KIT | KIT-Bibliothek | Impressum | Datenschutz

Dynamic Time Warping Under Translation: Approximation Guided by Space-Filling Curves

Bringmann, Karl ; Kisfaludi‑Bak, Sándor; Künnemann, Marvin ; Marx, Dániel ; Nusser, André ; Goaoc, Xavier [Hrsg.]; Kerber, Michael [Hrsg.]

Abstract:

The Dynamic Time Warping (DTW) distance is a popular measure of similarity for a variety of sequence data. For comparing polygonal curves π, σ in $ℝ^d$, it provides a robust, outlier-insensitive alternative to the Fréchet distance. However, like the Fréchet distance, the DTW distance is not invariant under translations. Can we efficiently optimize the DTW distance of π and σ under arbitrary translations, to compare the curves' shape irrespective of their absolute location?
There are surprisingly few works in this direction, which may be due to its computational intricacy: For the Euclidean norm, this problem contains as a special case the geometric median problem, which provably admits no exact algebraic algorithm (that is, no algorithm using only addition, multiplication, and k-th roots). We thus investigate exact algorithms for non-Euclidean norms as well as approximation algorithms for the Euclidean norm.
For the $L_1$ norm in $ℝ^d$, we provide an $𝒪(n^{2(d+1)})$-time algorithm, i.e., an exact polynomial-time algorithm for constant d. Here and below, n bounds the curves' complexities. For the Euclidean norm in $ℝ^2$, we show that a simple problem-specific insight leads to a $(1+ε)$-approximation in time $𝒪(n^3/ε^2)$. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175557
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.SoCG.2022.20
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.06.2022
Sprache Englisch
Identifikator ISBN: 978-3-95977-227-3
ISSN: 1868-8969
KITopen-ID: 1000175557
Erschienen in 38th International Symposium on Computational Geometry (SoCG 2022)
Veranstaltung 38th International Symposium on Computational Geometry (SoCG 2022), Berlin, Deutschland, 07.06.2022 – 10.06.2022
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 20:1-20:17
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 224
Schlagwörter Dynamic Time Warping, Sequence Similarity Measures
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page