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Abstract In recent years, neural network-based classifica-
tion has been used to improve data analysis at collider exper-
iments. While this strategy proves to be hugely successful,
the underlying models are not commonly shared with the
public and rely on experiment-internal data as well as full
detector simulations. We show a concrete implementation of
a newly proposed strategy, so-called Classifier Surrogates, to
be trained inside the experiments, that only utilise publicly
accessible features and truth information. These surrogates
approximate the original classifier distribution, and can be
shared with the public. Subsequently, such a model can be
evaluated by sampling the classification output from high-
level information without requiring a sophisticated detector
simulation. Technically, we show that continuous normaliz-
ing flows are a suitable generative architecture that can be
efficiently trained to sample classification results using con-
ditional flow matching. We further demonstrate that these
models can be easily extended by Bayesian uncertainties
to indicate their degree of validity when confronted with
unknown inputs by the user. For a concrete example of tag-
ging jets from hadronically decaying top quarks, we demon-
strate the application of flows in combination with uncer-
tainty estimation through either inference of a mean-field
Gaussian weight posterior, or Monte Carlo sampling network
weights.

1 Introduction

Current experimental work in particle physics, for example
by the ATLAS and CMS collaborations, uses deep learning-
based taggers to great success [1–4]. Such models often
define unique and essential quantities in the analysis chain,
which are hard to understand in terms of physical quanti-
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ties. While the performance benefit is apparent, best prac-
tices for sharing the analysis as for traditional cut-based
analyses [5,6] are not yet established. This especially hin-
ders the re-interpretation of experimental results. Recently, a
first set of proposals on sharing neural network-based results
has been published [7]. On the purely technical side, solu-
tions exist for sharing serialized networks [8,9] and some
first searches shared with serialized models have been made
public [10–13].

However, when the model inputs contain features which
are not available outside the collaborations or can only be
simulated at high computational cost within the collabo-
ration, the benefit of sharing the network weights is lim-
ited as results still can either not be reproduced at all, or
are very expensive. Costly and unavailable input features
include detector level quantities, such as hits, or highly detec-
tor dependent quantities, such as soft jet-substructure vari-
ables. For example, both b-taggers of ATLAS and CMS use
detector dependent information [14,15] and current research
shows the best classification performance is achieved when
using detector-level data, rather than only high-level observ-
ables [4,16]. For these cases, sharing a surrogate model
trained to reproduce the classification results from truth-,
parton- or reconstruction-level inputs has recently been pro-
posed in discussions at the LHC Reinterpretation Forum and
the 2023 PhysTeV workshop at Les Houches [7]. We will
follow the newly introduced terminology and refer to such
models as Classifier Surrogates. In this work

• we demonstrate for a concrete example how such a Clas-
sifier Surrogate could be constructed and evaluated

• and present a novel combination of Continuous Normal-
izing Flows with Monte Carlo-based Bayesian Neural
Networks (BNN) for this purpose.
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Complementary to sharing the full likelihood or the full sta-
tistical model [17]

p(data | μ),

a Classifier Surrogate can be used to model dependencies on
parameters μ̃ that were not explicitly included in the statisti-
cal model at the time of the release and are hard to model with
public fast simulation tools like Delphes [18]. Altering the
parameters requires that the released model includes interme-
diate information, for example distributions of observables
that are used in a template fit. These might stem from the
output x of a complex neural network classifier. For such
distributions, the application of a classification surrogate can
be beneficial.

In practice, a Classifier Surrogate

p(x | c)

can be used to predict classifier output from any single-event
surrogate input

c ∼ p(c | μ̃).

This simulation of truth-, parton- or reconstruction-level data
allows an arbitrary choice of parameters μ̃. If the simulated
event is out-of-distribution (OOD) of the training data of the
classifier, the surrogate will predict large uncertainties and
thus prevent the practitioner from interpreting the analysis
where the classification can not be applied reliably. For sim-
ulated events within the classifiers input range, the surrogate
predicts samples from the distribution of viable classifier out-
put. This output prediction in turn can be used to estimate
expectation values in histogram bins of derived observables
in full analogy to the processing of the classification results
from observed data. A statistical model for the new parame-
ters

p(data | μ̃)

can again be derived from the processed and possibly
histogrammed surrogate output, for example by assuming
Poisson-distributed bin values. The surrogate strategy there-
fore is a truly “open-world” approach to sharing a classifier-
aided analysis.

The uncertainties from the statistical limitation of the
dataset, as well as the the smearing introduced by the detec-
tor simulation and reduced information of the input c may
also be absorbed into an additional nuisance parameter of the
new statistical model.

Depending on the nuisance handling strategy used for
classifier training [19], the dependence on the nuisance

parameters needs to be included in the surrogate

p(x | c) → p(x | c, ϑ)

for nuisance-parameterized classifiers or in the correspond-
ing input model

p(c | μ̃) → p(c | μ̃, ϑ)

for nuisance-invariant approaches.
If trained on truth- or parton-level, generating surrogate

input events c ∼ p(c|μ̃) does not require detector simulation
and can thus significantly improve the computational cost of
any re-interpretation. Furthermore, eliminating the detector
simulation also removes a major bottle-neck for sharing the
results with colleagues, that do not have access to collabora-
tion internal simulation-settings.

We introduce the strategy on the concrete example of a
classifier derived from the particle transformer [16]. This
setup is introduced in Sect. 2. In Sect. 3, we then discuss why
a Classifier Surrogate needs to employ a generative archi-
tecture and introduce a possible architecture in Sect. 4. To
model increased uncertainty for unknown inputs, we develop
two BNN implementations of the architecture in Sect. 5. In
Sect. 6, we discuss the performance of the surrogate both for
data within the distribution of the training data, as well as for
data new to the model. We evaluate calibration and scaling
to the tails of the distribution, as well as OOD indication.

2 Particle transformer and JetClass dataset

As internal taggers of the big collaborations are not avail-
able for public study, we choose to emulate the state-of-the-
art jet tagger, the Particle Transformer (ParT) [16]. ParT is
an attention-based model trained to distinguish 10 different
types of jets using per-particle information and trained on
the 100 M JetClass dataset [20]. The features include kine-
matics, particle identification, and trajectory displacement of
every particle in the jet.

From the large initial JetClass dataset as stand-in for the
internal collaboration datasets, we distill our toy dataset by
calculating transverse momentum, pesudorapidity, scattering
angle, jet energy, number of particles, soft drop mass [21] and
N-subjettiness [22] for N = 1, . . . , 4, as well as the output of
the full ParT for the regarding event. For the first studies we
will restrain the experiments to the first five jet-observables
as well as the true top or QCD label as surrogate input.

While learning a surrogate of a multiclassifier is possible
by using a generative architecture with a multidimensional
output space, we restrict the setup to finding a surrogate for
binary classification of top jets. The toy train and valida-
tion datasets contain 1M jet events each from Z -events and
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Fig. 1 Histograms of the ParT classification results for the 1000 jet
events of the training data, closest to the two arbitrary jets indicated
by the dotted lines. Although being classified with varying confidence
from detector-level data, the high-level observables pT , Ejet and nconst
appear identical

hadronic decay of t t̄ . To reduce the 10-dimensional ParT
output to a binary classification result, we rescale

pt→bqq′ =
pParT

t→bqq′

pParT
t→bqq′ + pParT

Z→qq′
.

3 Detector smearing distribution

Due to the stochasticity of the detector simulation, jets with
the same high-level observables can differ a lot on detector-
level. Similarly, jets simulated for identical truth- or parton-
level events, would vary significantly. These jets will thus
result in different ParT outputs defining the likelihood per
set of high-level observables

p( ParT
︸︷︷︸

x

| pT , η, φ, Ejet, nconst, . . .
︸ ︷︷ ︸

c

). (1)

Based on its physical origin, we will also refer to this distri-
bution as the detector smearing distribution.

We can generate a first approximation of this distribution
by generating a histogram of the ParT output for the closest
points in pT , Ejet and nconst. In Fig. 1 we show this histogram
for the 1000 nearest jet events in the training sample for two
arbitrary jet events in the bulk of the transverse momentum
distribution at pt ≈ 530 GeV. The imperfect ParT classifi-
cation introduces an output distribution with tails for events
indistinguishable from the high-level features. Employing a
generative architecture as introduced in Sect. 4, allows us to
infer this distribution from the high-level observables.

For the toy setup, we assume the classifier to be con-
structed invariant for the relevant nuisance parameters [19].
Whenever a nuisance-parameterized classifier is applied, the
nuisance parameters need to be included into the likelihood
as well.

4 Neural density estimation

While all flavours of generative models have found numer-
ous applications in high-energy physics, for example in [23]
and [24], normalizing flows can easily and efficiently be
applied to infer complex, low-dimensional conditional distri-
butions [25,26]. For an early application to particle physics,
see for example MadMiner [27] and Bayesflow [26,28]. In
our tests, coupling block-based Normalizing Flows exhibit
great performance for dense phase space regions, but larger
deviations when modelling tails of distributions. To boost the
performance of the model we employ Continuous Normaliz-
ing Flows (CNF), a generalization of coupling block Flows
based on ordinary differential equations (ODE) introduced
in Sect. 4.1.

In Classifier Surrogates, the deficiency of coupling block-
based normalizing flows to model distribution tails is masked
to large extend by the softmax-normalization employed on
the classifier, and thus also surrogate, when calculating class
probabilities. We do observe similar performance between
both architectures. However, CNFs are also much more
parameter efficient allowing us to reduce the number of
parameters needed by a factor of ≈ 20 at the cost of slower
inference time. As the weights of the surrogate are designed
to be shared, and we do expect their use in case studies rather
than evaluating on millions of jets, we believe that CNFs are
best suited for the application.

4.1 Continuous Normalizing Flows and conditional flow
matching

First introduced in [29], CNFs define a transformation φt :
[0, 1]×Rd → Rd called flow dependent on a time variable t .
The time variable is the continuous equivalent to the number
of a coupling blocks in a coupling block-flow [30]. Instead
of having multiple flow instances, the dependence of φ on t
is defined through the ODE

d

dt
φt (x) = vt (φt (x)), φ0(x) = x, (2)

by the time dependent vector-field vt : [0, 1] × Rd → Rd ,
which itself is approximated by a deep neural network

ṽt (·, θ) ≈ vt .

While this network can be arbitrarily complex, we stick to
fully-connected architectures due to the low dimensional-
ity of the task. In our case, the flow transforms data from a
Gaussian distribution N (0, 1) for t = 0 into ParT output at
t = 1. This choice sets the boundaries of the probability path
pt : [0, 1] × Rd → R>0 induced by the vector-field trough
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Equation (2) and

pt (x) = p0

(

φ−1
t (x)

)

det

(

∂φ−1
t (x)

∂x

)

. (3)

A standard CNF is trained by solving the ODE Eq. (2) in
reverse and minimizing the negative log-likelihood (NLL) of
input data at t = 1. The computation of this loss objective is
expensive, especially for higher dimensional models.

Thus, the authors of [31] introduce the conditional flow
matching (CFM) objective

LCFM(θ) = Et,q(x1),pt (x |x1) ‖ut (x |x1) − ṽt (x; θ))‖2 (4)

It reduces the calculation of the optimization criterion to the
calculation of a mean-squared error between the network
output ṽt (x; θ) and an analytical solution ut for sampled
t ∼ U(0, 1), x1 ∼ q and x ∼ pt (·|x1). Here, q is the prob-
ability distribution of the input data. A good choice of ut
and corresponding pt is a Gaussian conditional probability
path with mean and variance changing linear in time (optimal
transport) [31]. The CFM-loss (4) then reduces even further

LCFM(θ) = Et,q(x1),p(x0)

∥

∥

∥

∥
(x1 − (1 − σmin) x0)

− ṽt (σt x0 + μt ; θ))

∥

∥

∥

∥

2

,

(5)

where μt = t x1, σt = 1 − (1 − σmin)t , p(x0) = N (0, 1)

and σmin a small parameter, that can be chosen to match the
noise level of the training data.

4.2 Conditional density estimation

Following the coupling-block flow based example of [26],
we can extend CNFs to approximate a conditional density

pt (x | c) = p0

(

φ−1
t (x, c) | c

)

det

(

∂φ−1
t (x, c)

∂x

)

, (6)

where the noise distribution is independent of the condition
p0(· | c) = p0(·), by appending the vector of conditions
to every layer of the vector field model ṽt (x, c ; θ). For our
surrogate, x will be the ParT output and c will be the vector
of jet-observables.

5 Bayesian Neural Networks

To indicate the application of the surrogate on data not
included in tagger and thus surrogate training, we employ

Bayesian deep learning. Through modeling of (or sampling
from) a posterior weight distribution

π (θ | D) ,

these methods give a large spread of predictions for data not
included in the loss objective during training. This posterior
distribution is the distribution of weights θ of the network
ṽt (·, θ) given the training data

D =
{

(x (1), c(1)), (x (2), c(2)), . . .
}

.

Multiple instances from the weight posterior will form an
ensemble of networks with differing weights. With both
being conditional probability distributions, the weight poste-
rior has to be distinguished from the likelihood of classifier
output (1) that is to be inferred by every CNF in the ensem-
ble. Sections 5.1 and 5.2 introduce two different approaches
to connect both distributions.

5.1 Mean-field Gaussian variational inference (VIB)

A first way to relate the the weight posterior π (θ | D)

to a CNF is to approximate it with an uncorrelated Nor-
mal distribution π̃(θ) [32]. This approximation is usually
inferred during optimization of the network, by minimizing
the Kullback–Leibler divergence (DKL) between the poste-
rior and its approximation

LVIB = DKL
[

π̃(θ), π (θ | D)
]

= −
∫

dθ π̃(θ) log π (D | θ)

+ DKL
[

π̃(θ), π(θ)
] + constant,

(7)

where π(θ) is the prior imposed on the network weights. Fol-
lowing the construction in [33], we bridge the gap between
the CFM-loss (5) and the log-likelihood of the data in (7) by
introducing a factor k that can be optimized to account for
the difference

LVIB−CFM = Eπ̃(θ)LCFM + kDKL
[

π̃(θ), π(θ)
]

. (8)

5.2 AdamMCMC

While the derivation of the loss (8) lacks theoretic backing
and its optimization can take considerably longer than that
of the CFM-loss (5) alone, the low dimensionality of the
Classifier Surrogate problem allows us to directly sample the
weight posterior distribution through Markov chain Monte
Carlo (MCMC).

Full Hamiltonian Monte Carlo (HMC) is still often consid-
ered the gold-standard for inferring weight posteriors [34].
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The large size of the training data however forces us to use
stochastic MCMC algorithms. As one instance of this class,
we choose AdamMCMC [35] due to its easy implementation.
Competing algorithms, such as stochastic gradient HMC [36]
or symmetric splitting HMC [37], will likely produce similar
results.

We initialize the AdamMCMC-chain with a network opti-
mized using the CFM-loss objective (5) and solve the ODE
(2) to determine the negative log-likelihood LNLL of the data
for every step of the MCMC from there on.

To ensure detailed balance we employ a Metropolis–
Hastings (MH) correction with acceptance rate

α = exp (−λLNLL(τi )) q(θi | τi )

exp (−λLNLL(θi )) q(τi | θi )
(9)

for all steps of the chain. Through the proportionality
π (θ | D) ∝ −LNLL (Bayes formula) the acceptance step
guarantees sampling from the weight posterior. Here, the
parameter λ gives the inverse temperature of the tempered
posterior distribution sampled from. The proposed weights
τi are drawn from a proposal distribution centered on a gra-
dient descent step

θ̃i+1 = Adam(θi ,LNLL(θi )) (10)

calculated using the Adam algorithm [38]. We can use the
momentum terms of the update to ensure high acceptance
rates by smearing the proposal distribution in the direction
of the last update

τi ∼ q(· | θi )

= N (θ̃i+1, σ
21 + (θ̃i+1 − θi )(θ̃i+1 − θi )

�).
(11)

To efficiently run this algorithm, we evaluate the NLL
on batches of data. For proofs on convergence and invariant
distribution of this algorithm, we refer to [35].

6 Results

To learn the detector smearing distribution from data, we
found a CNF with only 3 multi-layer perceptrons (MLPs)
with 3 layers of dimension 64 and ELU activation to be suf-
ficient. The condition and time variable t are concatenated
to every MLP input, totaling in 31617 network parameters.
Converting to VIB as in [32], doubles the number of param-
eters. We train on a balanced set of 4M jets in batches of
131,072 for 4000 epochs using Adam [38] with a constant
learning rate of 10−3. As loss objective, we use the CFM-loss
as introduced in Eqs. (5) and (8) respectively. To achieve good
coverage, we choose c = 100 and λ = 50 from a course grid
search over multiple orders of magnitude.

Fig. 2 Histograms of 50,000 samples drawn form the detector smear-
ing distributions learned with a CFM-model. Uncertainties are gen-
erated by drawing the samples from 11 points sampled from the net-
work posterior approximation or chain. The ParT-output for the arbitrary
QCD and top jet used as condition is indicated with dotted lines. Both
jet events are the same as for Fig. 1

We run the AdamMCMC chain for another 1000 epochs
with the learning rate reduced to 5 · 10−6 and σ = 0.05.
For the sampled posterior we always report the results from
CFM-optimization in solid lines and the uncertainty calcu-
lated as the min-max-envelope of 10 drawings and for the
learned approximation (VIB) we give the mean and the min-
max-envelope over 11 sets of weights.

Using a fully-connected architecture, the sampled net-
works, either from the VIB-approximation or MCMC, can
be easily exported as a serialized file usingONNX [9] at only
0.3 MB per instance. The the ODE defined by the network
remains to be solved at inference time.

6.1 In-distribution

We can use the trained CNFs to generate another approx-
imation of the detector smearing distribution by perform-
ing the forward direction starting at different points in latent
space but for the same high-level features. Figure 2 shows
histograms of the generated data for the same arbitrary jet
events as Fig. 1.

We can see similar distributions for the approximation
with CNFs as for the histograms of the closest events. The
biggest discrepancy occurs between the distribution for the
QCD jet obtained using AdamMCMC and VIB. It can be
attributed to the difference between the model at initializa-
tion of the AdamMCMC chain and the posterior mean out-
put of VIB. The initialization can be adapted to accom-
modate desired behaviours, if well defined, by choosing
between different epochs of the CFM-optimization. Further-
more, increasing the chain length decreases the dependence
of the ensemble output on the initialization overall.
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Fig. 3 Empirical over nominal coverage calculated by taking 1000
samples from the learned detector smearing distribution for 10,000 jet
events each. Uncertainties again are calculated from 11 points of the
network posterior

6.1.1 Uncertainty calibration

To find out whether surrogate predictions using AdamMCMC
are in general conservative, we need to look at the calibration
of the estimated detector smearing distributions for multiple
events, here 10,000. Per event we take 1000 samples from the
inferred distribution and calculate q-quantiles for 50 values
of q (nominal coverage) linearly spaced between 0 and 1.
We then evaluate the empirical coverage, that is the fraction
of corresponding ParT output within the respective quantile
of the inferred distribution. The calibration is perfect when
nominal and empirical coverage agree. Figure 3 shows very
good calibration for both methods, where AdamMCMC in fact
tends to be slightly more confident than VIB approximations.

6.1.2 Epistemic uncertainty

In contrast to uncertainty due to noisy data resulting in the
detector smearing distributions, epistemic uncertainty is the
uncertainty encoded in the variations within the ensembles of
network weights induced by data sparsity. For a further dive
into the behaviour of the epistemic uncertainty, we calcu-
late the mean distance of the maximum discrepancy between
instances of the network posterior

δepis = 1

nstat

nstat
∑

i=0

max
p(θ |D)

φ1,θ (xi ) − min
p(θ |D)

φ1,θ (xi ) (12)

for a total of nstat = 1000 points drawn from the Gaussian
latent space x1, . . . , xnstat ∼ N (0, 1). Ideally, this error esti-
mate is large for sparsely populated areas of the high-level

feature space and small in the bulk of the distribution. To
investigate this behaviour, we plot a histogram of the high-
level features of the training data as well as δepis for 10,000
jet events chosen at random from a test set for both methods
in Fig. 4.

The most instructive panels show the dependence of the
error estimate on the number of constituents in the jet nconst,
which is the most descriptive input feature. We can see high
uncertainties occurring in the regions where the distributions
for QCD and top jets overlap in the training data. These are
events that can not easily be attributed to one of the two
classes by the five high-level observables alone, resulting in
high uncertainties. These events also make up the high-error
bulk when plotted over the other high-level features.

For every tailed distribution, we can also see an increase
of the error estimate for top jet predictions towards the edges
of the data. This behaviour is stronger for AdamMCMC than
for VIB at the cost of higher uncertainties overall.

The same behaviour is not observed for QCD jets. This
again can be traced back to the distribution of nconst. The
distribution of the number of particles of top jets is fully
within the support of the one for QCD jets inducing high
epistemic uncertainties for both highly and lowly populated
jets. On the other hand, the distribution of top jets does not
include events with as few particles as for QCD jets, allowing
a perfect classification of these jets that dominates the low
uncertainty edge of the plotted cloud.

6.1.3 Adding informative features

Another measure for the informative value of a detector
smearing distribution generated by a Classifier Surrogate is
the predicted accuracy

â = 1

nstat

nstat
∑

i=0

{

1[0.5,1]
(

φ1,θ (xi )
)

for top jets
1[0,0.5)

(

φ1,θ (xi )
)

for QCD jets
(13)

per jet event, with 1A(x) the indicator function of set A. The
cut value of 0.5 is arbitrary and can be chosen in line with the
experimental analysis. Our choice reflects the requirement to
yield symmetric output distributions in case of uninformative
high-level input.

Figure 5 shows histograms of the predicted accuracy for
10,000 jet events chosen at random from the full balanced
test set. The distributions are generated from surrogates using
the five high-level jet features from before, as well as for
surrogates including the soft drop mass mSD and the N -
subjettiness for N ∈ {1, .., 4}. Naively, we assume that
adding more information will lead to more certain predic-
tions and thus will shift the distributions towards high accu-
racy values. In the highest value bin, the information hier-
archy is well reproduced, with the highest number of input
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Fig. 4 Epistemic uncertainty calculated from the mean difference
between 11 points from the network posterior over 1000 samples drawn
from the respective learned detector smearing distribution for each event

of the validation set. The uncertainty shows a clear scaling towards the
edges of the train data, as well es in regions where nconst is uninformative

Fig. 5 Accuracy of 1000 ParT outputs predicted for each of 10,000
jet events. The different colors indicate the output of CNFs conditioned
with increasing amount of features and thus provided with more infor-
mation during inference. A histogram of the probabilistic ParT predic-
tion itself is given in red

features leading to the highest number of certain outputs. In
the range of 0.85 to 1, more informative input leads to fewer
predictions in line with the naive assumption. For less cer-
tain predictions, a different effect can be observed. Increas-
ing the information in the conditions allows the network to
better model the ParT output, which features long tails of
individual false positives and events predicted with low con-
fidence. Thus, the Jensen-Shennon divergence between the
histograms of surrogate and ParT output (Table 1) decreases
with increasing number of input features.

Table 1 Jensen–Shannon-divergence between the histograms of pre-
dicted accuracies of Classifier Surrogates with different input features
(Fig. 5) and the actual accuracy distribution of the ParT

JSD VIB-CFM AdamMCMC-CFM

pT , η, φ, Ejet , nconst 0.174 ± 0.018 0.147 ± 0.036

+ mSD 0.134 ± 0.023 0.160 ± 0.013

+ τ1, . . . , τ4 0.080 ± 0.009 0.097 ± 0.007

6.2 Out-of-distribution

Although including an epistemic uncertainty into the evalua-
tion this far is a nice feature to gauge uncertainties in the tail
regions of the data, the true value of BNNs is indicating input
that is outside the distribution of the training data by assign-
ing high uncertainties. We use the introduced measures (12)
and (13) to show the behaviour of the BNN surrogates for
OOD data generated when artificially increasing the values
for one jet-observable.

We produce OOD data by selecting 1000 jet events from
the test set at random and increasing the values of a single jet-
feature by adding a constant value. We perform this distortion
for 3 dimensions, pT , Ejet and nconst, and 10 values each.
Again, we report the accuracy and error estimate calculated
from nstat = 1000 points of the learned detector smearing
distribution.
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Fig. 6 Behaviour of the Classifier Surrogate predictions for distorted
input over the size of the distortion artificially added to the given jet-
observable for 1000 random events. The first row shows the accuracy
predicted per event while the second row gives the mean epistemic

uncertainty per event. Solid lines give the median of the set of events.
The shaded and structured areas indicate the 10%–90%-quantile enve-
lope of the VIB and AdamMCMC ensemble respectively

The first row of Fig. 6 shows the mean accuracy predicted
for the OOD data by the different drawings from the weight
posterior. The envelope and solid line give the 10%- and
90%-quantile and the median over the set of events. When
adding an unphysical offset to the features, we can see the
mean predicted accuracy of theAdamMCMC ensemble rapidly
drops. Optimally, the network predicts 0.5 when all inputs
are outside the training interval to indicate equal confidence
of both classes. The ensemble seems to be able to detect most
outliers, but only indicates large distortions of Ejet for top jets
and of nconst for QCD jets.

The predicted accuracy of the VIB samples does not
exhibit any dependence on the increasing offset in the OOD
data. It is sensitive only to the number of jet constituents for
top jets.

In the second row, we show the error estimate based on the
difference between highest and lowest proposed output in the
ensemble, see Eq. 12. This measure captures the differences
in the output and thus the encoded uncertainty directly. We
expect increasing uncertainties for increasing offset. Only
the AdamMCMC ensemble shows this behaviour, for all three
disturbed input dimensions, while VIB once again is only
sensitive to OOD inputs in the particle number. While the
predicted accuracy did not capture the decreasing confidence
for distorted Ejet of top jets well, the error estimate clearly
indicates the unknown inputs. Similarly, distortions in nconst

of QCD jets appear earlier in this measure.

7 Conclusion

In this paper, we proposed a first architecture for training
Classifier Surrogates, which are models describing the out-
put of a deep neural network classification based on detector-
level information from high-level jet-observables and truth

information. We show that the resulting Classifier Surrogates
are well calibrated and scale with the amount of information
provided. A combination with Monte Carlo generated sam-
ples from the networks Bayesian weight posterior allows for
stable uncertainty quantification, that incorporates the den-
sity of the training data towards the edges. The predicted
uncertainty reliably indicates unknown inputs.

This approach should next be implemented by the large
experimental collaborations to allow the statistical re-interpre-
tation of analysis results.
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