitioned treewidth.

In Figure 6a we compare the obtained upper bounds for the weighted treewidth and the
treewidth. Even though the parameter does not decrease much for the majority networks,
there are some networks on which substantial reductions are achieved. This is particularly true
for networks with high clustering coefficient, where for some instances our clique-partitioned
tree decomposition has width 10 while the corresponding traditional tree decomposition
has width above 100. This correspondence with the clustering coefficient fits well to the
observations in Section 4.4. For the networks for which we do not yet see a big improvement, it
would be interesting to see whether adjusting the computation of the initial tree decomposition
can yield better bounds; see also the discussion in Section 4.1.
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(a) Unweighted set cover. (b) Weighted set cover.

Figure 7 Counter-examples for the optimality of the set cover heuristics.

A Limits of the set cover heuristics

We want to briefly discuss why the set cover solutions are not always optimal clique partitions.
First, we give an instance on which the unweighted set cover approach fails.

I Observation 11. There are graphs on which the minimum size clique cover cannot give
an optimal clique partition.

Proof. Consider a clique on k vertices for even k where half of the vertices are connected
to one additional vertex and the other half to another additional vertex, as illustrated in
Figure 7a. Then, for k ≥ 6 the partition into three cliques of sizes 1, 1, and k has lower
weight than the partition into two cliques of size k

2 + 1, which corresponds to the optimal
solution of the set cover instance. J

For the minimum weight set cover, we can use the fact that the weights of the set cover
instance correspond to the size of the whole clique and do not reflect the potential overlap
between multiple selected cliques.

I Observation 12. There are graphs on which the minimum size clique cover cannot give
an optimal clique partition.

Proof. For the weighted approach, consider the instance depicted in Figure 7b. The small
circles represent the vertices of a graph and the regions mark maximal cliques. The optimal
clique partitioning uses cliques of sizes 6, 2, and 1 (the dotted clique plus the remainders of
the two solid cliques). In the set cover instance these cliques have (partly overlapping) sizes
6, 4, and 4, which is more expensive than the set cover solution with sizes 5, 4, and 4 (using
the dashed clique instead of the dotted one), which results in a solution with sizes 5, 3, 1. J

The above problem could be avoided by extending the set cover instance to also include
all non-maximal subsets of each clique that can be obtained by removing vertices shared
with some subset of overlapping cliques. This would, however, lead to an exponential blowup
of the set cover instances, which is not feasible even with state of the art solvers.
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