KIT | KIT-Bibliothek | Impressum | Datenschutz

Robust Parameter Fitting to Realistic Network Models via Iterative Stochastic Approximation

Bläsius, Thomas ORCID iD icon 1; Cohen, Sarel; Fischbeck, Philipp; Friedrich, Tobias; Krejca, Martin S.
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Random graph models are widely used to understand network properties and graph algorithms. Key to such analyses are the different parameters of each model, which affect various network features, such as its size, clustering, or degree distribution. The exact effect of the parameters on these features is not well understood, mainly because we lack tools to thoroughly investigate this relation. Moreover, the parameters cannot be considered in isolation, as changing one affects multiple features. Existing approaches for finding the best model parameters of desired features, such as a grid search or estimating the parameter-feature relations, are not well suited, as they are inaccurate or computationally expensive.
We introduce an efficient iterative fitting method, named ParFit, that finds parameters using only a few network samples, based on the Robbins-Monro algorithm. We test ParFit on three well-known graph models, namely Erdős-Rényi, Chung-Lu, and geometric inhomogeneous random graphs, as well as on real-world networks, including web networks. We find that ParFit performs well in terms of quality and running time across most parameter configurations.


Volltext §
DOI: 10.5445/IR/1000175531
Veröffentlicht am 24.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000175531
Verlag arxiv
Schlagwörter Social and Information Networks (cs.SI), Data Structures and Algorithms (cs.DS)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page