KIT | KIT-Bibliothek | Impressum | Datenschutz

Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality

Künnemann, Marvin; Mazowiecki, Filip; Schütze, Lia; Sinclair-Banks, Henry; Węgrzycki, Karol; Etessami, Kousha [Hrsg.]; Feige, Uriel [Hrsg.]; Puppis, Gabriele [Hrsg.]

Abstract:

Seminal results establish that the coverability problem for Vector Addition Systems with States (VASS) is in EXPSPACE (Rackoff, '78) and is EXPSPACE-hard already under unary encodings (Lipton, '76). More precisely, Rosier and Yen later utilise Rackoff’s bounding technique to show that if coverability holds then there is a run of length at most $n^{2^𝒪(d log d)}$, where d is the dimension and n is the size of the given unary VASS. Earlier, Lipton showed that there exist instances of coverability in d-dimensional unary VASS that are only witnessed by runs of length at least $n^{2^Ω(d)}$. Our first result closes this gap. We improve the upper bound by removing the twice-exponentiated log(d) factor, thus matching Lipton’s lower bound. This closes the corresponding gap for the exact space required to decide coverability. This also yields a deterministic $n^{2^𝒪(d)}$-time algorithm for coverability. Our second result is a matching lower bound, that there does not exist a deterministic $n^{2^o(d)}$-time algorithm, conditioned upon the Exponential Time Hypothesis.
When analysing coverability, a standard proof technique is to consider VASS with bounded counters. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175554
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.ICALP.2023.131
Scopus
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 05.07.2023
Sprache Englisch
Identifikator ISBN: 978-3-95977-278-5
ISSN: 1868-8969
KITopen-ID: 1000175554
Erschienen in 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Veranstaltung 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), Paderborn, Deutschland, 10.07.2023 – 14.07.2023
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 131:1-131:20
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 261
Schlagwörter Vector Addition System, Coverability, Reachability, Fine-Grained Complexity, Exponential Time Hypothesis, k-Cycle Hypothesis, Hyperclique Hypothesis
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page