
1 / 35 2024 :22

The NFA Acceptance
Hypothesis:
Non-Combinatorial and
Dynamic Lower Bounds

Received Feb 5, 2024
Revised May 17, 2024
Accepted May 25, 2024
Published Oct 4, 2024

Key words and phrases
fine-grained complexity theory,
non-deterministic finite automata,
OMv hypothesis, CFL reachability,
Word Break problem

Karl Bringmanna �
Allan Grønlundb �
Marvin Künnemannc �
Kasper Green Larsend �

a Saarland University and
Max-Planck-Institute for
Informatics, Saarland Informatics
Campus

b Aarhus University and Kvantify

c Karlsruhe Institute of
Technology

d Aarhus University

ABSTRACT. We pose the fine-grained hardness hypothesis that the textbook algorithm for
the NFA Acceptance problem is optimal up to subpolynomial factors, even for dense NFAs and
fixed alphabets.

We show that this barrier appears in many variations throughout the algorithmic literature
by introducing a framework of Colored Walk problems. These yield fine-grained equivalent
formulations of the NFA Acceptance problem as problems concerning detection of an 𝑠-𝑡-walk
with a prescribed color sequence in a given edge- or node-colored graph. For NFA Acceptance
on sparse NFAs (or equivalently, Colored Walk in sparse graphs), a tight lower bound under
the Strong Exponential Time Hypothesis has been rediscovered several times in recent years.
We show that our hardness hypothesis, which concerns dense NFAs, has several interesting
implications:

It gives a tight lower bound for Context-Free Language Reachability. This proves condi-
tional optimality for the class of 2NPDA-complete problems, explaining the cubic bottleneck
of interprocedural program analysis.

This work is part of the project TIPEA (PI: Karl Bringmann) that has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 850979). Marvin
Künnemann’s research was partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 462679611. Kasper Green Larsen was supported by Independent Research Fund Denmark (DFF) Sapere Aude Research
Leader grant No 9064-00068B. This article was invited from ITCS 2024 [14].

Cite as Karl Bringmann, Allan Grønlund, Marvin Künnemann, Kasper Green Larsen.
The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds.
TheoretiCS, Volume 3 (2024), Article 22, 1-35.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.22

mailto:bringmann@cs.uni-saarland.de
mailto:ag@kvantify.dk
mailto:marvin.kuennemann@kit.edu
mailto:larsen@cs.au.dk


2 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

It gives a tight (𝑛𝑚1/3 +𝑚)1−𝑜(1) lower bound for the Word Break problem on strings of
length 𝑛 and dictionaries of total size 𝑚.
It implies the popular OMv hypothesis. Since the NFA acceptance problem is a static (i.e.,
non-dynamic) problem, this provides a static reason for the hardness of many dynamic
problems.

Thus, a proof of the NFA Acceptance hypothesis would resolve several interesting barriers.
Conversely, a refutation of the NFA Acceptance hypothesis may lead the way to attacking the
current barriers observed for Context-Free Language Reachability, the Word Break problem
and the growing list of dynamic problems proven hard under the OMv hypothesis.

1. Introduction

Consider a classic problem that lies at the heart of introductory undergraduate courses on
the theory of computation: Given a nondeterministic finite automaton (NFA) 𝑀 and a string 𝑥

over some alphabet Σ, determine whether 𝑥 is accepted by 𝑀 . The textbook algorithm for
solving this problem uses dynamic programming and solves the problem in time 𝑂( |𝑀 | · |𝑥 |).
Optimality of this algorithm is known for sparse NFAs, assuming the Strong Exponential Time
Hypothesis and up to subpolynomial factors, as we will discuss in detail in Section 1.2. We put
forth the following fine-grained hardness hypothesis, in which we conjecture optimality of this
decades-old algorithm also for dense NFAs.

HYPOTHES IS 1.1 (NFA Acceptance hypothesis, informal version). The textbook 𝑂( |𝑀 | · |𝑥 |)
time algorithm for NFA Acceptance over any fixed alphabet Σ is optimal up to subpolynomial
factors, even if 𝑀 is a dense NFA.

In this paper, we shed light on the many guises of the NFA Acceptance problem and
highlight the ramifications of the above hardness hypothesis on fine-grained complexity theory
in P.

1.1 The Many Guises of the NFA Acceptance Problem

To express equivalent formulations of the NFA Acceptance problem, consider the following
problem: Given a directed, simple graph 𝐺 = (𝑉, 𝐸) with edge colors 𝑐 : 𝐸 → Σ, distinguished
nodes 𝑠, 𝑡 ∈ 𝑉 and a color sequence 𝑐1, . . . , 𝑐ℓ ∈ Σ, determine whether there is a walk of length
ℓ from 𝑠 to 𝑡 such that the color sequence of the traversed edges is equal to 𝑐1, . . . , 𝑐ℓ. In a graph
with 𝑛 nodes and 𝑚 ≥ 𝑛 edges, this problem is easily solved in time 𝑂(𝑚ℓ), by maintaining a
set 𝑆 ⊆ 𝑉 of states reachable from 𝑠 via a walk with color sequence 𝑐1, . . . , 𝑐𝑖 , over all 1 ≤ 𝑖 ≤ ℓ.

There are natural variants of this problem, by considering node colors rather than edge
colors, undirected rather than directed graphs, as well as various restrictions on the size of the



3 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

alphabet: We call these problems Directed/Undirected Σ-Edge-Colored/Σ-Node-Colored Walk,
see Section 2 for a formal definition. All of these problems can be solved in time 𝑂(𝑚ℓ). These
Colored Walk problems arise in different communities, typically with different generalizations:

(Formal language theory:) NFA Acceptance is a fundamental problem in formal language
theory, as it is the membership problem for regular languages. Directed Σ-Edge-Colored
Walk is precisely the special case in which the NFA has no loops (transitions from some
state 𝑞 to itself) or multiple transitions between any two states (with different labels from
the terminal set).1 In Section 6, we will show that this special case is fine-grained equivalent
to the general case of the NFA Acceptance problem.
(Hidden Markov models:) A Hidden Markov Model (HMM) is a Markov chain in which
every state has a distribution over possible observations Σ it emits. In the Viterbi Path
problem, the task is to determine, given a sequence 𝑐1, . . . , 𝑐ℓ of observations over Σ
and an HMM 𝑀 , the most likely walk through 𝑀 to emit 𝑐1, . . . , 𝑐ℓ. An extension of the
NFA Acceptance algorithm, well-known as Viterbi’s algorithm [68], solves this problem
in time 𝑂(𝑚ℓ), where 𝑚 denotes the size of 𝑀 . Exploiting the weighted nature of this
problem, Viterbi’s algorithm has been proven optimal up to subpolynomial factors under
the weighted 𝑘-Clique hypothesis [11]. Σ-Node-ColoredWalk is equivalent to the following
interesting unweighted special case of the problem: in an HMM for which every node 𝑣

emits a single observation 𝜎𝑣 with probability 1, determine whether there exists any walk
with positive probability for emitting the observations 𝑐1, . . . , 𝑐ℓ.2

(Combinatorial Pattern matching, Bioinformatics:) In some applications in combinatorial
pattern matching, e.g., in bioinformatics, it is natural to represent a set of strings using
a node-labeled graph 𝐺: Here, every node 𝑢 is equipped with a string 𝐿𝑢 ∈ Σ∗ and the
represented set of strings is simply the list of all concatenations 𝐿𝑢1 . . . 𝐿𝑢𝑘 over all walks
𝑢1 . . . 𝑢𝑘 in 𝐺. A natural question is to perform pattern matching on these graphs, i.e., find
an occurrence, or more generally, all occurrences of a given pattern 𝑃 in some string 𝑇

occurring in 𝐺. A line of work, see, e.g., [50, 7, 53, 38] derives algorithms for exact and
approximate matches of a string, see also [30] for references. Σ-Node-Colored Walk is
equivalent to detecting an exact occurrence in a graph in which every node is labeled by a
single character in Σ.3

(Database Theory:) An important topic in the area of graph databases is regular path queries,
see, e.g. [52, 12, 18] and references therein. Here, a database is given as a graph 𝐺 = (𝑉, 𝐸)
with edge labels over Σ and the aim is to support queries, which on input a regular
expression 𝑞, return information about walks in the graph whose labels match the regular

1 Formulating the NFA Acceptance problem as a colored walk problem is not uncommon, see, e.g., [8]. Here we use the
Colored Walk problem as an umbrella to express various related problems in a common language.

2 The equivalence of detecting an 𝑠-𝑡-walk with a given color sequence and detecting any walk with a given color
sequence is discussed in Section 6.

3 See previous footnote.



4 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

expression 𝑞 (variants of these queries include emptiness, counting, or enumeration of such
walks or their endpoints). The emptiness query can be solved in time𝑂(( |𝑉 |+|𝐸 |) |𝑞|) using a
straightforward approach of constructing a product graph of 𝐺 and an NFA representing 𝑞;
conditional optimality of this approach has been investigated in [18]. The special case
in which 𝑞 describes a single string of length ℓ is precisely the Σ-Edge-Colored Walk
problem.4

Interestingly, it turns out that all the special cases discussed above are equivalent in a
fine-grained sense. In particular, the NFA Acceptance problem, as well as all 𝑛𝑜(1)-Edge-Colored
Walk and 𝑛-Node-Colored Walk problems are equivalent to the following seemingly simple
problem:

Directed 2-Edge-Colored Walk
Input: Directed graph 𝐺 = (𝑉, 𝐸), 𝑠, 𝑡 ∈ 𝑉 , 𝑐 : 𝐸 → {1, 2}, ℓ ∈ N, colors 𝑐1, . . . , 𝑐ℓ ∈ {1, 2}
Question: Exist 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑡 with (𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸 and 𝑐(𝑣𝑖−1, 𝑣𝑖) = 𝑐𝑖 for all 1 ≤ 𝑖 ≤ ℓ?

For a formal statement of this equivalence and its proof, see Sections 2 and 6.
Thus, the same barrier has been observed across different communities, with extensions

of the 𝑂(𝑚ℓ)-time algorithm in various distinct directions. The only generalization with a tight
conditional lower bound for all graph densities is known in the weighted setting of Viterbi’s
algorithm [11].

A refutation of the NFA Acceptance hypothesis would thus immediately be interesting for
a host of communities – as a case in point, several works derive essentially the same conditional
lower bounds for sparse graphs and for combinatorial algorithms, see Section 1.2. Furthermore,
refuting the hypothesis is a prerequisite to obtaining faster algorithms also for the discussed
generalizations, e.g., for approximating the Viterbi Path problem.

1.2 Support for the Hypothesis

The current support for the hypothesis is threefold: (I) There are tight conditional lower bounds
for sparse NFAs based on the Orthogonal Vectors Hypothesis (OVH) and thus the Strong Expo-
nential Time Hypothesis (SETH), (II) there is a tight combinatorial lower bound for all densities
of NFAs based on the combinatorial 𝑘-Clique hypothesis, and (III) simply the lack of a faster
algorithms despite the centrality and age of this problem. We discuss these reasons in detail:

Support I: Hardness for Sparse NFAs It is known that an 𝑂((𝑛ℓ)1−𝜖)-time algorithm for
acceptance of a length-ℓ string by an 𝑛-state NFA would refute OVH and SETH. This can be
viewed as a tight conditional lower bound for sparse NFAs with 𝑚 = 𝑂(𝑛) transitions, but it

4 See previous footnotes.



5 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

fails to provide a tight lower bound for NFAs with 𝑚 = Θ(𝑛𝛼) transitions with 1 < 𝛼 ≤ 2.
Several versions of this result have been proven and published in recent years. A subset of
the authors have learned the result phrased for NFAs from Russell Impagliazzo in 2015. Since
regular expressions of size 𝑛 can be easily converted to an NFA with 𝑂(𝑛) states and transitions,
the quadratic conditional lower bounds for regular expression membership/matching in [10,
15] translate to NFA Acceptance lower bounds. Subsequently, the lower bound for sparse NFAs
has been given in the language of string matching in labeled graphs in [30], in the language of
NFA Acceptance in [57], and in the language of regular path queries in graph databases in [18].5

Interestingly, the same lower bound already holds under a weaker hypothesis, specifically
Formula-SETH [3, 59, 32].

Support II: Combinatorial Hardness Beyond sparse NFAs, the literature provides, perhaps
a bit implicitly, a (combinatorial) reduction from 𝑘-Clique to NFA Acceptance with a dense
NFA with 𝑛 states with the following implications: (1) An 𝑂((ℓ𝑛2)1−𝜖)-time combinatorial6 NFA
Acceptance algorithm for any ℓ = 𝑛𝛽, 𝛽 > 0 would give a combinatorial 𝑂(𝑛(1−𝜖′)𝑘)-time 𝑘-Clique
algorithm for all sufficiently large 𝑘, and (2) an 𝑂((ℓ𝑛2)𝜔/3−𝜖)-time NFA Acceptance algorithm
would give an 𝑂(𝑛(𝜔/3)𝑘−𝜖′)-time 𝑘-Clique algorithm for sufficiently large 𝑘, breaking the state
of the art for current 𝑘-Clique algorithms, see [55, 2].

These lower bounds can be obtained either by adapting the reduction from weighted 𝑘-
Clique in [11] to the unweighted case, or as a special case of [1, Theorem I.5]7, or as an appropriate
generalization of the reduction from Triangle Detection to NFA Acceptance with ℓ ≈ 𝑛 in [57],
or as an appropriate generalization of the reduction from Triangle Detection to regular path
queries with queries of length ℓ ≈ 𝑛 in [18]. For a self-contained reduction see Section 7.

These reductions suggest that to break the NFA Acceptance hypothesis, a non-trivial ap-
plication of fast matrix multiplication techniques is needed. Put differently, our hypothesis
boils down to postulating that fast matrix multiplication is not applicable for the NFA Acceptance
problem.

Support III: Long-standing State of the Art Finally, the NFA Acceptance hypothesis is
plausible simply due to the lack of any improved algorithms. To the best of our knowledge, the
best algorithm for NFA Acceptance for dense NFAs over a constant-sized alphabet Σ runs in
time 𝑛2ℓ/2Ω(

√
log 𝑛) (see Section 5).

Let us contrast the state of the art for NFA Acceptance, i.e., the membership problem
for regular languages, to the membership problem for context-free languages, specifically

5 By the the fine-grained equivalence of the Colored Walk problems of Section 2, these results turn out to be essentially
equivalent in their main statement. However, some aspects of the reductions can differ.

6 Here, a combinatorial algorithm refers to an algorithm that avoids the algebraic techniques underlying fast matrix
multiplication algorithms, see Section 1.4 for a discussion.

7 In the theorem, simply choose 𝛼𝑁 = 𝛼𝑛 = 𝛽.



6 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

context-free grammar parsing. The fine-grained complexity of this problem has parallels to
NFA Acceptance: The best combinatorial algorithms decide membership of a length-𝑛 string
in a fixed grammar Γ in mildly subcubic time 𝑂(𝑛3/polylog 𝑛), see [2] for an overview. Any
truly subcubic combinatorial algorithm would refute the combinatorial 𝑘-Clique algorithm [2].
However, by a highly non-trivial application of fast matrix multiplication, Valiant [61] gave an
algorithm for context-free grammar parsing in time 𝑂(𝑛𝜔) for constant-sized grammars, but
this is known already since 1975! It appears unlikely that a similar algorithm using fast matrix
multiplication for NFA Acceptance has been overlooked for decades.

In Section 8, we also discuss why natural algorithmic approaches towards refuting the
NFA Acceptance hypothesis appear to fail.

It is apparent that the NFA Acceptance hypothesis poses a significant barrier. Finally, we
remark that [57] recently posed our NFA Acceptance hypothesis as an open problem.8

1.3 Evidence Against the Hypothesis

The only evidence against the NFA Acceptance hypothesis that we are aware of is the existence
of (co-)nondeterministic verifiers with running time 𝑂((𝑛2ℓ)1−𝜖). This is even known for the
weighted generalization to the Viterbi Path problem [10], but can be proven directly (see
Section 7) or follows as a consequence of our reduction in Section 3 combined with [22]. This
rules out tight deterministic reductions from SAT and OV to NFA Acceptance with dense NFAs,
assuming a nondeterministic variant of SETH [17]. However, there are several hypotheses
with a similar status, in particular, the APSP hypothesis, 3SUM hypothesis and the Hitting Set
hypothesis.

1.4 Applications I: Non-combinatorial Lower Bounds

As our first major consequence of the NFA Acceptance hypothesis, we give novel tight conditional
lower bounds against general algorithms where previously only combinatorial lower bounds
were known.

Combinatorial Lower Bounds Some of the oldest conditional lower bounds in the polynomial-
time regime are based on Boolean matrix multiplication (BMM), see, e.g. [47] (for a survey of
fine-grained complexity theory in P, we refer to [64]). The best known algorithm for BMM uses
fast matrix multiplication over the integers, yielding an 𝑛𝜔+𝑜(1)-time algorithm, where 𝜔 is the
matrix multiplication exponent, with a current state-of-the-art bound of 𝜔 < 2.371552 due to
works of [60, 25, 63, 46, 6, 29, 67], among others.

8 Potechin and Shallit note, following the SETH-based lower bound for sparse NFAs: “However, this does not rule out an
improvement when the NFA is dense, and we leave it as an open problem to either find a significant improvement to
this algorithm, or show why such an improvement is unlikely.”



7 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Unfortunately, theoretically fast matrix multiplication algorithms generally turn out to
be impractical, as the constants hidden in the 𝑂-notation are usually too large for the problem
sizes observed in applications. Therefore, it has become increasingly popular to use the notion
of combinatorial algorithms to exclude the use of algebraic techniques underlying current
fast matrix multiplications, in an attempt to study algorithms whose asymptotic complexity
translates into practical running time. In this direction, it has been hypothesized that BMM
does not admit combinatorial 𝑂(𝑛3−𝜖)-time algorithms with 𝜖 > 0. This hypothesis is in fact
equivalent to the nonexistence of truly subcubic combinatorial algorithms for triangle detection,
and gives tight combinatorial lower bounds for problems such as the Sliding Window Hamming
Distance (see [31]), CFL Reachability [20] and many more. A generalization of this hypothesis
is that for no 𝑘 ≥ 3 and 𝜖 > 0, 𝑘-Clique admits a combinatorial 𝑂(𝑛𝑘−𝜖)-time algorithm, which
implies a combinatorial version of our NFA Acceptance hypothesis, see Section 7.

However, there are several downsides to the notion of combinatorial lower bounds: First
and foremost, the notion of combinatorial algorithm is not formally defined, which is hardly
acceptable (see e.g. the discussion in [35]). Second, in theoretical computer science we are
usually interested in the optimal asymptotic worst-case complexity, so why would we exclude
algorithmic techniques leading to an improved complexity? Third, Strassen’s original algorithm
is sometimes found to be practical [37]. Hence, there are several reasons to avoid “combinatorial
lower bounds”, as they leave open the very real possibility that faster algorithms exploiting fast
matrix multiplication techniques exist.

How can we distinguish between problems for which faster algorithms via fast matrix
multiplications exist, and those for which such an improvement is unlikely? Generally speak-
ing, the current state of the art for problems with tight combinatorial lower bounds can be
categorized as follows:

1. (easy:) Problems whose asymptotic complexity is upper bounded by the complexity of
fast matrix multiplication, e.g., context-free grammar recognition for constant-sized gram-
mars [61], maximum node-weighted triangle [26], and others.

2. (intermediate:) Problems for which improvements via fast matrix multiplication are
possible, but they do not necessarily lead to quasilinear time in the input if 𝜔 = 2: e.g.,
Sparse Triangle Listing or intermediate𝑂(𝑛 3+𝜔

2 )-time problems such as (min,max) product,
Dominance product, Equality product, and All-Edges Monochromatic Triangle. Only for a
few of these problems, conditional lower bounds give evidence why they do not appear to
belong to the first category, e.g. [56, 48, 66, 19].

3. (difficult:) Problems for which even using fast matrix multiplication, no improved algo-
rithms are known, e.g., APSP, Sliding Window Hamming Distance, Word Break, Context-
free Language Reachability, Klee’s Measure Problem. To establish that a problem lies in
this category, currently only two hardness assumptions appear applicable: If the problem
can express weights, a reduction from APSP or more generally the weighted 𝑘-Clique



8 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

hypothesis is plausible, e.g. [65, 9, 11]. A second possibility is a reduction based on the
3-uniform Hyperclique hypothesis [49], which was used, e.g., for Klee’s measure problem
in 3D [43].

The NFA Acceptance hypothesis yields a new route to establish that a problem belongs to
the third category. We describe two such applications: (1) Context-free language reachability
and, more generally, all 2NPDA-complete problems (which suffer from the cubic bottleneck in
interprocedural program analysis), and (2) the Word Break problem.

CFL Reachability and 2NPDA-hard problems In Context-free Language (CFL) Reachability
for a fixed context-free grammar Γ, we are given a Σ-edge-colored directed graph 𝐺 and distin-
guished nodes 𝑠, 𝑡, and the task is to determine whether there is a walk from 𝑠 to 𝑡 such that the
sequence of traversed edge colors spells a word in the language given by Γ. The CFL Reachability
problem has many applications in program analysis, verification and database theory (see, e.g.,
the references in [22, 42]). A classic algorithm solves CFL Reachability in time 𝑂(𝑛3) [70], which
has been slightly improved to time 𝑂(𝑛3/log 𝑛) [58, 21]. In fact, these algorithms extend to the
generalization of computing all pairs (𝑠, 𝑡) for which such a walk exists.

The inability to obtain truly subcubic time algorithms for CFL Reachability and related
problems has led researchers to investigate its relationship to the recognition problem for two-
way nondeterministic pushdown automata (2NPDA), which admits a classic cubic time algorithm
due to [5]. Several problems, including CFL Reachability, pushdown automata emptiness, and
related problems in data flow analysis, have been proven 2NPDA-complete in the sense that
they are subcubic equivalent to 2NPDA recognition [54, 51, 34], see also [22].

Since then, there have been attempts to obtain conditional lower bounds for 2NPDA-
complete problems: For combinatorial algorithms a conditional lower bound ruling out time
𝑂(𝑛3−𝜀) for any 𝜀 > 0 was shown in [20]. However, it was proven that obtaining a tight lower
bound based on SETH/OVH using deterministic reductions would violate NSETH [22]. Recently,
an interesting attempt was made to show that the All-Pairs version of CFL Reachability is strictly
harder than matrix multiplication (i.e., does not belong to the first category in the above list)
via a reduction from All-Edges Monochromatic Triangle [42].9

In Section 3, we show that proving the NFA Acceptance hypothesis settles the cubic bottle-
neck of 2NPDA-complete problems by showing that the NFA Acceptance hypothesis implies that
CFL Reachability, and thus, all 2NPDA-hard problems, have no truly subcubic algorithms. In
particular, this gives conditional optimality of the algorithms due to Yannakakis [70] and Aho et
al. [5].

9 Unfortunately, the reduction from Monochromatic Triangle to All-Pairs CFL Reachability given in [42] appears to be
flawed. In this reduction, a graph is created where every edge in the original graph is replaced by a line graph, which
in general leads to a quadratic blow-up in the number of nodes. In personal communication, the authors confirm this
issue.



9 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Word Break In the Word Break problem we are given a string 𝑆 and a dictionary 𝐷 (i.e., 𝐷
is a set of strings) and we ask whether 𝑆 can be split into dictionary words, i.e., whether we
can partition 𝑆 into substrings such that each substring is in the set 𝐷. Denoting the length of
𝑆 by 𝑛 and the total length of all dictionary words by 𝑚, this problem has a relatively simple
randomized algorithm running in time Õ(𝑛𝑚1/2 +𝑚).10 This running time was first improved
to Õ(𝑛𝑚1/2−1/18 + 𝑚) [10] and then to the current state of the art 𝑂(𝑛(𝑚 log𝑚)1/3 + 𝑚) [15].
In [15] it was also shown that Word Break has no combinatorial algorithm running in time
𝑂(𝑛𝑚1/3−𝜀+𝑚) for any 𝜀 > 0, assuming a hypothesis on combinatorial 𝑘-Clique. Under standard,
non-combinatorial hypotheses, no superlinear running time lower bound is known.

In Section 4, we settle this issue by proving a tight conditional lower bound for Word Break
under the NFA Acceptance hypothesis.

1.5 Application II: A Static Reason for Dynamic Hardness

In 2015, Henzinger, Forster, Nanongkai and Saranurak [35] formulated the OMv hypothesis
which unifies and strengthens many conditional lower bounds for data structure problems and
dynamic problems and has since been used in various areas such as graph algorithms [35, 27,
4, 36], string algorithms [24, 41, 23], computational geometry [28, 45], linear algebra [62, 39],
formal languages [33], and database theory [13, 18, 40]. In fact, almost all conditional lower
bounds for dynamic problems known under BMM or other hypotheses such as 3SUM or APSP
can also be shown under the OMv hypothesis.11 Thus, there is one reason that allows to rule
out faster algorithms for a wealth of problems, without restricting the class of algorithms that
may be used, and without any undefined notions.

Interestingly, it turns out that the NFA Acceptance hypothesis implies the OMv hypothesis.
The reduction is very direct and has nice implications: (1) It establishes NFA Acceptance as a
static reason for the hardness of a wealth of dynamic problems. (2) It gives additional reason to
believe in the OMv hypothesis, since NFA Acceptance is an additional problem that has been
studied for decades and lacks polynomially improved algorithms. (3) We obtain an improved
running time for NFA Acceptance by a factor 2Θ(

√
log 𝑛) , by the improved algorithm for OMv [44].

(4) Since NFA Acceptance is a static problem, we can try to obtain similar lower bounds as from
OMv now for static versions of dynamic problems. We give the reduction in Section 5.

2. Equivalent formulations: ColoredWalk Framework

An NFA 𝑀 is a tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹) with 𝛿 ⊆ 𝑄 × Σ × 𝑄, 𝑞0 ∈ 𝑄 and 𝐹 ⊆ 𝑄. We say that 𝑀 accepts
a string 𝑥 ∈ Σ∗ if and only if there exists some sequence 𝑞1, . . . , 𝑞|𝑥 | ∈ 𝑄 with (𝑞𝑖 , 𝑥𝑖+1, 𝑞𝑖+1) ∈ 𝛿

10 Throughout the paper we write Õ(𝑇 ) :=
⋃

𝑐≥0 𝑂(𝑇 log𝑐 𝑇 ), where we denote log𝑐 𝑇 = (log(𝑇 ))𝑐.

11 Lower bounds from SETH seem to be an exception from this rule of thumb.



10 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

for all 0 ≤ 𝑖 < |𝑥 | and 𝑞|𝑥 | ∈ 𝐹. Note that we do not allow 𝜖-transitions.12 The NFA Acceptance
problem asks to determine, given an NFA 𝑀 and string 𝑥 over Σ, whether 𝑀 accepts 𝑥. We
usually use 𝑛 = |𝑄| to denote the number of states, 𝑚 = |𝛿| to denote the number of transitions
and ℓ = |𝑥 | to denote the length of the string 𝑥.

We are ready to state our hypothesis formally:

HYPOTHES IS 2 .1 (NFA Acceptance hypothesis, formal version). Let 1 ≤ 𝛼 ≤ 2 and 𝛽, 𝜖 > 0
be arbitrary. There is no (randomized) algorithm that solves the NFA Acceptance problem for
NFAs with 𝑛 states and 𝑚 = Θ(𝑛𝛼) transitions, alphabet Σ of size 𝑛𝑜(1) and strings of length
ℓ = Θ(𝑛𝛽) in time 𝑂((𝑚ℓ)1−𝜖) = 𝑂(𝑛(𝛼+𝛽) (1−𝜖)).

It is equivalent to state the hypothesis only for dense NFAs, i.e., 𝛼 = 2, as we show next.

LEMMA 2.2. The NFA Acceptance hypothesis is equivalent to the following statement: Let
𝛽, 𝜖 > 0 be arbitrary. There is no (randomized) algorithm that solves the NFA Acceptance problem
for NFAs with 𝑛 states and 𝑚 = Θ(𝑛2) transitions, alphabet Σ of size 𝑛𝑜(1) and strings of length
ℓ = Θ(𝑛𝛽) in time 𝑂((𝑛2ℓ)1−𝜖) = 𝑂(𝑛(2+𝛽) (1−𝜖)).

PROOF . Assume that there exists 1 ≤ 𝛼′ < 2 and 𝛽′ > 0 such that we can solve the problem
with 𝑚 = Θ(𝑛𝛼′) transitions and sequence length ℓ = Θ(𝑛𝛽′) in time 𝑂(𝑛(𝛼′+𝛽′) (1−𝜖)). We define
𝛼 = 2, 𝛽 = (2/𝛼′)𝛽′ and consider any instance with 𝑚 = Θ(𝑛𝛼) = Θ(𝑛2) and ℓ = Θ(𝑛𝛽). Create
an equivalent instance by simply introducing 𝑛2/𝛼′ ≥ 𝑛 additional isolated states. This instance
has 𝑛′ = Θ(𝑛2/𝛼′) states, the same number of transitions 𝑚′ = 𝑚 = Θ(𝑛2) = Θ((𝑛′)𝛼′) and the
same sequence length ℓ′ = ℓ = Θ(𝑛𝛽) = Θ((𝑛′)𝛽′). By our assumption, we can solve this instance
in time 𝑂((𝑛′) (𝛼′+𝛽′) (1−𝜖)) = 𝑂(𝑛(𝛼+𝛽) (1−𝜖)). This contradicts the assumption for 𝛼 = 2 and an
appropriate 𝛽, as desired. ■

Furthermore, our conditional lower bounds for CFL Reachability and OMv follow already
from the setting 𝛼 = 2 and 𝛽 = 1, which can be viewed as the core setting of the NFA Acceptance
hypothesis: Determining whether a given 𝑛-state NFA 𝑀 over an 𝑛𝑜(1)-sized alphabet Σ accepts
a given length-𝑛 string 𝑥 requires time 𝑛3−𝑜(1) in the worst case.

In the remainder of the section, we discuss several equivalent formulations of the NFA
Acceptance hypothesis, using a framework of graph problems that we refer to as Colored Walk
problems.

2.1 Colored Walk Framework

We study the following variants of the Colored Walk problem.

12 An 𝜖-transition is a transition labeled with the empty word 𝜖. Such a transition can be taken by the NFA without
reading a character of 𝑥. While for dense NFAs, allowing 𝜖-transitions yields a linear-time equivalent version of the
NFA acceptance problem, we leave it as an open problem whether 𝜖-transitions make the problem more difficult for
sparser NFAs.



11 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Directed/Undirected Node-𝐶(𝑛)-Colored Walk
Input: directed/undirected graph 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉 | and 𝑚 = |𝐸 |, vertices 𝑠, 𝑡 ∈ 𝑉 ,

coloring 𝑐 : 𝑉 → {1, . . . , 𝐶(𝑛)}, integer ℓ, color sequence 𝑐1, . . . , 𝑐ℓ
Question: Exist 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑡 with (𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸 and 𝑐(𝑣𝑖) = 𝑐𝑖 for all 1 ≤ 𝑖 ≤ ℓ?

Directed/Undirected Edge-𝐶(𝑛)-Colored Walk
Input: directed/undirected graph 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉 | and 𝑚 = |𝐸 |, vertices 𝑠, 𝑡 ∈ 𝑉 ,

coloring 𝑐 : 𝐸 → {1, . . . , 𝐶(𝑛)}, integer ℓ, color sequence 𝑐1, . . . , 𝑐ℓ
Question: Exist 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑡 with (𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸 and 𝑐(𝑣𝑖−1, 𝑣𝑖) = 𝑐𝑖 for all 𝑖?

Note that all of these problems can be solved in time 𝑂(𝑚ℓ). We show that most of these
problem variants are equivalent, in the following sense. Note that statement A1 below is exactly
the NFA Acceptance hypothesis.

LEMMA 2.3 (Colored Walk Framework). Let 𝛼 ∈ [1, 2], 𝛽 > 0. All of the following statements
A1, A2, A3, A4, A5, B1, B2, B3, and B4 are equivalent:

A Restricted to instances with 𝑚 = Θ(𝑛𝛼) and ℓ = Θ(𝑛𝛽), there is no 𝑂(𝑛𝛼+𝛽−𝜀)-time algorithm
for any 𝜀 > 0 for the problem...

1 ... NFA Acceptance with alphabet size 𝑛𝑜(1) .
2 ... Directed Node-2-Colored Walk.
3 ... Directed Node-𝑛-Colored Walk.
4 ... Directed Edge-2-Colored Walk.
5 ... Directed Edge-𝑛𝑜(1)-Colored Walk.

B Restricted to instances with 𝑚 = Θ(𝑛𝛼) and ℓ = 𝑂(𝑛𝛽), there is no 𝑂(𝑛𝛼+𝛽−𝜀)-time algorithm
for any 𝜀 > 0 for the problem...

1 ... Undirected Node-2-Colored Walk.
2 ... Undirected Node-𝑛-Colored Walk.
3 ... Undirected Edge-2-Colored Walk.
4 ... Undirected Edge-𝑛𝑜(1)-Colored Walk.

The proof is deferred to Section 6.
From now on, we use the term Colored Walk for any of the above problems. In particular,

in the reductions based on the NFA Acceptance hypothesis, we can always use the variant that
is easiest to work with. In particular, all of our reductions in the following sections will start
from Directed Edge-2-Colored Walk (i.e., we will use statement A4). By the above lemma, we
thus obtain conditional lower bounds under the NFA Acceptance hypothesis.

We leave it as an open problem whether Directed/Undirected Edge-𝐶(𝑛)-Colored Walk
for 𝐶(𝑛) ≫ 𝑛𝑜(1) is also equivalent to the above problems.



12 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

In Section 6, we also show equivalence of Colored Walk to a version without source and
target nodes 𝑠, 𝑡, specifically, the version in which we determine existence of any walk in the
graph with a given color sequence 𝑐1, . . . , 𝑐ℓ. Such versions occur e.g., for string matching in
labeled graphs or regular path queries.

3. Hardness of CFL Reachability

In this section, we give a tight hardness result for CFL reachability under the NFA acceptance
hypothesis.

A context-free grammar Γ is a tuple (𝑁, Σ, 𝑃, 𝑆), where 𝑁 is a set of nonterminals, Σ is a set
of terminals disjoint from 𝑁 , 𝑆 ∈ 𝑁 is the start symbol and 𝑃 is a set of production rules of the
form 𝑋 → 𝛼 with 𝑋 ∈ 𝑁 and 𝛼 ∈ (𝑁 ∪ Σ)∗. For a string 𝑥 ∈ (𝑁 ∪ Σ)∗, replacing an occurrence of
a nonterminal 𝑋 ∈ 𝑁 by 𝛼 (where 𝑋 → 𝛼 is in 𝑃) is called an application of the production rule
𝑋 → 𝛼. We say that a string 𝑥 ∈ Σ∗ is generated by Γ if 𝑥 can be obtained from 𝑆 by (repeated)
applications of production rules. We let 𝐿(Γ) denote the set of strings generated by Γ.

Recall that in the CFL Reachability problem we are given a context-free grammar Γ de-
scribing a language 𝐿(Γ) over a terminal set Σ as well as a directed graph 𝐺 = (𝑉, 𝐸) with
designated vertices 𝑠, 𝑡 ∈ 𝑉 where every edge 𝑒 ∈ 𝐸 is labeled by a terminal 𝜎(𝑒) ∈ Σ. We call
any sequence of terminals 𝑤 ∈ Σ∗ a word, and we say that a walk 𝑣0, 𝑣1, . . . , 𝑣𝑡 in 𝐺 spells the
word 𝜎(𝑣0, 𝑣1)𝜎(𝑣1, 𝑣2) . . . 𝜎(𝑣ℓ−1, 𝑣ℓ), i.e., we concatenate all edge labels along the walk. The
task is to decide whether there is a walk from 𝑠 to 𝑡 in 𝐺 spelling a word in 𝐿(Γ), i.e., whether
there is a walk 𝑠 = 𝑣0, 𝑣1 . . . , 𝑣ℓ = 𝑡 such that 𝜎(𝑣0, 𝑣1)𝜎(𝑣1, 𝑣2) . . . 𝜎(𝑣ℓ−1, 𝑣ℓ) ∈ 𝐿(Γ). We write
𝑛 = |𝑉 |, 𝑚 = |𝐸 | and we assume that Γ is fixed, in particular it has constant size and any running
time dependence on the size of Γ can be ignored.

The CFL Reachability problem has a classic algorithm running in time 𝑂(𝑛3) [70], which
has been slightly improved to time 𝑂(𝑛3/log 𝑛) [21]. For combinatorial algorithms a conditional
lower bound ruling out time 𝑂(𝑛3−𝜀) for any 𝜀 > 0 was shown in [20].

We prove a tight lower bound for CFL Reachability under the NFA Acceptance hypothesis:

THEOREM 3.1. There is a fixed grammar Γ such that the CFL Reachability problem on Γ has no
𝑂(𝑛3−𝜀)-time algorithm for any 𝜀 > 0 assuming the NFA Acceptance hypothesis.

PROOF . We reduce from Directed Edge-2-Colored Walk. To this end, we are given a directed
graph 𝐺 = (𝑉, 𝐸) with colors 𝑐 : 𝐸 → {1, 2}, designated vertices 𝑠, 𝑡 ∈ 𝑉 , and a color sequence
𝑐1, . . . , 𝑐ℓ ∈ {1, 2}. Let 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. We assume the graph to be dense (i.e., 𝑚 = Θ(𝑛2))
and we assume ℓ = Θ(𝑛). By the NFA Acceptance hypothesis in the setting 𝛼 = 2, 𝛽 = 1, there
is no algorithm solving all such instances of Directed Edge-2-Colored Walk in time 𝑂(𝑛3−𝜀) for
any 𝜀 > 0.



13 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

We construct an instance of CFL Reachability as follows. The context-free grammar Γ is
the language of well-formed expressions on two types of parenthesis (also known as Dyck-2)
given by the nonterminal 𝑆, the terminals (1, )1, (2, )2, and the production rules 𝑆 → 𝑆𝑆, 𝑆 →
(1𝑆)1, 𝑆 → (1)1, 𝑆 → (2𝑆)2, 𝑆 → (2)2. Note that the grammar is independent of the input size, i.e.,
Γ has constant size.13

We construct a directed graph 𝐺′ = (𝑉 ′, 𝐸′) by starting from the graph 𝐺, adding a directed
path of length ℓ on nodes 𝑢0, 𝑢1, . . . , 𝑢ℓ, and identifying the nodes 𝑡 and 𝑢0. In other words, we
attach a path 𝑢1, . . . , 𝑢ℓ to the node 𝑡, and we use 𝑢0 as another name for node 𝑡. We set 𝑠′ := 𝑠

and 𝑡′ := 𝑢ℓ. For each edge (𝑢, 𝑣) ∈ 𝐸 we set the label to 𝜎(𝑒) := (𝑐(𝑢,𝑣) . For each 1 ≤ 𝑖 ≤ ℓ we
set the label 𝜎(𝑢𝑖−1, 𝑢𝑖) := )𝑐ℓ+1−𝑖 . This finishes the construction of the CFL Reachability instance
(Γ, 𝐺′, 𝑠′, 𝑡′, 𝜎).

Note that any walk from 𝑠′ to 𝑡′ in 𝐺′ ends with the path 𝑢0, 𝑢1, . . . , 𝑢ℓ and thus with the
labels )𝑐ℓ)𝑐ℓ−1 . . .)𝑐2)𝑐1 . Since there are no other edge labels with closing brackets, we must choose
a walk from 𝑠′ = 𝑠 to 𝑢0 = 𝑡 spelling the word (𝑐1 (𝑐2 . . . (𝑐ℓ−1 (𝑐ℓ in order to match all parentheses.
Such a walk corresponds to a walk from 𝑠 to 𝑡 in 𝐺 with color sequence 𝑐1, 𝑐2, . . . , 𝑐ℓ. This shows
that the constructed CFL Reachability instance is a YES-instance if and only if the given Colored
Walk instance is a YES-instance, and thus shows correctness of the reduction.

Note that the constructed graph 𝐺′ consists of 𝑛 + ℓ = 𝑂(𝑛) nodes (using our assumption
on ℓ). Therefore, any algorithm for CFL Reachability running in time 𝑂(𝑛3−𝜀) solves the given
Colored Walk instance in time 𝑂(𝑛3−𝜀). This contradicts the NFA Acceptance hypothesis (as
discussed in the first paragraph). ■

4. Hardness ofWord Break

Recall that in the Word Break problem, we are given a string 𝑆 and a dictionary 𝐷 (i.e., 𝐷 is a
set of strings) and we ask whether 𝑆 can be split into dictionary words, i.e., whether we can
partition 𝑆 into substrings such that each substring is in the set 𝐷. We denote the length of 𝑆 by
𝑛 and the total length of all strings in 𝐷 by 𝑚. In this section, we prove that the NFA Acceptance
hypothesis implies optimality (up to subpolynomial factors) of the 𝑂(𝑛(𝑚 log𝑚)1/3 +𝑚) time
algorithm given in [15].

THEOREM 4.1. The Word Break problem has no 𝑂(𝑛𝑚1/3−𝜀 +𝑚)-time algorithm for any 𝜀 > 0
assuming the NFA Acceptance hypothesis. This even holds restricted to 𝑚 = Θ(𝑛𝛾) for any constant
𝛾 ∈ (0, 3/2).

Note that the 𝑂(𝑛(𝑚 log𝑚)1/3 +𝑚) algorithm from [15] solves Word Break in time Õ(𝑚)
whenever 𝑚 = Ω(𝑛3/2). Since this is near-linear, there is no need for proving a fine-grained
lower bound in this case. Therefore, it is natural that we assume 𝛾 < 3/2 in the above theorem.

13 This special case of the CFL Reachability problem, where Γ is Dyck-2, is also known as Dyck-2 Reachability.



14 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

PROOF OF THEOREM 4.1 . In the following proof, we use the upper case letters 𝑁 and 𝑀 for
the parameters of Word Break in order to differentiate them from the parameters of Colored
Walk.

We reduce from Directed Edge-2-Colored Walk. To this end, we are given a directed
graph 𝐺 = (𝑉, 𝐸) with colors 𝑐 : 𝐸 → {1, 2}, designated vertices 𝑠, 𝑡 ∈ 𝑉 , and a color sequence
𝑐1, . . . , 𝑐ℓ ∈ {1, 2}. We write 𝑉 = {1, . . . , 𝑛} and let 𝑚 = |𝐸 |. We assume the graph to be dense
(i.e., 𝑚 = Θ(𝑛2)) and we assume ℓ = Θ(𝑛𝛽) for 𝛽 := 3/𝛾 − 1. By the NFA Acceptance hypothesis
in the setting 𝛼 = 2, 𝛽 = 3/𝛾 − 1, there is no algorithm solving all such instances of Directed
Edge-2-Colored Walk in time 𝑂(𝑛2+𝛽−𝜀) for any 𝜀 > 0.

We use the notation 0𝑘 to denote the string of length 𝑘 consisting of 𝑘 times the letter 0.
We construct the string 𝑆 and the dictionary 𝐷 over alphabet {0, 1, 2} as follows:

𝑆 := 0𝑠 𝑐1 0𝑛 𝑐2 0𝑛 𝑐3 . . . 0𝑛 𝑐ℓ−1 0𝑛 𝑐ℓ 0𝑛−𝑡 .

𝐷 := { 0𝑢 𝑐(𝑢, 𝑣) 0𝑛−𝑣 | (𝑢, 𝑣) ∈ 𝐸}.

Correctness We claim that the string 𝑆 can be split into dictionary words if and only if there
is a walk from 𝑠 to 𝑡 with color sequence 𝑐1, . . . , 𝑐ℓ in 𝐺. This is straightforward to show: To
match the prefix 0𝑠𝑐1 we must choose a dictionary word corresponding to an edge (𝑠, 𝑣1) of
color 𝑐1, and the remaining string starts with the prefix 0𝑣1𝑐2. Generally, in the 𝑖th step the
remaining string is of the form 0𝑣𝑖𝑐𝑖0𝑛𝑐𝑖+1 . . . 0𝑛𝑐ℓ0𝑛−𝑡, so in order to match the prefix 0𝑣𝑖𝑐𝑖 we
must choose a dictionary word corresponding to an edge (𝑣𝑖 , 𝑣𝑖+1) of color 𝑐𝑖 . The last vertex 𝑣ℓ

must satisfy 𝑣ℓ = 𝑡 in order to match the suffix 0𝑛−𝑡. Hence, any valid partitioning of the string 𝑆

into dictionary words corresponds to a walk 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑡 with color sequence 𝑐1, . . . , 𝑐ℓ

in 𝐺, and this is an equivalence.

Running Time The length of the string 𝑆 is 𝑁 = Θ(ℓ𝑛) = Θ(𝑛1+𝛽), by the assumption on ℓ. The
total length of all strings in 𝐷 is 𝑀 = Θ(𝑛𝑚) = Θ(𝑛3), by the assumption that 𝐺 is dense. Note
that 𝑀 = Θ(𝑁3/(1+𝛽)) = Θ(𝑁 𝛾) by our setting of 𝛽 = 3/𝛾 − 1, so we constructed instances with
the desired setting of parameters. If Word Break can be solved in time 𝑂(𝑁𝑀1/3−𝜀 +𝑀), then by
plugging in the bounds on 𝑁 and 𝑀 , our setting of Directed Edge-2-Colored Walk can be solved
in time 𝑂(𝑛1+𝛽 (𝑛3)1/3−𝜀 + 𝑛3) = 𝑂(𝑛2+𝛽−3𝜀 + 𝑛3). Since 𝛾 < 3/2 we have 𝛽 = 3/𝛾 − 1 > 1 and
thus by setting 𝜀′ := min{3𝜀, 2 + 𝛽 − 3} > 0 we can bound the running time by 𝑂(𝑛2+𝛽−𝜀′). This
contradicts the NFA Acceptance hypothesis in the setting 𝛼 = 2, 𝛽 = 3/𝛾 − 1. ■

5. Hardness of OMv

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, an algorithm is initially
given an 𝑛 × 𝑛 Boolean matrix 𝑀 . Then the following repeats for 𝑛 rounds: In the 𝑖th round, the
algorithm is given an 𝑛-dimensional Boolean vector 𝑣𝑖 and has to compute 𝑀𝑣𝑖 . The algorithm



15 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

must compute the output 𝑀𝑣𝑖 before it can proceed to the next round. The running time of an
OMv algorithm is the total running time for the initialization and all 𝑛 rounds together.

By naively multiplying 𝑀𝑣𝑖 in time 𝑂(𝑛2) in each of the 𝑛 rounds, OMv can be solved in
time 𝑂(𝑛3). This running time has been improved to 𝑛3/2Ω(

√
log 𝑛) [44]. The OMv Hypothesis,

due to Henzinger et al. [35], postulates that OMv cannot be solved in strongly subcubic time.

HYPOTHES IS 5.1 (OMv Hypothesis). For any constant 𝜀 > 0, OMv has no 𝑂(𝑛3−𝜀)-time
algorithm (with an error probability of at most 1/3).

Many data structure problems and dynamic problems have matching lower bounds under
the OMv Hypothesis, as its usefulness has been established in various areas such as graph
algorithms [35, 27, 4, 36], string algorithms [24, 41, 23], computational geometry [28, 45], linear
algebra [39], formal languages [33], and database theory [13, 18, 40].

We show the following relation to the NFA Acceptance hypothesis:

THEOREM 5.2. The NFA Acceptance hypothesis implies the OMv Hypothesis.

In particular, all implications of the OMv Hypothesis shown in [35, 27, 4, 36, 24, 41, 23, 28,
45, 39, 33, 13, 18, 40] also hold under the NFA Acceptance hypothesis.

PROOF OF THEOREM 5.2 . We reduce from Directed Edge-2-Colored Walk. To this end, we
are given a directed graph 𝐺 = (𝑉, 𝐸) with colors 𝑐 : 𝐸 → {1, 2}, designated vertices 𝑠, 𝑡 ∈ 𝑉 ,
and a color sequence 𝑐1, . . . , 𝑐ℓ ∈ {1, 2}. We assume the graph to be dense (𝑚 = Θ(𝑛2)) and we
assume ℓ = Θ(𝑛). By the NFA Acceptance hypothesis in the setting 𝛼 = 2, 𝛽 = 1, there is no
algorithm solving all such instances of Directed Edge-2-Colored Walk in time 𝑂(𝑛3−𝜀) for any
𝜀 > 0.

Let 𝑁 := max{𝑛, ℓ}. If 𝑁 > 𝑛 we add 𝑁 − 𝑛 isolated dummy vertices to 𝐺.
Consider for each color 𝑐 ∈ {1, 2} the transposed adjacency matrix 𝑀 (𝑐) corresponding

to the edges with color 𝑐, i.e., 𝑀 (𝑐) ∈ {0, 1}𝑁×𝑁 where 𝑀
(𝑐)
𝑢,𝑣 = 1 if and only if (𝑣, 𝑢) ∈ 𝐸 and

𝑐(𝑣, 𝑢) = 𝑐. Let 𝑢0 ∈ {0, 1}𝑁 be the indicator vector for 𝑠, i.e., 𝑢0[𝑣] = 1 if and only if 𝑣 = 𝑠.
Suppose there is an algorithm A solving OMv in time O(𝑛3−𝜀) for some 𝜀 > 0. We use A

to preprocess 𝑀 (1) and 𝑀 (2) (as independent OMv instances). For each 𝑖 = 1, . . . , ℓ, we compute
𝑢𝑖 := 𝑀 (𝑐𝑖)𝑢𝑖−1 using algorithm A on the corresponding OMv instance. Finally, we accept the
colored walk instance if and only if 𝑢ℓ [𝑡] = 1.

Inductively, it is straightforward to show that 𝑢𝑖 [𝑣] = 1 if and only if there is a walk from
𝑠 to 𝑣 with color sequence 𝑐1, . . . , 𝑐𝑖; hence correctness follows. Note that for each of the two
OMv instances we execute at most ℓ ≤ 𝑁 rounds (and we can add dummy rounds to obtain
exactly 𝑁 rounds). Therefore, algorithm A solves both instances in total time O(𝑁3−𝜀) over all
rounds. Since 𝑁 = max{𝑛, ℓ} = 𝑂(𝑛) by our assumption on ℓ, it follows that we can solve the
given Directed Edge-2-Colored Walk instance in time O(𝑛3−𝜀), contradicting the NFA Acceptance
hypothesis (as discussed in the first paragraph). This finishes the proof.



16 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

Remark: As described above, the reduction is not many-one, since we create two instances
of OMv corresponding to the matrices 𝑀 (1) and 𝑀 (2) . However, by a slight adaptation we can
make the reduction many-one. To this end, we construct the matrix

𝑀 =

(
𝑀 (1) 0

0 𝑀 (2)

)
,

which stacks the matrices 𝑀 (1) , 𝑀 (2) in block matrices along the main diagonal. We use algo-
rithmA to preprocess the OMv instance 𝑀 . Then given a vector𝑢 ∈ {0, 1}𝑁 and a color 𝑐 ∈ {1, 2},
we can compute the Boolean product 𝑀 (𝑐)𝑢 by one call to the OMv instance 𝑀 : To this end,
we set 𝑢′ := (𝑢1, . . . , 𝑢𝑁 , 0, . . . , 0) ∈ {0, 1}2𝑁 if 𝑐 = 1, and 𝑢′ := (0, . . . , 0, 𝑢1, . . . , 𝑢𝑁 ) ∈ {0, 1}2𝑁 if
𝑐 = 2, and we call A to compute 𝑀𝑢′. This yields 𝑀 (𝑐)𝑢, padded with some zeroes. Therefore,
each step 𝑢𝑖 := 𝑀 (𝑐𝑖)𝑢𝑖−1 performed in the above reduction can be implemented by one call to
the OMv instance 𝑀 . This makes the reduction many-one. ■

6. Equivalences of ColoredWalk

In this section, we prove the equivalences of Colored Walk problems stated in Lemma 2.3. We
also prove an equivalence to a version without source and target nodes, see Lemma 6.12 at the
end of this section. Throughout this section we abbreviate Colored Walk as CW.

LEMMA 2.3 (Colored Walk Framework). (Restated) Let 𝛼 ∈ [1, 2], 𝛽 > 0. All of the following
statements A1, A2, A3, A4, A5, B1, B2, B3, and B4 are equivalent:

A Restricted to instances with 𝑚 = Θ(𝑛𝛼) and ℓ = Θ(𝑛𝛽), there is no 𝑂(𝑛𝛼+𝛽−𝜀)-time algorithm
for any 𝜀 > 0 for the problem...

1 ... NFA Acceptance with alphabet size 𝑛𝑜(1) .
2 ... Directed Node-2-Colored Walk.
3 ... Directed Node-𝑛-Colored Walk.
4 ... Directed Edge-2-Colored Walk.
5 ... Directed Edge-𝑛𝑜(1)-Colored Walk.

B Restricted to instances with 𝑚 = Θ(𝑛𝛼) and ℓ = 𝑂(𝑛𝛽), there is no 𝑂(𝑛𝛼+𝛽−𝜀)-time algorithm
for any 𝜀 > 0 for the problem...

1 ... Undirected Node-2-Colored Walk.
2 ... Undirected Node-𝑛-Colored Walk.
3 ... Undirected Edge-2-Colored Walk.
4 ... Undirected Edge-𝑛𝑜(1)-Colored Walk.

For the node version of the problem, we say that the (node) color sequence of a walk
𝑣0, 𝑣1, . . . , 𝑣𝑘 is the sequence 𝑐(𝑣1), 𝑐(𝑣2), . . . , 𝑐(𝑣𝑘). Similarly, for the edge version we say that
the (edge) color sequence of a walk 𝑣0, 𝑣1, . . . , 𝑣𝑘 is the sequence 𝑐(𝑣0, 𝑣1), 𝑐(𝑣1, 𝑣2), . . . , 𝑐(𝑣𝑘−1, 𝑣𝑘).



17 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

The remainder of this section is devoted to the proof of Lemma 2.3 (and to the proof of
Lemma 6.12). To this end, we define the following notion of reductions. Here, a parameter is a
function mapping any instance to a natural number, e.g., 𝑛, 𝑚, ℓ are parameters of the above
problems.

DEF IN IT ION 6.1. Let 𝑋,𝑌 be problems with the same set of parameters 𝑃. We say that there is
a 𝑃-preserving (many-one) reduction from 𝑋 to 𝑌 , written 𝑋 ≤𝑃 𝑌 if there is an algorithm 𝐴 that
given an instance 𝐼 of 𝑋 computes an equivalent instance 𝐽 of 𝑌 such that for all parameters
𝑝 ∈ 𝑃 we have 𝑝( 𝐽) ≤ 𝑝(𝐼)1+𝑜(1) , and 𝐴 runs in almost-linear time 𝑁1+𝑜(1) in its input size 𝑁 .

The following lemmas show {𝑛, 𝑚, ℓ}-preserving reductions between the problems from
Lemma 2.3.

LEMMA 6.2. Directed Node-2-CW ≤{𝑛,𝑚,ℓ} Directed Edge-2-CW.

PROOF . Given a directed graph 𝐺 with node coloring 𝑐 : 𝑉 → {1, 2}, we define the edge
coloring 𝑐′ : 𝐸 → {1, 2} by setting 𝑐′(𝑢, 𝑣) := 𝑐(𝑣) for all edges (𝑢, 𝑣) ∈ 𝐸. This yields an
equivalent Directed Edge-2-CW instance, since for any walk 𝑣0, 𝑣1, . . . , 𝑣ℓ in 𝐺, the sequence of
node colors 𝑐(𝑣1), . . . , 𝑐(𝑣ℓ) is the same as the sequence of edge colors 𝑐′(𝑣0, 𝑣1), . . . , 𝑐′(𝑣ℓ−1, 𝑣ℓ).
The reduction preserves the exact values of all parameters. ■

LEMMA 6.3. Directed Edge-𝑛𝑜(1)-CW ≤{𝑛,𝑚,ℓ} NFA Acceptance with 𝑛𝑜(1) terminals.

PROOF . This is a simple statement, as NFA Acceptance with 𝑛𝑜(1) terminals is the generalization
of Directed Edge-𝑛𝑜(1)-CW where we allow loops and we allow multiple edges (with different
labels) between two nodes. Since the two problems are formulated in a different language, we
make the correspondence explicit: Given a directed graph 𝐺 = (𝑉, 𝐸) with designated vertices
𝑠, 𝑡 ∈ 𝑉 and edge coloring 𝑐 : 𝐸 → {1, . . . , 𝐶} as well as a color sequence 𝑐1, . . . , 𝑐ℓ ∈ {1, . . . , 𝐶},
we construct the NFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) by setting 𝑄 := 𝑉 , Σ := {1, . . . , 𝐶}, 𝛿 := {(𝑢, 𝑐(𝑢, 𝑣), 𝑣) |
(𝑢, 𝑣) ∈ 𝐸}, 𝑞0 := 𝑠, 𝐹 := {𝑡}, and we construct the string 𝑆 := 𝑐1𝑐2 . . . 𝑐ℓ ∈ Σℓ. It is straightforward
to show that 𝑀 accepts 𝑆 if and only if there is a walk from 𝑠 to 𝑡 with color sequence 𝑐1𝑐2 . . . 𝑐ℓ

in 𝐺. All parameters are preserved since |𝑄| = |𝑉 |, |𝛿| = |𝐸 | and ℓ remains unchanged. ■

LEMMA 6.4. NFA Acceptance with 𝑛𝑜(1) terminals ≤{𝑛,𝑚,ℓ} Directed Node-𝑛𝑜(1)-CW.

PROOF . Given an NFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) with set of states 𝑄, input alphabet Σ, transitions
𝛿 ⊆ 𝑄×Σ×𝑄, initial state 𝑞0, and set of accepting states 𝐹 ⊆ 𝑄, as well as a string 𝑆 ∈ Σℓ, we first
transform it into an equivalent instance without loops and with exactly one accepting state.

To remove loops, we replace the states 𝑄 by two copies: �̂� := 𝑄 × {1, 2}. Each transition
(𝑞, 𝜎, 𝑞′) is replaced by two transitions ((𝑞, 1), 𝜎, (𝑞′, 2)) and ((𝑞, 2), 𝜎, (𝑞′, 1)); note that this
ensures that we have no loops (i.e., no transition starts and ends in the same state). We also



18 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

replace 𝑞0 by �̂�0 := (𝑞0, 1) and 𝐹 by 𝐹 := 𝐹 × {1, 2}. It is easy to check that the new NFA accepts 𝑆
if and only if the old NFA accepts 𝑆, and the size of the NFA is only changed by a constant factor.

To ensure exactly one accepting state, we add a new state 𝑓0 to �̂�. We fix an arbitrary
symbol 𝜎 ∈ Σ, and we add transitions ( 𝑓 , 𝜎, 𝑓0) for all 𝑓 ∈ 𝐹. Finally, we replace 𝐹 by { 𝑓0} and 𝑆

by 𝑆𝜎. Note that this results in an equivalent instance with exactly one accepting state and all
sizes stay the same up to constant factors. Therefore, in the following we assume without loss of
generality that the given NFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) satisfies 𝐹 = { 𝑓0} and has no loops. Moreover,
we can assume without loss of generality that Σ = {1, . . . , |Σ|}.

We define a graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 = 𝑄 × Σ. For each transition (𝑞, 𝜎′, 𝑞′) ∈ 𝛿,
we add the edges ( (𝑞, 𝜎) , (𝑞′, 𝜎′) ) ∈ 𝐸 for all 𝜎 ∈ Σ. We define the vertex coloring 𝑐 : 𝑉 →
{1, . . . , |Σ|} by 𝑐( (𝑞, 𝜎) ) = 𝜎. Observe that for any choice of “starting color” 𝜎0 ∈ {1, . . . , |Σ|},
the mapping from any transition sequence 𝑞0

𝜎1→ 𝑞1
𝜎2→ 𝑞2 . . .

𝜎ℓ→ 𝑞ℓ in 𝑀 to the walk 𝑣0 :=
(𝑞0, 𝜎0) , 𝑣1 := (𝑞1, 𝜎1) , . . . , 𝑣ℓ := (𝑞ℓ, 𝜎ℓ) in 𝐺 is indeed a one-to-one mapping from transition
sequences in 𝑀 to walks in 𝐺 starting in the node (𝑞0, 𝜎0) such that the string read by the
transition sequence equals the color sequence of the walk. In particular, 𝑀 accepts the string
𝑆 if and only if there is a walk from 𝑠 := (𝑞0, 𝜎0) to 𝑡 := ( 𝑓0, 𝑆[ℓ]) in 𝐺 with color sequence
𝑆[1], . . . , 𝑆[ℓ]. Thus, for any NFA 𝑀 we can construct, in linear time in the output, an equivalent
Directed Node-|Σ|-CW instance.

We verify that the parameters are preserved for |Σ| = |𝑄|𝑜(1): The number of vertices in 𝐺

is bounded by |𝑉 | = |𝑄| · |Σ| = |𝑄|1+𝑜(1) , similarly, we have |𝐸 | ≤ |𝛿| · |Σ| = |𝛿|1+𝑜(1) . Finally, the
length ℓ of the color sequence equals the length of the string 𝑆. ■

LEMMA 6.5. Directed Node-𝑛-CW ≤{𝑛,𝑚,ℓ} Directed Node-2-CW.

PROOF . Given a directed graph 𝐺 with node coloring 𝑐 : 𝑉 → {1, . . . , 𝐶}, we let 𝐵 := ⌈log2 𝐶⌉
and define a graph 𝐺′ = (𝑉 ′, 𝐸′) with vertex set 𝑉 ′ = 𝑉 × [𝐵]. For every edge (𝑢, 𝑣) ∈ 𝐸, we
add the edge ( (𝑢, 𝐵) , (𝑣, 1) ) ∈ 𝐸′, and for every 𝑣 ∈ 𝑉 and 1 ≤ 𝑖 < 𝐵, we add the “path” edge
( (𝑣, 𝑖) , (𝑣, 𝑖 + 1) ) ∈ 𝐸′. For a color 𝑐 ∈ {1, . . . , 𝐶}, let bin(𝑐, 𝑖) be the 𝑖-th bit in the 𝐵-bit binary
representation of 𝑐. We define the node coloring 𝑐′ : 𝑉 ′ → {1, 2} by 𝑐′( (𝑣, 𝑖) ) = bin(𝑐(𝑣), 𝑖) + 1
for all 𝑣 ∈ 𝑉, 𝑖 ∈ [𝐵]. Thus, for any Directed Node-𝑛-CW instance 𝐺, 𝑠, 𝑡, (𝑐1, . . . , 𝑐ℓ), we define
a corresponding instance on the graph 𝐺′ with source (𝑠, 𝐵), target (𝑡, 𝐵) and color sequence
𝑐′1, . . . , 𝑐

′
ℓ𝐵 where we set 𝑐′( 𝑗−1)𝐵+𝑖 := bin(𝑐 𝑗 , 𝑖) + 1 for all 1 ≤ 𝑗 ≤ ℓ and 1 ≤ 𝑖 ≤ 𝐵. It is

straightforward to verify that 𝑣0, 𝑣1, . . . , 𝑣ℓ is a walk in𝐺 with color sequence 𝑐1 = 𝑐(𝑣1), . . . , 𝑐ℓ =
𝑐(𝑣ℓ) if and only if 𝑣′0, 𝑣

′
1, . . . , 𝑣

′
ℓ𝐵 with 𝑣′0 = (𝑣0, 𝐵) and 𝑣′( 𝑗−1)𝐵+𝑖 = (𝑣 𝑗 , 𝑖), 1 ≤ 𝑗 ≤ ℓ, 1 ≤ 𝑖 ≤ 𝐵 is a

walk in 𝐺′ with color sequence 𝑐′1 = 𝑐′(𝑣′1), . . . , 𝑐′ℓ𝐵 = 𝑐′(𝑣′ℓ𝐵).
Note that for𝐶 = 𝑛, we have 𝐵 = O(log 𝑛) and thus |𝑉 ′| = 𝐵|𝑉 | ≤ |𝑉 |1+𝑜(1) , |𝐸′| = |𝐸 |+ |𝑉 |𝐵 ≤

|𝐸 |1+𝑜(1) and ℓ𝐵 ≤ ℓ1+𝑜(1) . ■

To reduce from Node-2-CW in a directed graph 𝐺 to Edge-2-CW in an undirected graph 𝐺′, a
natural attempt is the following: each vertex 𝑣 is replaced by two vertices, 𝑣in and 𝑣out, such



19 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

that a directed edge (𝑢, 𝑣) can be represented by the undirected edge {𝑢out, 𝑣in}. Additionally,
we introduce the edges {𝑣in, 𝑣out} of color 𝑐(𝑣). If we were allowed to introduce an additional
color 𝑐 ∉ {1, 2}, we could label each edge {𝑢out, 𝑣in} with 𝑐, and any walks with node color
sequence 𝑐1, 𝑐2, . . . , 𝑐ℓ in 𝐺 would uniquely correspond to walks with edge colors sequence in
𝑐, 𝑐1, 𝑐, 𝑐2, . . . 𝑐, 𝑐ℓ and vice versa. To avoid the blow-up in the number of colors, however, we
must reuse a color for 𝑐, say 𝑐 = 1. Since this would allow a walk to use an edge {𝑢in, 𝑣out} in the
“reverse” direction towards 𝑢in whenever we are supposed to “check” that a node has color 1,
we might obtain illegal transitions in the resulting walk. An analogous reasoning applies for a
reduction to undirected Node-2-CW.

We use slightly more involved gadgetry for both reductions: For a given directed graph
𝐺 = (𝑉, 𝐸) and an integer 𝑃, we create an undirected graph 𝐺′ = (𝑉 ′, 𝐸′) with vertex set
𝑉 ′ = {𝑣in, 𝑣out, 𝑣

(1) , . . . , 𝑣(𝑃) | 𝑣 ∈ 𝑉 } as follows: we introduce, for each edge (𝑢, 𝑣) ∈ 𝐸, the edges
{𝑢out, 𝑣in} in 𝐸′, as well as, for all 𝑣 ∈ 𝑉 , all “path edges” {𝑣in, 𝑣

(1)}, {𝑣(𝑃) , 𝑣out} and {𝑣(𝑖) , 𝑣(𝑖+1)}
for all 1 ≤ 𝑖 < 𝑃. By choosing the color sequences for all path vertices/edges appropriately, we
will be able to enforce that every edge is used in “forward” direction, i.e., any feasible walk
traverses an edge {𝑢out, 𝑣in}, then all path edges toward 𝑣out, then an edge {𝑣out, 𝑤in}, and so on.

LEMMA 6.6. Directed Node-2-CW ≤{𝑛,𝑚,ℓ} Undirected Edge-2-CW.

PROOF . Given a directed graph 𝐺 = (𝑉, 𝐸), we construct the undirected version 𝐺′ using path
length 𝑃 = 4 as described above. We define the coloring 𝑐′ : 𝐸 → {1, 2} as follows: for all
(𝑢, 𝑣) ∈ 𝐸, we set 𝑐′(𝑢out, 𝑣in) = 1. For each 𝑣 ∈ 𝑉 , we set the colors of the path edges to

(𝑐′(𝑣in, 𝑣
(1)) , 𝑐′(𝑣(1) , 𝑣(2)) , 𝑐′(𝑣(2) , 𝑣(3)) , 𝑐′(𝑣(3) , 𝑣(4)) , 𝑐′(𝑣(4) , 𝑣out)) := (2 , 𝑐(𝑣) , 𝑐(𝑣) , 1 , 2).

The main property of this construction is captured by the following claim. In the remainder of
the proof, for any 𝑐 ∈ {1, 2} and 𝑣 ∈ 𝑉 we set:

col(𝑐) := (2, 𝑐, 𝑐, 1, 2) and path(𝑣) := (𝑣in, 𝑣
(1) , 𝑣(2) , 𝑣(3) , 𝑣(4) , 𝑣out).

In what follows, for any walk 𝑧 = (𝑧0, . . . , 𝑧ℓ) with color sequence 𝑐′ = (𝑐′1, . . . , 𝑐′ℓ), we use the
shorthands 𝑧... 𝑗 = (𝑧0, . . . , 𝑧 𝑗) and 𝑐′

... 𝑗
= (𝑐′1, . . . , 𝑐′𝑗) to denote the length- 𝑗 prefix of 𝑧 and its

corresponding color sequence, respectively.

CLAIM 6.7. Let 𝑣 ∈ 𝑉 and 𝑐 ∈ {1, 2}. There is a walk 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧5) in 𝐺′ with 𝑧0 = 𝑣in and
edge color sequence col(𝑐) if and only if 𝑐 = 𝑐(𝑣) and 𝑧 = path(𝑣).

PROOF . If 𝑐 = 𝑐(𝑣), then the walk path(𝑣) clearly has edge color sequence (2, 𝑐, 𝑐, 1, 2). For
the converse, let 𝑧 = (𝑧0, . . . , 𝑧5) be a walk with 𝑧0 = 𝑣in and color sequence col(𝑐). We analyze
the possible values for 𝑧...𝑖 when observing the color sequence col(𝑐)...𝑖 for 𝑖 = 1, . . . , 5:

𝑧1 = 𝑣(1) and thus 𝑧...1 = path(𝑣)...1 always holds, as {𝑣in, 𝑣
(1)} is the only edge adjacent to

𝑣in that has color 2, because the edges {𝑢out, 𝑣in} have color 1.



20 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

Consider the case 𝑐 = 1:
If 𝑐(𝑣) ≠ 𝑐 = 1, then there is no edge leaving 𝑧1 = 𝑣(1) with color 𝑐 = 1. Thus we may
assume in the remainder of the case that 𝑐(𝑣) = 𝑐 = 1.
It follows that 𝑧2 = 𝑣(2) and hence 𝑧...2 = path(𝑣)...2.
Since both edges adjacent to 𝑧2 = 𝑣(2) have color 𝑐(𝑣) = 𝑐 = 1, we have either
𝑧...3 = path(𝑣)...3 or 𝑧3 = 𝑣(1) .
Since the only nodes adjacent to 𝑣(3) or 𝑣(1) via an edge with color 1 are 𝑣(4) and 𝑣(2) ,
we have that 𝑧4 ∈ {𝑣(4) , 𝑣(2)}, where 𝑧4 = 𝑣(4) only occurs if 𝑧...4 = path(𝑣)...4.
Finally, as desired, 𝑧5 = 𝑣out must hold, since among {𝑣(4) , 𝑣(2)}, only 𝑣(4) has an
adjacent edge of color 2, which leads to 𝑣out. This yields 𝑧 = path(𝑣) for 𝑐 = 1.

We analyze the remaining case 𝑐 = 2:
We have 𝑧2 = 𝑣in, or, only if 𝑐(𝑣) = 𝑐 = 2, possibly 𝑧2 = 𝑣(2) and hence 𝑧...2 = path(𝑣)...2.
Likewise, since {𝑣in, 𝑣

(1)} is the only edge adjacent to 𝑣in with color 𝑐 = 2, we must
have 𝑧3 = 𝑣(1) , or, only if 𝑐(𝑣) = 𝑐 = 2 and 𝑧...2 = path(𝑣)...2, possibly 𝑧3 = 𝑣(3) (and
hence 𝑧...3 = path(𝑣)...3).
Note that 𝑣(1) only has an adjacent edge of color 1 if 𝑐(𝑣) = 1 ≠ 𝑐. In contrast, if
𝑐(𝑣) = 𝑐 = 2, 𝑣(3) has its only adjacent edge of color 1 to 𝑣(4) . Thus, we have either
𝑧4 = 𝑣(2) , which can only happen if 𝑐(𝑣) ≠ 𝑐, or 𝑧4 = 𝑣(4) , which can only happen if
𝑐(𝑣) = 𝑐 and 𝑧...3 = path(𝑣)...3. In the latter case, we thus must have 𝑧...4 = path(𝑣)...4.
Finally, 𝑧5 = 𝑣out, 𝑐(𝑣) = 𝑐 and 𝑧...4 = path(𝑣)...4 must hold, since in the case 𝑐 ≠ 𝑐(𝑣),
𝑣(2) has no adjacent edges of color 2, while 𝑣(4) has an edge of color 2 to 𝑣out. Thus
𝑧 = path(𝑣) and 𝑐(𝑣) = 𝑐.

■

Given a Directed Node-2-CW instance 𝐺, 𝑠, 𝑡 ∈ 𝑉 and 𝑐1, . . . , 𝑐ℓ, we construct, in linear time
in the output, an Undirected Edge-2-CW instance 𝐺′ with source 𝑠out, target 𝑡out and color se-
quence 1, col(𝑐1), 1, col(𝑐2), . . . , 1, col(𝑐ℓ). For any walk 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑡 with color sequence
𝑐1, . . . , 𝑐ℓ in 𝐺, the walk 𝑣0, path(𝑣1), path(𝑣2), . . . , path(𝑣ℓ) in 𝐺′ has the desired color sequence
1, col(𝑐1), 1, col(𝑐2), . . . , 1, col(𝑐ℓ) by the above claim. Conversely, we see that for each color
substring 1, col(𝑐𝑖) any walk in 𝐺′ that starts in some node 𝑢out is of the form (𝑢out, path(𝑣)) for
some 𝑣 ∈ 𝑉 with (𝑢, 𝑣) ∈ 𝐸 and 𝑐(𝑣) = 𝑐𝑖 , since the only 1-colored edges adjacent to 𝑢out lead to
some 𝑣in with (𝑢, 𝑣) ∈ 𝐸 and the above claim proves that the walk path(𝑣) must follow, which
requires 𝑐(𝑣) = 𝑐𝑖 . By repeated application of this fact, any walk in 𝐺′ with color sequence
1, col(𝑐1), 1, col(𝑐2), . . . , 1, col(𝑐ℓ) corresponds to a walk in 𝐺 with color sequence 𝑐1, . . . , 𝑐ℓ, as
desired. Note that all parameters have increased by at most a constant factor, which yields the
desired reduction. ■

For a reduction to Undirected Node-2-CW, we imitate the above reduction by defining a
suitable node color sequence for path nodes. The analysis is slightly simpler than for Edge-2-CW.



21 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

LEMMA 6.8. Directed Node-2-CW ≤{𝑛,𝑚,ℓ} Undirected Node-2-CW.

PROOF . Given a directed graph 𝐺 = (𝑉, 𝐸), we construct the undirected version 𝐺′ using path
length 𝑃 = 4 as described above. We define the coloring 𝑐′ : 𝑉 ′ → {1, 2}, as follows: for all 𝑣 ∈ 𝑉 ,
we set 𝑐′(𝑣in) = 𝑐′(𝑣out) = 1 and set

(𝑐′(𝑣(1)) , 𝑐′(𝑣(2)) , 𝑐′(𝑣(3)) , 𝑐′(𝑣(4))) := (2 , 𝑐(𝑣) , 2 , 2).

The main property of this construction is captured by the following claim. In the remainder of
the proof, for any 𝑐 ∈ {1, 2} and 𝑣 ∈ 𝑉 we set:

col(𝑐) := (2, 𝑐, 2, 2, 1) and path(𝑣) := (𝑣in, 𝑣
(1) , 𝑣(2) , 𝑣(3) , 𝑣(4) , 𝑣out).

Recall that for any walk 𝑧 = (𝑧0, . . . , 𝑧ℓ) with color sequence 𝑐′ = (𝑐′1, . . . , 𝑐′ℓ), we use the
shorthands 𝑧... 𝑗 = (𝑧0, . . . , 𝑧 𝑗) and 𝑐′

... 𝑗
= (𝑐′1, . . . , 𝑐′𝑗) to denote the length- 𝑗 prefix of 𝑧 and its

corresponding color sequence, respectively.

CLAIM 6.9. Let 𝑣 ∈ 𝑉 and 𝑐 ∈ {1, 2}. There is a walk 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧5) with 𝑧0 = 𝑣in and color
sequence col(𝑐) in 𝐺′ if and only if 𝑐 = 𝑐(𝑣) and 𝑧 = path(𝑣).

PROOF . If 𝑐 = 𝑐(𝑣), then the walk path(𝑣) clearly has node-color sequence (2, 𝑐, 2, 2, 1). For
the converse, let 𝑧 = (𝑧0, . . . , 𝑧5) be a walk with 𝑧0 = 𝑣in and color sequence col(𝑐). We analyze
the possible values for 𝑧...𝑖 when observing the color sequence col(𝑐)...𝑖 for 𝑖 = 1, . . . 5:

We have 𝑧1 = 𝑣(1) and thus 𝑧...1 = path(𝑣)...1, since 𝑣(1) is the only neighbor of 𝑣in with color
2.
We have 𝑧2 = 𝑣in (which might happen if 𝑐 = 1), or 𝑧2 = 𝑣(2) (which can happen if and
only if 𝑧...1 = path(𝑣)...1 and 𝑐 = 𝑐(𝑣)). In the latter case, this yields 𝑧...2 = path(𝑣)...2 and
𝑐 = 𝑐(𝑣).
Since the only neighbor of 𝑣in with color 2 is 𝑣(1) , we have either that 𝑧3 = 𝑣(1) or, only if
𝑧...2 = path(𝑣)...2 and 𝑐 = 𝑐(𝑣), that 𝑧3 = 𝑣(3) . In the latter case, it holds that 𝑧...3 = path(𝑣)...3
and 𝑐 = 𝑐(𝑣).
It follows that 𝑧4 = 𝑣(2) (which might happen if 𝑐(𝑣) = 2), or 𝑧4 = 𝑣(4) (which can happen
only if 𝑧...3 = path(𝑣)...3 and 𝑐 = 𝑐(𝑣)). In the latter case, it holds that 𝑧...4 = path(𝑣)...4 and
𝑐 = 𝑐(𝑣).
Finally, since 𝑣(2) has no neighbor of color 1, we have 𝑧5 = 𝑣(5) , which can happen if and
only if 𝑧...4 = path(𝑣)...4 and 𝑐 = 𝑐(𝑣). This yields 𝑧 = path(𝑣) and 𝑐 = 𝑐(𝑣), as desired.

■

The remainder of the reduction is analogous to the proof of Lemma 6.6: Given a Directed
Node-2-CW instance 𝐺, 𝑠, 𝑡 ∈ 𝑉 and color sequence 𝑐1, . . . , 𝑐ℓ, we construct, in linear time
in the output, an Undirected Node-2-CW instance 𝐺′ with source 𝑠out, target 𝑡out and color se-
quence 1, col(𝑐1), 1, col(𝑐2), . . . , 1, col(𝑐ℓ). For any walk 𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑡 with color sequence



22 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

𝑐1, . . . , 𝑐ℓ in 𝐺, the walk 𝑣0, path(𝑣1), path(𝑣2), . . . , path(𝑣ℓ) in 𝐺′ has the desired color sequence
1, col(𝑐1), 1, col(𝑐2), . . . , 1, col(𝑐ℓ) by the above claim. Conversely, we see that for each color
substring 1, col(𝑐𝑖) any walk in 𝐺′ that starts in some 𝑢out is of the form (𝑢out, path(𝑣)) for some
𝑣 ∈ 𝑉 with (𝑢, 𝑣) ∈ 𝐸 and 𝑐(𝑣) = 𝑐𝑖 , since the only 1-colored nodes adjacent to 𝑢out lead to
some 𝑣in with (𝑢, 𝑣) ∈ 𝐸 and the above claim proves that the walk path(𝑣) must follow, which
requires 𝑐(𝑣) = 𝑐𝑖 . By repeated application of this fact, any walk in 𝐺′ with color sequence
1, col(𝑐1), 1, col(𝑐2), . . . , 1, col(𝑐ℓ) corresponds to a walk in 𝐺 with color sequence 𝑐1, . . . , 𝑐ℓ, as
desired. Note that all parameters have increased by at most a constant factor, which yields the
desired reduction. ■

Now we combine the above relations to a full equivalence.

LEMMA 6.10. The following problems are equivalent under {𝑛, 𝑚, ℓ}-preserving reductions:
NFA Acceptance with 𝑛𝑜(1) terminals,
Directed Node-2-Colored Walk,
Directed Node-𝑛-Colored Walk,
Directed Edge-2-Colored Walk,
Directed Edge-𝑛𝑜(1)-Colored Walk,
Undirected Node-2-Colored Walk,
Undirected Node-𝑛-Colored Walk,
Undirected Edge-2-Colored Walk,
Undirected Edge-𝑛𝑜(1)-Colored Walk.

PROOF . The parameter-preserving equivalence of all directed variants for parameters 𝑃 =

{𝑛, 𝑚, ℓ} follows from the following chain of reductions:

Directed Node-2-CW ≤𝑃 Directed Edge-2-CW (by Lemma 6.2)

≤𝑃 Directed Edge-𝑛𝑜(1)-CW (trivially by definition)

≤𝑃 NFA Acceptance with 𝑛𝑜(1) terminals (by Lemma 6.3),

≤𝑃 Directed Node-𝑛𝑜(1)-CW (by Lemma 6.4),

≤𝑃 Directed Node-𝑛-CW (trivially by definition),

≤𝑃 Directed Node-2-CW (by Lemma 6.5).

Note that for any 𝐶, Undirected Node-𝐶-CW ≤𝑃 Directed Node-𝐶-CW and Undirected Edge-𝐶-
CW ≤𝑃 Directed Edge-𝐶-CW follows trivially by replacing each undirected edge by directed edges
in both directions, while reductions in the other direction (for 𝐶 = 2) are given by Lemmas 6.6



23 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

and 6.8. We use these to also conclude equivalence to the undirected variants by

Undirected Node-2-CW ≤𝑃 Undirected Node-𝑛-CW (trivially by definition)

≤𝑃 Directed Node-𝑛-CW (trivially, as argued above)

≤𝑃 Directed Node-2-CW (by already established equivalence),

≤𝑃 Undirected Node-2-CW (by Lemma 6.8),

and similarly,

Undirected Edge-2-CW ≤𝑃 Undirected Edge-𝑛𝑜(1)-CW (trivially by definition)

≤𝑃 Directed Edge-𝑛𝑜(1)-CW (trivially, as argued above)

≤𝑃 Directed Node-2-CW (by already established equivalence),

≤𝑃 Undirected Edge-2-CW (by Lemma 6.6).

■

LEMMA 6.11. Let 𝛼 ∈ [1, 2], 𝛽 > 0 and 𝑐 ≥ 1. Let 𝑋,𝑌 be any problems listed in Lemma 6.10. If
problem 𝑋 restricted to instances with 𝑚 = 𝑂(𝑛𝛼) and ℓ = 𝑂(𝑛𝛽) has no 𝑂(𝑛𝑐−𝜀)-time algorithm
for any 𝜀 > 0, then the same holds for problem 𝑌 .

PROOF . Suppose for the sake of contradiction that problem 𝑌 restricted to instances with
𝑚 = 𝑂(𝑛𝛼) and ℓ = 𝑂(𝑛𝛽) has an algorithm A running in time 𝑂(𝑛𝑐−𝜀) for some 𝜀 > 0. Then
we can solve problem 𝑋 as follows. Given an instance 𝐼 of problem 𝑋 with parameters 𝑛, 𝑚, ℓ

satisfying 𝑚 = 𝑂(𝑛𝛼), ℓ = 𝑂(𝑛𝛽), run the {𝑛, 𝑚, ℓ}-preserving reduction to obtain an equivalent
instance 𝐼0 of 𝑌 with parameters 𝑛0, 𝑚0, ℓ0. Recall that 𝑛0 ≤ 𝑛1+𝑜(1) , 𝑚0 ≤ 𝑚1+𝑜(1) , ℓ0 ≤ ℓ1+𝑜(1) .
We set 𝑛1 := max{𝑛0, 𝑚

1/𝛼
0 , ℓ

1/𝛽
0 }. We add 𝑛1 − 𝑛0 isolated nodes/states to 𝐼0, resulting in an

instance 𝐼1 with parameters 𝑛1, 𝑚1 = 𝑚0, ℓ1 = ℓ0. Note that 𝑚1 ≤ 𝑛𝛼1 and ℓ1 ≤ 𝑛
𝛽
1 , so we can run

algorithm A on instance 𝐼1. Since 𝐼1 is equivalent to 𝐼0, and thus equivalent to 𝐼 , this solves the
given instance 𝐼 of problem 𝑋 .

Tracing the above inequalities, we observe that 𝑛1 ≤ 𝑛1+𝑜(1) , so the running time of
algorithm A on instance 𝐼1 is 𝑂(𝑛𝑐−𝜀1 ) = 𝑛𝑐−𝜀+𝑜(1) . The reduction runs in almost-linear time
in the input size, i.e., in time (𝑛 + 𝑚 + ℓ)1+𝑜(1) = 𝑛max{𝛼,𝛽}+𝑜(1) . Hence, the total time to solve
instance 𝐼 is 𝑂(𝑛𝑐−𝜀+𝑜(1) + 𝑛max{𝛼,𝛽}+𝑜(1)). If 𝑐 ≤ max{𝛼, 𝛽} then the conclusion that 𝑌 has no
𝑂(𝑛𝑐−𝜀)-time algorithm is trivial, so we can assume 𝑐 > max{𝛼, 𝛽}. After possibly replacing 𝜀

by min{𝜀, 𝑐 − max{𝛼, 𝛽}}, we can further bound the running time by 𝑂(𝑛𝑐−𝜀+𝑜(1)). Bounding
𝑛𝑜(1) ≤ 𝑂(𝑛𝜀/2), the running time becomes 𝑂(𝑛𝑐−𝜀/2) = 𝑂(𝑛𝑐−𝜀′) for 𝜀′ := 𝜀/2. This contradicts
the assumption that problem 𝑋 restricted to instances with 𝑚 = 𝑂(𝑛𝛼), ℓ = 𝑂(𝑛𝛽) has no
𝑂(𝑛𝑐−𝜀′′)-time algorithm for any 𝜀′′ > 0. ■

Finally we are ready to prove Lemma 2.3.



24 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

PROOF OF LEMMA 2.3 . Let 𝑋,𝑌 be any problems listed in the lemma statement. If the
lemma claim corresponding to 𝑋 holds, then in particular problem 𝑋 restricted to instances
with𝑚 = 𝑂(𝑛𝛼) and ℓ = 𝑂(𝑛𝛽) has no𝑂(𝑛𝛼+𝛽−𝜀)-time algorithm for any 𝜀 > 0. Using the {𝑛, 𝑚, ℓ}-
preserving reduction from 𝑋 to 𝑌 guaranteed by Lemma 6.10, by Lemma 6.11 we obtain the
same result for 𝑌 , i.e., problem 𝑌 restricted to instances with 𝑚 = 𝑂(𝑛𝛼) and ℓ = 𝑂(𝑛𝛽) has no
𝑂(𝑛𝛼+𝛽−𝜀)-time algorithm for any 𝜀 > 0. To arrive at the lemma claim corresponding to 𝑌 , we
need to additionally ensure 𝑚 = Ω(𝑛𝛼) (and for some 𝑌 also ℓ = Ω(𝑛𝛽)), which we achieve by
padding, as follows.

To pad the parameter 𝑚, we add 𝑛 dummy nodes (or states) and among them we add
Θ(𝑛𝛼) dummy edges (or transitions), to ensure 𝑚 = Θ(𝑛𝛼). Since these new nodes and edges are
disconnected from the old graph, they do not change the result.

For the directed variants of Colored Walk we can also pad the length ℓ: We add new nodes
𝑠0, 𝑠1 and edges (𝑠0, 𝑠1) and (𝑠1, 𝑠0) of color 1 and an edge (𝑠1, 𝑠) of color 2, and we change
the color sequence to 12⌈𝑛𝛽⌉ 2 𝑐1 . . . 𝑐ℓ. Observe that there is a walk from 𝑠0 to 𝑡 with the new
color sequence in the new graph if and only if there is a walk from 𝑠 to 𝑡 with the old color
sequence 𝑐1 . . . 𝑐ℓ in the old graph. An analogous construction can be used to pad the number
of transitions in a given NFA. Therefore, we can assume ℓ = Θ(𝑛𝛽) for the directed variants of
Colored Walk as well as for NFA Acceptance.

Since these constructions change 𝑛 only by a constant factor, we still rule out a running
time of 𝑂(𝑛𝛼+𝛽−𝜀). This finishes the proof. ■

Finally, we also show that Colored Walk is equivalent to a formulation without given source
and target nodes 𝑠, 𝑡 ∈ 𝑉 , specifically, the variant in which we are looking for any walk in 𝐺

with the prescribed color sequence 𝑐1, . . . , 𝑐ℓ. We call these formulations Directed/Undirected
Σ-Edge-Colored/Σ-Node-Colored AnyWalk.

Below, we prove a {𝑛, 𝑚, ℓ}-preserving equivalence of Undirected Edge-Colored Walk and
Undirected Edge-Colored AnyWalk (up to an additive constant in the alphabet size); the proof
of equivalence for all directed and/or node-colored variants is analogous (and in fact simpler).

LEMMA 6.12 (Equivalence of 𝑠-𝑡-version and any-walk version). The following relationships
hold:

1. Undirected Edge-2-Colored Walk ≤{𝑛,𝑚,ℓ} Undirected Edge-4-Colored AnyWalk,
2. Undirected Edge-𝜎-Colored AnyWalk ≤{𝑛,𝑚,ℓ} Undirected Edge-(𝜎 + 1)-Colored Walk.

PROOF . For 1, consider any Undirected Edge-2-Colored Walk instance 𝐺 = (𝑉, 𝐸), 𝑠, 𝑡 ∈ 𝑉 and
𝑐1, . . . , 𝑐ℓ ∈ {1, 2}. We construct a graph 𝐺′ from 𝐺 by adding two nodes 𝑠′, 𝑡′, connecting 𝑠′ to 𝑠

by an edge labeled 3 and connecting 𝑡 to 𝑡′ by an edge labeled 4. Note that any walk in 𝐺′ with
color sequence 3, 𝑐1, . . . , 𝑐ℓ, 4 must start in 𝑠′, transition to 𝑠, use a walk from 𝑠 to 𝑡 in 𝐺 with
color sequence 𝑐1, . . . , 𝑐ℓ, and finally transition to 𝑡′. Thus, 𝐺′ with color sequence 3, 𝑐1, . . . , 𝑐ℓ, 4



25 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

yields an equivalent Undirected 4-Edge-Colored AnyWalk instance. The reduction is clearly
{𝑛, 𝑚, ℓ}-preserving.

For 2, consider any Undirected Edge-2-Colored AnyWalk instance 𝐺 = (𝑉, 𝐸), 𝑐1, . . . , 𝑐ℓ ∈
[𝜎]. We construct 𝐺′ from 𝐺 by adding two nodes 𝑠′, 𝑡′ ∈ 𝑉 , connecting 𝑠′ to each node 𝑣 ∈ 𝑉 by
an edge labeled 𝜎+1, as well as connecting each node 𝑣 ∈ 𝑉 to 𝑡′ by an edge labeled 𝜎+1. Note that
there is a walk from 𝑠′ to 𝑡′ in𝐺 with color sequence (𝜎+1), 𝑐1, . . . , 𝑐ℓ, (𝜎+1) if and only if there is
any walk in 𝐺 with color sequence 𝑐1, . . . , 𝑐ℓ. Thus, we have obtained an equivalent Undirected
Edge-(𝜎 + 1)-Colored Walk instance. Since we have added only two nodes, 𝑂(𝑛) = 𝑂(𝑚) edges
and two colors to the color sequence, the reduction is {𝑛, 𝑚, ℓ}-preserving. ■

We obtain in particular that the NFA Acceptance hypothesis is equivalent to the (𝑚ℓ)1−𝑜(1)

barrier for Directed/Undirected Edge-4-Colored/Node-4-Colored AnyWalk.

7. Relation to Other Hypotheses

For the reader’s convenience, we restate the known connections between the NFA Acceptance
hypothesis and standard fine-grained hypotheses, as described in Section 1.

7.1 Tight Lower Bound for Sparse NFAs Under SETH

In the Orthogonal Vectors (OV) problem, we are given vector sets 𝐴, 𝐵 ⊆ {0, 1}𝑑 , and the task is
to determine whether there is an orthogonal pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵, i.e., for all 1 ≤ 𝑘 ≤ 𝑑 we have
𝑎[𝑘] = 0 or 𝑏[𝑘] = 0.

HYPOTHES IS 7.1 (OV Hypothesis). For no 𝜖 > 0 and 𝛽 > 0, there is an algorithm solving OV
with sets of size 𝑛 B |𝐴| and ℓ B |𝐵| = Θ(𝑛𝛽) and 𝑑 ≤ 𝑛𝑜(1) dimensions in time 𝑂((𝑛ℓ)1−𝜖) =
𝑂(𝑛(1+𝛽) (1−𝜖)).

This hypothesis is usually stated with sets of the same size, but is equivalent to the above
version, see, e.g., [16, Lemma II.1]. The hypothesis is well known to be implied by the Strong
Exponential Time Hypothesis (SETH) [69].

The following conditional lower bound can be found for different versions of the Colored
Walk problem throughout the algorithmic literature, including [10, 15, 30, 57, 18] – recall that
these turn out to be fine-grained equivalent due to Lemma 2.3.

PROPOS IT ION 7.2. If there are 𝜖, 𝛽 > 0 such that NFA Acceptance on an 𝑛-state NFA with 𝑂(𝑛)
transitions and a string of length ℓ = Θ(𝑛𝛽) over Σ = {0, 1, 2} can be solved in time 𝑂((ℓ𝑛)1−𝜖),
then the OV Hypothesis fails.

Note that this establishes a tight conditional lower bound for NFAs that are sparse.



26 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

PROOF . We give a {𝑛, ℓ}-preserving reduction from OV to NFA Acceptance. It is not difficult to
see that the claimed lower bound follows, analogously to Lemma 6.11.

Given an OV instance 𝐴, 𝐵 ⊆ {0, 1}𝑑 with 𝑛 = |𝐴|, ℓ = |𝐵|, 𝑑 = 𝑛𝑜(1) , we construct an NFA
𝑀 over Σ = {0, 1, 2} as follows: 𝑀 has initial state 𝑠, accepting state 𝑡. We write 𝐴 = {𝑎1, . . . , 𝑎𝑛}
and introduce, for every 1 ≤ 𝑖 ≤ 𝑛, the states 𝑞(𝑖)0 , . . . , 𝑞

(𝑖)
𝑑

. For every 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑑,
we add the transitions (𝑞(𝑖)

𝑘−1, 0, 𝑞
(𝑖)
𝑘
) and, if 𝑎𝑖 [𝑘] = 0, the transition (𝑞(𝑖)

𝑘−1, 1, 𝑞
(𝑖)
𝑘
). Concluding

the construction of 𝑀 , we add transitions (𝑠, 2, 𝑞(𝑖)0 ) and (𝑞(𝑖)
𝑑
, 2, 𝑡) for all 1 ≤ 𝑖 ≤ 𝑛 and the loop

transitions (𝑞, 0, 𝑞), (𝑞, 1, 𝑞), (𝑞, 2, 𝑞) for each 𝑞 ∈ {𝑠, 𝑡}.
To construct the string 𝑆, we write 𝐵 = {𝑏1, . . . , 𝑏ℓ} and define 𝑆 B 2 𝑏1 2 . . . 2 𝑏ℓ 2, where

we interpret 𝑏𝑖 as a length-𝑑 string over {0, 1}.
We argue that 𝑀 accepts 𝑆 if and only if 𝐴, 𝐵 contain an orthogonal pair: By the structure

of 𝑀 and 𝑆, the only accepting runs of 𝑀 have the following form. 𝑀 reads a prefix 2𝑏12 . . . 𝑏 𝑗−1

for some 1 ≤ 𝑗 ≤ ℓ while staying in 𝑠, then uses the transition sequence

𝑠
2→ 𝑞

(𝑖)
0

𝑏 𝑗 [1]→ 𝑞
(𝑖)
1

𝑏 𝑗 [2]→ · · ·
𝑏 𝑗 [𝑑]→ 𝑞

(𝑖)
𝑑

2→ 𝑡, (1)

for some 1 ≤ 𝑖 ≤ 𝑛, and then stays in 𝑡 while reading the suffix 𝑏 𝑗+12 . . . 𝑏ℓ2. By observing that
the transition sequence (1) exists in 𝑀 if and only if 𝑎𝑖 , 𝑏 𝑗 are orthogonal, the claim follows.

Finally, we note that this indeed yields a {𝑛, ℓ}-preserving reduction: 𝑀 has𝑂(𝑛𝑑) = 𝑛1+𝑜(1)

states, and 𝑆 has length𝑂(ℓ𝑑) = ℓ1+𝑜(1) , and they can be computed in linear time in the input. ■

7.2 Tight Combinatorial Lower Bound from Triangle and 𝒌-Clique

In the 𝑘-Clique problem, we are given an undirected, simple graph 𝐺 = (𝑉, 𝐸), and the task is to
determine whether there is a set 𝐶 ⊆ 𝑉 of 𝑘 nodes that are pairwise adjacent, i.e., {𝑢, 𝑣} ∈ 𝐸

for all 𝑢, 𝑣 ∈ 𝐶. The current state of the art for 𝑘-Clique detection is captured in the following
hypothesis, see [55, 2].

HYPOTHES IS 7.3 (𝑘-Clique hypothesis [2]).
1. Combinatorial version: For no 𝑘 ≥ 3 and 𝜖 > 0, there is a combinatorial algorithm solving

𝑘-Clique in time 𝑂(𝑛𝑘(1−𝜖)).
2. Non-combinatorial version: For no 𝑘 ≥ 3 and 𝜖 > 0, there is an algorithm solving 𝑘-Clique

in time 𝑂(𝑛𝑘(𝜔/3−𝜖)).

One can show the following 𝑘-Clique-based lower bounds, which in particular give a tight
combinatorial lower bound for dense NFAs. By Lemma 2.2, this yields a tight combinatorial
lower bound for all graph densities.

PROPOS IT ION 7.4. NFA Acceptance has the following 𝑘-Clique-based lower bounds:



27 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

1. Combinatorial algorithms: Unless the combinatorial 𝑘-Clique hypothesis fails, there are no
𝜖, 𝛽 > 0 such that there is an 𝑂((ℓ𝑛2)1−𝜖)-time combinatorial algorithm for NFA Acceptance
on an 𝑛-state NFA with Θ(𝑛2) transitions and a string of length ℓ = Θ(𝑛𝛽) over Σ = {0, 1, 2, 3}.

2. General algorithms: Unless the 𝑘-Clique hypothesis fails, there are no 𝜖, 𝛽 > 0 such that
there is an 𝑂((ℓ𝑛2)𝜔/3−𝜖)-time algorithm for NFA Acceptance on an 𝑛-state NFA with Θ(𝑛2)
transitions and a string of length ℓ = Θ(𝑛𝛽) over Σ = {0, 1, 2, 3}.

The above lower bound is implicit in the literature. Specifically, it can be obtained either
by adapting the reduction from weighted 𝑘-Clique in [11] to the unweighted case, or as a special
case of [1, Theorem I.5]14, or as an appropriate generalization of the reduction from Triangle
Detection to NFA Acceptance with ℓ ≈ 𝑛 in [57], or as an appropriate generalization of the
reduction from Triangle Detection to regular path queries with queries of length ℓ ≈ 𝑛 in [18].

For the reader’s convenience, we present a simplified proof of this fact.

PROOF OF PROPOS IT ION 7.4 . We prove the conditional lower bound for combinatorial
algorithms. The claim for general algorithms follows from the same reduction.

Assume for the sake of contradiction that there are 𝜖 > 0 and 𝛽 > 0 such that NFA
Acceptance on a 𝑞-state NFA with Θ(𝑞2) transitions and a string 𝑆 of length ℓ = Θ(𝑞𝛽) over
Σ = {0, 1, 2, 3} can be solved in time 𝑂((ℓ𝑞2)1−𝜖) = 𝑂(𝑞(2+𝛽) (1−𝜖)).

We reduce from (2𝑘+𝑘′)-clique where 𝑘 > (5+2𝛽)/𝜖 and 𝑘′ = ⌊𝛽𝑘⌋. We let𝑉 = {0, . . . , 𝑛−1},
so that we can write 𝑣 in binary as a ⌈log 𝑛⌉-length bit string, which we call the node ID of 𝑣.

For any 𝑡, let C(𝑡) denote the set of 𝑡-cliques in 𝐺. We construct the string 𝑆 as follows:

𝑆 := 2 ◦ ⃝{𝑣1,...,𝑣𝑘′ }∈C(𝑘′)
(
𝑣𝑘1 𝑣𝑘2 . . . 𝑣𝑘𝑘′ 3 𝑣𝑘1 𝑣𝑘2 . . . 𝑣𝑘𝑘′ 2

)
,

where ◦ denotes concatenation and 𝑣𝑘 for 𝑣 ∈ 𝑉 denotes the 𝑘-fold concatenation of 𝑣’s node ID.
We turn to constructing the NFA 𝑀 . First, for every {𝑢1, . . . , 𝑢𝑘} ∈ C(𝑘), we construct

a clique gadget 𝐶𝐺(𝑢1, . . . , 𝑢𝑘). This gadget will accept a string of the form 𝑣𝑘1 𝑣𝑘2 . . . 𝑣𝑘
𝑘′ for

{𝑣1, . . . , 𝑣𝑘′} ∈ C(𝑘′) if and only if {𝑢1, . . . , 𝑢𝑘, 𝑣1, . . . , 𝑣𝑘′} form a (𝑘+𝑘′)-clique. We can construct
such an NFA with Õ(𝑛) states and transitions as follows: For any node 𝑢 ∈ 𝑉 , it is straightforward
to construct an NFA 𝑁 (𝑢) of size Õ(𝑛) accepting only the node IDs of vertices 𝑣 ∈ 𝑉 with
{𝑢, 𝑣} ∈ 𝐸. We simply introduce a parallel path from starting to accepting state for every
neighbor 𝑣 of 𝑢. Since every node has at most 𝑛 neighbors and each ID is of length 𝑂(log 𝑛), the
size of 𝑁 (𝑢) is Õ(𝑛). We can now construct 𝐶𝐺(𝑢1, . . . , 𝑢𝑘) by connecting in series the following
sequence of NFAs:

(𝑁 (𝑢1) . . . 𝑁 (𝑢𝑘)) . . . (𝑁 (𝑢1) . . . 𝑁 (𝑢𝑘))︸                                                     ︷︷                                                     ︸
𝑘′ times

.

14 In the theorem, simply choose 𝛼𝑁 = 𝛼𝑛 = 𝛽.



28 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

Here, by connecting in series, we mean identifying the single accepting state of each NFA in the
sequence with the starting state of the subsequent NFA. Note that the constructed NFA accepts
𝑣𝑘1 𝑣𝑘2 . . . 𝑣𝑘

𝑘′ if and only if {𝑢𝑖 , 𝑣 𝑗} ∈ 𝐸 for every 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑘′, yielding the desired
property. Furthermore, it has (𝑘 + 𝑘′) · Õ (𝑛) = Õ(𝑛) states and transitions.

For each constructed clique gadget 𝐶𝐺(𝑢1, . . . , 𝑢𝑘) with {𝑢1, . . . , 𝑢𝑘} ∈ C(𝑘), we construct
a copy 𝐶𝐺′(𝑢1, . . . , 𝑢𝑘). We add transitions from the starting state 𝑠 of 𝑀 to the starting state of
𝐶𝐺(𝑢1, . . . , 𝑢𝑘), labeled 2, and similarly transitions from each 𝐶𝐺′(𝑢1, . . . , 𝑢𝑘) to the accepting
state 𝑡 of 𝑀 , labeled 2. We also add loop transitions (𝑞, 𝜎, 𝑞) for each 𝑞 ∈ {𝑠, 𝑡} and 𝜎 ∈ {0, 1, 2, 3}.
Finally, for every {𝑢1, . . . , 𝑢𝑘}, {𝑢′1, . . . , 𝑢′𝑘} ∈ C(𝑘) such that {𝑢1, . . . , 𝑢𝑘, 𝑢

′
1, . . . , 𝑢

′
𝑘
} form a 2𝑘-

clique in 𝐺, we add a transition from the accepting state of 𝐶𝐺(𝑢1, . . . , 𝑢𝑘) to the starting state
of 𝐶𝐺′(𝑢′1, . . . , 𝑢′𝑘), labeled 3.

By the structure of 𝑀 and 𝑆, the only accepting runs have the following form: 𝑀 reads a
prefix of 𝑆, branches on start of some substring 𝑦 = 2𝑣𝑘1 . . . , 𝑣

𝑘
𝑘′3𝑣

𝑘
1 . . . , 𝑣

𝑘
𝑘′2 with {𝑣1, . . . , 𝑣𝑘′} ∈

C(𝑘′) to some 𝐶𝐺(𝑢1, . . . , 𝑢𝑘) and some 𝐶𝐺′(𝑢′1, . . . , 𝑢′𝑘), followed by reading the remaining suffix
of 𝑆 in the accepting state 𝑡. This run exists if and only if

{𝑣1, . . . , 𝑣𝑘′ , 𝑢1, . . . , 𝑢𝑘} forms a (𝑘 + 𝑘′)-clique (so that the prefix of 𝑦 can be traversed with
𝐶𝐺(𝑢1, . . . , 𝑢𝑘)),
{𝑢1, . . . , 𝑢𝑘, 𝑢

′
1, . . . , 𝑢

′
𝑘
} forms a 2𝑘-clique (so that there is a transition from 𝐶𝐺(𝑢1, . . . , 𝑢𝑘)

to 𝐶𝐺′(𝑢′1, . . . , 𝑢′𝑘)), and
{𝑣1, . . . , 𝑣𝑘′ , 𝑢

′
1, . . . , 𝑢

′
𝑘
} forms a (𝑘 + 𝑘′)-clique (so that the suffix of 𝑦 can be traversed with

𝐶𝐺′(𝑢′1, . . . , 𝑢′𝑘)).

This is equivalent to {𝑣1, . . . , 𝑣𝑘′ , 𝑢1, . . . , 𝑢𝑘, 𝑢
′
1, . . . , 𝑢

′
𝑘
} forming a (2𝑘 + 𝑘′)-clique.

Thus, we have created an NFA Acceptance instance that is equivalent to the given (2𝑘 + 𝑘′)-
Clique instance. Note that the constructed string 𝑆 has length Õ(𝑛𝑘′), that 𝑀 has 𝑂(𝑛𝑘+2) states,
since it consists of 𝑂(𝑛𝑘) clique gadgets of size Õ(𝑛) = 𝑂(𝑛2), and that the instance can be
constructed in linear time in its size.

Note that by our choice of 𝑘′ = ⌊𝛽𝑘⌋ ≤ 𝛽𝑘, we have |𝑆 | ≤ Õ(𝑛𝑘′) ≤ 𝑂((𝑛𝑘+2)𝛽). Thus, by
appending additional 2’s to 𝑆 and isolated states to 𝑀 , we can ensure that |𝑆 | = Θ(𝑞𝛽) where
𝑞 = Θ(𝑛𝑘+2) is the number of states of 𝑀 . By adding transitions between the newly added
isolated states we can also ensure that the number of transitions is Θ(𝑞2).

Thus, our 𝑂(𝑞(2+𝛽) (1−𝜖))-time combinatorial algorithm for NFA Acceptance on 𝑞-state NFAs
with Θ(𝑞2) transitions and strings of length Θ(𝑞𝛽) solves any given 𝑘-Clique instance in time



29 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

𝑂(𝑛(𝑘+2) (2+𝛽) (1−𝜖)). Note that

(𝑘 + 2) (2 + 𝛽) (1 − 𝜖) = (2𝑘 + 𝛽𝑘) + (4 + 2𝛽) − (𝑘 + 2) (2 + 𝛽)𝜖
≤ (2𝑘 + 𝛽𝑘) + (4 + 2𝛽) − 𝑘𝜖

≤ (2𝑘 + 𝑘′) + (5 + 2𝛽) − 𝑘𝜖

< 2𝑘 + 𝑘′,

since 𝑘 > (5 + 2𝛽)/𝜖. Thus, there exists some 𝜖′ > 0 such that we can solve (2𝑘 + 𝑘′)-Clique
in time 𝑂(𝑛2𝑘+𝑘′−𝜖′) by a combinatorial algorithm, contradicting the combinatorial 𝑘-Clique
hypothesis. ■

7.3 Co-nondeterministic Algorithm

We say that a problem 𝑃𝐴 has a 𝑡(𝑛)-time verifier if 𝑃𝐴 can be solved in nondeterministic time
𝑡(𝑛) and also its complement problem 𝑃𝐴 can be solved in nondeterministic time 𝑡(𝑛), i.e., 𝑃𝐴 is
in NTIME[𝑡(𝑛)] ∩ coNTIME[𝑡(𝑛)]. Under NSETH [17], there exists no deterministic fine-grained
reduction from Satisfiability to 𝑃𝐴 that would establish a SETH-based lower bound of 𝑡(𝑛)1+𝛿

for any 𝛿 > 0.
For the reader’s convenience, we give a simple verifier for Colored Walk, and thus NFA

Acceptance. This verifier is faster than the one for the generalization to the Viterbi Path problem
designed in the arXiv version of [10], and simplifies and extends the verifier one could obtain
as a consequence of our reduction in Section 3 combined with [22].

PROPOS IT ION 7.5. Directed 2-Edge Colored Walk has an 𝑂(𝑛𝜔 + ℓ𝑛𝜔−1)-time verifier.

As a consequence, we obtain verifiers with the same running time (up to subpolynomial
factors) for all equivalent Colored Walk formulations and the NFA Acceptance problem over Σ
of size 𝑛𝑜(1) .

Thus, assuming NSETH, there cannot be any deterministic reduction from Satisfiability (or
Orthogonal Vectors) that establishes a tight conditional lower bound for NFA Acceptance with
𝛼 > 𝜔 − 1 and 𝛽 > 𝜔 − 𝛼; this includes in particular the important setting of 𝛼 = 2 and 𝛽 = 1.
This gives a justification why until now, no tight SETH-based lower bound for dense NFAs could
be established.

PROOF OF PROPOS IT ION 7.5 . Consider a Directed 2-Edge Colored Walk instance𝐺 = (𝑉, 𝐸)
with edge colors 𝑐 : 𝐸 → {1, 2}, distinguished nodes 𝑠, 𝑡 ∈ 𝑉 and color sequence 𝑐1, . . . , 𝑐ℓ. Define
𝐴𝑐 as the 𝑛 × 𝑛 matrix with

𝐴𝑐 [𝑢, 𝑣] =


1 if (𝑢, 𝑣) ∈ 𝐸 and 𝑐(𝑢, 𝑣) = 𝑐

0 otherwise.



30 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

Furthermore, define 𝑥0 ∈ {0, 1}𝑛 as the indicator vector representing the starting state 𝑠, i.e.,
𝑥0[𝑣] = 1 if and only if 𝑣 = 𝑠. For all 1 ≤ 𝑖 ≤ ℓ, we define

𝑥𝑖 = 𝐴𝑇
𝑐𝑖
· 𝑥𝑖−1, (2)

where 𝐴𝑇 denotes the transpose of 𝐴 and 𝐴𝑇 · 𝑥 denotes the Boolean matrix-vector product of
𝐴𝑇 and 𝑥. Observe that 𝑥𝑖 is the indicator vector with 𝑥𝑖 [𝑣] = 1 if and only if there exists a walk
with color sequence 𝑐1, . . . , 𝑐𝑖 from 𝑠 to 𝑣.

To obtain nondeterministic algorithms for the problem and its complement problem, we
simply need to guess 𝑥1, . . . , 𝑥ℓ, verify that they have been guessed correctly, and check whether
𝑥ℓ [𝑡] = 1, or 𝑥ℓ [𝑡] = 0, respectively.

To verify that the 𝑥𝑖 ’s have been guessed correctly, we batch the equalities (2) that we need
to check into two Boolean matrix products: Specifically, for each 𝑐 ∈ {1, 2}, let 𝑋𝑐 denote the
matrix containing all 𝑥𝑖 ’s with 𝑐𝑖 = 𝑐 as columns, and let 𝑋′

𝑐 denote the matrix containing all
𝑥𝑖−1’s with 𝑐𝑖 = 𝑐 as columns, in the same order. For each 𝑐 ∈ {1, 2}, we need to check that

𝑋𝑐 = 𝐴𝑇𝑋′
𝑐.

Note that this can be done via two (integer) matrix multiplications of two matrices with dimen-
sions 𝑛 × 𝑛 and 𝑛 × ℓ. If ℓ ≤ 𝑛, this can be done with a single square matrix multiplication,
otherwise, we can do this with ⌈ ℓ𝑛⌉ square matrix multiplications. This results in a total verifica-
tion time of 𝑂((1 + ℓ

𝑛)𝑛
𝜔) = 𝑂(𝑛𝜔 + ℓ𝑛𝜔−1), as desired. ■

8. Failed Algorithmic Approaches for NFAAcceptance

In this section we consider some natural algorithmic approaches to NFA Acceptance and discuss
why they do not falsify the NFA Acceptance hypothesis. Instead of directly working with the
NFA Acceptance problem, we consider Directed Edge-2-Colored Walk (or short: Colored Walk).
This is without loss of generality, as shown by the equivalence established in Lemma 2.3.

Algorithms Using Fast Matrix Multiplication? Note that in the special case of only one
color, i.e, 𝑐1 = . . . = 𝑐ℓ, Colored Walk can be solved by computing the ℓ-th matrix power 𝐴ℓ of
the adjacency matrix 𝐴, and then checking whether the (𝑠, 𝑡)-entry is non-zero. This takes time
𝑂(𝑛𝜔 log ℓ), which is much faster than 𝑂(𝑚ℓ) if ℓ is large.

If we could achieve the same running time 𝑂(𝑛𝜔 log ℓ) in the case of two colors, then we
would falsify the NFA Acceptance hypothesis (for any setting 𝛼 ∈ [1, 2] and 𝛽 > 𝜔 − 𝛼, by
Lemma 2.3). However, as we argue next, the natural generalization of the above algorithm to
two colors fails. Consider adjancency matrices 𝐴(1) , 𝐴(2) , where the (𝑢, 𝑣)-entry of 𝐴(𝑐) is 1 if
there is an edge of color 𝑐 from 𝑢 to 𝑣, and 0 otherwise. Then we would want to compute the
matrix 𝐴(𝑐1)𝐴(𝑐2) · · · 𝐴(𝑐ℓ) and check whether its (𝑠, 𝑡)-entry is non-zero, to solve Directed Edge-2-



31 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Colored Walk. However, in the worst case no two subsequences of 𝑐1, . . . , 𝑐ℓ of length log(ℓ) are
equal, and thus we cannot save more than log-factors by precomputing products of the form
𝐴(𝑐𝑖) · · · 𝐴(𝑐 𝑗) – in contrast to the special case of only one color. Hence, we are essentially forced
to compute the product 𝐴(𝑐1)𝐴(𝑐2) · · · 𝐴(𝑐ℓ) one-by-one over ℓ steps, resulting in time 𝑂(𝑛𝜔ℓ).
This is worse than the simple 𝑂(𝑚ℓ)-time algorithm. In other words, the natural generalization
of the matrix-multiplication-based algorithm for one color fails for two colors.

Parallel Algorithms for Colored Walk The matrix multiplication approach sketched above
is nevertheless useful to design parallel algorithms for Colored Walk. Indeed, matrix multipli-
cation can be easily parallelized, e.g., on the PRAM one can multiply two 𝑛 × 𝑛 matrices with
depth 𝑂(log 𝑛) and work 𝑂(𝑛3). To compute the product 𝐴(𝑐1)𝐴(𝑐2) · · · 𝐴(𝑐ℓ) we can recursively
compute the product 𝐴(𝑐1) · · · 𝐴(𝑐⌊ℓ/2⌋) and recursively compute the product 𝐴(𝑐⌊ℓ/2⌋+1) · · · 𝐴(𝑐ℓ)

and then multiply the results. If we perform both recursive calls in parallel, then we obtain a
PRAM algorithm with depth 𝑂(log(𝑛) log(ℓ)) and work 𝑂(𝑛3ℓ). From the final matrix product
𝐴(𝑐1) · · · 𝐴(𝑐ℓ) we can then read off the answer as the (𝑠, 𝑡)-entry. This shows that Colored Walk
(and in a similar way also NFA Acceptance) has an efficient parallel algorithm. Note that the
total work 𝑂(𝑛3ℓ) of this PRAM algorithm is much more than 𝑂(𝑚ℓ), and hence this parallel
algorithm does not violate the NFA Acceptance hypothesis.

Inherently Sequential? The above parallel algorithm has much higher work than the sequen-
tial time complexity 𝑂(𝑚ℓ). It thus seems plausible that any parallel algorithm for Colored Walk
with work Õ(𝑚ℓ) has depth at least ℓ1−𝑜(1) . In other words, it is plausible that work-optimal
algorithms for Colored Walk are inherently sequential.

This intuition is consistent with our current knowledge of the problem. However, there
are no tools available to prove this intuition, even conditionally. The only tool that we have to
show that certain parallel algorithms are unlikely for a problem 𝑋 is to show that 𝑋 is P-hard.
However, since we have seen a PRAM algorithm with polylogarithmic depth for Colored Walk, it
is very unlikely that Colored Walk is P-hard, and thus this tool is not applicable for this problem.
Hence, currently there are no tools to provide evidence for the intuition that work-optimal
algorithms for Colored Walk are inherently sequential.

9. Conclusion

In this work, we have posed the NFA Acceptance hypothesis, discussed implications of a proof or
refutation and considered its connections to standard assumptions in fine-grained complexity
theory. At the very least, the NFA Acceptance hypothesis should be understood as a technical
challenge towards progress for many interesting problems. Specifically, without refuting it, we
cannot expect:



32 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

Context-Free Language Reachability in time 𝑂(𝑛3−𝜖),
the Word Break problem in time 𝑂(𝑚 + 𝑛𝑚1/3−𝜖),
approximating the Viterbi path in time 𝑂((𝑚ℓ)1−𝜖),
pattern matching in string-labeled graphs in time 𝑂((𝑚ℓ)1−𝜖),
regular path queries in graph databases in time 𝑂(( |𝑞| · 𝑚)1−𝜖), and
polynomial improvements for any data structure problems and dynamic problems with
tight OMv-hardness, including problems from graph algorithms [35, 27, 4, 36], string
algorithms [24, 41, 23], computational geometry [28, 45], linear algebra [39], formal
languages [33], and database theory [13, 18, 40].

We leave the following open problems:
Refute the NFA Acceptance hypothesis or prove that it is implied by any standard fine-
grained hypothesis.
Prove an equivalence of NFA Acceptance and Directed 𝑛𝛾-Edge-Colored Walk for any 𝛾 > 0,
ideally for all 0 < 𝛾 ≤ 2.
Prove an equivalence of NFA Acceptance with and without 𝜀-transitions for densities
𝑚 = Θ(𝑛𝛼) with 1 ≤ 𝛼 < 2.

Acknowledgements We thank Virginia Vassilevska Williams, Thatchaphol Saranurak, and
Rupak Majumdar for helpful discussions on the NFA Acceptance hypothesis. We also thank
Thatchaphol Saranurak for popularizing this hypothesis by tweeting the open problem on
Colored Walk and its implication for OMv, crediting one of the authors of this paper.

References
[1] Amir Abboud, Arturs Backurs, Karl Bringmann, and
Marvin Künnemann. Fine-grained complexity of
analyzing compressed data: quantifying
improvements over decompress-and-solve. Proc.
58th IEEE Annual Symposium on Foundations of
Computer Science (FOCS 2017), pages 192–203.
IEEE Computer Society, 2017. DOI (5, 27)

[2] Amir Abboud, Arturs Backurs, and
Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is Valiant’s parser. SIAM
J. Comput. 47(6):2527–2555, 2018. DOI (5, 6, 26)

[3] Amir Abboud and Karl Bringmann. Tighter
connections between Formula-SAT and shaving
logs. Proc. 45th International Colloquium on
Automata, Languages, and Programming (ICALP
2018), volume 107 of LIPIcs, 8:1–8:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
DOI (5)

[4] Amir Abboud and Søren Dahlgaard. Popular
conjectures as a barrier for dynamic planar graph
algorithms. Proc. 57th Annual Symposium on
Foundations of Computer Science (FOCS 2016),
pages 477–486. IEEE Computer Society, 2016. DOI
(9, 15, 32)

[5] Alfred V. Aho, John E. Hopcroft, and
Jeffrey D. Ullman. Time and tape complexity of
pushdown automaton languages. Inf. Control.
13(3):186–206, 1968. DOI (8)

[6] Josh Alman and Virginia Vassilevska Williams. A
refined laser method and faster matrix
multiplication. TheoretiCS, 3, 2024. DOI (6)

[7] Amihood Amir, Moshe Lewenstein, and
Noa Lewenstein. Pattern matching in hypertext. J.
Algorithms, 35(1):82–99, 2000. DOI (3)

[8] Marcelo Arenas, Luis Alberto Croquevielle,
Rajesh Jayaram, and Cristian Riveros. Counting
the answers to a query. SIGMOD Rec. 51(3):6–17,
2022. DOI (3)

https://doi.org/10.1109/FOCS.2017.26
https://doi.org/10.1137/16M1061771
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.1109/FOCS.2016.58
https://doi.org/10.1016/S0019-9958(68)91087-5
https://doi.org/10.46298/THEORETICS.24.21
https://doi.org/10.1006/jagm.1999.1063
https://doi.org/10.1145/3572751.3572753


33 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

[9] Arturs Backurs, Nishanth Dikkala, and
Christos Tzamos. Tight hardness results for
maximum weight rectangles. Proc. 43rd
International Colloquium on Automata, Languages,
and Programming (ICALP 2016), volume 55 of
LIPIcs, 81:1–81:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. DOI (8)

[10] Arturs Backurs and Piotr Indyk.Which regular
expression patterns are hard to match? Proc. 57th
Annual Symposium on Foundations of Computer
Science (FOCS 2016), pages 457–466. IEEE
Computer Society, 2016. DOI (5, 6, 9, 25, 29)

[11] Arturs Backurs and Christos Tzamos. Improving
Viterbi is hard: better runtimes imply faster clique
algorithms. Proc. 34th International Conference on
Machine Learning (ICML 2017), volume 70 of
Proceedings of Machine Learning Research,
pages 311–321. PMLR, 2017. URL (3–5, 8, 27)

[12] Pablo Barceló. Querying graph databases. Proc.
32nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS 2013),
pages 175–188. ACM, 2013. DOI (3)

[13] Christoph Berkholz, Jens Keppeler, and
Nicole Schweikardt. Answering conjunctive
queries under updates. Proc. 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS 2017), pages 303–318.
ACM, 2017. DOI (9, 15, 32)

[14] Karl Bringmann, Allan Grønlund,
Marvin Künnemann, and Kasper Green Larsen. The
NFA acceptance hypothesis: non-combinatorial
and dynamic lower bounds. 15th Innovations in
Theoretical Computer Science Conference, ITCS
2024, January 30 to February 2, 2024, Berkeley,
CA, USA, volume 287 of LIPIcs, 22:1–22:25. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024.
DOI (1)

[15] Karl Bringmann, Allan Grønlund, and
Kasper Green Larsen. A dichotomy for regular
expression membership testing. Proc. 58th Annual
Symposium on Foundations of Computer Science
(FOCS 2017), pages 307–318. IEEE Computer
Society, 2017. DOI (5, 9, 13, 25)

[16] Karl Bringmann and Marvin Künnemann. Quadratic
conditional lower bounds for string problems and
dynamic time warping. Proc. 56th Annual
Symposium on Foundations of Computer Science,
(FOCS 2015), pages 79–97. IEEE Computer Society,
2015. DOI (25)

[17] Marco L. Carmosino, Jiawei Gao,
Russell Impagliazzo, Ivan Mihajlin,
Ramamohan Paturi, and Stefan Schneider.
Nondeterministic extensions of the Strong
Exponential Time Hypothesis and consequences
for non-reducibility. Proc. 2016 ACM Conference on
Innovations in Theoretical Computer Science (ITCS
2016), pages 261–270. ACM, 2016. DOI (6, 29)

[18] Katrin Casel and Markus L. Schmid. Fine-grained
complexity of regular path queries. Log. Methods
Comput. Sci. 19(4), 2023. DOI (3–5, 9, 15, 25, 27,
32)

[19] Timothy M. Chan, Virginia Vassilevska Williams,
and Yinzhan Xu. Algorithms, reductions and
equivalences for small weight variants of all-pairs
shortest paths. Proc. 48th International Colloquium
on Automata, Languages, and Programming (ICALP
2021), volume 198 of LIPIcs, 47:1–47:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
DOI (7)

[20] Krishnendu Chatterjee, Bhavya Choudhary, and
Andreas Pavlogiannis. Optimal Dyck reachability
for data-dependence and alias analysis. Proc. ACM
Program. Lang. 2(POPL):30:1–30:30, 2018. DOI
(7, 8, 12)

[21] Swarat Chaudhuri. Subcubic algorithms for
recursive state machines. Proc. 35th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, (POPL 2008),
pages 159–169. ACM, 2008. DOI (8, 12)

[22] Dmitry Chistikov, Rupak Majumdar, and
Philipp Schepper. Subcubic certificates for CFL
reachability. Proc. ACM Program. Lang.
6(POPL):1–29, 2022. DOI (6, 8, 29)

[23] Raphaël Clifford, Pawel Gawrychowski,
Tomasz Kociumaka, Daniel P. Martin, and
Przemyslaw Uznanski. The dynamic k-mismatch
problem. Proc. 33rd Annual Symposium on
Combinatorial Pattern Matching (CPM 2022),
volume 223 of LIPIcs, 18:1–18:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. DOI (9, 15,
32)

[24] Raphaël Clifford, Allan Grønlund,
Kasper Green Larsen, and Tatiana Starikovskaya.
Upper and lower bounds for dynamic data
structures on strings. Proc. 35th Symposium on
Theoretical Aspects of Computer Science (STACS
2018), volume 96 of LIPIcs, 22:1–22:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
DOI (9, 15, 32)

[25] Don Coppersmith and Shmuel Winograd. Matrix
multiplication via arithmetic progressions. Journal
on Symbolic Computation, 9(3):251–280, 1990.
DOI (6)

[26] Artur Czumaj and Andrzej Lingas. Finding a
heaviest vertex-weighted triangle is not harder
than matrix multiplication. SIAM J. Comput.
39(2):431–444, 2009. DOI (7)

[27] Søren Dahlgaard. On the hardness of partially
dynamic graph problems and connections to
diameter. Proc. 43rd International Colloquium on
Automata, Languages, and Programming (ICALP
2016), volume 55 of LIPIcs, 48:1–48:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
DOI (9, 15, 32)

[28] Justin Dallant and John Iacono. Conditional lower
bounds for dynamic geometric measure problems.
Proc. 30th Annual European Symposium on
Algorithms (ESA 2022), volume 244 of LIPIcs,
39:1–39:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. DOI (9, 15, 32)

[29] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster
matrix multiplication via asymmetric hashing. Proc.
64th IEEE Annual Symposium on Foundations of
Computer Science (FOCS 2023), pages 2129–2138.
IEEE, 2023. DOI (6)

https://doi.org/10.4230/LIPIcs.ICALP.2016.81
https://doi.org/10.1109/FOCS.2016.56
http://proceedings.mlr.press/v70/backurs17a.html
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPICS.ITCS.2024.22
https://doi.org/10.4230/LIPICS.ITCS.2024.22
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1145/2840728.2840746
https://doi.org/10.46298/LMCS-19(4:15)2023
https://doi.org/10.4230/LIPIcs.ICALP.2021.47
https://doi.org/10.4230/LIPIcs.ICALP.2021.47
https://doi.org/10.1145/3158118
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1145/3498702
https://doi.org/10.4230/LIPIcs.CPM.2022.18
https://doi.org/10.4230/LIPIcs.STACS.2018.22
https://doi.org/10.4230/LIPIcs.STACS.2018.22
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1137/070695149
https://doi.org/10.4230/LIPIcs.ICALP.2016.48
https://doi.org/10.4230/LIPIcs.ICALP.2016.48
https://doi.org/10.4230/LIPIcs.ESA.2022.39
https://doi.org/10.1109/FOCS57990.2023.00130


34 / 35 K. Bringmann, A. Grønlund, M. Künnemann, K. G. Larsen

[30] Massimo Equi, Veli Mäkinen, Alexandru I. Tomescu,
and Roberto Grossi. On the complexity of string
matching for graphs. ACM Trans. Algorithms,
19(3):21:1–21:25, 2023. DOI (3, 5, 25)

[31] Pawel Gawrychowski and Przemyslaw Uznanski.
Towards unified approximate pattern matching for
Hamming and 𝐿1 distance. Proc. 45th International
Colloquium on Automata, Languages, and
Programming (ICALP 2018), volume 107 of LIPIcs,
62:1–62:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. DOI (7)

[32] Daniel Gibney, Gary Hoppenworth, and
Sharma V. Thankachan. Simple reductions from
Formula-SAT to pattern matching on labeled
graphs and subtree isomorphism. Proc. 4th
Symposium on Simplicity in Algorithms (SOSA
2021), pages 232–242. SIAM, 2021. DOI (5)

[33] Daniel Gibney and Sharma V. Thankachan. Text
indexing for regular expression matching.
Algorithms, 14(5):133, 2021. DOI (9, 15, 32)

[34] Nevin Heintze and David A. McAllester. On the
cubic bottleneck in subtyping and flow analysis.
Proc. 12th Annual Symposium on Logic in Computer
Science (LICS 1997), pages 342–351. IEEE
Computer Society, 1997. DOI (8)

[35] Monika Henzinger, Sebastian Krinninger,
Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic
problems via the online matrix-vector
multiplication conjecture. Proc. 47th Annual
Symposium on Theory of Computing (STOC 2015),
pages 21–30. ACM, 2015. DOI (7, 9, 15, 32)

[36] Monika Henzinger and Xiaowei Wu. Upper and
lower bounds for fully retroactive graph problems.
Proc. 17th International Symposium on Algorithms
and Data Structures (WADS 2021), volume 12808 of
Lecture Notes in Computer Science,
pages 471–484. Springer, 2021. DOI (9, 15, 32)

[37] Jianyu Huang, Tyler M. Smith, Greg M. Henry, and
Robert A. van de Geijn. Strassen’s algorithm
reloaded. Proc. International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC 2016), pages 690–701. IEEE Computer
Society, 2016. DOI (7)

[38] Chirag Jain, Haowen Zhang, Yu Gao, and
Srinivas Aluru. On the complexity of
sequence-to-graph alignment. J. Comput. Biol.
27(4):640–654, 2020. DOI (3)

[39] Shunhua Jiang, Binghui Peng, and Omri Weinstein.
The complexity of dynamic least-squares
regression. Proc. 64th Annual Symposium on
Foundations of Computer Science (FOCS 2023),
pages 1605–1627. IEEE, 2023. DOI (9, 15, 32)

[40] Ahmet Kara, Milos Nikolic, Dan Olteanu, and
Haozhe Zhang. Conjunctive queries with free
access patterns under updates. Proc. 26th
International Conference on Database Theory (ICDT
2023), volume 255 of LIPIcs, 17:1–17:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
DOI (9, 15, 32)

[41] Dominik Kempa and Tomasz Kociumaka. Dynamic
suffix array with polylogarithmic queries and
updates. Proc. 54th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2022),
pages 1657–1670. ACM, 2022. DOI (9, 15, 32)

[42] Paraschos Koutris and Shaleen Deep. The
fine-grained complexity of CFL reachability. Proc.
ACM Program. Lang. 7(POPL):1713–1739, 2023.
DOI (8)

[43] Marvin Künnemann. A tight (non-combinatorial)
conditional lower bound for Klee’s measure
problem in 3D. Proc. 63rd Annual Symposium on
Foundations of Computer Science (FOCS 2022),
pages 555–566. IEEE, 2022. DOI (8)

[44] Kasper Green Larsen and R. Ryan Williams. Faster
online matrix-vector multiplication. Proc. 28th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pages 2182–2189. SIAM,
2017. DOI (9, 15)

[45] Joshua Lau and Angus Ritossa. Algorithms and
hardness for multidimensional range updates and
queries. Proc. 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021),
volume 185 of LIPIcs, 35:1–35:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. DOI (9,
15, 32)

[46] François Le Gall. Powers of tensors and fast matrix
multiplication. Proc. 39th International Symposium
on Symbolic and Algebraic Computation (ISSAC’14),
pages 296–303, 2014. DOI (6)

[47] Lillian Lee. Fast context-free grammar parsing
requires fast boolean matrix multiplication. J. ACM,
49(1):1–15, 2002. DOI (6)

[48] Andrea Lincoln, Adam Polak, and
Virginia Vassilevska Williams. Monochromatic
triangles, intermediate matrix products, and
convolutions. Proc. 11th Innovations in Theoretical
Computer Science Conference (ITCS 2020),
volume 151 of LIPIcs, 53:1–53:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. DOI (7)

[49] Andrea Lincoln, Virginia Vassilevska Williams, and
R. Ryan Williams. Tight hardness for shortest
cycles and paths in sparse graphs. Proc. 29th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018), pages 1236–1252. SIAM,
2018. DOI (8)

[50] Udi Manber and Sun Wu. Approximate string
matching with arbitrary costs for text and
hypertext. Proc. International Workshop on
Advances in Structural and Syntactic Pattern
Recognition, pages 22–33, 1992. DOI (3)

[51] David Melski and Thomas W. Reps.
Interconvertibility of a class of set constraints and
context-free-language reachability. Theor. Comput.
Sci. 248(1-2):29–98, 2000. DOI (8)

[52] Alberto O. Mendelzon and Peter T. Wood. Finding
regular simple paths in graph databases. SIAM J.
Comput. 24(6):1235–1258, 1995. DOI (3)

[53] Gonzalo Navarro. Improved approximate pattern
matching on hypertext. Theor. Comput. Sci.
237(1-2):455–463, 2000. DOI (3)

https://doi.org/10.1145/3588334
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.3390/a14050133
https://doi.org/10.1109/LICS.1997.614960
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1007/978-3-030-83508-8_34
https://doi.org/10.1109/SC.2016.58
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1109/FOCS57990.2023.00097
https://doi.org/10.4230/LIPIcs.ICDT.2023.17
https://doi.org/10.4230/LIPIcs.ICDT.2023.17
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1145/3571252
https://doi.org/10.1145/3571252
https://doi.org/10.1109/FOCS54457.2022.00059
https://doi.org/10.1137/1.9781611974782.142
https://doi.org/10.4230/LIPIcs.ITCS.2021.35
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/505241.505242
https://doi.org/10.4230/LIPIcs.ITCS.2020.53
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1142/9789812797919_0002
https://doi.org/10.1016/S0304-3975(00)00049-9
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1016/S0304-3975(99)00333-3


35 / 35 The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

[54] Radford Neal. The computational complexity of
taxonomic inference. Unpublished manuscript,
1989. Unpublished manuscript (8)

[55] Jaroslav Nešetřil and Svatopluk Poljak. On the
complexity of the subgraph problem. eng.
Commentationes Mathematicae Universitatis
Carolinae, 026(2):415–419, 1985. URL (5, 26)

[56] Mihai Patrascu. Towards polynomial lower bounds
for dynamic problems. Proc. 42nd ACM Symposium
on Theory of Computing (STOC 2010),
pages 603–610. ACM, 2010. DOI (7)

[57] Aaron Potechin and Jeffrey O. Shallit. Lengths of
words accepted by nondeterministic finite
automata. Inf. Process. Lett. 162:105993, 2020.
DOI (5, 6, 25, 27)

[58] Wojciech Rytter. Fast recognition of pushdown
automaton and context-free languages. Inf. Control.
67(1-3):12–22, 1985. DOI (8)

[59] Philipp Schepper. Fine-grained complexity of
regular expression pattern matching and
membership. Proc. 28th Annual European
Symposium on Algorithms (ESA 2020), volume 173
of LIPIcs, 80:1–80:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. DOI (5)

[60] Volker Strassen. Gaussian elimination is not
optimal. Numerische Mathematik, 13(4):354–356,
August 1969. DOI (6)

[61] Leslie G. Valiant. General context-free recognition
in less than cubic time. J. Comput. Syst. Sci.
10(2):308–315, 1975. DOI (6, 7)

[62] Jan van den Brand, Danupon Nanongkai, and
Thatchaphol Saranurak. Dynamic matrix inverse:
improved algorithms and matching conditional
lower bounds. Proc. 60th IEEE Annual Symposium
on Foundations of Computer Science (FOCS 2019),
pages 456–480. IEEE Computer Society, 2019. DOI
(9)

[63] Virginia Vassilevska Williams. Multiplying matrices
faster than Coppersmith-Winograd. Proc. 44th
Annual ACM Symposium on Theory of Computing
Conference (STOC’12), pages 887–898, 2012. DOI
(6)

[64] Virginia Vassilevska Williams. On some
fine-grained questions in algorithms and
complexity. Proceedings of the International
Congress of Mathematicians, ICM’18,
pages 3447–3487, 2018. (6)

[65] Virginia Vassilevska Williams and R. Ryan Williams.
Subcubic equivalences between path, matrix, and
triangle problems. J. ACM, 65(5):27:1–27:38, 2018.
DOI (8)

[66] Virginia Vassilevska Williams and Yinzhan Xu.
Monochromatic triangles, triangle listing and APSP.
Proc. 61st IEEE Annual Symposium on Foundations
of Computer Science (FOCS 2020), pages 786–797.
IEEE, 2020. DOI (7)

[67] Virginia Vassilevska Williams, Yinzhan Xu,
Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. Proc.
2024 ACM-SIAM Symposium on Discrete
Algorithms (SODA 2024), pages 3792–3835. SIAM,
2024. DOI (6)

[68] Andrew J. Viterbi. Error bounds for convolutional
codes and an asymptotically optimum decoding
algorithm. IEEE Trans. Inf. Theory, 13(2):260–269,
1967. DOI (3)

[69] Ryan Williams. A new algorithm for optimal
2-constraint satisfaction and its implications.
Theor. Comput. Sci. 348(2-3):357–365, 2005. DOI
(25)

[70] Mihalis Yannakakis. Graph-theoretic methods in
database theory. Proc. 9th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 1990), pages 230–242.
ACM Press, 1990. DOI (8, 12)

2024 :22
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Karl Bringmann, Allan Grønlund, Marvin Künnemann, Kasper Green Larsen.

http://eudml.org/doc/17394
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1016/j.ipl.2020.105993
https://doi.org/10.1016/j.ipl.2020.105993
https://doi.org/10.1016/S0019-9958(85)80024-3
https://doi.org/10.4230/LIPIcs.ESA.2020.80
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1109/FOCS46700.2020.00078
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1145/298514.298576

	Introduction
	The Many Guises of the NFA Acceptance Problem
	Support for the Hypothesis
	Evidence Against the Hypothesis
	Applications I: Non-combinatorial Lower Bounds
	Application II: A Static Reason for Dynamic Hardness

	Equivalent formulations: Colored Walk Framework
	Colored Walk Framework

	Hardness of CFL Reachability
	Hardness of Word Break
	Hardness of OMv
	Equivalences of Colored Walk
	Relation to Other Hypotheses
	Tight Lower Bound for Sparse NFAs Under SETH
	Tight Combinatorial Lower Bound from Triangle and k-Clique
	Co-nondeterministic Algorithm

	Failed Algorithmic Approaches for NFA Acceptance
	Conclusion
	References

