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Abstract

We investigate the number of maximal cliques, i.e., cliques that are not contained in any larger
clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs
(also called Chung–Lu graphs), and geometric inhomogeneous random graphs. For sparse and
not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number
of maximal cliques. For the dense regime, we give super-polynomial and even exponential
lower bounds. Although (geometric) inhomogeneous random graphs are sparse, we give super-
polynomial lower bounds for these models. This comes from the fact that these graphs have a
power-law degree distribution, which leads to a dense subgraph in which we find many maximal
cliques. These lower bounds seem to contradict previous empirical evidence that (geometric)
inhomogeneous random graphs have only few maximal cliques. We resolve this contradiction
by providing experiments indicating that, even for large networks, the linear lower-order terms
dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme
size.

1 Introduction

While networks appear in many different applications, many real-world networks were found to share
some important characteristics. First of all, often their degree distribution is heavy-tailed, which
is sometimes denoted as the network being scale-free. Secondly, they often have a high clustering
coefficient, implying that it is likely that two neighbors of a vertex are connected themselves as well.
For this reason, random graph models that can achieve both scale-freeness and a high clustering
coefficient have been at the center of attention over the last years.

One example of such a model is the popular hyperbolic random graph (HRG) [19], which has for
example been used to model the network of world wide trade [13] or the Internet on the Autonomous
Systems level [6, 18]. This random graph model embeds the vertices in an underlying hyperbolic
space and connects them with probabilities depending on their distances, where nearby vertices are
more likely to connect. The triangle inequality then ensures the presence of many triangles, while
the hyperbolic space ensures the presence of a scale-free degree distribution. Recently, the geometric
inhomogeneous random graph (GIRG) was proposed as a generalization of HRG. It combines power-
law distributed weights with Euclidean space, making the model simpler to analyze [7].

While the hyperbolic random graph and the GIRG have been designed to exhibit high clustering
and a scale-free degree distribution, the question remains whether other properties of this model
match real-world data. For this reason, many properties of the GIRG or hyperbolic random graph
have been analyzed mathematically, such as the maximum clique size [2], number of k-cliques [21],
spectral gap [17] and separator size [5, 20].
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In this paper, we focus on another network property: the number of maximal cliques, i.e., cliques
that are not part of any larger clique. Cliques in general are an important indicator for structural
properties of a network. Indeed, the number of large cliques is a measure of the tendency of a
network to cluster into groups. Small cliques of size 3 (triangles) on the other hand, can form an
indication of the transitivity of a network or its clustering coefficient.

To study these structural clique-based properties, however, all cliques of a given size need to be
listed, which can be a computationally expensive process. To list all network cliques, it suffices to
list only all maximal cliques, as all smaller cliques can be generated from at least one maximal clique.
For this reason, enumerating all maximal cliques of a graph is at the heart of our understanding of
cliques in general.

For enumerating all maximal cliques, an output-polynomial algorithm [22] exists, which can
enumerate all maximal cliques efficiently if the graph contains only few of them. This creates a
link between enumeration and counting: if the maximal clique count is low, then it is possible
to efficiently enumerate them. There also exist highly efficient implementations to enumerate all
maximal cliques [9, 10, 11]. However, for a given graph, it is usually not known a priori how many
maximal cliques it has. If this number is large, enumerating all maximal cliques can still take
exponential time. However, in practice, enumerating the number of maximal cliques often takes a
short amount of time for many real-world instances as well as in realistic network models [3]. In this
paper, we therefore focus on the number of maximal cliques in the GIRG random graph, that is,
the maximal clique count. As the GIRG possesses the two main characteristics that are essential to
many real-world networks, scale-freeness and an underlying geometry, we believe that investigating
the number of maximal cliques in the GIRG can provide insights into in why enumerating the number
of maximal cliques can often be done efficiently for many real-world networks.

To investigate the influence of the different properties of scale-freeness and clustering, we in-
vestigate the number of maximal cliques in three steps. First, we investigate a model without
heavy-tailed degrees and with a small clustering coefficient, the Erdős–Rényi model G(n, p); see Sec-
tion 2. We then investigate the GIRG model (Section 3), which has both clustering and scale-free
degrees. Finally, in Section 4, we investigate the Inhomogeneous Random Graph (IRG), a model
that is scale-free but has a small clustering coefficient. We complement our theoretical bounds with
experiments in Section 5. In all models, we will be interested in the large n limit. That is, we
investigate how the number of maximal cliques scales in the number of nodes n when n grows large.
Our main findings can be summarized as follows; also see Table 1 for an overview of our results.

• There is a strong dependence on the density of the network. For the Erdős–Rényi model
(G(n, p)) we obtain a linear upper bound for sparse graphs (O(n) edges) and a polynomial
upper bound for non-dense graphs (O(n2−ε) edges for any ε > 0). For dense graphs on the
other hand (Ω(n2) edges), we obtain a super-polynomial lower bound. If the density is high
enough, our lower bound is even exponential.

• This insight carries over to the IRG and GIRG models. Though they are overall sparse,
they contain sufficiently large dense subgraphs that allow us to obtain super-polynomial lower
bounds.

• In the IRG model with power-law exponent τ ∈ (2, 3) the small maximal cliques localize:
asymptotically maximal cliques of constant size k > 2 are formed by k− 2 hubs of high degree
proportional to n1/(τ−1) and two vertices of lower degree proportional to n(τ−2)/(τ−1).

• We complement our theoretical lower bounds with experiments showing that the super-poly-
nomial growth becomes only relevant for very large networks.
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Discussion and Related Work. Although cliques themselves have been studied extensively in
the literature, there is, to the best of our knowledge, only little previous work on the number of
maximal cliques in network models. In fact, the only theoretical analysis we are aware of is the
recent preprint by Yamaji [23], giving bounds for hyperbolic random graphs (HRG) and random
geometric graph (RGG), which are also shown in Table 1. Interestingly, this includes the upper

bound of exp(O(n
3−τ
6 +ε)) for the HRG model. In contrast to that, we give the asymptotically larger

lower bound exp(Ω(n
3−τ
4 −ε)) for the corresponding GIRG variant. Thus, there is an asymptotic

difference between the HRG and the GIRG model.
This is surprising as the GIRG model is typically perceived as a generalization of the HRG model.

More precisely, there is a mapping between the two models such that for every HRG with average
degree dHRG there exist GIRGs with average degree dGIRG and DGIRG with dGIRG ≤ dHRG ≤ DGIRG

that are sub- and supergraphs of the HRG, respectively. Moreover, dGIRG and DGIRG are only a
constant factor apart and experiments indicate that dHRG = dGIRG · (1 + o(1)), i.e., every HRG has
a corresponding GIRG that is missing only a sublinear number of edges [4]. In the case of maximal
cliques, however, this minor difference between the models leads to an asymptotic difference.

Besides this theoretical analysis, it has been observed empirically that the number of maximal
cliques in most real-world networks as well as in the GIRG and the IRG model is smaller than the
number of edges of the graph [3]. This indicates linear scaling in the graph size with low constant
factors and small lower-order terms, which seems to be a stark contradiction to the super-polynomial
lower bounds we prove here. We resolve this contradiction with our experiments in Section 5, where
we observe that the graph size has to be quite large before the asymptotic behavior kicks in, i.e., we
observe the super-polynomial scaling as predicted by our theorems but on such a low level that it is
overshadowed by the linear lower-order terms.

Notation and setting. In the rest of this paper, we will be interested in results in the large
n limit, where n denotes the number of nodes in the random graph. We therefore use classical
asymptotic notation, in terms of the graph size n. For any two non-negative functions f(n), g(n) we
will write f(n) ∈ o(g(n)) if limn→∞ f(n)/g(n) = 0; f(n) ∈ O(g(n)) if lim supn→∞ f(n)/g(n) < ∞;
f(n) ∈ Ω(g(n)) if lim infn→∞ f(n)/g(n) > 0; f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).
Moreover, we will say that a sequence of events {En}n≥1 happens with high probability (w.h.p.) if
limn→∞ P (En) = 1.

2 Erdős–Rényi Random Graph

An Erdős–Rényi random graph [14, 12] G(n, p) has n vertices and each pair of vertices is connected
independently with probability p. We give bounds on the number of maximal cliques in a G(n, p)
depending on p. Roughly speaking, we give super-polynomial lower bounds for the dense regime
and polynomial upper bounds for a sparser regime. Specifically, we first give a general lower bound
that is super-polynomial if p is non-vanishing for growing n, i.e., if p ∈ Ω(1). Note that p ∈ Ω(1)
yields a dense graph with a quadratic number of edges in expectation. For super-dense graph with
p = 1− c/n for a constant c, we strengthen this lower bound to exponential. In contrast to this, we
give a polynomial upper if p ∈ O(n−a) for any constant a > 0. For sparse graphs with p ∈ O(n−1),
yielding graphs with Θ(n) edges in expectation, our upper bound on the number of maximal cliques
is linear. We start with the general lower bound.

Theorem 2.1. Let N be the number of maximal cliques in a G(n, p). Then, for n sufficiently large,

E [N ] ≥ n
log(n)/2−log log n+log log(1/p)

log(1/p) · 1− o(1)

e
. (1)
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Model Maximal cliques Reference

G
(n
,p
)

p = 1−Θ( 1n ) 2Ω(n) Theorem 2.3

p ∈ Θ(1) nΩ(logn) Theorem 2.1

p ∈ O( 1
na ) nO(1) Theorem 2.4

p ∈ O( 1n ) O(n) Theorem 2.4

IRG exp(Ω(n
3−τ
4 −ε log n)) Theorem 4.1

G
IR

G

d-dim torus, T = 0 exp(Ω(n
3−τ
4 −ε)) Corollary 3.6

d-dim torus, T > 0 exp(Ω(n
(3−τ)

5 (ε log n)−(1/2))) Corollary 3.9

2-dim square, T = 0 exp(Ω(n
3−τ
10 −ε)) Theorem 3.7

2-dim square, T > 0 exp(Ω(n
3−τ
10 −ε)) Theorem 3.10

R
G
G 2-dim, dense exp(Ω(n

1
3 )) [23]

2-dim, dense exp(O(n
1
3+ε)) [23]

H
R
G exp(Ω(n

3−τ
6 )) [23]

exp(O(n
3−τ
6 +ε)) [23]

Table 1: Summary of our and other results on the number of maximal cliques in different random
graph models and their scaling in the number of vertices.

Proof. Let Nk be the number of maximal cliques of size k. To estimate E [Nk], note that the
probability that a fixed subset C ⊆ V of |C| = k vertices forms a clique is pk(k−1)/2. Moreover, it is
maximal if none of the other n− k vertices is connected to all k vertices of C, which happens with
probability (1− pk)n−k. As the two events are independent and there are

(
n
k

)
vertex sets of size k,

we obtain

E [Nk] =

(
n

k

)
pk(k−1)/2(1− pk)n−k. (2)

Using that
(
n
k

)
≥ (n/k)k and increasing the exponents of the probabilities, we obtain

E [Nk] ≥
(n
k

)k
pk

2/2(1− pk)n.

We now set k = log(n)/ log(1/p) = − log(n)/ log(p), which yields pk = n−1. Thus, in the above

bound, the term nkpk
2/2 simplifies to nkn−k/2 = nk/2. Moreover, the term (1 − pk)n simplifies to

(1− 1/n)n, which converges to 1/e for n → ∞. Thus, we obtain

E [Nk] ≥ nk/2 1

ekk
(1− o(1))

= n
log(n)/2
log(1/p) ·

(
log(n)

log(1/p)

)− log(n)
log(1/p)

· 1− o(1)

e
.

Changing the base of the second factor yields

= n
log(n)/2
log(1/p) · e−

log(n)
log(1/p)

·log( log(n)
log(1/p) ) · 1− o(1)

e
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= n
log(n)/2
log(1/p) · n− log log n−log log(1/p)

log(1/p) · 1− o(1)

e

= n
log(n)/2−log log n+log log(1/p)

log(1/p) · 1− o(1)

e
.

As there are clearly at least as many maximal cliques as maximal cliques of size k, claimed bound
for E [N ] follows.

This means that in a dense Erdős–Rényi random graph (constant p), the expected number of
maximal cliques is super-polynomial in n. In the following, we show that, when the graph gets even
denser, the number of maximal cliques even grows exponentially. For this, we prove the existence of
an induced subgraph that has many maximal cliques. Specifically, we aim to find a large co-matching,
i.e., the complement graph of a matching (or equivalently, a co-matching).

Lemma 2.2. Let G be a co-matching on 2k vertices. Then G has 2k maximal cliques.

Proof. The complement G of G is a matching with k edges. The maximal independent sets of G
are the vertex sets that contain for each edge exactly one of its vertices. Thus, G has 2k maximal
independent sets, which implies that G has 2k maximal cliques.

With this, we can show an exponential lower bound for super-dense Erdős–Rényi graphs.

Theorem 2.3. For every c > 0, there exists a ζ > 0 and n′ > 0 such that G(n, 1− c/n) contains at
least 2ζn cliques with high probability for all n ≥ n′.

Proof. A co-matching in G(n, 1 − c/n) corresponds to an induced matching in G(n, c/n). Now fix
M > 1. Then, by [15, Theorem 5.12], with high probability the Erdős–Rényi random graph contains
a linear number of vertices of degree at most M and at least 1. Denote the reduced graph with only
vertices of degree at most M by G≤M , which has a linear number of edges. Now we construct an
induced matching of linear size in G≤M as follows. Start with any edge {u, v} in G≤M , and add it
to the matching. Then, remove u, v and all neighbors of u and v from G≤M . This removes at most
2M2 edges from G≤M , as all degrees are bounded by M . Then, pick another edge and continue
this process until G≤M contains no more edges. As this process removes only a constant number of
edges after picking a new edge, at least a linear number of edges will be added before the process
finishes. Thus, there is an induced matching of at least ζn with high probability, which yields the
claim due to Lemma 2.2.

Next we consider less dense Erdős–Rényi graphs with p ∈ O(n−a) for a constant a ∈ (0, 1] and
prove a polynomial upper bound on the number of maximal cliques. The degree of the polynomial
depends on a. For sparse graphs with p ∈ O(n−1), our bound is linear.

Theorem 2.4. Let p = (c/n)a for constants c > 0 and a ∈ (0, 1] and let N be the number of
maximal cliques in a G(n, p). Then E [N ] ∈ O(nx) with

x =

⌈
1

a

⌉
− a ·

(⌈ 1
a

⌉
2

)
.

Proof. As in Theorem 2.1, let Nk be the number of maximal cliques of size k. Note that the number
of maximal cliques is upper bounded by the number of (potentially non-maximal) cliques. Thus, we
obtain

E [Nk] ≤
(
n

k

)
p

k(k−1)
2 .
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Using that
(
n
k

)
≤ (en/k)k, inserting p = (c/n)a, and rearranging yields

E [Nk] ≤
(en
k

)k ( c
n

)a k(k−1)
2

=
(ce
k

)k ( c
n

)a k(k−1)
2 −k

. (3)

We first argue that we can focus on the case where k is constant as the above term vanishes
sufficiently quickly for growing k. For this, note that ak(k − 1)/2 − k ≥ k if k ≥ 4/a + 1. Thus,
as c/n < 1 for sufficiently large n, the second factor of Equation (3) is upper bounded by (c/n)k.
For k ≥ 4/a + 1, it then follows that E [Nk] ≤ (c2e/(kn))k. For sufficiently large n, the fraction is
smaller than 1 and thus the sum over all Nk for larger values of k is upper bounded by a constant
due to the convergence of the geometric series.

Focusing on k ∈ Θ(1) and ignoring constant factors, we obtain

E [N ] ∈ O

(
max
k∈N+

{
nx(k)

})
with x(k) = k − a

k(k − 1)

2
.

To evaluate the maximum, note that x(k) describes a parabola with its maximum at k0 =
1/a+ 1/2. However, k0 may not be integral. To determine the integer k that maximizes x(k), note
that for a ∈ [ 1i ,

1
i−1 ] with i ∈ N+, we get k0 ∈ [i − 1

2 , i +
1
2 ]. Thus, i is the closest integer to k0.

As the parabola is symmetric at its maximum k0, the exponent x(k) is maximized for the integer
k = i = ⌈ 1

a⌉. Substituting k(k − 1)/2 =
(
k
2

)
yields the claim.

3 Geometric Inhomogeneous Random Graphs (GIRG)

While the Erdős–Rényi random graph is homogeneous, and does not contain geometry, we now
investigate the number of maximal cliques in a model that contains both these properties, the
Geometric Inhomogeneous Random Graph (GIRG) [7]. We will use similar notation as in [7], except
for the parameters α and β, which we will replace by 1/T and τ respectively, to be more consistent
with the literature on other similar models [19]. In this model, each vertex v has a weight, wv and a
position xv. The weights are independent copies of a power-law random variable W with exponent
τ , i.e.,

1− F (w) := P(W > w) = w1−τ , (4)

for all w ≥ 1. We impose the condition τ ∈ (2, 3), to ensure that the weights have finite mean but
unbounded variance. The parameter µ denotes the mean of this distribution, and can be computed
as µ = (τ−2)−1. The vertex positions x1, ..., xn are independent copies of a uniform random variable
on the d-dimensional torus Td = Rd/Zd.

An edge between any two vertices u, v ∈ V of the GIRG appears independently with a probability
puv determined by the weights and the positions of the vertices

puv = min

{(
wuwv

nµ∥xu − xv∥d

)1/T

, 1

}
, (5)

where ∥·∥ denotes the maximum norm on the torus, µ is a parameter controlling the average degree,
and 0 < T < 1 is the temperature and controls the influence of the geometry. We say that T = 0 is
the threshold case of the GIRG. That is, when T = 0,

puv =

{
1 wuwv

nµ∥xu−xv∥d ≥ 1

0 else.
(6)
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Figure 1: Illustration of the gray shaded boxes Bi on the 1 and 2-dimensional torus.

In general, we will be interested in results for the GIRG model when the number of nodes, n, tends
to infinity. We will then often refer to the family of GIRGs generated for varying n by G(n), where
we assume that all other parameters (µ, τ, γ, d) remain fixed.

In the following, we first give a lower bound for the threshold case (Section 3.1). The proof
makes use of the toroidal structure of the ground space. To prove that this is not essential to
obtain a super-polynomial number of maximal cliques, we additionally give a lower bound for a
variant of the model where the ground space is a 2-dimensional unit square with Euclidean norm
(Section 3.2). Finally, in Section 3.3, we show how to extend these results to the general case with
non-zero temperatures.

3.1 Threshold Case

Here we show that a d-dimensional threshold GIRG G = (V,E) has, with high probability, a super-
polynomial number of maximal cliques. To achieve this, we proceed as follows to show that G has
a large co-matching as induced subgraph (also see Lemma 2.2). We consider the vertex set S ⊆ V
containing all vertices whose weight lies between a lower bound wℓ and an upper bound wu. As a
co-matching is quite dense, it makes sense to think of these as rather large weights. We then define
disjoint regions B1, . . . , B2k. For i ∈ [k], we call Bi and Bi+k a pair of opposite regions. These
regions will satisfy the following three properties. First, every Bi contains a vertex from S with high
probability. Secondly, pairs of vertices from S in opposite regions are not connected. And thirdly,
vertices from S that do not lie in opposite regions are connected. Note that these properties imply
the existence of a co-matching on 2k vertices, as choosing an arbitrary vertex of S for each region
Bi makes it so that each chosen vertex has exactly one partner from the opposite region to which it
is not connected, while it is connected to the vertices from all other regions.

In the following we first give a parameterized definition of the regions Bi and then show how to
choose the parameters for the above strategy to work; also see Figure 1. Each Bi is an axis-aligned
box, i.e., the cross product of intervals. Let g(n), h(n) > 0 such that 1/(g(n) + h(n)) is an even
number. Think of h(n) of as the height of each box and of g(n) as the gap between the boxes,
yielding 2k = 1/(g(n) + h(n)) boxes. Now we define Bi = [(i − 1) · (g(n) + h(n)), (i − 1) · (g(n) +
h(n)) + h(n)] × [0, 1

2 − g(n)]d−1 for i ∈ [2k]. We call the resulting regions B1, . . . , B2k the evenly
spaced boxes of height h(n) and gap g(n), see Figure 1 for an illustration for d = 1 and d = 2. As
before, Bi and Bi+k for i ∈ [k] are opposite boxes.
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With this, note that the distance between any pair of points in opposite boxes is at least u =
1
2 − h(n) (recall that we assume the infinity norm). Moreover, the distance between any pair of
points in non-opposite regions is at most ℓ = 1

2 − g(n). This yields the following lemma.

Lemma 3.1. Let B1, . . . , B2k be evenly spaced boxes of height h(n) and gap g(n) in Td. Let wℓ =
( 12 − g(n))d/2

√
µn and wu = ( 12 − h(n))d/2

√
µn. If a GIRG on n vertices with T = 0, τ ∈ (2, 3) and

µ places one vertex of weight in [wℓ, wu) in each box Bi, then these vertices form a co-matching.

Proof. As observed above, the vertices in opposite boxes have distance at least u = 1
2 − h(n).

Moreover, the vertices considered here have weight less than wu = ud/2√µn. As w2
u/(µnu

d) = 1,
these vertices are not connected because the weight interval [wℓ, wu) is open at wu (see Equation (6)).
Similarly, vertices in non-opposite boxes have distance at most ℓ = 1

2 − g(n) and weight at least

wℓ = ℓd/2
√
µn. As w2

ℓ/(µnℓ
d) = 1, such vertices are connected. Hence, we get a co-matching.

It now remains to choose g(n) and h(n) appropriately. First observe that, for the weight range
in Lemma 3.1 to be non-empty, we need wℓ < wu and thus g > h. Beyond that, we want to achieve
the following three goals. First, the weight range needs to be sufficiently large such that we actually
have a sufficient number of vertices in this range. For this, we want to choose g(n) substantially
larger than h(n). Secondly, we want to make each box Bi sufficiently large for it to contain a vertex
with high probability. For this, we mainly want h(n) to be large. Thirdly, we want the number of
boxes 2k = 1/(g(n) + h(n)) to be large to obtain a large co-matching. For this, we want g(n) and
h(n) to be small.

Note that the restrictions of choosing h(n) large, g(n) larger than h(n), and g(n) + h(n) small
are obviously conflicting. In the following, we show how to balance these goals out to obtain a
co-matching of polynomial size. We start by estimating the number of vertices in the given weight
range in the following lemma, which is slightly more general then we need.

Lemma 3.2. Let the vertex weights independently be sampled as in (4), with τ ∈ (2, 3). Let a, b > 0
be constants and let g(n), h(n) be functions of n such that g(n), h(n) ∈ o(1). Let S be the set of
vertices with weight in [(a− g(n))b

√
µn, (a− h(n))b

√
µn). Then

E [|S|] = n
3−τ
2 · µ

1−τ
2 bab(1−τ)−1 · (g(n)− h(n)±O(g(n)2 + h(n)2)). (7)

Proof. Recall from (4) that the cumulative distribution function for the weights is F (x) = 1−x1−τ .
Thus, we get

E [|S|] = n ·
(
F
(
(a− h(n))b

√
µn
)
− F

(
(a− g(n))b

√
µn
))

= n ·
(
((a− g(n))b

√
µn)1−τ − ((a− h(n))b

√
µn)1−τ

)
= µ

1−τ
2 n

3−τ
2

(
(a− g(n))b(1−τ) − (a− h(n))b(1−τ)

)
. (8)

We can now use the Taylor expansion of f(x) = (a − x)c at 0 to obtain the bound f(x) = ac −
cac−1x ± O(x2), which is valid for x ∈ o(1). Since g(n), h(n) ∈ o(1) we can thus bound the above
term in parentheses for c = b(1− τ) as

(a− g(n))c − (a− h(n))c = −cac−1g(n) + cac−1h±O(g(n)2 + h(n)2)

= −cac−1(g(n)− h(n)±O(g(n)2 + h(n)2))

= b(τ − 1)ab(1−τ)−1(g(n)− h(n)±O(g(n)2 + h(n)2)). (9)

Equations (8) and (9) together yield the claim.
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Note that, if additionally h(n) ∈ o(g(n)), we can write the last factor as g(n)(1 − h(n)/g(n) ±
O(g(n))) = g(n)(1± o(1)) and obtain the following corollary.

Corollary 3.3. Let a, b > 0 be constants and let g(n), h(n) be functions of n such that g(n) ∈ o(1)
and h(n) ∈ o(g(n)). Let S be the set of vertices with weight in [(a − g(n))b

√
µn, (a − h(n))b

√
µn).

Then
E [|S|] = g(n)n

3−τ
2 · µ

1−τ
2 bab(1−τ)−1 · (1± o(1)). (10)

Consider again the weights wℓ and wu as given in Lemma 3.1 and let S be the set of vertices

in [wℓ, wu). Then Corollary 3.3 in particular implies that S contains Θ(g(n) · n 3−τ
2 ) vertices in

expectation.
With this, we turn to our second goal mentioned above, namely that each box Bi should be

sufficiently large.

Lemma 3.4. Let B1, . . . , B2k be evenly spaced boxes of height h(n) and gap g(n) in Td. If g(n) ∈ o(1)
then each box Bi has volume h/2d−1 · (1− o(1)).

Proof. Recall that the height of Bi is h(n) while its extent in all other dimensions is ℓ = 1
2 − g(n).

Thus its volume is h(n) · ( 12 − g(n))d−1 = h(n)/2d−1 · (1 − 2g(n))d−1. The claim follows from the
fact that (1− 2g(n))d−1 approaches 1 from below for n → ∞ as g(n) ∈ o(1) and d constant.

Corollary 3.3 and Lemma 3.4 together tell us that the expected number of vertices in each box

that have a weight in the desired range is in Θ(h(n) · g(n) · n 3−τ
2 ). Recall we want to choose h(n)

and g(n) as small as possible such that each box still contains a vertex with high probability. We

set h(n) = c · n− 3−τ
4 and g(n) = c · n− 3−τ

4 +ε for arbitrary constants c > 0 and ε > 0. Note that
this satisfies the condition h(n) ∈ o(g(n)) of Corollary 3.3 and yields an expected number of Θ(nε)
vertices with the desired weight in each box. Since the number of vertices in a given box follows
a binomial distribution and since nε ∈ ω(log(n)), we can apply a Chernoff bound to conclude that
actual number of vertices matches the expected value (up to constant factors) with probability
1−O(n−c′) for any c′ > 0 [1, Corollaries 2.3 and 2.4]. Together with a union bound, it follows that
every box contains Θ(nε) vertices (and thus at least one vertex) with probability 1 − O(2k · n−c′).
By choosing g(n), h(n), and k appropriately, we obtain the following theorem.

Theorem 3.5. Let G(n) be a d-dimensional GIRG with T = 0, µ > 0 and τ ∈ (2, 3) and let s > 0
and ε > 0 be arbitrary constants. Then, with high probability, G(n) contains a co-matching of size

s · n 3−τ
4 −ε as induced subgraph.

Proof. Let B1, . . . , B2k be evenly spaced boxes of height h(n) = c ·n− 3−τ
4 and gap g(n) = c ·n− 3−τ

4 +ε

(for appropriately chosen c > 0, which will be determined later). Let wℓ and wu be defined as in
Lemma 3.1. As argued above, Corollary 3.3 and Lemma 3.4 imply that, with high probability, each
box Bi includes at least one vertex with weight in [wℓ, wu). By Lemma 3.1 any set that contains
exactly one vertex of each box forms a co-matching of size 2k.

Recall that 2k = 1/(g(n) + h(n)). Thus, we can choose c such that 2k = s · n 3−τ
4 −ε. Again,

by the above argumentation, it follows that every box contains at least one vertex with probability

1−O(2kn−c′) = 1−O(n
3−τ
4 −ε−c′) for any constant c′ > 0. Choosing c′ sufficiently large then yields

the claim.

This theorem together with Lemma 2.2 directly imply the following corollary.

Corollary 3.6. Let G(n) be a d-dimensional GIRG with T = 0, µ > 0 and τ ∈ (2, 3), and let b > 0
and ε > 0 be arbitrary constants. Then, with high probability, the number of maximal cliques in G(n)

is at least bn
(3−τ)/4−ε

.
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Figure 2: Lower bound on the number of maximal cliques of Corollary 3.6 (with b = 2, ε ↓ 0), 3.7
(for ε ↓ 0, b = 2 and C = 1), 4.1 (for ε ↓ 0 and b = 2) against n for different values of τ . The black
line is the line n.

Figure 2a shows this lower bound for b = 2 against n. Interestingly, while Corollary 3.6 shows
that the number of maximal cliques grows super-polynomially in n, for τ > 2, this growth may still
be slower than the linear slope n for large geometric networks. This is of particular importance as
the smaller order terms of the number of maximal cliques contain terms of at least Θ(n). Indeed, the
number of maximal 2-cliques is lower bounded by the number of vertices of degree 1, which scales
linearly by Equation (4). Thus, for practical purposes, the dominant term could be the linear term
instead of the super-polynomial term, especially if the degree exponent is close to 3.

3.2 GIRG with 2-Dimensional Square

Our previous lower bound for the number of maximal cliques relies on the toroidal structure of the
underlying space. We now show that even if the vertex positions are constrained to be positioned
in the square [0, 1]2 instead, the GIRG still contains a super-polynomial number of maximal cliques.
In this setting, we will also switch from the infinity norm to the 2-norm. We will discuss possible
extensions to other norms in Section 6.

Theorem 3.7. For any ε > 0 and b > 0, a 2-dimensional GIRG G(n) on n vertices with vertex
positions uniformly distributed over [0, 1]2 equipped with the 2-norm and T = 0, µ > 0 and τ ∈ (2, 3)
contains with high probability at least

Cbn
3−τ
10

−ε

(11)

maximal cliques for some C > 0.

Proof. Let S be the set of vertices with weights within [a
√

µn(1− c · n−β), a
√
µn] for some 0 < a <

1/4, β > 0 (and appropriately chosen c > 0, which will be determined later). By Corollary 3.3,

E [|S|] = n(3−τ)/2−β(1 + o(1)) (12)

Let C be a circle on [0, 1]2 of constant radius R < 1/4. We now create an even number of areas
B1, . . . , B2k of height h(n), evenly distributed over C as illustrated in Figure 3a. That is, we consider
2k identical and evenly spaced circular segments B1, . . . , B2k of height h and chord length q. We
ensure that any pair of vertices in two opposite areas Bi and Bi+k are disconnected. That is, the
distance t between the two ends of these areas should equal

t = a. (13)

10
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Figure 3: Clique minus a matching in the 2-dimensional GIRG.

We also ensure that any pair of vertices in non-opposite areas connect. This means that the distance
ℓ between the rightmost part of Bi and the leftmost part of any non-opposite Bj is at most

ℓ = a
√
1− c · n−β . (14)

The width q of one of the Bi’s is given by

q

2
=
√
R2 − (R− h)2 =

√
h(2R− h) =

√
h(n)(h(n) + t) =

√
h(n)(h(n) + a). (15)

Thus, the area of Bi is given by
c1h(n)

3/2
√

h(n) + a, (16)

for some constant c1 > 0. The probability that a given area contains no vertices from S is given by(
1− c1h(n)

3/2
√

h(n) + a
)|S|

= exp(−c2n
(3−τ)/2−βh(n)3/2)(1 + o(1)), (17)

for some c2 > 0.
We now calculate the maximal number of areas that we can pack on C. The circumference of C

is 2πR. The arc length of a single area is at most qπ/2. Furthermore, the arc length of the section
with a chord of length ℓ, a(ℓ), is given by

a(ℓ) = 2R sin−1(ℓ/(2R)) = 2R sin−1
(a√1− c · n−β

a+ 2h(n)

)
= 2R sin−1

(
1− a+ 2h(n)− a

√
1− c · n−β

a+ 2h(n)

)
= πR− 23/2R

√
a+ 2h(n)− a

√
1− c · n−β

a+ 2h(n)
(1 + o(1)), (18)

using the Taylor series of sin−1(1 − x) around x = 0. Now take h(n) = c · n−γ(n). Then, by
Equation (18), a(ℓ) scales as

a(ℓ) = πR−RΘ
(√

(1−
√
1− c · n−β) + c · n−γ(n)

)
= πR−RΘ(

√
c · n−β + c · n−γ(n)). (19)

11



Now the arc length between two adjacent sections Bi and Bi+1 is equal to πR − a(ℓ). This

means that the arc length between Bi and Bi+1 scales as πR− (πR−RΘ
√

c · n−β + c · n−γ(n))) =

RΘ(
√
c · n−β + c · n−γ(n)).

The maximal value of the number of possible areas 2k, is the total circumference of C divided by
the arc length of an interval Bi and the arc length between Bi and Bi+1, which yields

2k =
2πR

RΘ(
√
c · n−β + c · n−γ(n)) +

√
h(n)(h(n) + a)

∈ Θ
(
min(nβ/2, nγ(n)/2)

)
. (20)

Thus, by choosing c correctly, we can let 2k = s ·min(nβ/2, nγ(n)/2) for any s > 0. When all i ∈ [2k]
contain at least one vertex in S, any set of 2k vertices with exactly one vertex in each Bi forms a
co-matching, as illustrated in Figure 3b. Furthermore (17) shows that with high probability, all Bi

are non-empty, as long as n(3−τ)/2−βh(n)3/2 → ∞ as n → ∞.
We therefore choose β = (3− τ)/5− ε and γ(n) = (3− τ)/5. Then, with high probability there

is a co-matching of size 2k = s · n(3−τ)/10−ε. Thus, by Lemma 2.2 and choosing s sufficiently large
yields that for fixed b > 0 the number of maximal cliques can be bounded from below by

bn
(3−τ)/10−ε

(21)

Figure 2b shows the lower bound of Theorem 3.7 against n. As for the toroidal case, the super-
polynomial growth may be dominated by lower-order linear terms.

3.3 Non-Threshold Case

We now show how our constructions extend to the non-threshold GIRG, where the connection
probability is given by Equation (5) instead of Equation (6).

Theorem 3.8. Let G(n) be a d-dimensional GIRG on n vertices with T > 0, µ > 0 and τ ∈ (2, 3)
and let s > 0 be an arbitrary constant. Then, there exists an ε > 0 such that, with high probability,
G contains a co-matching of size s · n(3−τ)/5 · (ε log n)−(1/2) as induced subgraph.

Proof. As before, we consider 2k boxes B1, . . . , B2k with height h(n) and gap g(n), though now we
choose

g(n) = h(n) · (ε log n)1/2 and h(n) =
1

2s
· n− 3−τ

5 ,

for a constant ε > 0, which we determine below. We again focus on the vertex set S containing
all vertices with weights in [wℓ, wu], though our choice for wu is slightly different. In particular, we
choose

wℓ = (1/2− g(n))d/2
√
µn and wu = (1/2− (T/d+ 1)h)d/2

√
µn.

Our goal now is to show that, with high probability, there exists at least one co-matching that
contains one vertex from each box. That is, if M denotes the number of such co-matchings, we want
to show that M > 0 with high probability.

We start by bounding the number of vertices from S that lie in a given box Bi, denoted by S(Bi).
Since T and d are constants and (ε log n)1/2 ∈ ω(1), we have (T/d + 1)h(n) ∈ o(g(n)), allowing us
to bound E[|S|] using Corollary 3.3, which yields

E[|S|] ∈ Θ
(
gn

3−τ
2

)
.
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Moreover, since the vertices are distributed uniformly at random in the ground space, the expected
fraction of vertices from S that lie in the box Bi is proportional to its volume, which is Θ(h) according
to Lemma 3.4. It follows that

E[|S(Bi)|] ∈ Θ
(
ghn

3−τ
2

)
∈ Θ

(
h(n)2n

3−τ
2 (ε log n)1/2

)
∈ Θ

(
n(3−τ)(1/2−2/5)(ε log n)1/2

)
.

Analogous to the proof of Lemma 3.4 we can apply a Chernoff bound to conclude that the number
of vertices in S(Bi) matches the expected value (up to constant factors) with probability 1−O(n−c)
for any c > 0. Note that the number of boxes is given by

2k =
1

g(n) + h(n)
=

1

h((ε log n)1/2 + 1)
=

2s · n 3−τ
5

(ε log n)1/2 + 1
, (22)

which is at most n. Thus, applying the union bound yields that with high probability every box
contains n′ ∈ Θ(n(3−τ)(1/2−2/5)(ε log n)1/2) vertices. In the following, we implicitly condition on this
event to happen. Now recall that a co-matching consisting of one vertex from each box forms if each
vertex is adjacent to the vertices in all other boxes, except the vertex from the opposite box.

Despite the temperature, vertices in non-opposite boxes are still adjacent with probability 1,
since the weight of two such vertices i and j is at least wℓ and their distance is at most 1

2 − g(n)
and, thus, according to Equation 5

pij = min

{(
wiwj

nµ||xi − xj ||d2

)1/T

, 1

}
≥ min

{(
w2

ℓ

nµ(1/2− g(n))d

)1/T

, 1

}
= 1.

In contrast to the threshold case, however, the probability for vertices in opposite boxes to be
adjacent is no longer 0. Since two such vertices i and j have distance at least 1

2 − h(n) and weight

at most wu = ( 12 − (T/d+1)h)d/2
√
µn, we can bound the probability for them to be adjacent using

Equation 5, which yields

pij = min

{(
wiwj

nµ||xi − xj ||d2

)1/T

, 1

}

≤ min

{(
w2

u

nµ( 12 − h(n))d

)1/T

, 1

}

= min

{(
1− (T/d+ 1)2h(n)

1− 2h(n)

)d/T

, 1

}

= min

{(
1− T

d
· 2h(n)

1− 2h(n)

)d/T

, 1

}

≤ min

{(
1− T

d
· 2h(n)

)d/T

, 1

}
.

Since 1− x ≤ e−x, we obtain pij ≤ e−2h(n).
With this we are now ready to bound the probability P (M > 0), that at least one co-matching

forms that contains one vertex from each box. To this end, we need to find one non-edge in each pair
of opposite boxes, i.e., each such pair needs to contain two vertices (one from each box) that are not
adjacent. Conversely, the only way to not find a co-matching is if there exists one pair of opposite
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boxes such that all vertices in one box are adjacent to all vertices in the other. This happens with
probability at most (pij)

(n′)2 . Since there are k pairs of opposite boxes, applying the union bound
yields

P (M = 0) ≤ k(pij)
(n′)2 ≤ k exp(−2h(n)(n′)2). (23)

Now recall that n′ ∈ Θ(n(3−τ)(1/2−2/5)(ε log n)1/2) and that h(n) = 1/(2s) ·n−(3−τ)/5. Consequently,
we obtain

P (M = 0) ≤ k exp
(
−Θ

(
n−(3−τ)/5 · n(3−τ)(1−4/5) · ε log n

))
= k exp (−Θ(ε log n))

= kn−Θ(ε).

Moreover, since k ∈ O(n(3−τ)/5) (see Equation 22), we have

P (M = 0) ∈ O
(
n(3−τ)/5−Θ(ε)

)
,

meaning, for sufficiently large n, we can choose ε such that P (M = 0) ∈ O(n−1) and, conversely,
P (M > 0) = 1−O(n−1). So with high probability there exists at least one co-matching of size

2k =
2s · n 3−τ

5

(ε log n)1/2 + 1
≥ 2s · n 3−τ

5

2(ε log n)1/2
=

s · n 3−τ
5

(ε log n)1/2
,

where the inequality holds for sufficiently large n.

Together with Lemma 2.2 we obtain the following corollary.

Corollary 3.9. Let G(n) be a d-dimensional GIRG on n vertices with T > 0, µ > 0 and τ ∈ (2, 3)
and let b > 0 be an arbitrary constant. Then there exists an ε > 0 such that, with high probability,
the number of maximal cliques in G(n) is at least

bn
(3−τ)/5·(ε logn)−(1/2)

. (24)

We can extend Theorem 3.7 to non-zero temperature in a very similar fashion (proof is in
Appendix A)

Theorem 3.10. For any ε > 0 and b > 1, a 2-dimensional GIRG G(n) on n vertices with T > 0
and vertex positions uniformly distributed over [0, 1]2 contains with high probability at least

bn
3−τ
12

−ε log(n)1−ε

(25)

maximal cliques.

4 Inhomogeneous Random Graphs (IRG)

We now turn to a random graph model that is scale-free, but does not contain a source of geometry,
the inhomogeneous random graph (IRG), or Chung-Lu random graph [8]. We show that also in this
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model, the number of maximal cliques scales super-polynomially in the network size n. Again, every
vertex i draws its weight wi independently from the power-law distribution (4), where we will again
assume that τ ∈ (2, 3). Then, all pairs of vertices u and v connect independently with probability

p(wu, wv) = min
(wuwv

µn
, 1
)
, (26)

where µ controls the expected average degree.
To show a lower bound on the number of maximal cliques, we make use of the fact that an IRG

contains a not too small rather dense subgraph with high probability. The following theorem is
obtained by looking just at the subgraph induced by vertices with weights in a certain range. We
chose the specific range to satisfy three criteria. First, the range is sufficiently large, such that the
subgraph contains many vertices. Second, the range is sufficiently small such that all vertex pairs
in the subgraph are connected with a similar probability. And third, the weights are large enough
such that a densely connected subgraph forms, but not so large that the vertices merge into a single
clique.

Theorem 4.1. Let G(n) be an IRG on n vertices with τ ∈ (2, 3) and µ > 0 and let b > 1 and
ε ∈ (0, 3−τ

4 ) be arbitrary constants. Then, the expected number of maximal cliques in G(n) is in

Ω
(
bn

(3−τ)/4−ε logn
)
. (27)

Proof. We show that already the subgraph G′ induced by the vertices in a certain weight range has
the claimed expected number of maximal cliques. To define G′, we consider weights in [wℓ, wu] with
wℓ =

√
(1− g(n))µn and wu =

√
(1− h(n))µn. To abbreviate notation, let

γ(n) = n
3−τ
4 .

For constants a and c we determine later, we choose g(n) and h(n) as

g(n) = ah(n) and h(n) = cnε log(n)γ(n)−1.

Note that wℓ < wu if and only if a > 1. Let n′ be the number of vertices in G′. From Lemma 3.2 it
follows

E [n′] ∈ Θ(γ(n)2 · nε log(n)γ(n)−1) ∈ Θ(nεγ(n) log n).

As every vertex has independently the same probability to be in G′, a Chernoff bound implies that
n′ ∈ Θ(nεγ(n) log n) holds with high probability. Thus, in the following, we implicitly condition on
this event to happen.

To give a lower bound on the number of maximal cliques in G′, we only count the number Nk of
maximal cliques of size k with

k =
3ε

c
n−εγ(n).

We note that this is the same constant c as in the definition of h(n) above. As the number of
maximal cliques in G′ is a lower bound for the number of maximal cliques in G(n), we lower bound
the expectation of Nk, by the expected number of maximal cliques in G′,

E [Nk] ≥
(
n′

k

)
P (C is a clique)P (C maximal | C is a clique) . (28)

In the following, we give estimates for the three terms individually.
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We start with the event that C is a clique. Due to the lower and upper bound on the weights in
G′, it follows that any pair of vertices in G′ is connected with probability at least pℓ = 1− g(n) and
at most pu = 1 − h(n). Thus, for a fixed subset C of vertices of size |C| = k, the probability that

all k vertices are pairwise connected is at least p
k(k−1)/2
ℓ = (1− g(n))k(k−1)/2. As g(n) goes to 0 for

growing n and 1− x ∈ Ω(exp(−x)) in this case, we get

P (C is a clique) ≥ (1− g(n))k(k−1)/2 ∈ Ω

(
exp

(
−gk(k − 1)

2

))
. (29)

For C to be a maximal clique (conditioning on it being a clique), additionally no other vertex can
be connected to all vertices from C. This probability is at least (1−pku)

n′−k = (1− (1−h(n))k)n
′−k.

As 1− x ≤ exp(−x), it follows that (1− h(n))k ≤ exp(−hk) = n−3ε, where the last equality follows
from plugging in the values we chose for h(n) and k. Again using 1−x ∈ Ω(exp(−x)) for sufficiently
small x, we can conclude that

P (C maximal | C is a clique) ≥ (1− (1− h(n))k)n
′−k

≥ (1− n−3ε)n
′−k (30)

∈ Ω
(
exp

(
− n−3ε(n′ − k)

))
.

Finally, for the binomial coefficient, we get(
n′

k

)
≥
(
n′

k

)k

= exp

(
log

(
n′

k

)
k

)
. (31)

Our goal is to show that log(E [Nk]) ≥ n(3−τ)/4−ε log(n) log(b). Thus, plugging Equations (29), (30),
and (31) into the logarithm of (28) yields that we need to show that for every constant b > 1, we
can choose the constants a > 1 and c in the definitions of g(n) and h(n) such that

log

(
n′

k

)
k − gk(k − 1)

2
− n−3ε(n′ − k)

(to be shown)

> n−εγ(n) log n log b = n
3−τ
4 −ε log n log b. (32)

This can be achieved by simply plugging in the values for n′, k, and g(n). For the first (and only
positive) term, we obtain

log

(
n′

k

)
k = log

(
Θ(nε log(n)γ(n))

3ε/cn−εγ(n)

)
3ε

c
n−εγ(n)

= log
(
n2εΘ(log n)

) 3ε
c
n−εγ(n)

and thus for sufficiently large n

≥ 6ε2

c
n−εγ(n) log n.

For the negative terms, we start with the latter and obtain

n−3ε(n′ − k) ∈ Θ(n−3εnεγ(n) log n) = Θ(n−2εγ(n) log n).

This is asymptotically smaller than the positive term and can thus be ignored. For the other negative
term, first note that gk = 3aε log n. Thus, we obtain

gk(k − 1)

2
≤ 3aε

2
log(n)k =

3aε

2
log(n)

3ε

c
n−εγ(n) =

9aε2

2c
n−εγ(n) log n.
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Together with the positive term, we obtain that for sufficiently large n, it holds

log

(
n′

k

)
k − gk(k − 1)

2
≥ 6ε2

c
n−εγ(n) log n− 9aε2

2c
n−εγ(n) log n

=

(
6− 9a

2

)
ε2

c
n−εγ(n) log n.

With this, we can choose a > 1 such that the first factor is positive and we can choose c such that
ε2/c = log b, which proves (32), as then(

6− 9a

2

)
ε2

c
n−εγ(n) log n = Cn(3−τ)/4−ε log(n) log(b).

for some C > 0.

Figure 2c shows that the lower bound provided by Theorem 4.1 may still be smaller than linear
for networks that are quite large, especially when τ ≈ 3.

4.1 Small Maximal Cliques are Rare

We now focus on the maximal cliques of a fixed size in the IRG. How many maximal cliques of size
k are present in an IRG?

Let N(Kk) denote the number of maximal cliques of size k. Furthermore, let Mn(ε) denote

Mn(ε) = {(v1, . . . , vk) : wi ∈ [ε, 1/ε](µn)
τ−2
τ−1 for i = 1, 2 and wi ∈ [ε, 1/ε](µn)

1
τ−1 ∀i ∈ {3, . . . , k}}.

(33)
Thus, Mn(ε) is the set of sets of k vertices such that two vertices have weight proportional to
n(τ−2)/(τ−1), and all other vertices have weights proportional to n1/(τ−1). Denote the number of
maximal k-cliques with sets of vertices in Mn(ε) by N(Kk,Mn(ε)). Then, the following theorem
shows that these ‘typical’ maximal cliques are asymptotically all maximal cliques. Furthermore, it
shows that all maximal cliques of size k > 2 occur equally frequently in scaling, and they also appear

on the same types of vertices. Here we use
P−→ to denote convergence in probability.

Theorem 4.2 (Maximal clique localization). Let G(n) be an IRG on n vertices with τ ∈ (2, 3) and
µ > 0. For any fixed k ≥ 3,

(i) For any εn such that limn→∞ εn = 0,

N
(
Kk,Mn (εn)

)
N(Kk)

P−→ 1. (34)

(ii) Furthermore, for any fixed 0 < ε < 1,

E [N(Kk,Mn(ε))] = Θ(n(3−τ)(2τ−3)/(τ−1)). (35)

Theorem 4.2(i) states that asymptotically all maximal k-cliques are formed between two vertices
of weights proportional to n(τ−2)/(τ−1) and all other vertices of weights proportional to n1/(τ−1).
Theorem 4.2(ii) then shows that there are proportional to n(3−τ)(2τ−3)/(τ−1) such maximal k-cliques.
As visualized in Figure 4, this scaling is significantly smaller than the scaling of the total number
of k-cliques, which scales as nk/2(3−τ) [16]. Interestingly, the scaling of the number of maximal
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cliques is k-independent, contrary to the total number of cliques. In particular, the number of k
maximal cliques is always o(n), contrary to the number of k-cliques which scales larger than n when
τ < 3− 2/k. This shows once more that the large number of maximal cliques in the IRG is caused
by extremely large maximal cliques, as fixed-size maximal cliques are only linearly many.

To prove this theorem, we need the following technical lemma, which is proven in Appendix B:

Lemma 4.3. When τ ∈ (2, 3), then∫ 1

0

· · ·
∫ 1

0

x1−τ
3 · · ·x1−τ

k

∫ ∞

0

∫ ∞

x1

xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
e−µ1−τx1x

τ−2
2 dx2dx1 . . . dxk < ∞.

(36)

Furthermore, we need a lemma that bounds the probability that a given clique on vertices of
weights x1 ≤ x2 · · · ≤ xk is maximal:

Lemma 4.4. Let G be an IRG with τ ∈ (2, 3) and µ > 0. Then, the probability that a given clique
between k vertices of weights x1 ≤ x2 · · · ≤ xk is maximal is bounded by

exp
(
− C1n

2−τµ1−τx1x
τ−2
2

)
(1 + o(1)) ≤ P (clique on weights x1, . . . , xk maximal)

≤ exp
(
− C2n

2−τµ1−τx1x
τ−2
2

)
, (37)

for some 0 < C1 ≤ C2 < ∞.

Proof. When x1 ≤ x2 ≤ · · · ≤ xk, we can compute the probability that this k clique is part of a
larger clique with a randomly chosen vertex as∫ ∞

1

w−τ
∏
i∈[k]

min
(wxi

µn
, 1
)
dw

=
x1 . . . xk

(µn)k

∫ µn/xk

1

wk−τdw +
x1 . . . xk−1

(µn)k−1

∫ µn/xk−1

µn/xk

wk−1−τdw

+ · · ·+ x1x2

(µn)2

∫ µn/x2

µn/x3

w2−τdw +
x1

µn

∫ µn/x1

µn/x2

w1−τdw +

∫ ∞

µn/x1

w−τdw

= ck
x1 . . . xk

(µn)k

(µn
xk

)k+1−τ

+ · · ·+ c2
x1

µn

(µn
x2

)2−τ

+ c1

(µn
x1

)1−τ

, (38)

for some c1, . . . , ck > 0. When x1 ≤ x2 ≤ · · · ≤ xk, this term becomes

(µn)1−τ
k∑

l=1

clx
−l+τ
l

∏
i<l

xi. (39)

The ratio between two consecutive terms of this summation equals

xτ−l
l x1 . . . xl−1

xτ−l−1
l+1 x1 . . . xl

=
( xl

xl+1

)τ−l−1

. (40)

Now as xl ≤ xl+1 and τ ∈ (2, 3), this ratio is larger than 1 for l ≥ 2, and smaller than one for l = 1.
This means that the summation can be dominated by

(µn)1−τ
k∑

l=1

clx
−l+τ
l

∏
i<l

xi ≤ C(µn)1−τx1x
τ−2
2 , (41)
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Figure 4: Scaling of the number of maximal k-cliques, and the total number of (not necessarily
maximal) 3,4,5-cliques.

for some C > 0.
Thus, the probability that a clique on vertices with weights x1, . . . , xk is maximal can be upper

bounded by

P ((x1, . . . , xk) clique maximal ) ≤
(
1− C(µn)1−τx1x

τ−2
2

)n
≤ exp

(
− Cn2−τµ1−τx1x

τ−2
2

)
. (42)

We lower bound the probability that the clique is maximal by using that

(µn)1−τ
k∑

l=1

clx
−l+τ
l

∏
i<l

xi ≥ c2(µn)
1−τx1x

τ−2
2 . (43)

Thus,

P ((x1, . . . , xk) clique maximal ) ≥
(
1− c2(µn)

1−τx1x
τ−2
2

)n
≥ exp

(
− c2n

2−τµ1−τx1x
τ−2
2 /(1 + c2n

1−τµ1−τx1x
τ−2
2 )

)
= exp

(
− c2n

2−τµ1−τx1x
τ−2
2

)
(1 + o(1)). (44)

Now we are ready to prove Theorem 4.2:

Proof of Theorem 4.2. Fix ℓi ≤ ui for i ∈ [k]. We now compute the expected number of maximal
k-cliques in which the vertices have weights n(τ−2)/(τ−1)[ℓi, ui] for i = 1, 2, and n1/(τ−1)[ℓi, ui] for
i ≥ 3.
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We bound the expected number of such maximal copies of Kk by∑
v

E
[
I(Kk,v)1{wvi

∈[ℓi,ui]n(τ−2)/(τ−1), i=1,2, wvi
∈[ℓi,ui]n1/(τ−1), i≥3}

]
= nk

∫ u1n
(τ−2)/(τ−1)

ℓ1n(τ−2)/(τ−1)

∫ u2n
(τ−2)/(τ−1)

ℓ2n(τ−2)/(τ−1)

· · ·
∫ ukn

1/(τ−1)

ℓkn1/(τ−1)

(x1 · · ·xk)
−τ
∏

1≤i<j≤k

min
(xixj

n
, 1
)

· P ((x1, . . . , xk) clique maximal) dxk · · · dx1,

where I(Kk,v) is the indicator that a maximal k-clique is present on vertices v, and the sum over
v is over all possible sets of k vertices. Now the probability that a clique is maximal can be upper
bounded as in Lemma 4.4.

We bound the minimum in (45) by

(a) xixj/n for {i, j} = {1, 2} or i = 1, j ≥ 3;

(b) 1 for i, j ≥ 3 .

Making the change of variables xi = yin
1/(τ−1) for i = 3, . . . , k and xi = yi/n

(τ−2)/(τ−1) other-
wise, we obtain the bound∑

v

E
[
I(Kk,v)1{wvi

∈[ℓi,ui]n(τ−2)/(τ−1), i=1,2, wvi
∈[ℓi,ui]n1/(τ−1), i≥3}

]
≤ K̃nkn2(τ−2)/(τ−1)−k+1

×
∫ u1

ℓ1

∫ u2

y1

∫ u3

ℓ3

· · ·
∫ uk

ℓk

y2−τ
1 y1−τ

2 y1−τ
3 . . . y1−τ

k

∏
j≥3

min(y2yj , 1) exp(−µ1−τy1y
τ−2
2 )dyk · · · dy1,

(45)

for some K̃ > 0. Because the weights are sampled i.i.d. from a power-law distribution, the maximal
weight wmax satisfies that for any ηn → 0, wmax ≤ n1/(τ−1)/ηn with high probability. Thus, we
may assume that ui ≤ 1/ηn when i ≥ 3. Now suppose that at least one vertex has weight smaller
than εnn

(τ−2)/(τ−1) for i = 1, 2 or smaller than εnn
1/(τ−1) for i ≥ 3. This corresponds to taking

ui = εn and ℓi = 0 for at least one i, or at least one integral in (45) with interval [0, εn]. Similarly,
when vertex 1 or 2 has weight higher than 1/εnn

(τ−2)/(τ−1), this corresponds to taking ℓi = 1/εn
and ui = ∞ for i = 1 or 2, or at least one integral in (45) with interval [1/εn,∞]. Lemma 4.3 then
shows that these integrals tends to zero when choosing ui = ηn fixed for i ≥ 3 and εn → 0. Thus,
choosing ηn → 0 sufficiently slowly compared to εn yields that∑

v

E
[
I(Kk,v)1{v/∈Γn(εn,ηn)}

]
∈ o((n(3−τ)(2τ−3)/(τ−1)), (46)

where

Γn(εn, ηn) = {(v1, . . . , vk) : wvi ∈ n(τ−2)/(τ−1)[εn, 1/εn], i = 1, 2 n1/(τ−1)[εn, 1/ηn]}. (47)

Let Γ̄n(εn, ηn) be the complement of Γn(εn, ηn). Denote the number of maximal cliques with
vertices in Γ̄n(εn, ηn) by N(Kk, Γ̄n(εn, ηn)). Since wmax ≤ n1/(τ−1)/ηn with high probability,
Γn(εn, ηn) = Mn(εn) with high probability. Therefore, with high probability,

N
(
Kk, M̄n (εn)

)
= N

(
Kk, Γ̄n(εn, ηn)

)
, (48)
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where N
(
Kk, M̄n (εn)

)
denotes the number of maximal k-cliques on vertices not in Mn (εn). By (46)

and the Markov inequality, we have for all ϵ > 0

lim
n→∞

P

∣∣∣∣∣∣
N
(
Kk, Γ̄n(εn, ηn)

)
n(3−τ)(2τ−3)/(τ−1)

∣∣∣∣∣∣ > ϵ

 = 0. (49)

Furthermore, Lemma 4.3 combined with the lower bound in (45) shows that when choosing
ui = 1/ε and ℓi = ε for some fixed ε > 0 for all i,

E [N(Kk,Mn(ε))] ∈ Θ(n(3−τ)(2τ−3)/(τ−1)). (50)

Thus, for fixed ε > 0,

N(Kk) = N(Kk,Mn(ε)) +N(Kk, M̄n(ε)) = Θp(n
(3−τ)(2τ−3)/(τ−1)), (51)

which shows that
N
(
Kk,Mn (εn)

)
N(Kk)

P−→ 1, (52)

as required. This completes the proof of Theorem 4.2.

5 Experiments

As mentioned in the introduction, empirical evidence suggests that the number of maximal cliques
in IRGs and GIRGs is small [3]. In fact, all generated networks with n = 50 k nodes and expected
average degree 10 have fewer maximal cliques than edges. This stands in stark contrast to our
super-polynomial lower bounds. This discrepancy probably comes from the fact that n = 50 k is
low enough that a linear lower-order term dominates the super-polynomial terms. In this section,
we complement our theoretical lower bounds with experiments1 with an n that is sufficiently large
to make the super-polynomial terms dominant. Additionally, we consider dense and super-dense
Erdős–Rényi graphs.

5.1 Cliques in the Dense Subgraph of GIRGs and IRGs

Our theoretical lower bounds are based on the existence of a dense subgraph among the vertices
with weights Θ(

√
n). To experimentally observe the super-polynomial scaling, we generate IRGs

and GIRGs restricted to vertices of high weight. This restriction lets us consider much larger values
of n. In the following, we first describe the exact experiment setup, before describing and discussing
the results.

Experiment Setup. We generate IRGs and GIRGs with varying number of vertices n and deter-
ministic power-law weights where the vth vertex has weight

wv =
(n
v

) 1
τ−1

.

Note that the minimum weight is wn = 1.

1The corresponding code is available at: https://github.com/thobl/maximal-cliques-scale-free-rand-graph
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Figure 5: The number of maximal cliques of the dense subgraph of GIRGs and IRGs. The consid-
ered subgraphs contain all vertices with weights in [0.5

√
n,

√
n] (left column) and [0.5

√
n, n] (right

column). The top and bottom plots show the number of cliques with respect to the size of the full
graph, and with respect to the size of the considered subgraph, respectively. All axes are logarithmic.
Each point is the average of 10 sampled graphs.

We use the power-law exponents τ ∈ {2.2, 2.5, 2.8} and for GIRGs we consider the temperatures
T ∈ {0, 0.4, 0.8} and dimension d = 1. For each parameter setting, we consider two subgraphs: The
subgraph induced by vertices with 0.5

√
n ≤ wi ≤

√
n and within the larger interval 0.5

√
n ≤ wi ≤ n.

In preliminary experiments, we also tried constant factors other than 0.5, yielding comparable results.
As connection probability for the IRGs between the uth and vth vertex, we use min{1, wuwv/n},

i.e., vertices of weight 1 have connection probability 1/n and vertices of weight at least
√
n are

deterministically connected. For GIRGs, we choose the constant factor µ in Equation (5) such
that we obtain the same expected2 average degree as for the corresponding IRG in the considered
subgraph. For each of these configurations, we generate 10 graphs. Figure 5 shows the average.

2We do not sample the positions before computing the expected average degree but we compute the expectation
with respect to random positions.
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General Observations. One can clearly see in Figure 5 (top row) that the scaling of the number
of cliques depending on the graph size is super-polynomial (upward curves in a plot with logarithmic
axes). Thus, on the one hand, this agrees with our theoretical analysis. On the other hand, the
plots also explain why previous experiments [3] showed a small number of cliques: While the scaling
is super-polynomial, the constant factors are quite low. In the top-left plot for τ = 2.5, more than
200M nodes are necessary to get just barely above 1M maximal cliques in the dense subgraph. For
τ = 0.8 this is even more extreme with n = 200T yielding only 10 k maximal cliques. Thus, unless
we deal with huge graphs, the maximal cliques in the dense part of the graph are dominated by the
number of cliques in the sparser parts, despite the super-polynomial growth of the former.

Effect of the Power-Law Exponent τ . The top plots of Figure 5 show that a smaller power-
law exponent τ leads to more maximal cliques. The bottom plots show the number of cliques with
respect to the size of the dense subgraph and not with respect to the size of the full graph. One
can see that the difference for the different power-law exponents solely comes from the fact that the
dense subgraph is larger for smaller τ . For the same size of the dense subgraph, the scaling is almost
independent of the power-law exponent.

Effect of the Geometry. In the left plots of Figure 5, we can see that geometry leads to fewer
maximal cliques. For T = 0, the super-polynomial scaling is only barely noticeable. Higher temper-
atures lead to a larger number of cliques and we get even more cliques for IRGs. Interestingly, the
scaling is slower for IRGs when additionally considering the core of vertices with weight more than√
n (see next paragraph).

Effect of the Core. When not capping the weight at
√
n but also considering vertices of even

higher weight (right plots), we can observe the following. The overall picture remains similar, with a
slightly increased number of cliques. However, this increase is higher for GIRGs than it is for IRGs.
A potential explanation for this is the following. For IRGs, the core forms a clique and adding a
large clique to the graph does not change the overall number of maximal cliques by too much. For
GIRGs, however, it depends on the constant µ controlling the average degree whether this subgraph
forms a clique or not. Thus, for the same average degree, the maximum clique is probably somewhat
smaller for GIRGs and thus adding the vertices of weight at least

√
n leads to more additional cliques

than in IRGs.

5.2 Cliques in the Dense and Super-Dense Erdős–Rényi Graphs

Here we count the cliques for dense Erdős–Rényi graphs with constant connection probabilities
p ∈ {0.6, 0.7, 0.8, 0.9} and super-dense Erdős–Rényi graphs with connection probability p = 1− c/n
for c ∈ {1, 2, 4, 8}. Note that the complement of a super-dense Erdős–Rényi graph has constant
expected average degree. The scaling of the number of cliques with respect to the number of vertices
is shown in Figure 6, where each point represents 20 samples.

Note that for constant p, the left plot with logarithmic y-axis is curved downward, indicating sub-
exponential scaling, while the middle plot with logarithmic x- and y-axis is bent upwards, indicating
super-polynomial scaling. This is in line with our lower bound in Theorem 2.1.

For the super-dense case, the right plot indicates exponential scaling, in line with Theorem 2.3.
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Figure 6: The number of maximal cliques in dense and super-dense G(n, p)s. For the left and middle
plot, p is constant. For the right plot, p = 1−c/n for constant c. Note that the y-axes are logarithmic
and the x-axis in the middle plot is logarithmic. Each point is the average of 20 sampled graphs.

6 Conclusion and Discussion

In this paper, we have investigated the number of maximal cliques in three random graph models:
the Erdős–Rényi random graph, the inhomogeneous random graph and the geometric inhomogeneous
random graph. We have shown that sparse Erdős–Rényi random graphs only contain a polynomial
amount of maximal cliques, but in the other two sparse models, the number of maximal cliques
scales at least super-polynomially in the network size. This is caused by the degree-heterogeneity in
these models, as many large maximal cliques are present close to the core of these random graphs.
We prove that there only exist a linear amount of small maximal cliques. Interestingly, these small
maximal cliques are almost always formed by two low-degree vertices, whereas all other vertices are
hubs of high degree.

We have then shown that this dominant super-polynomial behavior of the number of maximal
cliques often only kicks for extreme network sizes, and that experimentally, lower-order linear terms
instead drive the scaling of the number of maximal cliques until large values of the network size. This
explains the dichotomy between the theoretical super-polynomial lower bounds for these models, and
the observation that in real-world networks, the amount of maximal cliques is often quite small.

Several of our results only constitute lower bounds for the number of maximal cliques. We believe
that relatively close upper bounds can be constructed in a similar fashion, but leave this open for
further research.

While Theorem 3.7 only holds for 2-norms, we believe that the theorem can be extended to any
Lp-norm for p ̸= 1,∞, by looking at the Lp norm-cycle instead of the regular cycle. For p = 1,∞
this approach fails, shortest distance paths to non-opposing segments pass through the center of
the cycle. Therefore, opposing segments are just as close as many non-opposing ones. Whether
Theorem 3.7 also holds with 1 or ∞ norms is therefore a question for further research. We also
believe that this approach also extends to the underlying space [0, 1]d for general d, where instead
of looking at a cycle inside [0, 1]2, one studies a d-ball inscribed in [0, 1]d instead.

24



References

[1] T. Bläsius, C. Freiberger, T. Friedrich, M. Katzmann, F. Montenegro-Retana, and M. Thieffry.
Efficient shortest paths in scale-free networks with underlying hyperbolic geometry. ACM Trans.
Algorithms, 18(2), 2022.

[2] T. Bläsius, T. Friedrich, and A. Krohmer. Cliques in hyperbolic random graphs. Algorithmica,
80(8):2324–2344, 2018.

[3] T. Bläsius and P. Fischbeck. On the external validity of average-case analyses of graph algo-
rithms. In European Symposium on Algorithms (ESA), pages 21:1–21:14, 2022.

[4] T. Bläsius, T. Friedrich, M. Katzmann, U. Meyer, M. Penschuck, and C. Weyand. Effi-
ciently generating geometric inhomogeneous and hyperbolic random graphs. Network Science,
10(4):361–380, 2022.

[5] T. Bläsius, T. Friedrich, and A. Krohmer. Hyperbolic random graphs: Separators and treewidth.
In European Symposium on Algorithms (ESA), pages 15:1–15:16, 2016.
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A Proof of Theorem 3.10

Lemma A.1. Let (Ai)i∈[k] be a set of areas of size A, and let S be a set of vertices, such that
A|S| > nε for some ε > 0. Then, for any 0 < λ < 1 and k < exp(λA|S|), with high probability all
areas contain at least (1− λ)A|S| vertices.

Proof. The Chernoff bound gives for the number of vertices from S within area A, NS,A:

P (NS,A < (1− λ)A|S|) ≤ exp
(
− λA|S|

)
. (53)

This implies that when A|S| > nε for some ε > 0, then, with high probability, all areas contain at
least (1− λ)A|S| vertices.

We follow the same construction of areas and sets as in the proof of Theorem 3.7. By (20) this
creates 2k = s · nmin(β/2,γ(n)/2) areas of size A = n−3/2γ(n), with on average E [|S|] = n(3−τ)/2−β

vertices. Thus, Lemma A.1 shows that as long as β + 3/2γ(n) < (3 − τ)/2, then all areas contain
with high probability at least

n′ = c1n
(3−τ)/2−β−3/2γ(n)

vertices for some c1 > 0.
From (5), it follows that any set of vertices that contains one in each given area still satisfies the

requirement that all vertices in non-opposite boxes connect, as in non-opposite boxes, the connection
probability equals 1 by (14). Now to form a co-matching, vertices in opposite boxes should not
connect.

With high probability, a positive proportion of vertices in two opposing areas have distance at
least t + h = a + n−γ(n), by the uniform distribution within areas, and the fact that a positive
proportion of the two areas have distance t+ h.

By (5), the probability that vertices i, j ∈ S at distance at least a + n−γ(n) are connected is
bounded by

pij ≤ min

(( a2(1− n−β)

(a+ n−γ(n))2

)1/T
, 1

)
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= (1− n−β)(1− n−γ(n))(1 + o(1))

= (1−max(n−β , n−γ(n)))(1 + o(1)). (54)

Similarly as in (23),

P (M = 0) ≤ k(1−max(n−β , n−γ(n))(n
′)2 ≤ k exp(−max(n−β , n−γ(n))(n′)2) (55)

Using that n′ = c1n
(3−τ)/2−β−3/2γ(n) therefore yields

P (M = 0) ≤ k exp(−c21n
(3−τ)−β−3γ(n) max(n−β , n−γ(n))). (56)

Thus, choosing β = γ(n) = (3 − τ)/5 − ε ensures that there is a co-matching of size k = s ·
n(3−τ)/10−ε

B Proof of Lemma 4.3

Proof. This integral equals∫ 1

0

· · ·
∫ 1

0

x1−τ
3 · · ·x1−τ

k

∫ 1

0

∫ x2

0

xk−1−τ
1 xk−1−τ

2 exp
(
− µ1−τx1x

τ−2
2

)
dx1dx2 . . . dxk

+

∫ 1

0

· · ·
∫ 1

0

x2−τ
3 · · ·x2−τ

k

∫ ∞

1

∫ x2

0

xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
exp

(
− µ1−τx1x

τ−2
2

)
dx1dx2 . . . dxk

(57)

Now the first integral is bounded by∫ 1

0

· · ·
∫ 1

0

x2−τ
3 · · ·x2−τ

k

∫ 1

0

∫ x2

0

xk−1−τ
1 xk−1−τ

2 dx2dx1 . . . dxk < ∞, (58)

as 2 − τ > −1, and k − 1 − τ > −1 for k ≥ 3 as well. We now turn to the second integral. The
second integral is finite if∫ 1

0

· · ·
∫ 1

0

x1−τ
3 · · ·x1−τ

k

∫ ∞

1

∫ x2

0

xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
1{xτ−2

2 x1<1}dx1dx2 . . . dxk < ∞.

(59)

This results in∫ 1

0

· · ·
∫ 1

0

x1−τ
3 · · ·x1−τ

k

∫ ∞

1

∫ x2−τ
2

0

xk−1−τ
1 x1−τ

2

k∏
i=3

min
(
x2xi, 1

)
dx1 . . . dxk

=

∫ 1

0

· · ·
∫ 1

0

x1−τ
3 · · ·x1−τ

k

∫ ∞

1

x
(2−τ)(k+1−τ)−1
2

k∏
i=3

min
(
x2xi, 1

)
dx2 . . . dxk (60)

W.l.o.g. we assume that x3 > x4 > · · · > xk. Then, the inner integral evaluates to∫ ∞

1

x
(2−τ)(k+1−τ)−1
2

k∏
i=3

min
(
x2xi, 1

)
dx2
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=

∫ 1/x3

1

x
(2−τ)(k+1−τ)+k−3
2 x3 · · ·xkdx2 + · · ·+

∫ ∞

1/xk

x
(2−τ)(k+1−τ)−1
2 dx2

= C3x
(τ−2)(k+1−τ)+3−k
3 x4 · · ·xk + C4x

(τ−2)(k+1−τ)+4−k
4 x5 · · ·xk + · · ·+ Ckx

(τ−2)(k+1−τ)
k (61)

We now show that all these terms evaluate to a finite integral when plugged into (60). Indeed,

∫ 1

0

∫ x3

0

· · ·
∫ xk−1

0

x
(τ−2)(k+1−τ)+l−k
l xl+1 · · ·xkx

1−τ
3 · · ·x1−τ

k dxkdxk−1 . . . dx3

=

∫ 1

0

∫ x3

0

· · ·
∫ xl−1

0

x
(τ−2)(l−τ)−1
l x1−τ

3 · · ·x1−τ
l−1 dxldxl−1 . . . dx3

=

∫ 1

0

∫ x3

0

· · ·
∫ xl−2

0

x
(τ−2)(l−1−τ)−1
l−1 x1−τ

3 · · ·x1−τ
l−2 dxldxl−2 . . . dx3 < ∞ (62)

as the index l − k remains at least 3. Therefore, (36) is finite as well.
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