KIT | KIT-Bibliothek | Impressum | Datenschutz

A Structural Investigation of the Approximability of Polynomial-Time Problems

Bringmann, Karl; Cassis, Alejandro; Fischer, Nick; Künnemann, Marvin; Bojańczyk, Mikołaj [Hrsg.]; Merelli, Emanuela [Hrsg.]; Woodruff, David P. [Hrsg.]

Abstract:

An extensive research effort targets optimal (in)approximability results for various NP-hard optimization problems. Notably, the works of (Creignou'95) as well as (Khanna, Sudan, Trevisan, Williamson'00) establish a tight characterization of a large subclass of MaxSNP, namely Boolean MaxCSPs and further variants, in terms of their polynomial-time approximability. Can we obtain similarly encompassing characterizations for classes of polynomial-time optimization problems?
To this end, we initiate the systematic study of a recently introduced polynomial-time analogue of MaxSNP, which includes a large number of well-studied problems (including Nearest and Furthest Neighbor in the Hamming metric, Maximum Inner Product, optimization variants of $k$-XOR and Maximum $k$-Cover). Specifically, for each $k$, MaxSP$_k$ denotes the class of $O(m^k)$-time problems of the form max$_{x_1,… , x_k}$ #{$y : ϕ$$(x_1$,…,$x_{k,y})$ where ϕ is a quantifier-free first-order property and m denotes the size of the relational structure. Assuming central hypotheses about clique detection in hypergraphs and exact Max-3-SAT, we show that for any MaxSP$_k$ problem definable by a quantifier-free m-edge graph formula φ, the best possible approximation guarantee in faster-than-exhaustive-search time $O(m^{k-δ})$falls into one of four categories:
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175561
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.ICALP.2022.30
Scopus
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 28.06.2022
Sprache Englisch
Identifikator ISBN: 978-3-95977-235-8
ISSN: 1868-8969
KITopen-ID: 1000175561
Erschienen in 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Veranstaltung 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Paris, Frankreich, 04.07.2022 – 08.07.2022
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 30:1-30:20
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 229
Schlagwörter Classification Theorems, Hardness of Approximation in P, Fine-grained Complexity Theory
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page