KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs

Bringmann, Karl ; Kisfaludi‑Bak, Sándor; Künnemann, Marvin ; Nusser, André ; Parsaeian, Zahra ; Goaoc, Xavier [Hrsg.]; Kerber, Michael [Hrsg.]

Abstract:

We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. A geometric intersection graph is a graph whose vertices correspond to some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance realized by a pair of vertices in the graph.
Computing the diameter in near-quadratic time is possible in several classes of intersection graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially since in the related class of planar graphs the diameter can be computed in $𝒪̃(n^{5/3})$ time [Cabello 2019, Gawrychowski et al. 2021].
In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time $𝒪(n^{2-δ})$ for some $δ > 0$. In particular, there are no sub-quadratic algorithms already for fat objects in small dimensions: unit balls in $ℝ^3$ or congruent equilateral triangles in $ℝ^2$. For unit segments and congruent equilateral triangles, we can even rule out strong sub-quadratic approximations already in $ℝ^2$. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175565
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.SoCG.2022.21
Scopus
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.06.2022
Sprache Englisch
Identifikator ISBN: 978-3-95977-227-3
ISSN: 1868-8969
KITopen-ID: 1000175565
Erschienen in 38th International Symposium on Computational Geometry (SoCG 2022)
Veranstaltung 38th International Symposium on Computational Geometry (SoCG 2022), Berlin, Deutschland, 07.06.2022 – 10.06.2022
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 21:1-21:16
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 224
Schlagwörter Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal Vectors, Hyperclique Detection
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page