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—— Abstract

We define a class of problems whose input is an n-sized set of d-dimensional vectors, and where
the problem is first-order definable using comparisons between coordinates. This class captures a
wide variety of tasks, such as complex types of orthogonal range search, model-checking first-order
properties on geometric intersection graphs, and elementary questions on multidimensional data like
verifying Pareto optimality of a choice of data points.

Focusing on constant dimension d, we show that any k-quantifier, d-dimensional such problem
is solvable in O(n*~!log?~! n) time. Furthermore, this algorithm is conditionally tight up to
subpolynomial factors: we show that assuming the 3-uniform hyperclique hypothesis, there is a
k-quantifier, (3k — 3)-dimensional problem in this class that requires time Q(n*~1=°(")),

Towards identifying a single representative problem for this class, we study the existence of
complete problems for the 3-quantifier setting (since 2-quantifier problems can already be solved in
near-linear time O(n logd~1 n), and k-quantifier problems with & > 3 reduce to the 3-quantifier case).
We define a problem Vector Concatenated Non-Domination VCND, (Given three sets of vectors
X,Y and Z of dimension d,d and 2d, respectively, is there an x € X and a y € Y so that their
concatenation z o y is not dominated by any z € Z, where vector u is dominated by vector v if
u; < w; for each coordinate 1 < i < d), and determine it as the “unique” candidate to be complete
for this class (under fine-grained assumptions).
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The Fine-Grained Complexity of Multi-Dimensional Ordering Properties

1 Introduction

Algorithmic problems based on comparing elements according to a total ordering relation are
as fundamental as they are useful. Any introductory algorithms textbook starts with sorting
and other comparison-based problems. For higher dimensional data, problems involving
comparisons for multiple components, such as range queries, are equally fundamental in
computational geometry. In databases, queries need to handle data with many fields that
can be compared (beyond other relations on the data), such as listing all employees who are
not managers of another employee, with seniority in one range and salary in another.

In this paper, we give a general, systematic study of the complexity of multi-dimensional
comparison problems. We define complexity classes capturing the notion of “multi-dimensional
comparison problems”; as appropriate in geometry and in databases, with the classes PTOy
representing geometric problems in d dimensional data, and T'O4 representing problems that
combine ordering and other relations for such data, as would be found in databases. We then
identify the maximum complexity of problems in these classes under standard assumptions
in fine-grained complexity, and relate the classes to each other and other studied complexity
classes. For many subclasses, we find natural complete or hard problems where progress on
better algorithms for these problems would result in better algorithms for the entire subclass.

While our results are varied, with upper bounds, conditional lower bounds and complete-
ness results, a consistent theme emerges. Our classes are intermediate between two previously
studied classes of logically defined problems, first-order in the sparse representation (e.g.,
graph problems in adjacency list format) and first-order in the dense representation (e.g,
graph problems in adjacency matrix format). While orderings are dense relations, with
quadratically many pairs for which they hold, they are a special case that can be represented
succinctly, by giving an array of ranks for each element. What emerges in our results is that
multi-dimensional ordering problems are very tightly connected to first-order in the sparse
representation, and not directly connected to the dense representation. Thus, while they
give substantially different settings, we give many senses in which sparse relations can be
coded in terms of orders, and where orderings can be reduced to sparse relations.

1.1 A class of geometric ordering problems: PT Oy 4

As an example for multi-dimensional comparison problems, consider 2D orthogonal range
searching: given a set of 2-dimensional data points D, answer Boolean queries of the form

Jz €D :x € [f1,ur] X [l2,us],

where [¢1,u1] X [l2,us] is a given orthogonal range. Note that here, we may without loss of
generality replace each point’s coordinate in dimension d by its rank among the coordinates
in dimension d of all points in D. Typical variants include to report, count or optimize over
all elements in the query range. A long line of research starting in the 70s, including [37, 42,
22, 11, 40, 19], gives fast algorithms for such tasks, e.g., an algorithm to preprocess D such
as to answer queries in time O(loglogn) using space O(nloglogn), see [19]. Many more
complex algorithmic tasks can be solved using orthogonal range techniques, see [25, 8] for an
overview.

Also more complex tasks than mere orthogonal range searching arise naturally: In a set
of d-dimensional data points D, consider a feature (or property) F of the data points that
can be described as being contained in an orthogonal range [¢1,u1] X - -+ X [{4,ug]. Given a
family F of such features, there are several natural questions to ask:
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decide if all features are present in the dataset:

VF = [0, u1] X -+ X [lg,ug) €EF Ix€D: z€F

decide if some data point displays all features:

dr € D VF =[l,u1] X -+ X [lg,ug) EF: zE€F

decide if two different features are equivalent on D:

dF e F dFb e FVz e D Fl#Fg/\(IEFlﬁ.'IJEFQ).
Some of these questions can be quickly answered using orthogonal range reporting queries,
for others it seems that already the output size of single such query might pose a possibly
unnecessary bottleneck. Furthermore, some features might be comparison-based, but more
complex than a simple orthogonal range, e.g.,!

X € F(El,ul,...,fd,ud) =
(131 € [fl,ul] — (IQ S [62,7_[42})) A (1’1 ¢ [Zl,ul] — (1’3, e ,Id) S [fg,Ug} X oo X [Ed,ud])).

In such cases, it would not be immediate whether orthogonal range search techniques can be
used at all.

We formalize a notion of “multi-dimensional comparison problems” by introducing a class
of problems PTOy, 4 (for “purely total ordering property”) of model-checking a k-quantifier
first-order property on a relational structure with d total ordering relations (each succinctly
represented as a sorted list of objects) as well as unary relations (to enable comparison of
coordinates with constants). In particular, this class contains any property ¥ of the form

¥ = QaMQur® ... Qua™ : g2V, ..., 2®),

where Q; € {3,V}, 2(Y) ranges over a set of d-dimensional vectors (which we also call objects),
and ¢ is an arbitrary Boolean formula involving only comparisons of the form xga) < xgb) with
1 <a,b<k (here, xga), :cgb) denotes the i-th dimension of z(®) 2(®) respectively), as well as
comparisons with constants. We will refer to d as the dimension of a formula ¢ € PT Oy, 4.
For this paper throughout, we think of ¢ as fixed formula, and thus k, d are constants. See
Section 2 for further details.

The class PT'Oy, 4 includes all problems as mentioned above, but also tasks such as
verifying Pareto optimality of a given set of d-dimensional data points with respect to a
superset, or given a set of d-dimensional geometric objects, determine whether there are k
distinct such objects whose bounding boxes intersect.

We furthermore extend this class to 7Oy 4, where we allow, beyond d total ordering
relations, also arbitrary additional relations (represented explicitly). These two classes
encompass in particular the following types of problems:

Model-checking first order properties of geometric intersection graphs: Presence of

an edge in an intersection graph of axis-parallel boxes can be decided using comparisons

of coordinates. Thus, any k-quantifier first-order property on such geometric intersection
graphs in R? can be formulated as a problem in PT Oy.q, such as finding k pair-wise

non-intersecting d-dimensional axis-parallel unit-cubes [38].2

temporal logic: using a single total ordering relation, we may represent precedence in a

time domain. Thus, we may express temporal logical statements involving expressions

over future or past events in T'Oy, ;.

L The given expression could model the following feature: if a person is of working age (z1 € [£1,u1]), use
criterion x2 € [€2,uz], otherwise use (z3,...,24) € [f3,us] X -+ X [{q, ud].

2 For even more involved types of algorithmic tasks beyond k-quantifier first-order properties, see, e.g., [20]
(All-Pairs Shortest Paths) or [24] (NP-hard problems).
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relational databases with ordered types: in relational databases, we may use totally
ordered data types (salaries of employees, time events, rank in a sorted list, etc.) as
succinct representation to enable comparisons. In this context, studying the complexity
of a problem in T'Oy, 4 corresponds to studying the data complexity of a fixed query.

1.2 Our results

Let £ > 2. We show that any problem in PT'Oy 4 involving n objects can be solved in
time O(n*~log?~'n) which is O(n*~1!) for any constant dimension d. We extend this
algorithm to run in time O(m*~1 log®~! m) for sentences in TO}, 4, where m denotes the sum
of the number of objects and the size of the additional relations, i.e., the number of tuples
contained in the relation. We show the matching conditional lower bound that there is some

k=1=o(1)) under the 3-uniform hyperclique

sentence in PTOy, 3,_3 that requires time Q(n

hypothesis [36, 2, 15, 34] — this hypothesis postulates that nk+e(1) running time is essentially

best possible for finding cliques in hypergraphs. (See the full version of this paper for further
details.)

Beyond these general upper and lower bounds, we also seek to identify hard or even
complete problems for this class. Such problems capture the full generality of these classes,
in the sense that finding a significantly improved algorithm for this problem would give an
improved algorithm for all problems in the class. We use the following fine-grained notion
of hardness/completeness: Formally, let P be a problem whose best known algorithm runs
in time Tp(n) and let C be a class of problems whose best known algorithms runs in time
Tc(n). We say P is hard for a class of problems C, if any Tp(n)!~¢-time algorithm for P
with € > 0 gives a T (n)!~¢-time algorithm for all problems in C' for some € > 0. We
say that P is complete for C, if it is hard for C and contained in C. In particular, if P is
complete for C, then P admits substantial improvements over time Tp(n) if and only if all
problems in C' admit substantial improvements over T (n).

We identify such problems for specific quantifier structures. In particular, we focus on
the 3-quantifier case, since all 2-quantifier O(1)-dimensional total order properties can be
solved in near-linear time O(n) (Theorem 2), and all k-quantifier properties with k > 3 can
be reduced to the 3-quantifier case via brute forcing (Corollary 4). Focusing on PTOy, 4, we
obtain the following results (see Table 1):

1. For existentially quantified pure total ordering properties (denoted by PTO333,4), we
give an O(n>*/(“*t1) = O(n*4°7) time algorithm and identify the well-studied triangle
detection in sparse graphs as a complete problem?.

2. For the quantifier structure Y33, we also give an O(n?*/(@+1)) = O(n'497) time algorithm
by showing that the problem of counting, for each edge in a sparse graph, the number
of triangles containing this edge is hard for the class PT'Oy334. Since we reduce to a
counting problem rather than a member of this class, we do not obtain a completeness
result, however.

3. For the quantifier structure 3V3, we were unable to find a complete or hard problem.
However, we give evidence that this quantifier structure does not contain a complete
problem for PT'Oy, 4 by showing that all PT'Ogy3 4 problems have a O(n)—time nondeter-
ministic and co-nondeterministic algorithm. Since we also show a n?~°() SETH*-based

3 Strictly speaking, we identify the following 3-dimensional problem (which is linear-time equivalent to
triangle detection in sparse graphs) as complete for PT'O333 q: 3x,y,2 : 1 = 21 A®2 = y2 Ay3 = 23.

4 Strong Exponential Time Hypothesis (SETH) for CNF-SAT: For all € > 0, there exists a k so that
E-CNF-SAT cannot be solved in time O(2"(*~9)) [33].
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lower bound for PT'O3 4 when d — oo, this rules out existence of such a complete problem
using deterministic reductions under NSETH, a nondeterministic variant of SETH [17].
We also give a conditional lower bound of n?2~°(") under the Hitting Set conjecture.

2-0(1)_time

4. Finally, for the seemingly most difficult quantifier structure of 33V, we show n
conditional lower bounds under SETH and the 3-uniform hyperclique hypothesis, and
identify the following complete problem for PT'O33v 4, which we call Vector Concatenated
Non-Domination VCNDy,: Given three sets of vectors X,Y and Z of dimension d,d and
2d, respectively, is there an z € X and a y € Y so that their concatenation x o y is not
dominated by any z € Z, where vector u is dominated by vector v if u; < v; for each
coordinate 1 < i < d.

Note that this covers all quantifier structures for k£ = 3, as deciding Q1 Q2Q3¢ with Q; € {3,V}

is equivalent to deciding Q1 Q2 @3 ¢ where V = 3,3 =V and ¢ is the negation of ¢.

These results identify the VCND, problem as the essentially only candidate (up to fine-
grained equivalence) to be complete for PTOs3 4 under NSETH: It is complete for 33V, and
all problems with a different 3-quantifier structure have either improved deterministic or
(co-)nondeterministic algorithms, and thus cannot be complete without major consequences
in fine-grained complexity. It remains a challenge to prove or disprove completeness of
VCNDy for PTOs 4 (beyond its completeness for PTO33y q).

Since the above results motivate VCND, as a central problem for PTOy 4, we work
towards algorithmic improvements for this problem. In particular, we obtain an O(n%zid)—
time algorithm for VCND whenever one set of vectors is of dimension 2 and the other is
of dimension d. Note that obtaining such an O(n?~<(4)) time algorithm with €(d) > 0 for
general VCND, would refute the 3-uniform hyperclique hypothesis by our conditional lower
bound and completeness result.

Finally, we show that our algorithmic results extend to the class TOy 4 (see Section 3
for details), while all hardness results trivially apply, since they are already proven for the
subclass PT Oy, q. Generally speaking, this shows that the database setting (with additional
sparse relations) does not increase the fine-grained complexity compared to the geometric
setting of purely total ordering properties.

1.3 Previous work

This work continues a relatively new direction, fine-grained complexity of complexity classes.
Fine-grained complexity aims to not only qualitatively classify problems as “easy” or “hard”,
but (to the extent possible) pin-point their exact complexities. We now have a wide collection
of standard algorithmic problems where any significant improvements in algorithmic running
time would refute one or more conjectures about well-studied problems, such as the k-SUM
problem [26], All Pairs Shortest Paths [44, 3, 36], SAT [33, 41], or Orthogonal Vectors
[6, 14, 1, 12, 16, 39, 35, 9, 2, 13]. Recent work in fine-grained complexity has gone from
considering problems one at a time to following traditional complexity in considering classes
of problems. Fine-grained reductions often cut across the usual complexity classes (with
reductions from N P-complete problems to first-order properties, for example), but on the
other hand, fine-grained complexity distinguishes between problems with the same traditional
complexities (e.g., two different N P-complete problems might have very different properties in
fine-grained complexity). Nevertheless, there are now a number of classes of problems, grouped
by logical structure or common format, whose fine-grained complexity is at least partially
understood: dense first-order properties [43]; sparse first order properties [17, 29, 15]; several
extensions of first order [28]; and certain formats of dynamic programming problems [35, 27].

3:5
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The most closely related previous work to our results are [43, 29]. Both of these papers
consider the class of first-order definable properties, the first for the dense case (where
each relation is given as a matrix, aka adjacency matrix format), and the second for the
sparse case (where the input is given as a list of tuples in the relations, e.g.,for graphs,
adjacency list format). This class is natural both in terms of computational complexity,
where it is the uniform version of ACj ([30]), and in database theory, because these are the
queries expressible in basic SQL [7]. First-order logic can also express many polynomial time
computable problems: Orthogonal Vectors, k-Orthogonal Vectors, k-Clique, k-Independent
Set, k-Dominating Set, etc. Not only were the likely complexities of the hardest problems
(as a function of number of quantifiers) given, but in the second paper, a natural complete
problem was identified, the Orthogonal Vectors problem (OV). The conclusion was that
there were substantial improvements possible in the worst-case complexity of model checking
for first-order properties if and only if the known algorithms for Orthogonal Vectors can be
substantially improved. Using a recent sub-polynomial improvement in OV algorithms by
[4, 21], they obtained a similar improvement in model checking for every first-order property.
[28] extends this work to related logics such as transitive closure logics, first-order logic on
totally ordered sets, and first-order logic with function symbols. They show that model
checking for first-order logic with a single total ordering is actually equivalent to that for
unordered structures under fine-grained reductions. In contrast, we show that for even two
orderings, the model checking problem becomes substantially harder, meaning we require
new techniques to characterize the complexity of problems on multi-dimensional data.

There is also work on classes of problems that are related in spirit, but do not form a well-
studied complexity class. V.-Williams and Williams [44] study problems related to shortest
paths in graphs, and shows that many are subcubic-time equivalent. Kiinnemann et al. [35]
study dynamic programming problems with a similar structure and give a unified treatment
of their fine-grained complexities. Gao [27] extends this class of dynamic programming
problems from lines to tree-like structures such as bounded treewidth graphs.

2 Preliminaries

The following notion of fine-grained reductions was introduced in [44].

» Definition 1 (Fine-grained reduction). Let (II1,T1(m)) <pgr (Il2,T2(m)) denote that for
every € > 0 there is a § > 0 and a Turing reduction from I1; to Ily so that the time for the
reduction (not counting oracle calls) is O(Ty(m)*~%) and z:q(Tg(|q\))1_E € O(Ty(m)+9),
where the sum is over all oracle calls ¢ made by the reduction on an instance of size m.

In other words, if there is some ¢ > 0 such that problem Iy is in TIME((T2(m))*~¢), then
problem II; is in TIME((T}(m))!~?) for some § > 0, i.e., if [Ty can be solved substantially
faster than T5 then II; can be solved substantially faster than 73. If both T} and Ty are
O(m?), the reduction is called a subquadratic reduction. We say that II; and Il are
fine-grained equivalent if there is a fine-grained reduction from II; to Il and vice versa.

We use this notation not only on single problems but also on classes of problems. Let
Cy and Cs be classes problems. (C1,T1(m)) <pgr (C2,T2(m)) if for all problems II; € C4
there is a Il € Cy so that (II, 71 (m)) fine-grained reduces to (I3, To(m)).

Details on PTOy,q and TOy g

In this paper, we consider the fine-grained complexity of model checking problems definable
in first-order logic on structures with d binary relations z <; y, 1 < ¢ < d, where each
binary relation is a total pre-order of the universe (i.e., transitive, reflective, total, but not
necessarily anti-symmetric.)
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Total orders. We use = <; y to represent the i’th relation in our family holding between
x and y. Such a relation is dense, holding for ©(n?) pairs of elements. However, we can
represent such a representation succinctly, by giving an array which for each element specifies
its rank in a list sorted by the ordering relation (with some elements having the same rank,
if inequality holds in both directions). It is in this succinct format that ordering relations
are described for our problems.

Equivalently, we may represent all ordering relations by representing each object = as a
d-dimensional vector (z1,...,z4), where z; denotes the rank of x in the i’th ordering relation.
Thus, it is equivalent to write x <; y or x; < y;, and we will switch between these two based
on which seems clearer for the given circumstance.

The vectors we get in this way are very special, in that the coordinates are always positive
integers from 1 to n. However, also problems defined about d dimensional vectors over any
totally ordered domain (such as R) fall into our setting, since in O(nlogn) time we can
replace each z; with its rank in the set of i’th coordinates of vectors.

Unary relations. We also allow unary relations, or, equivalently, comparisons to constants.
More precisely, any unary relation U is represented as a list of objects for which U holds.
Apart from allowing us to put objects into categories (sometimes called colored properties),
this enables us to express comparisons of coordinates with constants: To express whether
x <; v for some constant -y, we introduce a unary relation symbol UF”’ that holds for all z
with z; <. Thus from now on, it suffices to declare constants « explicitly, and afterwards
we may express arbitrary comparisons like x; # v or x; > «. Note that since we always
consider fixed formulas 1), each considered property will use O(1) constants for comparisons.

Definition of PT' O 4. We denote the class of purely total ordering model-checking problems
for first-order formulas in pre-orderings and unary relations specified as above where the
formula has d distinct ordering relations and £ total occurrences of quantifiers by PT'Oy, 4.
PTOy is the union of PT Oy, q over all constants d. We can further divide PT'Oy, into ok
sub-classes based on the quantifier structure, so for example PTOs33 is the sub-class of
PTO3 where the model-checking problems are for formulas of the form Jz3y32P(x,y, 2)
where ® is quantifier-free. We let n be the size of the universe of the structure, which is also,
up to constant factors, the size in terms of O(logn)-bit words required to specify all total
pre-orderings and unary relations. Algorithm time for problems in PT'O is thus measured in
terms of n. In this format, it is a constant time operation to evaluate whether any relation is
true or false for specified elements.

Definition of T'Oy 4. We generalize PT'Oy, 4 to the class TOy, 4 by also allowing the formula
and models to have any constant number of sparse relations of any constant arity. These are
specified as lists of tuples where the relation holds. Let the problem size be denoted by m,
which is equal to the sum of the number of elements n and the number of tuples.

We assume all algorithms start with quasi-linear time preprocessing steps to create data
structures such as hash tables or binary search trees that allow fast determination (constant
time or logarithmic time) of whether a relation holds for given elements, and allows one to
list the tuples in a relation that contain a given element in at most poly-log time + poly-log
time times the number of such tuples.

On the difference. PTOy q is a more “geometric” class of problems, and so it is interesting
when we can reduce combinatorial problems to this class. Therefore, we will focus on these
classes when giving conditional hardness results. T'Oy 4 is closer to the type of problems

3:7
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Table 1 Our results for PTOy,q, where we assume that d is an arbitrarily large constant.

Quantifier structure ‘ 3 quantifiers k quantifiers, k > 3
. 33V (sym.: ... WV3E) O(n?) n?°M for d=6 O(nF=1) P17 for d = 3k — 3
complete: VCNDq 3-unif. HC, Thm. 14) (3-unif. HC, Thm. 14)
(Thm. 13) n27°W for d — oo
SETH, Thm. 15)
.33 (sym.: ... V3AY) O(n?) n2=°W for d — oo O(n*1)
complete: open Hitting Set, Thm. 11)
O(n) O(n"2) nF=27oW for d = 2
(co-)nondet. (co-)nondet.  (SETH, Thm. 12)

... V33 (sym.: ... 3WY) ~(nfﬁil) O(nk_ziﬂ)
complete: open = O(n**h) = O(nk~159)
hard: ETC
(Thm. 8)

— u — o3
...333 (sym.: ...VWWV) O(nw+1T) ("~ w+T)
complete: triangle det. | = O(n'*!) = O(n"=1%9)
(Thm. 6)

that might arise in applications such as database queries. Therefore, we will focus on T'Oy, 4
when giving algorithms or other upper bounds on complexity. Since PT Oy q C T Oy, 4, lower
bounds for PTOy, 4 are stronger results, and upper bounds for T'Oy, 4 are stronger results.

Further examples of problems in PT Oy 4. To define further well-studied problems in
PTOy q, we say that a vector u dominates vector v if u; > v; for all 1 <7 < d, and denote
this by © >g4om v. Furthermore, given a set of d-dimensional real vectors A, we say that
vector set B is Pareto-optimal for A if for every a € A there is a b € B with b >4, a.
Vector Domination Problem (see, e.g. [31]): Given two sets of d-dimensional real vectors
A and B, are there two vectors u € A and v € B such that u >g4,p, v7
Pareto Optimality Verification (see, e.g. [32]): Given a set A of vectors, and a candidate
vector set B, determine whether B is indeed Pareto optimal for A.
From the definition, both problems are in PT'O3 4. As we will see, they can be solved in
time O(nlog? ' n). For superconstant dimension d, [31, 18] give further improvements.

3 Technical Overview

In this section, we give the main ideas for all of our results, see Table 1 for an overview. Due
to space constraints, the proofs are deferred to the full version of this paper.

One of our main results is an upper-bound on model-checking sentences in PT'Oj, 4 and
TOlad-

» Theorem 2. There is an algorithm running in time O(n logd_l(n)) for model-checking a
two-quantifier formula Q1xQoyp(x,y) with d ordering relations and unary predicates.

Specifically, we obtain this result using the following lemma, which we obtain by a
reduction to orthogonal range counting.

» Lemma 3. Given a formula o(x,y) with d ordering relations and unary predicates and
two sets X, Y of vectors in R?, there is an O(nlog? ' (n)) time algorithm that returns an
array A indexed by each x € X so that A[x] is the number of y € Y so that ¢(x,y) is true.
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Combining the above theorem with exhaustive search over the first £k — 2 quantifiers yields
» Corollary 4. Model-checking formulas in PTOy g4 is in TIME(n*~1 log?~1(n)).

If we have additional explicitly represented relations, more work is required. For such
cases, throughout the paper, we will always assume that these relations are sparse, i.e., the
total input size is m = O(n). In this case, we obtain the same asymptotic running time.

» Theorem 5. Model-checking formulas in TOy 4 is in TIME(m*~log?*(m)).

The idea is to reduce the problem to the purely totally ordered case by assuming that all
sparse relations are empty; using Lemma 3 for the 2-quantifier case, we can obtain for each
x the number of y satisfying the condition. We then repair these counts to the true values
by iterating over the additional sparse relations, similar to the baseline algorithm in [29].

Note that in Section 3.4, we discuss a lower bound proving these baseline algorithms to
be conditionally optimal under fine-grained hardness assumptions.

In the remainder of the section, we distinguish our results based on the quantifier structure.

Since any k-quantifier formula with k& > 3 reduces to the 3-quantifier setting via brute force
over the first £ — 3 quantifiers, we only regard 3-quantifier structures.

3.1 Quantifier Structures Ending in 333

Recall that informally, we call a problem complete for a class if it is contained in the class
and model-checking any sentence in the class reduces to our problem. For sentences in
PTOy q ending in 333, we show that detecting triangles in a sparse graph is complete for

this class. By current running time bounds for the problem [10], we obtain a running time of
O(n2w/(w+1)) _ O(n1.407...).

» Theorem 6. The triangle detection problem in sparse graphs is fine-grained equivalent to
a problem that is complete for model-checking 333 formulas with only ordering relations and
unary relations.

More precisely, the following ordering property is shown to be complete: Jx3y3z : =1 =
z1 N\ T2 = y2 A ys = z3 which is easy to be seen equivalent to triangle detection in sparse
graphs.

Intuitively, we reduce to this problem as follows: Given a formula 3z3y3z¢(z, vy, 2), we
can determine whether ¢(x,y, z) holds once we know all comparisons between z,y, z in each
dimension i. A challenge here is to reduce comparisons like z; < y; to an equality check:
Similar to a trick used in [45], we do this by guessing the highest-order bit of divergence
between z; and y; to obtain a “proof” only involving equalities; since we may assume that
1 < z;,y; < n (by working in rank space), there are only O(logn) choices for a single
comparison. The key observation is that the quantifier structure is sufficiently well behaved
to make this reduction work: we only need to guess these bits of divergence for O(d) many
comparisons and can express correctness of all proofs for comparisons between x and z using
equality on the first dimension, between = and y using the second dimension, and between y

and z using the third dimension. In total, this results in an admissible blow-up of logo(d) n.

We turn to the setting with additional sparse relations, i.e., formulas in 7'O333 4. Here
we establish the triangle counting problem in sparse graphs as hard for the class. Since the
approach of [10] also gives a counting algorithm in the same running time as detection, we
establish the same algorithmic upper bound.
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» Theorem 7. Every problem in TO333,4 reduces to the problem of counting the number of
triangles in a sparse graph via reductions that preserve time up to polylog factors.

Handling the additional sparse relations is highly non-trivial. In particular, to obtain
our result, we first show that the triangle counting problem is hard for model-counting 333
formulas in the sparse setting of [29], which is interesting in its own right.

Since triangle detection is a classical problem, improving the bound of O(n!4°7) for 333
structures already in the purely total ordering case would be a major algorithmic result.

3.2 Quantifier Structures Ending in V33

For quantifier structures ending in V33, we obtain a hard problem: We show that every
problem in T'Oy33 ¢ (and thus also PT'Oy33,4) reduces to that of determining, for each edge
in a sparse graph, how many triangles contain this edge; we call this problem FEdgewise
Triangle Counting (ETC). Again, currently the best algorithm for this problem is essentially
the same as that for triangle detection and counting [10].

» Theorem 8. Edgewise Triangle Counting is hard for model-checking TOy33 4 formulas.

Since the high-level arguments for this results substantially build on the hardness result
for T'O333,4, we defer all details for this result to the full version of this paper.

3.3 Quantifier Structures ending in 3V3

For the quantifier structure of 9V, we are unable to establish a complete problem. However,
this quantifier structure admits (co-)nondeterministic algorithms that are faster than the
baseline algorithm.

» Theorem 9. Model-checking formulas in PT Oy, q ending in 3V3 can be done in nondeter-
ministic and co-nondeterministic time O(n*=21log® ! (n)).

The main idea is as follows: Consider any JaVyQz¢(x,y, z) property. For the nonde-
terministic algorithm, we simply (nondeterministically) guess x and solve the remaining
2-quantifier problem VyQz¢(z,y, z) in time O(n logd—! n) using the baseline algorithm. For
the co-nondeterministic algorithm, we need to verify that Yo3yQzé(z, y, z). Here, for every x,
we (nondeterministically) guess a witness y, and solve the remaining Qz¢(x, y,, 2) formula
using the approach of Theorem 2.

For the case of total ordering properties with additional sparse relations, this approach
is not directly applicable: If, e.g., all guessed witnesses 3, happen to participate in many
tuples of the sparse relations, we have to repeatedly solve problems with a large input size.
We remedy this problem by taking care of such large degree witness ¥, explicitly; while this
incurs a certain slow-down, we can limit it to a factor of O(y/n).

» Theorem 10. Model-checking formulas in TOy, 4 ending in V3 can be done in nondeter-
ministic and co-nondeterministic time O(mF=3/21og®" (m)).

As a consequence of the above nondeterministic algorithms, assuming NSETH [17], we
cannot establish hardness beyond nk—2-0(1) fop PTO3y3,4 using deterministic SETH-based
reductions. However, by reducing from a problem with low (co-)nondeterministic complexity,
specifically, the Hitting Set conjecture [5], we can give a conditional lower bound already for
PTO3vy3,q (as d — 00) that matches our baseline algorithm.
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» Theorem 11. Assuming the Hitting Set conjecture, for all € > 0, there exists some d and
a PTO3zy3 4 sentence that cannot be solved in time O(n?~¢).

The proof of this result is reminiscent to some reductions in [23]. We reduce from Hitting
Set (given sets of vectors A, B C {0,1}¢1°8" for arbitrary c, determine whether some a € A
is non-orthogonal to all b € B) to a formula Ja2Vy3zy(z,y, z) as follows: We think of z
ranging over vectors a € A, y ranging over b € B, and think of z as a “proof” of the fact
that a,b are non-orthogonal, given by a prover Merlin. There is a trade-off between size
of the proofs and the required dimension to represent the vectors, which we set in a way
that bounds the number of possible proofs to O(n), resulting in a dimension d growing only
with ¢ (independently of n).

We also give a conditional lower bound from SETH for k£ > 3 that matches the NSETH
barrier following from the (co-)nondeterministic algorithms. Notably, this lower bound
already applies to dimension d = 2.

» Theorem 12. Assuming SETH, there exists some PTOy o sentence ending in 3vV3 that
cannot be solved in time O(nk=27¢) for any e > 0.

We reduce the k-Orthogonal Vectors problem into an 3¥V3-quantified 2-dimensional
formula. Intuitively, the first k existential quantifiers choose k vectors, the V-quantifier ranges
over all vector-dimensions to test, and crucially, the final 3-quantifier enables to guess which
of the k vectors has a 0-coordinate in this vector-dimension. Here, the final 3-quantifier is
instrumental in making the formula’s dimension independent of the vector dimensions.

3.4 Quantifier Structures ending in 33V

For sentences in PT'Oy 4 ending in 33V, we obtain the complete problem VCNDg: Given
three sets of vectors X,Y and Z of dimension d, d and 2d, respectively, determine if there an
xz € X and a y € Y so that their concatenation x oy is not dominated by any z € Z.

» Theorem 13. For all d, there exists a d’' such that VCNDy is complete for model-checking
33V formulas in PTOy, q.

This is one of our most interesting results. We reduce a formula 3x € X3y € YVz €
Z :(z,y,z) to VCND, as follows: We carefully divide all pairs in X x Y into instances
(X1,Y7),...,(Xr,Y) such that for each instance (X, Yy), all comparisons z; < y;,z; =
yi, x; > y; for all dimensions i are uniform among pairs = € X,y € Yy. Thus, for each ¢, we
may simplify ¢ to a formula 1, not involving comparisons between z and y. In particular,
we may express 1y in CNF, where each clause is a disjunction of {<, <, >, >}-comparisons
between z; and z; or between y; and z; (in some dimension 4). Since all such clauses need to
be fulfilled simultaneously, for each z € Z and clause C, we introduce some z¢c chosen such
that the clause C is falsified if and only if z o y are dominated by z¢.

We show a matching conditional lower bound of n*~°() for PT Ogry, ¢ under the 3-uniform
hyperclique hypothesis.

» Theorem 14. For k > 2 and h > 3, under the h-uniform HyperClique hypothesis, there is
a sentence in PTOpqq pr ending in 33V that requires time Q(nk’o(l)),

We use the first k& quantifiers to represent a choice of clique nodes, each represented in its
own dimension, and use the V quantifier to check that no forbidden configuration is used
(a non-edge in the given hypergraph). Naively, this would create ©(n?) rather than O(n)
objects, which we remedy by reducing from finding hypercliques of size hk (rather than k).
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We also establish a SETH-based lower bound directly for VCND,. The reduction is very
similar to our Hitting-Set-based lower bound for IV3-structures.

» Theorem 15. Assuming SETH, for every e > 0, there is a d such that VCNDy requires
time Q(n?7°).

Specialized algorithm for VCND,. Since our completeness results establishes VCND, as
a central problem for the study of PT'Oy, 4, we consider special cases of the problem. In
particular, if one of these sets contains vectors of dimension 2, while the other contains
vectors of dimension d, we show the following algorithm, which uses the Erdds-Szekeres
Theorem as main ingredient. We use this to extract lists of vectors so that when we restrict
to any dimension, the vectors appear in monotonic increasing or decreasing order. This way,
the vectors that dominate some fixed vector x form an interval, which allows us to take
advantage of fast segment trees that solve an interval covering problem.

» Theorem 16. There is a 5(112_2%) time algorithm for VCND when one set of vectors is
of dimension 2 and the other is of dimension d.

Note that such an improvement to O(n?>~¢(9)) with €(d) > 0 for the general VCND,
problem would refute the 3-uniform hyperclique hypothesis by Theorem 14. In the appendix,
we also give an algorithm for very high-dimensional VCND,.

4  Conclusion and open problems

We have introduced general classes T'Oy, 4, PT'Oy, 4 of multidimensional ordering problems as
model-checking problems for k-quantifier first-order formulas over d succinctly represented
ordering relations (with or without additional explicitly represented relations). We gave a
conditionally tight algorithm running in time O(mk'_1 logd m) for all these problems. For
PTOy,q, we gave complete or hard problems for most quantifier structures, and identified a
problem VCND, as the essentially only candidate to be complete for PT'Oy, 4.

The main open problem is to prove or disprove that VCNDy is complete for PT'Oy, 4. The
major challenge here is to reduce dv3-quantified ordering problems to the 33V-quantified
VCND,. Such a reduction is possible in the unordered setting [29], but its unclear how to
make this approach work in our setting. Likewise, can we prove that a hybrid version of
VCND, and the orthogonal vectors problem (which is complete for the sparse-relational
setting [29]) is complete for TOy, q7 An intermediate step could be to find a complete problem
for FV3-quantified ordering problems.

A further general algorithmic question is to study existence of improved algorithms for
very small constant dimensions d, such as d = 1 and d = 2, in particular the existence of
O(n?>~<(4)) time algorithms with ¢(d) > 0, for 3-quantifier problems. In this direction, we
have given an O(n2_2%)—time algorithm for the central VCND problem where one set of
vectors has dimension 2 and the other has dimension d. Note that by our results, such an
algorithm for the general VCND, problem would refute the 3-uniform HyperClique conjecture.
Can we classify which problems admit such improved algorithms for small dimensions?
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