KIT | KIT-Bibliothek | Impressum | Datenschutz

Walking the dog fast in practice: Algorithm engineering of the Fréchet distance

Bringmann, Karl; Künnemann, Marvin; Nusser, André

Abstract:

The Fréchet distance provides a natural and intuitive measure for the popular task of computing the similarity of two (polygonal) curves. While a simple algorithm computes it in near-quadratic time, a strongly subquadratic algorithm cannot exist unless the Strong Exponential Time Hypothesis fails. Still, fast practical implementations of the Fréchet distance, in particular for realistic input curves, are highly desirable. This has even lead to a designated competition, the ACM SIGSPATIAL GIS Cup 2017: Here, the challenge was to implement a near-neighbor data structure under the Fréchet distance. The bottleneck of the top three implementations turned out to be precisely the decision procedure for the Fréchet distance. In this work, we present a fast, certifying implementation for deciding the Fréchet distance, in order to (1) complement its pessimistic worst-case hardness by an empirical analysis on realistic input data and to (2) improve the state of the art for the GIS Cup challenge. We experimentally evaluate our implementation on a large benchmark consisting of several data sets (including handwritten characters and GPS trajectories). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175573
Veröffentlicht am 25.10.2024
Originalveröffentlichung
DOI: 10.20382/jocg.v12i1a4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 09.08.2021
Sprache Englisch
Identifikator ISSN: 1920-180X
KITopen-ID: 1000175573
Erschienen in Journal of computational geometry
Verlag Computational Geometry Laboratory
Band 12
Heft 1
Seiten 70-108
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page