KIT | KIT-Bibliothek | Impressum | Datenschutz

On the Giant Component of Geometric Inhomogeneous Random Graphs

Bläsius, Thomas ORCID iD icon 1; Friedrich, Tobias; Katzmann, Maximilian; Ruff, Janosch; Zeif, Ziena
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper we study the threshold model of \emph{geometric inhomogeneous random graphs} (GIRGs); a generative random graph model that is closely related to \emph{hyperbolic random graphs} (HRGs). These models have been observed to capture complex real-world networks well with respect to the structural and algorithmic properties. Following comprehensive studies regarding their \emph{connectivity}, i.e., which parts of the graphs are connected, we have a good understanding under which circumstances a \emph{giant} component (containing a constant fraction of the graph) emerges. While previous results are rather technical and challenging to work with, the goal of this paper is to provide more accessible proofs. At the same time we significantly improve the previously known probabilistic guarantees, showing that GIRGs contain a giant component with probability $1 - \exp(-Ω(n^{(3-τ)/2}))$ for graph size $n$ and a degree distribution with power-law exponent $τ\in (2, 3)$. Based on that we additionally derive insights about the connectivity of certain induced subgraphs of GIRGs.


Volltext §
DOI: 10.5445/IR/1000175526
Veröffentlicht am 24.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000175526
Verlag arxiv
Schlagwörter Discrete Mathematics (cs.DM)
Nachgewiesen in Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page