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Abstract
Klee’s measure problem (computing the volume of the union of n axis-parallel boxes in Rd) is
well known to have n

d
2 ±o(1)-time algorithms (Overmars, Yap, SICOMP’91; Chan FOCS’13). Only

recently, a conditional lower bound (without any restriction to “combinatorial” algorithms) could be
shown for d = 3 (Künnemann, FOCS’22). Can this result be extended to a tight lower bound for
dimensions d ≥ 4?

In this paper, we formalize the technique of the tight lower bound for d = 3 using a combinatorial
object we call prefix covering design. We show that these designs, which are related in spirit to
combinatorial designs, directly translate to conditional lower bounds for Klee’s measure problem
and various related problems. By devising good prefix covering designs, we give the following lower
bounds for Klee’s measure problem in Rd, the depth problem for axis-parallel boxes in Rd, the
largest-volume/max-perimeter empty (anchored) box problem in R2d, and related problems:

Ω(n1.90476) for d = 4,
Ω(n2.22222) for d = 5,
Ω(nd/3+2

√
d/9−o(

√
d)) for general d,

assuming the 3-uniform hyperclique hypothesis. For Klee’s measure problem and the depth problem,
these bounds improve previous lower bounds of Ω(n1.777...), Ω(n2.0833...) and Ω(nd/3+1/3+Θ(1/d))
respectively.

Our improved prefix covering designs were obtained by (1) exploiting a computer-aided search
using problem-specific insights as well as SAT solvers, and (2) showing how to transform combinatorial
covering designs known in the literature to strong prefix covering designs. In contrast, we show that
our lower bounds are close to best possible using this proof technique.
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1 Introduction

For various problems in computational geometry, the best known algorithms display a running
time of the form nΘ(d) where d denotes the number of dimensions: Klee’s measure problem
and the depth problem for axis-parallel boxes in Rd can be solved in time nd/2±o(1) [31, 12, 13],
a recent algorithm [15] computes the largest-volume empty axis-parallel box among a given set
of points in time Õ(n(5d+2)/6), the star discrepancy can be computed in time O(nd/2+1) [17],
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36:2 Higher Lower Bounds for Klee’s Measure Problem & Related Problems in Rd, d ≥ 4

the maximum-weight rectangle problem can be solved in time O(nd) [6], to name few examples.
Indeed, for all listed problems, it can be shown [12, 20, 6] that an no(d)-time algorithm
would refute the Exponential Time Hypothesis (ETH). Thus, the subsequent challenge is
to determine running times nf(d) with f(d) = Θ(d) that are optimal under fine-grained
complexity assumptions. By the nature of these running times (which quickly increase with
d), it is particularly interesting to determine optimal time bounds for small dimensions such
as d ∈ {2, 3, 4, 5}.

For some of these problems, strong conditional lower bounds are known: For Klee’s
measure problem and the depth problem, Chan [12] gives a tight conditional lower bound of
nd/2−o(1) for combinatorial algorithms – roughly speaking, algorithms that avoid the algebraic
techniques underlying fast matrix multiplication algorithms. When considering general
algorithms (not only combinatorial ones), tight lower bounds are only known for weighted
problems or small dimensions: For the weighted depth problem and the maximum-weight
rectangle problem, tight lower bounds of nd/2−o(1) and nd−o(1), respectively, can be shown
under the Weighted k-Clique Hypothesis [5]. Showing strong lower bounds for the simpler,
unweighted problems appears to be more difficult, however. For Klee’s measure problem and
the unweighted depth problem, a recent result shows an nd/(3−3/d)−o(1) conditional lower
bound under the 3-uniform hyperclique hypothesis [27], which yields a tight bound for d = 3,
but not for d ≥ 4.

Thus, the motivating question of this paper is the following:

Can we prove conditional optimality of known algorithms for Klee’s measure problem, the
depth problem and related problems for small dimensions d ≥ 4, such as d ∈ {4, 5, 6}?

1.1 Our Results
As a starting point of this work, we formalize the approach used in [27] to obtain tight
hardness for d = 3. To this end, we define the following combinatorial object, which we term
prefix covering designs (due to its conceptual similarity to certain combinatorial designs1).

In the following definition, let
(

S
t

)
denote the set of t-element subsets of S.

▶ Definition 1. Let d, K, α ∈ N with d ≥ 3 and K ≥ 4. A (d, K, α)-prefix covering design
consists of d sequences s1, . . . , sd over [K] with the following properties.

Triplet condition: For every {a, b, c} ∈
([K]

3
)
, there are i, i′, i′′ ∈ [d] and ℓ, ℓ′, ℓ′′ ∈ N0

such that
each element of {a, b, c} is contained in si[..ℓ], si′ [..ℓ′], or si′′ [..ℓ′′]. (Here, s[..ℓ] denotes
the prefix of the first ℓ elements of s.)
ℓ + ℓ′ + ℓ′′ ≤ α.

Singleton condition: For every x ∈ [K] occurring more than once in s1, . . . , sd, define
ℓmin(x) (ℓmax(x)) as the minimal (maximal) ℓ such that there is some i with si[ℓ] = x.
Then we have

ℓmin(x) + ℓmax(x) ≤ α + 1.

As an example, it is straightforward to see that for any d, the sequences s1 = (1, d+1), s2 =
(2, d + 1), . . . , sd = (d, d + 1) constitute a (d, d + 1, 3) prefix covering design.2

1 In fact, we will later establish a formal connection between these concepts.
2 For the triplet condition, note that the triplet {a, b, c} ∈

([d]
3

)
is contained in the prefixes

sa[..1], sb[..1], sc[..1] of total length α = 3 and that any triplet {a, b, d + 1} with {a, b} ∈
([d]

2

)
is
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Prefix covering designs constitute the core of the proof technique used in [27]. Specifically,
we show that the existence of good prefix covering designs directly leads to strong lower
bounds for several problems (these reductions are implicit in [27] or adapted to prefix covering
designs from [20]).

▶ Proposition 2. Let d, K, α ∈ N such that there exists a (d, K, α) prefix covering design.
Unless the 3-uniform Hyperclique Hypothesis fails, there is no ε > 0 such that there exists an
O(n K

α −ε)-time algorithm for any of the following problems:
Klee’s Measure problem in Rd,
Depth problem in Rd,
Largest-Volume Empty Anchored Box problem in R2d,
Maximum-Perimeter Empty Anchored Box problem in R2d.

Beyond these problems, similar reductions are also possible for related problems such as
the Bichromatic Box problem in R2d (given sets of red and blue points, find the axis-parallel
box containing the maximum number of blue points while avoiding any red point) and
various related discrepancy problems such as the Star Discrepancy, see [20]. Note that there
is a blow-up in the dimension for the Empty Anchored Box problems, which turns out to
be unavoidable assuming the 3-uniform hyperclique hypothesis, as there are O(n(1/2−ε)d)-
algorithms for these problems (see below). At this point, we only give a rough sketch of the
reduction, with the full proof deferred to the full version of this paper [22], where we also
formally define all listed problems and discuss the 3-uniform hyperclique hypothesis.

Proof sketch for Proposition 2. For each problem, we give a reduction from the 3-uniform
hyperclique problem: Given a 3-uniform hypergraph G = (V, E) with V = V (1) ∪ · · · ∪ V (K)

and |V (1)| = · · · = |V (K)| = n, determine whether there are v(1) ∈ V (1), . . . , v(K) ∈ V (K)

that form a clique in G. The 3-uniform hyperclique hypothesis states that this problem
requires running time nK−o(1).

Intuitively, a special case of each of the problems listed above is to find an axis-parallel box
Q satisfying certain properties. More specifically, any candidate box Q is given by choosing
some value vi ∈ {0, . . . , U − 1} for each dimension i ∈ [d]. We use a (d, K, α) prefix covering
design s1, . . . , sd to interpret the values v1, . . . , vd as choices of vertices in V (1), . . . , V (K):
Namely, with si = (si[1], . . . , si[L]), we think of any number vi ∈ {0, . . . , U − 1} with U = nL

as a base-n number vi = (vi[1], . . . , vi[L]). We interpret (vi[1], . . . , vi[L]) ∈ {0, . . . , n − 1}L

as choosing the (vi[ℓ] + 1)-st vertex in V (si[ℓ]) for all 1 ≤ ℓ ≤ L.
With this encoding fixed, it remains to ensure that the only true solutions Q encode

a clique in G. This consists of two tasks: (1) ensuring that the candidate box Q chooses
vertices consistently, i.e., for each V (x) such that x occurs in more than one si, we need
to make sure that the same vertex is chosen in each occurrence, and (2) ensuring that the
chosen vertices form a clique. Crucially, for both tasks, our geometric problems allow us
to exclude candidate boxes Q where the vi have certain prefixes. Specifically, due to the
singleton condition, we only need to construct O(nα) boxes to ensure consistency of the
remaining candidate solutions Q. Likewise, the triplet condition is used to ensure that all
candidate boxes Q that encode a non-clique (for which one of the triplets {v(a), v(b), v(c)} is
not an edge in G) are excluded, using only O(nα) additional boxes. In total, this creates an
instance of size O(nα) for the target problem, which yields an n

K
α −o(1) lower bound under

the 3-uniform hyperclique hypothesis. ◀

contained in the prefixes sa[..2], sb[..1] of total length α = 3. The singleton condition only needs
to be checked for x = d + 1, for which we note that ℓmin(d + 1) = ℓmax(d + 1) = 2 and thus
ℓmin(d + 1) + ℓmax(d + 1) = 4 ≤ α + 1 for α = 3.
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From Proposition 2, we obtain the following direct corollary.

▶ Corollary 3. For any d ≥ 3, let γd := sup{ K
α | there is a (d, K, α) prefix covering design}.

Then for no ε > 0 there exists an O(nγd−ε)-algorithm for any of the problems listed in
Proposition 2, unless the 3-uniform hyperclique hypothesis fails.

The tight conditional lower bound [27] for Klee’s Measure problem and the depth problem
in R3 follows from the following construction: For any g ∈ N, we set K = 3g, write
[K] = {a1, . . . , ag, b1, . . . , bg, c1, . . . , cg} and observe that

s1 = (a1, . . . , ag, bg, . . . , b1), s2 = (b1, . . . , bg, cg, . . . , c1), s3 = (c1, . . . , cg, ag, . . . , a1)

provide a (3, 3g, 2g + 1) prefix covering design. Thus, we obtain γ3 ≥ limg→∞
3g

2g+1 = 3
2 ,

establishing an n
3
2 −o(1) conditional lower bound for KMP in R3 and related problems.3

Given the direct applicability of prefix covering designs to Klee’s measure problem,
the depth problem and many related problems, it is only natural to ask what the highest
obtainable lower bounds are using this technique. For one, designing better prefix covering
designs gives stronger lower bounds. On the other hand, establishing limits for prefix covering
designs may indicate potential for improved algorithms for KMP and related problems (such
a phenomenon has been observed in other contexts, e.g., [11]).

Our first result is that prefix covering designs cannot establish a higher lower bound than
n

d
3 +O(

√
d). The following bound will be proved in Section 3.

▶ Proposition 4. We have that γd ≤ d

3(1−
√

2
d )

= d
3 +

√
2
9 ·

√
d + o(

√
d).

However, as d

3(1−
√

2/d)
≥ d

2 for d ≤ 18, this result does not rule out tight lower bounds for
small dimensions. In fact, combining a computer-aided search with problem-specific insights,
we give improved constructions for d ∈ {4, 5}, which give lower bounds that are surprisingly
close to d

2 .

▶ Theorem 5. There is a (4, 40, 21) prefix covering design, which yields γ4 ≥ 40
21 > 1.90476.

There is a (5, 40, 18) prefix covering design, which yields γ5 ≥ 40
18 > 2.22222.

Proof. The following sequences give a (4, 40, 21) prefix covering design:

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 40, 19, 28, 37, 26),
s2 = (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 9, 38, 27, 36),
s3 = (21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 20, 39, 8, 7, 37),
s4 = (31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 10, 29, 18, 17, 27).

The following sequences give a (5, 40, 18) prefix covering design:

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 24, 31, 38, 30, 14),
s2 = (9, 10, 11, 12, 13, 14, 15, 16, 32, 40, 6, 31, 22),
s3 = (17, 18, 19, 20, 21, 22, 23, 24, 8, 7, 39, 15, 30),
s4 = (25, 26, 27, 28, 29, 30, 31, 32, 40, 16, 23, 39, 6),
s5 = (33, 34, 35, 36, 37, 38, 39, 40, 16, 32, 15, 23).

For the readers’ convenience, we provide checker programs to verify the singleton and triplet
conditions in [21] (see the full version of this paper [22] for details). ◀

3 It is not hard to prove that γ3 ≤ 3
2 , resulting in γ3 = 3

2 . This raises the question whether we can find
exact values of γd for d ≥ 4.
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For Klee’s measure problem and the depth problem in R4 and R5, the gap between the
resulting conditional lower bound and the known upper bound is thus at most O(n0.09524)
and O(n0.27778), respectively. This improves over previous hyperclique-based lower bounds
of Ω(n1.777) and Ω(n2.0833), respectively.

These results may (re-)ignite hope that it might be possible to find prefix covering designs
that establish tight lower bounds for d = 4 and d = 5. Alas, by a careful investigation of the
limits of prefix covering designs, we refute this hope.

▶ Theorem 6. We have γ4 < 2.

This result is proven via a careful analysis of the structure of prefix covering designs with
quality K

α approaching 2: We show that certain levels (i.e., s1[ℓ], . . . , s4[ℓ] for certain values
of ℓ) must have a very rigid structure. Essentially, every element on such a level must have
exactly a single copy on a corresponding other level. A detailed analysis of all possibilities
displays a contradiction; we cannot get a quality K

α that is arbitrarily close to 2. The proof
is in the full version of this paper [22]. It remains an interesting question to determine the
precise value of γ4; our results yield 1.90476 ≤ γ4 < 2.

Connection to covering designs

Our previous results give evidence of the intricacy of designing good prefix covering designs.
Unfortunately, designing optimized designs for small dimensions like d = 4 and d = 5 offers
little insights into the asymptotics in d as well as the general structure of good prefix designs
for larger dimensions.

We address this by providing general constructions that are applicable for all d and make
use of the extensive literature on combinatorial designs. Specifically, we observe an interesting
connection between so-called covering designs (see, e.g., the surveys [29, 24, 25, 23] and [14]
for an algorithmic application in computational geometry) and prefix covering designs. A
(v, k, t) covering design is a collection of k-sized subsets B1, . . . , Bb – called blocks – of [v]
such that every t-element subset of [v] is fully contained in some block Bi. These covering
designs constitute a relaxation of balanced incomplete block designs.

Note that a (d, K, α) prefix covering design s1, . . . , sd where each si has length at most L

is superficially similar to a (v, k, t)-covering design with v = K elements, block size k = L,
parameter t = 3 and d blocks: in both designs, we cover triplets among v = K elements
using d sequences/blocks. However, there are two key differences. (1) In covering designs, we
cover each triplet in a single block, while in prefix covering designs, we may use prefixes from
up to three sequences. (2) The sequences of prefix covering designs are inherently ordered
(due to the prefix nature of the singleton and triplet conditions), while covering designs have
unordered blocks. A priori, it is unclear whether there is a general way to use good covering
designs to obtain good prefix covering designs or vice versa. Maybe surprisingly, we show
how to use good (v, k, t) covering designs with t = 2 (rather than t = 3, which might appear
as the more natural correspondence) to obtain strong prefix covering designs.

Specifically, for any such covering design satisfying a mild matching-like condition (which
is satisfied by many constructions known in the literature), we obtain high-quality prefix
covering designs. We will see below that by plugging in known constructions, we get prefix
covering designs that are close to optimal when d → ∞.

▶ Theorem 7. Let d ≥ 3, k ∈ N and v be a multiple of d such that there is a (v, k, 2) covering
design with d blocks with the following property: For every block Bi, there exists Ui ⊆ Bi of
size v

d such that U1, . . . , Ud partition [v]. Then γd ≥ d
3−2 v

kd
.

SoCG 2023
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Let us give an example application of this theorem (see Sections 1.2 and the full version
of this paper [22] for stronger consequences). It is well known that the projective plane of
order q (where q is a prime power) yields a set of v = q2 + q + 1 points, d = q2 + q + 1
lines, with k = q + 1 points on each line, such that every pair of points is connected by a
line. This yields a (v, k, 2)-design with d = v = q2 + q + 1 and k = q + 1. One can show
that this design satisfies the matching-like condition (see the full version of this paper [22]).
Thus, for infinitely many d, we obtain a lower bound of γd ≥ d

3− 2
q+1

. Since q = O(
√

d), we

obtain γd ≥ d
3−Ω(1/

√
d) = d

3 + Ω(
√

d) for infinitely many d, improving over the lower bound
of γd ≥ d

3 + 1
3 + 1

3(d−1) that is implicit in [27].

1.2 Consequences: Improved conditional lower bounds
Using Theorem 7, we may take any (v, k, 2) covering design with d blocks that is known
in the literature, check whether it satisfies the matching-like condition, and obtain the
corresponding lower bound on γd. In Table 1, we list lower bounds on γd, d ≤ 10 obtained
this way, specifically, by using covering designs listed in the La Jolla Covering Repository [23]
(see Section 2 for details). Notably, the resulting lower bounds improve over the constructions
in [27] for d ≥ 4.

We also provide a lower bound for all γd that is close to optimal when d → ∞.

▶ Theorem 8. There is some function f(d) = d/3 + 2
√

d/9 − o(
√

d) such that γd ≥ f(d) for
all d ≥ 3.

This lower bound is obtained by showing how to extend the projective planes covering
designs (in a suitable way) to obtain strong prefix covering designs for all values of d.

By the above theorem, we obtain a nd/3+2/9
√

d−o(
√

d) conditional lower bound for Klee’s
measure problem and related problems. Note that Chan’s reduction from K-clique [12] can
be interpreted as a lower bound of n(ω/6)d−o(1) assuming that current K-clique algorithms
are optimal. If ω = 2, this cannot give any higher lower bound than nd/3−o(1).

Table 1 also lists the corresponding upper bound of O(nd/2) for Klee’s measure problem
and the depth problem for comparison. The gaps for the Largest-Volume/Maximum-Perimeter
Empty (Anchored) Box problem in Rd are a bit larger: Chan [15] obtains an upper bound4

for the anchored version of Õ(nd/3+⌊d/2⌋/6) ≤ Õ(n5d/12) for d ≥ 4. In particular, this yields
upper bounds of Õ(n2.5), Õ(n3.3334), and Õ(n4.1667) for d = 6, d = 8 and d = 10, respectively,
while we supply a conditional lower bound of nγd/2−o(1) for even d ≥ 6, which yields lower
bounds of n1.5−o(1), n1.9047−o(1) and n2.2222−o(1) for d = 6, d = 8 and d = 10, respectively.
It is an interesting question whether we can prove a higher lower bound than nd/4−o(1) for
any d or whether Chan’s algorithms can be improved further.

Related Work. Klee’s measure problem has been well-studied since the 1970s [26, 7,
19, 32, 31, 12, 13, 27], including algorithms beating nd/2±o(1) for various special cases,
e.g., [2, 8, 1, 9, 33, 10].

The depth problem for axis-parallel boxes is closely related to Klee’s measure problem
and often admits similar algorithmic ideas, see particularly [13].

Finding a largest-volume empty axis-parallel box has initially been mostly studied in
two dimensions (see, e.g., [30, 16, 3]). In higher dimensions, Backer and Keil [4] give a
Õ(nd) algorithm, which was recently improved to Õ(n(5d+2)/6) by Chan [15]. Note that

4 While Chan focuses on the Largest-Volume Empty Box problem, he states that his algorithms for d ≥ 4
also work for the Maximum-Perimeter version, see [15, Section 5].
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Table 1 The exponents of the upper and conditional lower bounds for Klee’s measure problem
and the depth problem in Rd for d ≤ 10. The upper bound column is due to the nd/2±o(1)-
time algorithms [31, 12, 13], the conditional lower bounds are based on the 3-uniform hyperclique
hypothesis and result from [27] (3rd column), Theorem 5 (4th column) and from combining Theorem 7
with covering designs found in the La Jolla Covering Repository maintained by D. Gordon [23] (5th
column).

d Upper bound Previously
known lower
bound

SAT-solver
lower bound

Covering
designs lower
bound

3 1.5 1.5 1.5
4 2 1.7777 1.9047 1.8461
5 2.5 2.0833 2.2222 2.1929
6 3 2.4 2.5714
7 3.5 2.7222 3
8 4 3.0476 3.3333
9 4.5 3.375 3.6818
10 5 3.7037 4.0540

our lower bounds are most interesting for the anchored version of the problem, which is
solvable in faster running time Õ(n5d/12) [15]. Approximation algorithms have been given
in [18]. Giannopoulos et al. [20] give a reduction from d-clique, which can be understood as
an n(ω/12)d−o(1) lower bound assuming that current clique algorithms are optimal.

2 Constructions

In this section, we prove our general result transforming covering designs to prefix covering
designs (Theorem 7). All remaining proofs and details on constructing prefix covering designs
can be found in the full version of this paper [22].

For a (d, K, α) prefix covering design (PCD) with sequences s1, s2, . . ., sd we call elements
s1[i], s2[i], . . ., sd[i] the i-th level of the PCD.

When analyzing such prefix covering designs, it is helpful to distinguish between the “first”
occurrence of some element, which we call the primary element, and all other occurrences,
which we call copies. We call a pair (i, ℓ) a position if 1 ≤ i ≤ d, 1 ≤ ℓ, and there exists ℓ-th
element in si.

▶ Definition 9. For any prefix covering design s1, . . . , sd, we call a position (i, ℓ) the primary
position of value x (1 ≤ x ≤ K) if and only if si[ℓ] = x and si′ [ℓ′] ̸= x for every other
position (i′, ℓ′) such that (ℓ′, i′) precedes (ℓ, i) in the lexicographic ordering.

Every other occurrence (i′, ℓ′) with si′ [ℓ′] = x is called a copy of x.

Note that if (i, ℓ) is a primary position of value x, then ℓ = ℓmin(x).

▶ Definition 10. A (v, k, t) covering design where v ≥ 2, k ≥ t ≥ 1 is a collection of
k-element subsets (called blocks) of [v] such that any t-element subset is contained in at least
one block.

In the following proof, we will be extensively using (v, k, t) covering designs for t = 2. So,
every pair of elements is contained in at least one block.

Proof of Theorem 7. Consider some (v, k, 2) covering design consisting of d blocks where
v is divisible by d and set v′ := v

d ∈ N. Define B1, B2, . . ., Bd as the blocks of this
covering design. Assume there exist sets U1 ⊆ B1, U2 ⊆ B2, . . ., Ud ⊆ Bd such that

SoCG 2023
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s1 8 9 10 1 2 3
s2 11 12 13 4 1 5
s3 14 15 16 7 1 6
s4 17 18 19 6 2 4
s5 20 21 22 2 5 7
s6 23 24 25 3 4 7
s7 26 27 28 5 3 6

Figure 1 Example of a (7, 28, 10) PCD construction from a (7, 3, 2) covering design with 7 blocks.

|U1| = |U2| = . . . = |Ud| = v′ and U1, U2, . . . , Ud partition [v]. Then we will prove that for
every ε > 0, there exist K and α such that K

α ≥ d
3−2 v

kd
− ε and (d, K, α) PCD exists. From

this we automatically get that γd ≥ d
3−2 v

kd
by going to the limit.

First, we present a slightly worse construction.
Order elements inside blocks of a given covering design in such a way that elements of

Ui are located in the first v′ positions of Bi, i.e., {Bi[j] | 1 ≤ j ≤ v′} = Ui. To construct
sequences of our PCD, we take these blocks of the covering design and put kd new different
elements in front of them by prepending k elements in each sequence. In other words, the
resulting PCD has sequences s1, s2, . . ., sd each of length 2k such that si[j] = v +(i−1) ·k +j

for j ≤ k and si[j] = bi[j − k] for j > k. An example for d = 7 is given in Figure 1. We will
prove that this gives a (d, K, α) PCD with K = (v′ + k)d and α ≤ 3k + v′.

There are v′d elements from a covering design and kd more unique elements that we
added, so K = (v′ + k)d. It remains to check that α ≤ 3k + v′.

First, we check the singleton condition. Due to our ordering of the covering design blocks,
all primary positions of all elements are located in the first k + v′ levels, so ℓmin(x) ≤ k + v′

for every element x. At the same time, there are 2k elements in each sequence in total, so
ℓmax(x) ≤ 2k. Thus, ℓmin(x) + ℓmax(x) ≤ (k + v′) + 2k = 3k + v′ for each x ∈ [K].

Second, we check the triplet condition. Assume we chose three elements a, b and c. Define
their primary positions as (ia, ℓa), (ib, ℓb) and (ic, ℓc) respectively. Without loss of generality,
assume that ℓa ≤ ℓb ≤ ℓc. Consider two cases.

1. If there is at most one element from the covering design among these three, then ℓa ≤ k,
ℓb ≤ k and ℓc ≤ k + v′, so we can cover them with prefixes sia

[..ℓa], sib
[..ℓb] and sic

[..ℓc]
of total size ℓa + ℓb + ℓc ≤ k + k + (k + v′) = 3k + v′.

2. If there are at least two elements from the covering design among these three, then b and
c are in the covering design. By the definition of a covering design, there should be a
sequence si that contains both b and c. Thus we can cover all three elements with two
prefixes: si[..2k] (whole sequence) and sia [..ℓa] of total size 2k+ℓa ≤ 2k+(k+v′) = 3k+v′.

This concludes the proof that α ≤ 3k + v′ and already gives a bound γd ≥ K
α ≥ (k+v′)d

3k+v′ =
d
3 · 3k+3v′

3k+v′ = d
3 ·
(

1 + 2v′

3k+v′

)
= d

3 ·
(

1 + 2v
3dk+v

)
.

To improve this construction we will replicate the covering design n times for some
positive integer n. Define Bj

i for 1 ≤ i ≤ d and 1 ≤ j ≤ n as the i-th block of the j-th copy
of the covering design. We want different copies of the covering design to be over different
elements, so the v elements of Bj are {(j − 1)v + 1, . . . , jv}. Define U j

i as v′-element subsets
of Bj

i such that U j
1 , U j

2 , . . ., U j
d partition {(j − 1)v + 1, . . . , jv}. Define Rj

i := Bj
i \ U j

i as the
remaining k − v′ elements of each block. Also, for every sequence of our PCD, we define
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s1 22 23 24 25 26 27 28 1 8 15 19 20 12 13 5 6
s2 29 30 31 32 33 34 35 2 9 16 15 21 8 14 1 7
s3 36 37 38 39 40 41 42 3 10 17 15 18 8 11 1 4
s4 43 44 45 46 47 48 49 4 11 18 19 16 12 9 5 2
s5 50 51 52 53 54 55 56 5 12 19 21 17 14 10 7 3
s6 57 58 59 60 61 62 63 6 13 20 16 17 9 10 2 3
s7 64 65 66 67 68 69 70 7 14 21 20 18 13 11 6 4

Figure 2 Example of a (7, 70, 24) prefix covering design obtained by a scaled construction with
v = 7 (v′ = 1), k = 3, d = 7 and n = 3.

m := nk − (n − 1)v′ unique elements that are put at the beginning of this sequence. Let
these unique elements for sequence i be called Ai (Ai = {nv + (i − 1)m + 1, . . . , nv + im}).
Now we are ready to construct the sequences s1, . . . , sd of our prefix covering design by

si = (Ai, U1
i , U2

i , . . . , Un
i , Rn

i , Rn−1
i , . . . , R1

i ).

An example of such a construction is given in Figure 2.
We will prove that such a PCD has K = (nk + v′)d and α ≤ 3nk − (2n − 3)v′, similarly

to the proof for the simpler construction. First, there are v′d elements from every covering
design, and there are n designs, so overall, there are nv′d elements from covering designs.
Additionally, there are md = nkd − (n − 1)v′d more unique elements that we added, so
K = (nk + v′)d indeed. It remains to check that α ≤ T where T := 3nk − (2n − 3)v′. We
will use that T = 2m + nk + v′ = 3m + nv′.

First, we check the singleton condition. Due to our ordering of the covering design blocks,
all primary positions of all elements are located in the first m+nv′ levels, so ℓmin(x) ≤ m+nv′

for every element x. If ℓmin(x) ≤ m, this element has only one occurrence, and we do not
need to check the singleton condition for it. If ℓmin(x) = m + (n − i)v′ + j for some 1 ≤ i ≤ n

and 1 ≤ j ≤ v′, then it means that element x belongs to the (n − i + 1)-st covering design,
and its other occurrences are located in the levels from m + nv′ + (i − 1)(k − v′) + 1 to
m + nv′ + i(k − v′). So ℓmax(x) ≤ m + nv′ + i(k − v′). Consequently, ℓmin(x) + ℓmax(x) ≤
(m+(n−i)v′+j)+(m+nv′+i(k−v′)) = 2m+2nv′+i(k−2v′)+j ≤ 2m+2nv′+n(k−2v′)+v′ =
2m + nk + v′ = T < T + 1 where we used the fact that k − 2v′ = k − 2 v

d ≥ 0 due to the
lemma below. We have even proved a slightly stronger inequality:

ℓmin(x) + ℓmax(x) ≤ T. (1)

▶ Lemma 11. For every (v, k, 2) covering design with d ≥ 2 blocks, k ≥ 2v/d holds.

Proof of Lemma. If k < v, then every element x ∈ [v] should be located in at least two sets:
otherwise, we would cover only k − 1 < v − 1 pairs involving x, which contradicts the fact
that it is a covering design. But if every element is located in at least two sets, then the sum
of all set sizes kd is at least 2v. Dividing both numbers by d, we get the desired inequality.

If k ≥ v, then k ≥ v ≥ 2 v
d because d ≥ 2. ◀

Second, we check the triplet condition. Consider any three elements a, b and c. Define
their primary positions as (ia, ℓa), (ib, ℓb) and (ic, ℓc) respectively. Without loss of generality,
assume that ℓa ≤ ℓb ≤ ℓc. Consider two cases.

1. If at most one element out of these three is from covering designs, we know that ℓa ≤ m,
ℓb ≤ m and ℓc ≤ m+nv′, so we can cover them with prefixes sia [..ℓa], sib

[..ℓb] and sic [..ℓc]
with total size ℓa + ℓb + ℓc ≤ m + m + (m + nv′) = 3m + nv′ = T .

SoCG 2023
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2. If at least two elements out of these three are from covering designs, then b and c are in
the covering designs. By the definition of a covering design there should be a sequence
si that contains both b and c.5 Then we can cover all three elements with two prefixes:
si[.. max(ℓi

b, ℓi
c)] and sia [..ℓa] where ℓi

b and ℓi
c are positions of elements b and c, respectively,

in the sequence i. We already know that elements b and c satisfy (1). It follows that
ℓa + ℓi

b ≤ ℓb + ℓi
b ≤ T and ℓa + ℓi

c ≤ ℓc + ℓi
c ≤ T . From this we can conclude that

ℓa + max(ℓi
b, ℓi

c) ≤ T , as desired.

This concludes the proof that α ≤ T = 3nk − (2n − 3)v′. This construction gives us a
bound γd ≥ K

α ≥ (nk+v′)d
3nk−(2n−3)v′ = (k+ v′

n )d

3k−(2− 3
n )v′ where n ∈ N can be chosen arbitrarily. When n

approaches infinity, this value approaches kd
3k−2v′ = d

3− 2v′
k

= d
3−2 v

kd
. Thus, for every ε > 0

there exists n such that such a construction gives K
α ≥ d

3−2 v
kd

− ε, as desired. ◀

We say that a (v, k, 2) covering design with d blocks admits a multi-matching if for every
block Bi we can choose a subset Ui of size v/d such that U1, U2, . . . , Ud partition [v]. The
following observation shows that in Theorem 7 it is not a restriction to assume that v is
divisible by d, since we can always suitably scale covering designs:

▶ Observation 12. Every (v, k, 2) covering design with d blocks can be transformed into
a (vd, kd, 2) covering design with d blocks by replacing each of v elements with d distinct
elements. If this scaled covering design admits a multi-matching, we get a lower bound for γd

of d

3−2 (vd)
(kd)d

= d
3−2 v

kd
.

The bound we give depends on the existence of specific covering designs admitting multi-
matchings. This lower bound can be transformed into a general lower bound depending
only on d (see the full version of this paper [22] for details); one can also obtain lower
bounds for specific values of d: for a fixed value of d, the lower bound can be obtained by
finding a covering design that minimizes the value freq := kd

v which we call frequency (for a
fixed covering design, the frequency is the average number of occurrences of elements). We
searched for covering designs in the La Jolla Covering Repository [23], fixing the number
of blocks to d and choosing the ones with the smallest frequencies. Then we multiplied the
number of elements and set sizes in these covering designs by d using Observation 12 (because
Theorem 7 works only for covering designs with v divisible by d) and checked whether they
admit multi-matching. Perhaps surprisingly, for all specific values of d that we checked, the
obtained covering designs indeed admit a multi-matching. The covering designs used and
their multi-matchings can be found in [21] along with a computer program that checks that
provided constructions are indeed covering designs, and they indeed admit multi-matchings.

The question remains whether the frequency in some dimension d could be minimized
by a covering design that does not admit a multi-matching. Indeed, one can construct
covering designs that do not admit a multi-matching. However, since we aim to minimize
the frequencies, we are considering covering designs that should have a relatively small
degree of redundancy – otherwise, they probably could be improved. In the full version of
this paper [22], we formulate the corresponding conjecture that “sufficiently good” covering
designs always admit a multi-matching and discuss some evidence. We also provide weaker
bounds obtained from covering designs not admitting multi-matchings.

5 b and c may belong to different copies of our covering design, but all copies are identical, so equivalent
elements from all covering designs occur in the same sequences, so there indeed should exist such si.
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3 Limits

In this section, we prove limits of prefix covering designs, i.e., upper bounds on γd = sup{ K
α |

there exists a (d, K, α) prefix covering design}. The proof that γ4 < 2 is in the full version
of this paper [22]. The following lemma formalizes the intuition that increasing the value of
K can only lead to better (more precisely, not worse) prefix covering designs.

▶ Lemma 13 (Scaling Lemma). For every (d, K, α) PCD and positive integer λ ∈ N, there
also exists a (d, λ · K, λ · α) PCD.

The proof of this fact is in the full version of this paper [22].

Proof of Proposition 4. For a fixed (d, K, α) PCD define g :=
⌈

K
d

⌉
. If α ≥ 3g then K

α ≤
K
3g ≤ K

3K/d = d
3 and the proposition statement holds. Otherwise define a :=

⌈
g − α

3
⌉

≥ 1, i.e.,

3(g − a) ≤ α < 3(g − a + 1). We will prove that a <
√

2
d + 2. If a = 1, it is correct, so from

now on we assume that a ≥ 2.
Define B as the set of all elements x that have ℓmin(x) > g−a. We claim that |B| ≥ d(a−1):

The number of (not necessarily distinct) elements in the first (g − a) positions (over all si) is
d · (g − a) = dg − da < d · ( K

d + 1) − da = K − d(a − 1). Since there are K distinct numbers
in total, the claim follows.

To prove the proposition, we will define a graph GB with vertex set B. We connect two
elements x, y ∈ B by an edge if and only if there is some sequence si containing both x and y.
We obtain our result by proving both an upper and a lower bound on the number of edges.

For a lower bound on the number of edges, consider how triplets {a, b, c} ∈
(

B
3
)

are covered
by prefixes: For any such triplet {a, b, c}, there are prefixes si[..ℓ], si′ [..ℓ′] and si′′ [..ℓ′′] which
contain a, b and c and satisfy ℓ + ℓ′ + ℓ′′ ≤ α.

▷ Claim 14. Without loss of generality, we may assume that at least one of ℓ, ℓ′ and ℓ′′ is
zero.

Proof. If all of them are at least g − a + 1, then ℓ + ℓ′ + ℓ′′ ≥ 3(g − a + 1) > α, which yields
a contradiction. Otherwise, if at least one of them is at most g − a, then this prefix cannot
contain any of a, b and c as ℓmin(a), ℓmin(b), ℓmin(c) > g − a. We can set this prefix to the
empty prefix without loss of generality. ◁

So indeed, we can imagine that triplets of elements in B must be covered by using only
two prefixes, not three. In particular, for every triplet of elements from B, at least two of
them must occur in the same sequence, i.e., they must have an edge in GB . Put differently,
the complement graph of GB is triangle-free and thus contains at most |B|2/4 edges by
Mantel’s Theorem [28] (a special case of Turan’s Theorem). We conclude that GB has at
least

(|B|
2
)

− |B|2

4 = |B|2−2|B|
4 ≥ (|B|−2)2

4 edges because |B| ≥ 2.
We now show that either the number of edges is at most dg2/2 or |B| ≤ 2g. We

ask on which positions elements from B can be located in the sequences. We know that
ℓmin(x) ≥ g − a + 1 for any x ∈ B. At the same time, if some element from B is located in
position ≥ 2(g − a) + 3 (in some sequence i), then this must be its only occurrence since
otherwise, it would violate the singleton condition. Furthermore, any covering of a triplet
with such an element cannot contain elements from B in other sequences because it would
take a prefix of length at least 2(g − a) + 3 in sequence i and a prefix of length at least
g − a + 1 in some other sequence, which would violate the triplet condition. From this, we
can conclude that if every triplet with this element and other elements in B is covered, all
elements from B have to occur in sequence i. We can assume that all elements have indices
at most α (otherwise, they are useless for coverings), so there are at most α − (g − a) ≤ 2g
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elements from B in this sequence. This yields |B| ≤ 2g. In the remaining case all x ∈ B

satisfy ℓmax(x) ≤ 2(g − a) + 2 and ℓmin(x) > (g − a), so there are at most g − a + 2 ≤ g

elements from B in each sequence. Thus, there are at most d ·
(

g
2
)

pairs of elements from B

that occur in the same sequence.
From the above lower and upper bounds on the number of edges, we derive that
(|B| − 2)2

4 ≤ d ·
(

g

2

)
<

dg2

2 .

Combining this with the fact that d(a − 1) ≤ |B|, we deduce that d(a − 1) − 2 ≤ |B| − 2 <√
2dg. (Note that in the case |B| ≤ 2g, the upper bound is trivially satsified since d ≥ 2.)

Consequently,

a <

√
2dg + 2

d
+ 1 ≤

√
2
d

g + 2

for d ≥ 2. We plug this inequality into our initial inequality on α:

α ≥ 3(g − a) > 3g

(
1 −

√
2
d

− 2
g

)
≥ 3K

d

(
1 −

√
2
d

− 2
g

)
.

It follows that
K

α
≤ K

3K
d

(
1 −

√
2
d − 2

g

) = d

3 ·
(

1 −
√

2
d − 2

g

) .

Due to Scaling Lemma 13 we know that if there exists a (d, K, α) PCD then there also
exists a (d, K · λ, α · λ) PCD for every positive integer λ. If we plug this covering design into
the inequality above, we will get that

K

α
= λ · K

λ · α
≤ d

3 ·
(

1 −
√

2
d − 2

g′

)
where g′ :=

⌈
K·λ

d

⌉
. If we take λ → +∞ then 2

g′ → 0 and in the limit, we get the desired
upper bound on K

α :

K

α
≤ d

3 ·
(

1 −
√

2
d

) = d

3 ·

1 +

√
2
d

1 −
√

2
d

 = d

3 +
√

2d

3
(

1 −
√

2
d

) = d

3 +
√

2
9 ·

√
d + o(

√
d).◀

4 Conclusion and Outlook

In this work, we make progress on obtaining tight conditional lower bounds for Klee’s measure
problem and related problems for d ≥ 4. We give improved lower bounds that leave gaps
of only O(n0.09524), O(n0.27778) and O(n0.4286) for d = 4, d = 5 and d = 6, respectively.
On the negative side, we prove that the proof technique via prefix covering designs and
Proposition 2 – despite yielding a tight lower bound for d = 3 – cannot give tight lower
bounds for d ≥ 4, so that a novel reduction approach is needed for this task. Of course, it
remains a tantalizing possibility that the nd/2±o(1) running time for Klee’s measure problem
for large dimensions d ≥ 4 can be broken.

We feel that the prefix covering designs formalized in this work are interesting in their
own right. We establish a connection to the well-studied covering designs, by giving a
framework that turns 2-covering designs into prefix covering designs. This connection leads
to the asymptotic bound γd = d

3 + Θ(
√

d), leading to an nd/3+Θ(
√

d) conditional lower bound
for Klee’s measure problem and related problems, improving over a previous bound of
nd/3+1/3+Ω(1/d).
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