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Abstract
Since an increasing number of problems in P have conditional lower bounds against exact algorithms,
it is natural to study which of these problems can be efficiently approximated. Often, however, there
are many potential ways to formulate an approximate version of a problem. We ask: How sensitive
is the (in-)approximability of a problem in P to its precise formulation?

To this end, we perform a case study using the popular 3SUM problem. Its many equivalent
formulations give rise to a wide range of potential approximate relaxations. Specifically, to obtain
an approximate relaxation in our framework, one can choose among the options: (a) 3SUM or
Convolution 3SUM, (b) monochromatic or trichromatic, (c) allowing under-approximation, over-
approximation, or both, (d) approximate decision or approximate optimization, (e) single output or
multiple outputs and (f) implicit or explicit target (given as input).

We show general reduction principles between some variants and find that we can classify the
remaining problems (over polynomially bounded positive integers) into three regimes:
1. (1 + ϵ)-approximable in near-linear time Õ(n + 1/ϵ),
2. (1 + ϵ)-approximable in near-quadratic time Õ(n/ϵ) or Õ(n + 1/ϵ2), or
3. non-approximable, i.e., requiring time n2±o(1) even for any approximation factor.
In each of these three regimes, we provide matching upper and conditional lower bounds.

To prove our results, we establish two results that may be of independent interest: Over
polynomially bounded integers, we show subquadratic equivalence of (min, +)-convolution and
polyhedral 3SUM, and we prove equivalence of the Strong 3SUM conjecture and the Strong
Convolution 3SUM conjecture.
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1 Introduction

In the last decade, work in fine-grained complexity theory has produced a growing list of
conditional lower bounds for problems in P, exposing barriers for obtaining almost-linear-time
algorithms for these problems. Such conditional lower bounds are usually based on our
inability to solve certain core problems significantly faster than exhaustive search. Among
the most popular such core problems are 3SUM, All-Pairs-Shortest-Paths, and Orthogonal
Vectors, see [45] for an excellent survey.
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34:2 Exploring the Approximability Landscape of 3SUM

As for NP-hard problems, the difficulty of solving a polynomial-time problem exactly
invites us to study whether we can at least efficiently approximate it. Here, there are usually
many possible approximation variants to consider that are often equally reasonable. At times,
the question which particular notion of approximation is studied is simply a consequence
of which guarantees researchers have been able to show for a given algorithmic approach.
However, obtaining a corresponding hardness of approximation in P (under a given notion of
approximation) constitutes an even younger field of research (see, e.g. [44, 1, 8, 12, 6, 24, 35, 4])
and many questions are still largely unresolved.

In this work, we set out to address a very basic and general question:

How sensitive is the (in-)approximability of a problem in P to its particular formulation?

To approach this broad question in a meaningful way, we perform a comprehensive case
study on one of the most important problems in fine-grained complexity theory: the 3SUM
problem (given a set A of n numbers, are there a, b, c ∈ A such that a + b + c = 0?).

This is one of the first problems considered for studying hardness in P [28], and has
been used to give a variety of strong conditional lower bounds, see e.g. [46, 43, 7, 9, 2, 26,
16, 38, 6, 19, 4, 35] for recent examples and [45] for a more comprehensive overview. A
classic algorithm solves 3SUM in quadratic time [28]. Mildly subquadratic algorithms were
developed in [13, 33, 27, 32, 17], with the current state-of-the-art algorithms running in time
O( n2

log2 n
polyloglog(n)) [13, 17].

A particularly intriguing aspect of 3SUM for our purposes is that it has been studied in
many formulations that turn out to be subquadratically equivalent1 for exact algorithms.
Already in its original formulation in [28], 3SUM is equivalently defined both as “Given
a set A, are there a, b, c ∈ A with a + b + c = 0?” and as “Given sets A, B, C, are there
a ∈ A, b ∈ B, c ∈ C with a + b = c?”. More generally, equivalent formulations of 3SUM can
be obtained by choosing (1) whether a, b, c are taken from a single set A (monochromatic
setting) or separate sets A, B, C (trichromatic setting), (2) whether a solution has to satisfy
a+b = c, a+b+c = 0, or a+b+c = t for some given target t, (3) whether we decide existence
of a solution triple a, b, c or compute for every c whether a solution triple a, b, c exists and
(4) whether the solution additionally needs to satisfy a convolution requirement, i.e., we view
each input set as a sequence, and the indices i, j, k of ai, bj , ck in their respective sequences
have to satisfy i + j = k. Variations (1) and (2) are from the original formulation in [28],
variation (3) is known as 3SUM+ and has been shown equivalent in [45], and variation (4)
is known as Convolution 3SUM, which has been shown to be equivalent by Pǎtraşcu [43]
and has led to many subsequent applications for proving 3SUM-based lower bounds for
non-geometric problems. See [18, 26] for further results on equivalent formulations of 3SUM.

All of the above formulations capture the same difficulty for designing strongly sub-
quadratic algorithms, so they can be viewed as essentially the same problem in the exact
setting. However, approximate relaxations of these formulations might – in principle – differ
substantially. Furthermore, even for a fixed formulation, different notions of approximation
are conceivable. Let us illustrate the range of possibilities using specific examples:

P1. (Given A ⊆ {−W, . . . , W}, are there a, b, c ∈ A such that a + b + c = 0?)
A canonical attempt to relax the problem would be to approximate the smallest deviation
from the target value, i.e., mina∈A,b∈B,c∈C |a+b+c|. This formulation has been considered
in Baran et al. [13]. However, as any (1 + ε)-approximation can be used to distinguish

1 Many variants of 3SUM are even equivalent under linear-time reductions.
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whether the smallest deviation from the target is 0, this formulation is 3SUM-hard and
we cannot expect strongly subquadratic approximation algorithms. (Indeed, Baran et al.
give mildly subquadratic algorithms for this formulation.)
For our purposes, such an approximation version does not yield a reasonable formulation,
as it cannot circumvent 3SUM hardness. Instead, we will always consider formulations
with positive input integers.

P2. (Given A, B, C ⊆ {1, . . . , W} and t, are there a, b, c with a + b + c = t?)
A natural approximation version would thus be to approximate how close we can get
to a (positive) target t, i.e., we approximately minimize max{ t

a+b+c , a+b+c
t } over all

a ∈ A, b ∈ B, c ∈ C. Instead of allowing both overshooting and undershooting the
target, we could also restrict our notion of feasible solutions to consider only one-sided
deviations (i.e., we minimize over all a ∈ A, b ∈ B, c ∈ C such that either a + b + c ≥ t or
a + b + c ≤ t). Two-sided and one-sided deviations are sometimes referred to as weak and
strong approximations, respectively. To the best of our knowledge, these formulations
have not been studied before.

P3. (Given A, B, C ⊆ {1, . . . , W}, are there a, b, c with a + b = c?)
This formulation leads to the only efficiently solvable approximation variant of 3SUM
that, to the best of our knowledge, has been studied before [31, 42]: The task is to
approximately decide this formulation in the sense that (1) if there exists a solution
a, b, c with a + b = c, the algorithm should accept, (2) if there exists no approximate
solution with a + b ∈ [c/(1 + ε), c(1 + ε)], reject, and (3) in all other cases, both
acceptance or rejection are valid. Mucha et al. [42] designed an Õ(n + 1/ε)-time2

algorithm, complemented by a tight (1/ε)1−o(1) lower bound under the Strong 3SUM
Conjecture. This shows that some approximate relaxations are indeed solvable faster
than the exact 3SUM problem.

In summary, many natural approximate 3SUM formulations arise by choosing an arbitrary
combination of an exact problem formulation and the desired approximation guarantee (one-
sided vs. two-sided, approximating an optimal value vs. approximate decision), see below for
details. In this work, we seek to determine the fine-grained complexity of the approximate
3SUM formulations that we consider, and to determine the effect of the precise formulation.
Specifically, for polynomially bounded weights W = nO(1), we uncover that our considered
formulations can be characterized to fall into one of three regimes: (1) approximable in
almost-linear time: we obtain a (1 + ε)-approximation algorithm running in time Õ(n + 1/ε)
and a matching conditional lower bound, (2) approximable in almost-quadratic time: we
obtain a (1 + ε)-approximation algorithm running in time Õ(n/ε) or Õ(n + 1/ε2) and a
matching conditional lower bound, and (3) non-approximable: we obtain a conditional lower
bound of n2−o(1) even for any approximation factor.

1.1 Our Framework of Approximate 3SUM problems
With the discussion above, we arrive at the following framework of approximate 3SUM
problems (Apx3SUM). To obtain a problem in this framework, one must choose:
1. Chromaticity: In the monochromatic case, we are given a single set A ⊆ {1, . . . , W} and

consider solutions a, b, c ∈ A. In the trichromatic variant, we are given sets A, B, C ⊆
{1, . . . , W} and consider solutions a ∈ A, b ∈ B, c ∈ C.

2 Unless noted otherwise, Õ(·) hides polylogarithmic factors in n, W , and 1/ε.
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2. Convolution: In the convolution case, the input set(s) A and, if applicable, B, C are
ordered, i.e., sequence(s). A solution ai, bj , ck is feasible only if the indices i, j, k satisfy
i + j = k. In the standard (non-convolutional) case, we have no such restriction.

3. Target: In the implicit target case, an exact solution is of the form a + b = c. In the
explicit target case, a target t is given as part of the input and an exact solution is of the
form a + b + c = t.

4. Allowed deviation: In the under-approximation case, any feasibe solution must satisfy
a + b ≤ c or a + b + c ≤ t, respectively. Likewise, in the over-approximation case, any
feasible solution must satisfy a + b ≥ c or a + b + c ≥ t, respectively. In the two-sided
case, no such restriction is made.

5. Approximation guarantee: We call a, b, c an approximate solution if it deviates by at most
a factor 1 + ε from the target (respecting the allowed deviation).3 In the approximate
decision case, the approximation algorithm (1) must output YES if there is an exact
solution, (2) must output NO if there is no approximate solution, and (3) may output
either result if there is no exact solution, but an approximate one. In the approximate
optimization case, we instead view the problem as an optimization problem, in which
the objective function is max{ t

a+b+c , a+b+c
t } or max{ c

a+b , a+b
c }, respectively. The task

is then to output a (1 + ε)-approximation of the optimal (i.e., smallest) value of the
objective function over all feasible solutions.

6. Verbosity of output: Above, we described the standard case with a single output. In the
multiple outputs case, the task is to give the answer as described above for each individual
c ∈ C, i.e., for each c ∈ C we determine whether there exist a and b such that a, b, c

satisfy the approximation guarantee.

In this framework, problem P3 can be expressed as Trichromatic Single-Output Implicit-
Target Two-Sided Apx3SUM Decision. Problem P2 is a trichromatic, single-output, explicit-
target version of Apx3SUM Optimization. Below, we shall establish that its fine-grained
complexity depends on whether we consider its two-sided or one-sided version.

1.2 Our Results and Techniques
As first step, we substantially simplify the range of relevant variants to consider, by observing
general reduction principles between these variants. Specifically, we give reductions indicating
equivalence (over polynomially bounded integers) of (1) the monochromatic and trichromatic
case and (2) the implicit-target and explicit-target case. Put differently, the chromaticity
and target variant appear to have no influence on the fine-grained complexity, and we may
fix from now on the chromaticity to trichromatic and the target to be implicit.

Additionally, we argue that under- and over-approximations are fine-grained equivalent, so
that from now on, we distinguish only between one-sided (here, we use under-approximations
as default) and two-sided approximations.

Curiously, the picture then simplifies further to only 4 variants to consider, see Figure 1 for
an overview. The deciding axes are whether we consider one-sided or two-sided approximations
and 3SUM or Convolution 3SUM – for each such choice, we obtain a different time complexity.
Specifically, for each such choice, we obtain an algorithm for the most general setting along

3 E.g., for implicit-target under-approximation an approximate solution must satisfy a + b ∈ [c/(1 + ε), c],
and for explicit-target two-sided approximation it must satisfy a + b + c ∈ [t/(1 + ε), t(1 + ε)]. Also note
that the latter condition is equivalent to a + b + c ∈ [t(1 − ε), t(1 + ε)] up to changing ε by a constant
factor, since 1/(1 + ε) = 1 − Θ(ε). We will therefore freely choose 1/(1 + ε) or 1 − ε in the approximation
lower bound, according to what gives the simpler proof.
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One-Sided ApxConv3SUM

One-Sided Apx3SUM Two-Sided ApxConv3SUM

Two-Sided Apx3SUM

Non-approximable:

Approximable in
Almost-Quadratic Time:

Approximable in
Almost-Linear Time:

(n+ 1
ε )

1±o(1)

(n+ 1
ε2 )

1±o(1)

n2±o(1)

(nε )
1±o(1)

for 1
n

≤ ε < 1

for 1
n2 ≤ ε < 1

standard/convolutional

one/two-sided

Figure 1 Overview of our results.

the remaining axes (i.e., the multi-output, approximate-optimization case), and a matching
conditional lower bound for the simplest setting along the remaining axes (i.e., the single-
output, approximate-decision case). The precise results are detailed below.

In a nutshell, we observe that the change from 3SUM to Conv3SUM and from two-sided
to one-sided approximation increases the fine-grained complexity, while other choices turn
out to be inconsequential. Furthermore, a general theme emerges for all our algorithms: we
first compute small sets Sc, c ∈ C containing candidate solutions a + b for c, together with a
witness (a, b) such that s = a + b for each s ∈ Sc.4 For each c ∈ C, we then perform a binary
search in Sc to find the best candidate witness for c. Here, computing the sets Sc is the
crucial step, which necessarily has to be handled differently for each of the main Apx3SUM
variants as evidenced by our matching conditional lower bounds.

We now detail our three regimes, as well as the specific results and techniques for
each individual problem. (Note that in our time bounds throughout the paper, Õ(·) hides
polylogarithmic factors in n, W , and 1/ε.)

Approximable in Almost-Linear Time

In this regime, we find the two-sided variants of Apx3SUM.

▶ Theorem 1.1 (Two-Sided Apx3SUM). Multi-output Two-Sided Apx3SUM Optimization
can be solved in time Õ(n + 1/ε). Assuming the Strong 3SUM Conjecture, there is no
Õ(n + (1/ε)1−δ)-time algorithm for Single-Output Two-Sided Apx3SUM Decision with δ > 0;
this even holds restricted to ε = Θ(1/nα) for any α ∈ (1, 2].

The Strong 3SUM Conjecture postulates that 3SUM requires time n2−o(1) even for a
universe size of W = Θ(n2). It was originally formulated by Amir et al. [10], and has found
uses in various contexts [34, 2, 42, 3].5

Our algorithm generalizes the Õ(n + 1/ε)-time algorithm of Mucha et al. [42] (which
improves over [31]) from the single-output decision to the multi-output optimization setting.
After scaling and rounding to an Õ(1/ε)-sized universe (similar to Mucha et al.), we apply a
witness-reporting FFT to obtain an approximation set S for A + B; for each c ∈ C, we then
perform a binary search in S for the best witness. The matching lower bound follows from a
slight adaptation of Mucha et al.’s corresponding lower bound [42]. We present the details in
the full version.

4 For the non-convolutional variants, the sets Sc are all equal to a set that approximates the sumset
A + B = {a + b | a ∈ A, b ∈ B}.

5 Amir et al. stated the Strong 3SUM Conjecture in a different formulation, that we prove to be equivalent
in this paper, see Section 3.
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34:6 Exploring the Approximability Landscape of 3SUM

Non-Approximable

Our perhaps most surprising result is that there indeed exist non-approximable variants in
our framework, specifically the one-sided variants of ApxConv3SUM.

▶ Theorem 1.2 (One-Sided ApxConv3SUM). Assuming the Min-Plus-Convolution Conjecture,
there is no O(n2−δ)-time algorithm for Single-Output One-Sided ApxConv3SUM Decision
with δ > 0. This holds even for any approximation factor.

The Min-Plus Convolution conjecture postulates that there is no O(n2−δ)-time algorithm
for computing the (min, +)-convolution of two vectors of length n. As an intriguing hardness
barrier, it has become increasingly more popular over recent years, see, e.g., [14, 40, 11, 39,
23, 42, 15, 37].

To prove Theorem 1.2, we reduce via an intermediate problem known as Polyhedral
3SUM that was posed by Jeff Erickson, see [25, 14, 11]: Given sequences A[0], . . . , A[n − 1],
B[0], . . . , B[n−1] and C[0], . . . , C[n−1] with the one-sided promise that A[i]+B[j] ≥ C[i+j]
for all i, j, are there i, j satisfying A[i] + B[j] = C[i + j]?6 One can reduce Polyhedral 3SUM
to (min, +)-convolution [14], which was interpreted as support for the hardness of (min, +)-
convolution in [11]. Over polynomially bounded integers, we prove a converse reduction,
which establishes Polyhedral 3SUM and (min, +)-convolution as subquadratically equivalent.
This result may be of independent interest.

Given the hardness of Polyhedral 3SUM, non-approximability of One-Sided Apx-
Conv3SUM (specifically, allowing only under-approximations) is essentially immediate: Think
of a Polyhedral 3SUM instance A, B, C as an instance for One-Sided ApxConv3SUM De-
cision. If there exist i, j such that A[i] + B[j] = C[i + j], an approximate decider must
accept. Otherwise, for all i, j we have A[i] + B[j] > C[i + j] by the one-sided promise of
Polyhedral 3SUM. However, any feasible solution for One-Sided ApxConv3SUM is of the
form A[i] + B[j] ≤ C[i + j], so no feasible solution exists at all! Thus, any algorithm for
One-Sided ApxConv3SUM (for any approximation ratio) is able to decide existence of an
exact solution of Polyhedral 3SUM.

Let us also discuss our reduction from Min-Plus Convolution to Polyhedral 3SUM. For
ease of presentation, we now use the equivalent formulation of Polyhedral 3SUM with one-
sided promise A[i] + B[j] ≤ C[i + j] (instead of A[i] + B[j] ≥ C[i + j]). As established in [23],
it suffices to reduce from the problem of deciding, given sequences A, B, C, whether the
one-sided promise holds, i.e., whether A[i] + B[j] ≤ C[i + j] for all i, j (Cygan et al. [23]
call this problem MaxConvUB. We carefully use a trick introduced in [46] to reduce an
inequality test to a logarithmic number of equality tests: for any B-bit numbers a, b, c, we
have a + b > c iff there exist q ∈ {0, . . . , B} and ∆ ∈ {1, 2, 3} with ⌊ a

2q ⌋ + ⌊ b
2q ⌋ = ⌊ c

2q ⌋ + ∆.
Thus, to search for a violation i, j satisfying A[i] + B[j] > C[i + j], we solve an appropriately
defined Polyhedral 3SUM instance for each q and ∆. By performing these tests in the correct
order, we can show that the one-sided promise always holds until we find the first violation
(if there exists any). The details are deferred to the full version.

Approximable in Almost-Quadratic Time

There are two remaining problems, which turn out to be almost-quadratic time approximable.
Let us describe Two-Sided ApxConv3SUM first:

6 The name stems from viewing the input as a point in the 3n-dimensional polyhedron given by A[i]+B[j] ≥
C[i + j]; the task then becomes to decide whether the point is on the boundary.
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▶ Theorem 1.3 (Two-Sided ApxConv3SUM). Multi-output Two-Sided ApxConv3SUM Op-
timization can be solved in time Õ(n/ε). Assuming the Strong 3SUM Conjecture, there is
no Õ((n/ε)1−δ)-time algorithm for Single-Output Two-Sided ApxConv3SUM Decision with
δ > 0; this even holds restricted to ε = Θ(1/nα) for any α ∈ (0, 1].

To obtain this algorithm, we compute sets S[1], ..., S[n] of size Õ(1/ε) such that for each
1 ≤ i < k ≤ n the set S[k] contains a (1 ± ε)-approximation of A[i] + B[k − i]. For each k,
the construction of S[k] uses similar ideas as exploited for Two-Sided Apx3SUM. While this
beats exact algorithms and yields an almost-quadratic time approximation in time Õ(n/ε),
one may wonder whether a faster approximation algorithm may be obtainable by somehow
avoiding the computation of an individual Õ(1/ε)-sized set for each k ∈ [n].

However, time (n/ε)1−o(1) is indeed required, assuming the Strong 3SUM conjecture.
To obtain this result, we exploit a close connection between Two-Sided ApxConv3SUM
and Conv3SUM over small universe size W . A natural algorithm solves Conv3SUM over
{1, . . . , W} in time Õ(n ·min{n, W}), see Section 2. We show that this bound is conditionally
tight for all W = Θ(nα), α ∈ (0, 1] assuming the Strong 3SUM conjecture. Interestingly,
this proves equivalence of the Strong 3SUM conjecture and the following Strong Conv3SUM
conjecture: Conv3SUM requires time n2−o(1) even for a universe of size W = Θ(n). In
fact, the Strong 3SUM conjecture has originially been phrased as this Strong Conv3SUM
conjecture (most likely to postulate the strongest plausible hardness assumption for a 3SUM
formulation), but we are not aware of any proof of equivalence prior to our work.

For the reduction from 3SUM over universe [n2] to Conv3SUM over universe W = Θ(nα)
with α ∈ (0, 1], the high-level idea is as follows: We set β = 2α

α+1 , and choose m suitably
with m = Θ(n2−β) to write any number a as (⌊ a

m ⌋, a mod m). Intuitively, we would like to
create a convolution instance A′, B′, C ′ ∈ {0, . . . , W ′}n′ where n′ = m and W ′ = n2/m by
setting A′[a mod m] = ⌊ a

m ⌋ for each a ∈ A (similarly for b ∈ B and c ∈ C) which would allow
us to detect most possible witnesses. By choosing m appropriately using ideas of [18], we
can ensure that there are not to many collisions (i.e., a, a′ ∈ A with a mod m = a′ mod m),
which can be handled separately. In total, we show how to obtain few such instances to
decide the given 3SUM instance. By our choice of m = Θ(nβ), we obtain W ′ = Θ((n′)α), and
an O((n′W ′)1−δ)-time Conv3SUM algorithm would give an O(n2−δ′)-time 3SUM algorithm.

Once the (nW )1−o(1) hardness of Conv3SUM is proven, we can obtain our desired hardness
for Two-Sided ApxConv3SUM by setting ε = Θ(1/W ). For details see Sections 3 and 4.

▶ Theorem 1.4 (One-Sided Apx3SUM). Multi-output One-Sided Apx3SUM Optimization can
be solved in time Õ(n + 1/ε2). Assuming the Min-Plus Convolution Conjecture, there is no
Õ(n + (1/ε)2−δ)-time algorithm for Single-Output One-Sided Apx3SUM Decision with δ > 0;
this even holds restricted to ε = Θ(1/nα) for any α ∈ (1/2, 1].

To obtain our algorithm, we adapt the notion of ∆-approximation for sumsets by Bring-
mann and Nakos [15]. A set S ∆-approximates a sumset A + B = {a + b | a ∈ A, b ∈ B}
if for all a ∈ A, b ∈ B, there exist s−, s+ ∈ S such that s− ≤ a + b ≤ s+ ≤ s− + ∆.
Bringmann and Nakos showed how to compute such a set in time Õ(n + (W/∆)2) given any
A, B ⊆ {1, . . . , W}. We adapt the techniques in [15] to provide a version with a multiplicative
error of 1 + ε in time Õ(n + 1/ε2), together with a witness a, b with a + b = s for each s ∈ S.

For the lower bound, we can again use our established equivalence of Polyhedral 3SUM
and Min-Plus Convolution – this time, however, we rule out a subquadratic approximation
O((1/ε)2−δ) rather than establishing inapproximability. Specifically, given an instance
A′, B′, C ′ of Polyhedral 3SUM satisfying A[i] + B[j] ≥ C[i + j] for all i, j, we reduce to
an instance A, B, C of Single-Output One-Sided Apx3SUM Decision constructed as follows:

ESA 2024



34:8 Exploring the Approximability Landscape of 3SUM

A, B, C consist of the elements 10Wi + A′[i], 10Wi + B′[i] and 10Wi + C ′[i], respectively,
where i ∈ {0, . . . , n − 1}. If the Polyhedral 3SUM instance is a YES instance, clearly an
exact solution exists, so the approximate decider will return YES. If the Polyhedral 3SUM
instance is NO, then any approximate solution (1 − ε)c ≤ a + b ≤ c with ε = 1/(10n) must
be of the form a = 10Wi + A′[i], b = 10Wj + B′[j], c = 10Wk + C ′[k] with i + j = k; this
is because i + j > k yields a + b > c, while i + j < k yields a + b < (1 − ε)c. However, by
A′[i] + B′[j] ≥ C ′[i + j], such a solution can only satisfy the hard constraint a + b ≤ c if
A′[i] + B′[j] = C ′[i + j], which does not hold for any i, j. Thus, no approximate solution
exists, and the approximate decider must return NO.

The above argument yields a (1/ε)2−o(1) lower bound for ε = Θ(1/n), which we generalize
to hold for all ε = Θ(1/nα) with α ∈ (1/2, 1]. In fact, our results establish a subquadratic
equivalence of One-Sided Apx3SUM with Min-Plus Convolution.

1.3 Further Related Work
Our work is related to a recent effort of the fine-grained complexity community to obtain
best-possible approximation schemes for classic optimization problems such as Subset Sum,
Knapsack, and Partition. It is now known that Subset Sum admits approximation schemes
with running time Õ(min{n/ε, n + 1/ε2}) [30, 29, 36] and has matching conditional lower
bounds ruling out time O((n + 1/ε)1.999) [15] and time 2o(n)/ε0.999 [5]. Knapsack has an
approximation scheme with running time Õ(n + 1/ε2) [41, 20] and a matching conditional
lower bound ruling out time O((n + 1/ε)1.999) [39, 23]. Partition has an approximation
scheme with running time Õ(n + 1/ε) [21] and a matching conditional lower bound ruling
out time O(n + 1/ε0.999) [5]. In this paper, we explore this approach on the 3SUM problem;
in particular, we use a tool for approximating sumsets that was developed for a Subset Sum
approximation algorithm [15].

2 Preliminaries: 3SUM

We write [n] for the set {1, 2, . . . , n}, [s, e] for {s, . . . , e}, and [s, e) for {s, . . . , e − 1}. By
Õ-notation we hide polylog(nW/ε) factors, that is, we write Õ(T ) =

⋃
c≥0 O(T logc(nW/ε)).

The exact versions of 3SUM and Conv3SUM are defined as follows.

▶ Problem 2.1 (3SUM). Given sets A, B, C ⊆ [W ] of size n, decide whether there exist
a ∈ A, b ∈ B, c ∈ C with a + b = c.

▶ Problem 2.2 (Conv3SUM). Given sequences A, B, C ∈ [W ]n, decide whether there exist
i, j ∈ [n] with A[i] + B[j] = C[i + j].

Both problems are well known to be solvable in time O(n2). This running time can be
improved by logarithmic factors, see, e.g., [17]. For exact algorithms, 3SUM and Conv3SUM
are subquadratically equivalent [43, 18]. Lack of further progress led to the following
conjecture:

▶ Conjecture 2.3 (3SUM Conjecture [28]). 3SUM has no algorithm with running time
Õ(n2−δ) for any constant δ > 0.

This is equivalent to the analogous statement for Conv3SUM, because the problems are
subquadratically equivalent [43, 18].

The Fast Fourier Transform (FFT) can be used to solve 3SUM in time O(n + W log W ),
see, e.g., [22, Exercise 30.1-7]. For W = n2, both algorithmic approaches run in time Õ(n2).
The Strong 3SUM Conjecture formalizes this lack of progress in the case W = n2.
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▶ Conjecture 2.4 (Strong 3SUM Conjecture [10]). 3SUM with W = n2 has no algorithm
with running time Õ(n2−δ) for any constant δ > 0.

Conv3SUM can be solved in time Õ(nW ), by reducing a given Conv3SUM instance
A, B, C to the 3SUM instance in which A[i] is replaced by 10Wi + A[i], and similarly for
B and C, and then using FFT to solve the obtained 3SUM instance. For W = n, both
algorithmic approaches solve Conv3SUM in time Õ(n2). The Strong Conv3SUM Conjecture
formalizes this lack of progress.

▶ Conjecture 2.5 (Strong Conv3SUM Conjecture [10]). Conv3SUM with W = n has no
algorithm with running time Õ(n2−δ) for any constant δ > 0.

To be precise, Amir et al. [10] actually introduced the Strong Conv3SUM Conjecture
(under the name “Strong 3SUM-Hardness Assumption”), but others have used the Strong
3SUM Conjecture, see, e.g., [34, 42]. Both conjectures have been used interchangeably in
the literature, depending on the specific needs of reductions. However, it was not known
whether the two conjectures are equivalent. In this paper, we prove equivalence of the Strong
3SUM Conjecture and the Strong Conv3SUM Conjecture, see Corollary 3.3 in Section 3.
This justifies in hindsight why both conjectures have been used interchangeably.

3 Tool: Equivalence of Strong 3SUM and Strong Conv3SUM
Conjectures

In this section, we present a reduction from 3SUM over a quadratic-size universe to
Conv3SUM over a sublinear-size universe. We will later use this as a tool to general-
ize our lower bound for Two-Sided ApxConv3SUM to any relation between ε and n, see
Theorem 4.4. As a consequence of this reduction we also obtain the equivalence of the Strong
3SUM Conjecture and the Strong Conv3SUM Conjecture, see Corollary 3.3.

▶ Theorem 3.1. Conv3SUM with universe size W = ⌊nα⌋ cannot be solved in time
O((nW )1−δ), for any constants α ∈ (0, 1], δ > 0, assuming the Strong 3SUM Conjecture.

Proof. We prove this result by adapting the reduction from 3SUM to Conv3SUM by Chan
and He [18]. Assume for the sake of contradiction that Conv3SUM with input size ñ and
universe size W̃ = ⌊ñα⌋ can be solved in time O((ñW̃ )1−δ) for some δ > 0; we show that
then 3SUM with input size n and universe size n2 can be solved in time O(n2−δ′) for some
δ′ > 0, contradicting the Strong 3SUM Conjecture.

Suppose we are given a 3SUM instance with input sets A, B, C ⊆ [n2] of size n. Define
β = 2α/(α + 1) ∈ [0, 1] and let m = Θ(n2−β) be an integer parameter that we specify
later. For notational convenience, we define qa := ⌊ a

m ⌋ and ra := a mod m, denoting the
quotient and remainder of an integer a divided by m. Construct the sequence of buckets
KA[r] := {qa | ra = r, a ∈ A}, and construct KB and KC analogously.7

Let KX [r][i] denote the i-th element of the set KX [r] for some arbitrary ordering. Define
W̃ := n2

m = Θ(nβ) and let t ∈ [n] be some threshold parameter to be specified later. For each
i ∈ [t], define the following sequences of length 2m:

7 The main difference to the reduction in [18] is that inside the buckets we store the quotient qa instead
of the original number a, which results in sequences with smaller values.
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Ãi[r] :=
{

KA[r][i], if r ∈ [0, m) and i ≤ |KA[r]| ≤ t

20W̃ , otherwise

B̃i[r] :=
{

KB [r][i], if r ∈ [0, m) and i ≤ |KB [r]| ≤ t

20W̃ , otherwise

C̃i[r] :=


KC [r][i], if r ∈ [0, m) and i ≤ |KC [r]| ≤ t

KC [r − m][i] − 1, if r ∈ [m, 2m) and i ≤ |KC [r]| ≤ t

20W̃ , otherwise

For all triples (i, j, k) ∈ [t]3, solve Conv3SUM on (Ãi, B̃j , C̃k), and return YES if we
receive YES for any triple. Otherwise, let RA be the set containing all elements a ∈ A in
overfull buckets, i.e., buckets KA[r] with |KA[r]| > t, and define RB and RC analogously.
Compute the sumsets RA + B and A + RB and the difference set RC − A naively in time
O(n·(|RA|+|RB |+|RC |)). If either C∩(RA+B) ̸= ∅, or C∩(A+RB) ̸= ∅, or B∩(RC −A) ̸= ∅,
then return YES; otherwise, return NO. This finishes the algorithm description.

To show correctness, assume that for some a ∈ A, b ∈ B, c ∈ C, we have a + b = c. If
a ∈ RA, then C ∩ (RA + B) ̸= ∅ holds. The same happens when b ∈ RB. If c ∈ RC , then
since c − a = b we have B ∩ (RC − A) ̸= ∅. In all cases, we correctly return YES.

Otherwise, we have a /∈ RA, b /∈ RB, and c /∈ RC . Thus, there exist indices i, j, k ∈ [t]
such that qa = KA[ra][i] = Ãi[ra], qb = KB[rb][j] = B̃j [rb], and qc = KC [rc][k] = C̃k[rc] =
C̃k[m + rc] + 1, which are captured in the instance (Ãi, B̃j , C̃k).

The equation a + b = c holds if and only we have

(qa + qb = qc and ra + rb = rc) or (1)
(qa + qb + 1 = qc and ra + rb = m + rc). (2)

In Case (1), we get

Ãi[ra] + B̃j [rb] = qa + qb = qc = C̃k[rc],

which is a Conv3SUM solution, and we output YES. In Case (2), we instead get

Ãi[ra] + B̃j [rb] = qa + qb = qc − 1 = C̃k[m + rc],

again, correctly a Conv3SUM solution.
In the other direction, suppose we output YES due to a solution in some Conv3SUM

instance i, j, k, i.e., we have Ãi[x]+ B̃j [y] = C̃k[z] with x+y = z. It is easy to see that entries
set to 20W̃ cannot contribute to a solution. Therefore, the condition x + y = z translates to
either ra + rb = rc or ra + rb = m + rc for some a ∈ A, b ∈ B, c ∈ C. Similarly, the condition
Ãi[x] + B̃j [y] = C̃k[z] translates to qa + qb = qc or qa + qb = qc − 1, respectively. As before,
this implies a + b = c. Correctness is immediate in the case where we output YES due to
elements in RA ⊆ A, RB ⊆ B, or RC ⊆ C.

To complete our randomized reduction, we pick m as a uniformly random prime in
[n2−β/2, n2−β ]. Let |R| := max{|RA|, |RB |, |RC |}. By following [18, Lemmas 2.3 and 2.4],
we show E [|R|] = Õ(nβ

t ); we prove this formally in the full version. Observe that all
constructed Conv3SUM instances have length ñ := 2m = Θ(n2−β) and entries in {0, . . . , W̃}
with W̃ = Θ(nβ). By choice of β = 2α/(α + 1), it indeed holds that W̃ = Θ(ñα).
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Hence, if there is a Conv3SUM algorithm with running time O((ñW̃ )1−δ) for some
δ > 0, we obtain a 3SUM algorithm running in expected time Õ(t3 · (ñW̃ )1−δ + n · |R|) =
Õ(t3 · (n2)1−δ +n · |R|). Choosing t = 4nδ/2 results in expected time Õ(n2−δ/2 +n1+β−δ/2) =
Õ(n2−δ/2). The derandomization of this reduction can be done by following the ideas from
Chan and He [18] and is deferred to the full version. ◀

The reverse direction follows from a folklore reduction from Conv3SUM to 3SUM, enriched
by a simple padding, yielding the following lemma.

▶ Lemma 3.2 (Proof deferred to the full version). If the Strong 3SUM Conjecture is false,
then Conv3SUM with W = n can be solved in time O(n2−δ) for some δ > 0.

As such, we obtain the following equivalence.

▶ Corollary 3.3. The Strong 3SUM Conjecture is equivalent to the Strong Conv3SUM
Conjecture.

Proof. One direction is given by Theorem 3.1 for α := 1, the other by Lemma 3.2. ◀

4 Two-Sided ApxConv3SUM

Our algorithm uses the Fast Fourier Transform (FFT) to compute a multiplicative approxim-
ation of a sumset respecting convolution, a convolved sumset, see Lemma 4.2 below. This
approximation then directly implies that Two-Sided ApxConv3SUM has time complexity
Õ(n/ε). The lower bound is a reduction from Conv3SUM and uses our tool, Theorem 3.1,
which connects the Strong 3SUM Conjecture to Conv3SUM.

Our algorithm makes use of the following tool that follows from FFT. The proof is
deferred to the full version.

▶ Fact 4.1 (Sumset Computation with Witnesses). Given sets A, B ⊆ {0, 1, . . . , W} their
sumset A + B = {a + b | a ∈ A, b ∈ B} can be computed in time O(W log W ). Moreover, in
time Õ(W ) we can compute for each s ∈ A + B a witness (as, bs) ∈ A × B with as + bs = s.

4.1 Approximation Algorithm
We begin with the computation of a convolved sumset in time Õ(n/ε).

▶ Lemma 4.2 (Two-Sided Multiplicative Approximation of Convolved Sumset). Given sequences
A, B ∈ [W ]n and ε ∈ (0, 1], in time Õ(n/ε) we can compute sets S[1], . . . , S[n], each of
size Õ(1/ε), such that (1) for every k ∈ [n] and s ∈ S[k] there exists ik,s ∈ [k − 1] with
s = A[ik,s] + B[k − ik,s] and (2) for every k ∈ [n], i ∈ [k − 1] there exists s ∈ S[k] with
max{s/(A[i] + B[k − i]), (A[i] + B[k − i])/s} ≤ 1 + ε. Moreover, in the same running time
we can compute the witnesses ik,s promised by (1).

Proof. The algorithm works as follows:
1. Set ε̄ := ε/4 and M := 100/ε̄. Initialize S[1] = . . . = S[n] = ∅.
2. For each q ∈ [W ] that is a power of 2, compute the sets

Aq := {i · M + ⌊A[i]/ε̄q⌋ | i ∈ [n], A[i] ∈ [0, 2q)},

Bq := {j · M + ⌊B[j]/ε̄q⌋ | j ∈ [n], B[j] ∈ [0, 2q)}.

Moreover, associate to each x ∈ Aq the corresponding index iq,x ∈ [n] (so that x =
iq,x ·M +⌊A[iq,x]/ε̄q⌋), and similarly associate to each y ∈ Bq the corresponding jq,y ∈ [n].
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3. For each q ∈ [W ] that is a power of 2, use Fact 4.1 to compute the sumset Cq := Aq + Bq,
along with witnesses (xz, yz) ∈ Aq × Bq with xz + yz = z for each z ∈ Cq. For each
z ∈ Cq, add the number s := A[iq,xz

] + B[jq,yz
] to the set S[k] for k := iq,xz

+ jq,yz
, and

associate the witness ik,s := iq,xz .
4. Return the sets S[1], . . . , S[k] with the associated witnesses ik,s.
The correctness proof and running time analysis are deferred to the full version. ◀

Using the above construction, we obtain our Õ(n/ε)-time approximation algorithm.

▶ Theorem 4.3 (Upper Bound for Two-Sided ApxConv3SUM). Consider the following optim-
ization version of Two-Sided ApxConv3SUM: For sequences A, B, C ∈ [W ]n define for each
k ∈ [n] the number OPTk := mini∈[k−1] max{C[k]/(A[i] + B[k − i]), (A[i] + B[k − i])/C[k]}.
Given sequences A, B, C ∈ [W ]n and ε ∈ (0, 1], compute for each k ∈ [n] a number i′ ∈ [k − 1]
with max{C[k]/(A[i′] + B[k − i′]), (A[i′] + B[k − i′])/C[k]} ≤ (1 + ε)OPTk.

This problem can be solved in time Õ(n/ε).

Proof. The algorithm works as follows:
1. Use Lemma 4.2 to compute sets S[1], . . . , S[n], along with a witness ik,s for each k ∈

[n], s ∈ S[k].
2. For each k ∈ [n], use binary search to find the largest s0 ∈ S[k] with s0 ≤ C[k], and use

binary search to find the smallest s1 ∈ S[k] with s1 ≥ C[k]. Pick s ∈ {s0, s1} to minimize
the ratio max{C[k]/s, s/C[k]}. Report the witness ik,s as the result for k.

For correctness, fix any k ∈ [n] and pick i ∈ [k − 1] that realizes the optimal ratio
OPTk = max{C[k]/(A[i] + B[k − i]), (A[i] + B[k − i])/C[k]}. By property (2) of Lemma 4.2,
there exists s′ ∈ S with max{s′/(A[i] + B[k − i]), (A[i] + B[k − i])/s′} ≤ 1 + ε. This yields

max{C[k]/s′, s′/C[k]} ≤ max{s′/(A[i] + B[k − i]), (A[i] + B[k − i])/s′}
· max{C[k]/(A[i] + B[k − i]), (A[i] + B[k − i])/C[k]}

≤ (1 + ε)OPTk.

Observe that the number s ∈ S[k] minimizing the ratio max{C[k]/s, s/C[k]} is either s = s0
or s = s1. Hence, by picking s ∈ {s0, s1} to minimize the ratio max{C[k]/s, s/C[k]}, we
compute the number s ∈ S minimizing the ratio max{C[k]/s, s/C[k]}. In particular, s is at
least as good as s′, meaning that we have max{C[k]/s, s/C[k]} ≤ max{C[k]/s′, s′/C[k]} ≤
(1 + ε)OPTk. Finally, observe that the reported witness ik,s for s satisfies A[ik,s] +
B[k − ik,s] = s and thus max{C[k]/(A[ik,s] + B[k − ik,s]), (A[ik,s] + B[k − ik,s])/C[k]} =
max{C[k]/s, s/C[k]} ≤ (1 + ε)OPTk. This proves the approximation guarantee.

The running time bound Õ(n/ε) is clear from Lemma 4.2. ◀

4.2 Hardness of Approximation
We obtain a matching hardness result under the Strong 3SUM Conjecture.

▶ Theorem 4.4 (Lower Bound for Two-Sided ApxConv3SUM). Consider the following decision
version of Two-Sided ApxConv3SUM: Given sequences A, B, C ∈ [W ]n and ε ∈ (0, 1],

output YES if ∃i, j : A[i] + B[j] = C[i + j]
output NO if ̸ ∃i, j : (1 − ε)C[i + j] ≤ A[i] + B[j] ≤ (1 + ε)C[i + j]
otherwise, both YES and NO are admissible.

This problem cannot be solved in time Õ((n/ε)1−δ) for any δ > 0, assuming the Strong
3SUM Conjecture. This statement even holds restricted to ε = Θ(1/nα) for any α ∈ (0, 1].
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Proof. Assuming the Strong 3SUM Conjecture, by Theorem 3.1 a Conv3SUM instance
A, B, C ∈ [W ]n can in general not be solved in time Õ((nW )1−δ) for W = ⌊nα⌋. We argue
that the Conv3SUM instance A, B, C is equivalent to the Two-Sided Apx3SUM instance
A, B, C with ε := 1/(10nα). It follows that Two-Sided ApxConv3SUM cannot be solved in
time Õ((nW )1−δ) = Õ((n/ε)1−δ) for ε = Θ(1/nα).

To see the equivalence, observe that (1 − ε)C[i + j] ≤ A[i] + B[j] ≤ (1 + ε)C[i + j]
is equivalent to A[i] + B[j] = C[i + j], since A[i], B[j], C[i + j] ∈ [W ] are integers and
ε ≤ 1/(10W ). Therefore, an algorithm for Two-Sided ApxConv3SUM must output YES
if there are i, j with A[i] + B[j] = C[i + j] and NO otherwise, i.e., the algorithm solves
Conv3SUM. This finishes the proof. ◀
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