KIT | KIT-Bibliothek | Impressum | Datenschutz

Fine-Grained Completeness for Optimization in P

Bringmann, Karl; Cassis, Alejandro; Fischer, Nick; Künnemann, Marvin; Wootters, Mary [Hrsg.]; Sanità, Laura [Hrsg.]

Abstract:

We initiate the study of fine-grained completeness theorems for exact and approximate optimization in the polynomial-time regime.
Inspired by the first completeness results for decision problems in P (Gao, Impagliazzo, Kolokolova, Williams, TALG 2019) as well as the classic class MaxSNP and MaxSNP-completeness for NP optimization problems (Papadimitriou, Yannakakis, JCSS 1991), we define polynomial-time analogues MaxSP and MinSP, which contain a number of natural optimization problems in P, including Maximum Inner Product, general forms of nearest neighbor search and optimization variants of the k-XOR problem. Specifically, we define MaxSP as the class of problems definable as max$_{x₁,… ,x_k}$ #{$(y₁,… ,y_𝓁)$ : ϕ$(x₁,… ,x_k, y₁,… ,y_𝓁)$}, where ϕ is a quantifier-free first-order property over a given relational structure (with MinSP defined analogously). On m-sized structures, we can solve each such problem in time $O(m^{k+𝓁-1})$. Our results are:
- We determine (a sparse variant of) the Maximum/Minimum Inner Product problem as complete under deterministic fine-grained reductions: A strongly subquadratic algorithm for Maximum/Minimum Inner Product would beat the baseline running time of $O(m^{k+𝓁-1})$ for all problems in MaxSP/MinSP by a polynomial factor. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175568
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2021.9
Scopus
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 15.09.2021
Sprache Englisch
Identifikator ISBN: 978-3-95977-207-5
ISSN: 1868-8969
KITopen-ID: 1000175568
Erschienen in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)
Veranstaltung Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021), Seattle, WA, USA, 16.08.2021 – 18.08.2021
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 9:1-9:22
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 207
Schlagwörter Fine-grained Complexity & Algorithm Design, Completeness, Hardness of Approximation in P, Dimensionality Reductions
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page