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The discrete Fréchet distance is a popular measure for comparing polygonal curves. An important variant
is the discrete Fréchet distance under translation, which enables detection of similar movement patterns in
different spatial domains. For polygonal curves of length n in the plane, the fastest known algorithm runs in
time Õ (n5) [12]. This is achieved by constructing an arrangement of disks of size O (n4), and then traversing
its faces while updating reachability in a directed grid graph of size N := O (n2), which can be done in time
Õ (
√
N ) per update [27]. The contribution of this article is two-fold.

First, although it is an open problem to solve dynamic reachability in directed grid graphs faster than
Õ (
√
N ), we improve this part of the algorithm: We observe that an offline variant of dynamic s-t-reachability

in directed grid graphs suffices, and we solve this variant in amortized time Õ (N 1/3) per update, resulting
in an improved running time of Õ (n4.66... ) for the discrete Fréchet distance under translation. Second, we
provide evidence that constructing the arrangement of size O (n4) is necessary in the worst case by proving
a conditional lower bound of n4−o (1) on the running time for the discrete Fréchet distance under translation,
assuming the Strong Exponential Time Hypothesis.
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1 INTRODUCTION

Fréchet distance. Modern tracking devices yield an abundance of movement data, e.g., in the
form of GPS trajectories. This data is usually given as a sequence of points in Rd for some
small dimension d like 2 or 3. By interpolating linearly between consecutive points, we obtain
a corresponding polygonal curve. One of the most fundamental tasks on such objects is to mea-
sure similarity between two curves π ,σ . A popular approach is to measure their distance using
the Fréchet distance, which has two important variants: The classic continuous Fréchet distance is
the minimal length of a leash connecting a dog and its owner as they continuously walk along
the interpolated curves π and σ , respectively, from the startpoints to the endpoints without back-
tracking. In the discrete Fréchet distance, at any time step the dog and its owner must be at ver-
tices of their curves and may jump to the next vertex. This discrete version is well motivated
when we think of the inputs as sequences of points rather than polygonal curves, i.e., if the in-
terpolated line segments between input points have no meaning in the underlying application. In
comparison to other similarity measures such as the Hausdorff distance, the Fréchet distance con-
siders the ordering of the vertices along the curves, thus reflecting an intuitive property of curve
similarity.

The time complexity of the Fréchet distance is well understood. For the continuous Fréchet
distance, Alt and Godau designed an O (n2 logn)-time algorithm for polygonal curves π ,σ consist-
ing of n vertices [6]. Buchin et al. [18] improved on this result by giving an algorithm that runs
in time O (n2

√
logn(log logn)3/2) on the Real RAM and O (n2 (log logn)2) on the Word RAM. The

first algorithm for the discrete Fréchet distance ran in time O (n2) [31], which was later improved

to O (n2 log log n

log n
) [4]. On the hardness side, conditional on the Strong Exponential Time Hypoth-

esis, Bringmann [14] ruled out O (n2−ε )-time algorithms for any ε > 0, for both variants of the
Fréchet distance. Recently, Abboud and Bringmann [1] showed that any O (n2/ log17+ε n)-time al-
gorithm for the discrete Fréchet distance would prove novel circuit lower bounds. On the practical
side, several fast implementations for computing the continuous Fréchet distance resulted from
the SIGSPATIAL GIS Cup 2017 [10, 20, 29] with a follow-up work significantly improving on these
results [16].

Many extensions and variants of the Fréchet distance have been studied, e.g., generalizing from
curves to other types of objects, replacing the ground spaceRd by more complex spaces, and many
more (see, e.g., References [5, 11, 19, 21, 26, 28, 38, 43]). Applications of the Fréchet distance range
from moving objects analysis (see, e.g., Reference [17]) through map-matching tracking data (see,
e.g., Reference [13]) to signature verification (see, e.g., Reference [48]).

Fréchet distance under translation. For some applications, it is useful to change the definition of
the Fréchet distance slightly. In particular, several applications on curves evolve around the theme
of detecting movement patterns. Consider the task of signature verification. Whether two signatures
are similar is a translation-invariant property—intuitively, by translating a signature in space, we
cannot make it more or less similar to another signature. Consider another example: Given GPS
trajectories of an animal, we might want to detect different movement patterns (just considering
their shape) by chopping the trajectories into smaller pieces and clustering these pieces according
to some distance measure. For the two applications mentioned above, it is inconvenient that the
Fréchet distance is not invariant under translation.1 To overcome this issue, the Fréchet distance

under translation between curves π ,σ is defined as the minimal Fréchet distance between π and

1In this context one could even ask for a version of the Fréchet distance that is translation- and rotation-invariant, but we
focus on the former in this article.
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Discrete Fréchet Distance Under Translation 25:3

any translation of σ , i.e., we minimize over all possible translations of σ . Clearly, this yields a
translation-invariant distance measure, and thus enables the above application.

The continuous Fréchet distance under translation was independently introduced by Efrat
et al. [30] and Alt et al. [7], who designed algorithms in the plane with running time Õ (n10) and
Õ (n8), respectively.2 Both groups of researchers also presented approximation algorithms, e.g., a
(1 + ε )-approximation running in time O (n2/ε2) in the plane [7]. This line of work was extended
to three dimensions with a running time of Õ (n11) [51].

The discrete Fréchet distance under translation was first studied by Jiang et al. [41] who designed
an Õ (n6)-time algorithm in the plane. Mosig et al. [47] presented an approximation algorithm that
computes the discrete Fréchet distance under translation, rotation, and scaling in the plane, up to
a factor close to 2, and runs in time O (n4). The best known exact algorithm for the discrete Fréchet
distance under translation in the plane is due to Ben Avraham et al. [12]. It is an improvement of
the algorithm by Jiang et al. [41] and runs in time Õ (n5).

Our contribution. In this article, we further study the time complexity of the discrete Fréchet dis-
tance under translation in the plane. First, we improve the running time from Õ (n5) to Õ (n4.66... ).
This is achieved by designing an improved algorithm for a subroutine of the previously best algo-
rithm, namely, offline dynamic s-t-reachability in directed grid graphs; see Section 1.1 below for a
more detailed overview.

Theorem 1.1. The discrete Fréchet distance under translation on curves of length n in the plane

can be computed in time Õ (n14/3) = Õ (n4.66.. ).

Our second main result is a lower bound of n4−o (1) , conditional on the standard Strong Exponen-
tial Time Hypothesis. The Strong Exponential Time Hypothesis essentially asserts that Satisfiabil-
ity requires time 2n−o (n) ; see Section 2 for a definition. This (conditionally) separates the discrete
Fréchet distance under translation from the classic Fréchet distance, which can be computed in
time Õ (n2). Moreover, the first step of all known algorithms for the discrete Fréchet distance un-
der translation is to construct an arrangement of disks of size O (n4). Our conditional lower bound
shows that this is essentially unavoidable.

Theorem 1.2. The discrete Fréchet distance under translation of curves of length n in the plane

requires time n4−o (1) , unless the Strong Exponential Time Hypothesis fails.

We leave closing the gap between Õ (n4.66.. ) and n4−o (1) as an open problem.

1.1 Technical Overview

Previous algorithms for the discrete Fréchet distance under translation. Let us sketch the algo-
rithms by Jiang et al. [41] and Ben Avraham et al. [12]. Given sequences π = (π1, . . . ,πn ) and
σ = (σ1, . . . ,σn ) in R2 and a number δ ≥ 0, we want to decide whether the discrete Fréchet dis-
tance under translation of π and σ is at most δ . From this decision procedure one can obtain an
algorithm to compute the actual distance via standard techniques (i.e., parametric search).

The translations τ for which the distance of πi and σj + τ is at most δ
form a disk in R2. Over all pairs (πi ,σj ) this yields O (n2) disks, all of them
having radius δ . Construct their arrangement A (see an illustration to the
right), which is guaranteed to have O (n4) faces. Within each face ofA, any
two translations are equivalent, in the sense that they leave the same pairs
(πi ,σj ) in distance at most δ . Thus, whether the discrete Fréchet distance is
at most δ is constant in each face. Hence, it suffices to compute the discrete

2By Õ ( ·), we hide polylogarithmic factors in n.
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25:4 K. Bringmann et al.

Fig. 1. Two input curves π ,σ and a distance δ , the corresponding free-space diagram M , and the grid graph
GM corresponding to M . A monotone traversal of M and GM is marked in orange.

Fréchet distance between π and σ translated by τ over O (n4) choices for τ , one for each face of
A. Since the discrete Fréchet distance can be computed in time O (n2), this yields an O (n6)-time
algorithm, which is essentially the algorithm by Jiang et al. [41].

Ben Avraham et al. [12] improve this algorithm as follows: Denote by M the n × n matrix with
Mi, j = 1 if the points πi ,σj are in distance at most δ , and Mi, j = 0 otherwise (M is called the
“free-space diagram”). It is well-known that the discrete Fréchet distance of π ,σ is at most δ if and
only if there exists a monotone path from the lower left to the upper right corner of M using only
1-entries. Equivalently, consider a directed grid graph GM on n × n vertices, where each node (i, j )
has directed edges to (i + 1, j ), (i, j + 1), and (i + 1, j + 1), and the nodes (i, j ) of GM with Mi, j = 0
are “deactivated” (i.e., removed). Then the discrete Fréchet distance of π ,σ is at most δ if and only
if node (n,n) is reachable from node (1, 1) in GM . See Figure 1 for an example of a pair of curves,
its corresponding free-space diagram M , and directed grid graph GM .

Ben Avraham et al. observe that it is easy to construct a sequence of O (n4) faces f1, . . . , fL of
the arrangement A such that (1) each face of A is visited at least once and (2) f� and f�+1 are
neighboring in A for all �. Since consecutive faces in this sequence are neighbors, only one pair
(πi ,σj ) changes its distance, i.e., either πi ,σj are in distance at most δ in f� and in distance larger
than δ in f�+1, or vice versa. This corresponds to one activation or deactivation of a node in GM .
After this update, we want to again check whether node (n,n) is reachable from node (1, 1) inGM .
That is, using a dynamic algorithm for s-t-reachability in directed grid graphs, we can maintain
whether the Fréchet distance is at most δ . The best known solution to dynamic reachability in
directed n × n grids runs in time Õ (n) [27].3 Over all O (n4) faces, this yields time Õ (n5) for the
discrete Fréchet distance under translation in the plane [12].

Intuition. There are two parts to the above algorithm: (1) Constructing the arrangementA and
iterating over its faces and (2) maintaining reachability in the grid graph GM . Both parts could
potentially be improved.

The natural first attempt is to attack the arrangement enumeration, i.e., part (1). The size of
the arrangement is O (n4), and for no other computational problem it is known—to the best of
our knowledge—that any optimal algorithm must construct such a large arrangement, so this part
seems intuitively wasteful. Surprisingly, our conditional lower bound of Theorem 1.2 shows that
constructing the arrangement is essentially unavoidable.

The remaining part (2) at first sight seems much less likely to be improvable, since it is a well-
known open problem to find a faster dynamic algorithm for reachability in directed grid graphs.
Nevertheless, we show how to improve the running time of this part of the algorithm.

3This algorithm even works more generally for dynamic reachability in directed planar graphs.
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Our algorithm. We observe that we do not need the full power of dynamic reachability, since
we can precompute all O (n4) updates. This leaves us with the following problem.

Offline Dynamic Grid Reachability: We start from the directed n × n-grid graph G in which all
nodes are deactivated.4 We are given a sequence of updates u1, . . . ,uU , where each u� is of the
form “activate node (i, j )” or “deactivate node (i, j ).” The goal is to compute for each 1 ≤ � ≤ U
whether node (1, 1) can reach node (n,n) in G after performing the updates u1, . . . ,u� .

Our main algorithmic contribution is an algorithm for Offline Dynamic Grid Reachability in
amortized time Õ (n2/3) per update. This is faster than the update time Õ (n) obtained by using a
dynamic algorithm for reachability in directed planar graphs [27].

Theorem 1.3. Offline Dynamic Grid Reachability can be solved in time Õ (n2 +U · n2/3).

The high-level approach of this algorithm is to consider all U updates in batches of size at
most k , which we call chunks. Roughly speaking, we design a grid reachability data structure
that given a chunk of k updates u1, . . . ,uk , enables us to (1) for any 1 ≤ j ≤ k , answer a grid
reachability query in the matrix updated byu1, . . . ,uj in time Õ (k ) and (2) obtain the data structure

for the matrix updated by the complete chunku1, . . . ,uk in time Õ (n
√
k +k ). This way, for each of

the O (U /k ) chunks, we only need time Õ (k2) to answer all k reachability queries for this chunk
and time Õ (n

√
k + k ) to update the data structure for the next chunk, leading to a total time of

Õ ((U /k ) (k2 + n
√
k )) = Õ (U (k + n/

√
k )). By setting k ≈ n2/3, we obtain the desired algorithm

running in time Õ (Un2/3) after Õ (n2) preprocessing.
To obtain our data structure, we build on the reachability data structure of Ben Avraham

et al. [12], augmented by two crucial insights: How to incorporate a chunk of k updates faster than
k single updates, and how to succinctly store reachability information for k distinguished nodes
in the grid (coined terminals, which correspond to the updates of the next chunk) in the data struc-
ture. The latter is given by a surprisingly succinct characterization of reachability of terminals in
a grid graph (see Corollary 4.6), which is the key technical contribution for the algorithm.

Let us give a more detailed overview of our algorithm and its main
ingredients. Start with a block [n] × [n] corresponding to the matrix
M . Repeatedly split every block horizontally in the middle, and then
split every block vertically in the middle, until we end up with constant-
size blocks. We call all the blocks considered during this process (not
just the constant-size blocks!) the “canonical” blocks; see the figure to
the right. Ben Avraham et al. [12] showed that one can store for each
canonical block of sidelength s reachability information for each pair of
boundary nodes, succinctly represented using only Õ (s ) bits of space,
and efficiently computable in time Õ (s ) from the information of the two
canonical child-blocks. In particular, over all blocks this information can
be maintained in time Õ (n) per update ui .

Ingredient 1: Batched updates. The first insight is that we can compute the reachability after a
given chunk of k updates u1, . . . ,uk faster than Õ (nk ): Intuitively, each update “touches” roughly
2 logn blocks—all those that contain the node that is activated or deactivated. Our approach now
uses that among the canonical blocks containing an update, the large blocks must be shared by
many updates. Specifically, instead of recomputing the reachability information of the large blocks

4In fact, our algorithm also works in the general case in which nodes can be arbitrarily activated/deactivated in the
beginning.
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at the top of the hierarchy k times, we perform those updates jointly and thus avoid the runtime
of k explicit updates of large blocks. A careful tradeoff yields an update time of Õ (n

√
k + k ).

Ingredient 2: Reachability among terminals. Now fix a chunkC = u�+1, . . . ,u�+k and let M denote
the matrix at the beginning of C , i.e., after incorporating all updates prior to u�+1. Denote by T
(“terminals”) the entries that get activated or deactivated during this chunk C and also add (1, 1)
and (n,n) to the set of terminals. We first deactivate all terminals, obtaining a matrix M0 and
a corresponding grid graph GM0 . The basic idea now is to determine for each pair of terminals
t , t ′ ∈ T whether t ′ is reachable from t in GM0 .

Let us sketch a simplified algorithm that assumes we have built a graphH with vertex setT , con-
taining a directed edge (t , t ′) if and only if t ′ is reachable from t inGM0 . To answer the reachability
query whether (n,n) is reachable from (1, 1) after updating M by u�+1, . . . ,u�+j , we proceed as fol-
lows: For each terminal t , activate t in H if and only if t is activated in M updated by u�+1, ...,u�+j .
Check whether (n,n) is reachable from (1, 1) in H . Since H has O (k ) nodes and O (k2) edges, this
reachability check can be performed in time O (k2). (By choosing a chunk size of k ≈ n2/5 this
would result in an Õ (Un4/5) algorithm for Offline Dynamic Grid Reachability, ignoring the pre-
processing time.) We will later show how to improve the reachability query time from O (k2) to
Õ (k ) by working directly on the graphGM0 instead of constructing the graph H . These details are
given in the subsequent sections.

It remains to describe how to determine reachability infor-
mation among terminals. To this end, we design a surprisingly
succinct representation of reachability from terminals to block
boundaries. Consider a canonical block B and let TB be the ter-
minals in B. For each terminal t ∈ TB let A(t ) be the low-
est/rightmost point on the right/upper boundary of B that is
reachable from t , and similarly let Z (t ) be the highest/leftmost
reachable point see the illustration to the right. We label any ter-
minal t = (x ,y) by L(t ) := x + y, i.e., the anti-diagonal that t is
contained in. For any right/upper boundary point q of B, let �(q)
be the minimal label of any terminal in TB from which q is reachable. We prove the following
succinct representation of reachability (see Corollary 4.6) that significantly generalizes a previous
characterization for reachability among the boundaries of blocks [6, 12].

For any right/upper boundary point q of B and any terminal t ∈ TB ,

q is reachable from t if and only if q ∈ [A(t ),Z (t )] and �(q) ≤ L(t ).

Here, q ∈ [A(t ),Z (t )] is to be understood as “q lies between A(t ) and Z (t ) along the boundary
of B,” which can be expressed using a constant number of inequalities. The “only if” part is imme-
diate, since t can only reach boundary vertices in [A(t ),Z (t )], and �(q) is the minimal label of any
terminal reaching q; the “if” part is surprising.

Assume we can maintain the information A(t ),Z (t ), �(q). Then, using this characterization, we
can determine all terminals reaching a boundary point q by a single call to orthogonal range search-

ing, since we can express the characterization using a constant number of inequalities. A complex
extension of this trick allows us to determine reachability among terminals (indeed, this technical
overview is missing many details of Section 4). This yields our algorithm; see Sections 3 and 4 for
details.

Conditional lower bound. Our reduction starts from the k-OV problem, which asks for k vectors
from k given sets such that in no dimension all vectors are 1. More formally:
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k-Orthogonal Vectors (k-OV). : Given sets V1, . . . ,Vk of N vectors in {0, 1}D , are there v1 ∈
V1, . . . ,vk ∈ Vk such that for any j ∈ [D] there exists an i ∈ [k] with vi [j] = 0?

A naive algorithm solves k-OV in time O (N kD). It is well-known that the Strong Exponential
Time Hypothesis implies that k-OV has no O (N k−ε poly(D))-time algorithm for all ε > 0 and
k ≥ 2 [52].

In our reduction, we set k = 4. An overview of our construction can be found in Figure 10 on
page 32. We consider canonical translations of the form τ = (ε · h1, ε · h2) ∈ R2 with h1,h2 ∈
{0, . . . ,N 2 − 1}. By a simple gadget, we ensure that any translation resulting in a Fréchet distance
of at most 1 must be close to a canonical translation. For simplicity, here we restrict our attention to
exactly the canonical translations. Note that there are N 4 canonical translations, and thus they are
in one-to-one correspondence to choices of vectors (v1, . . . ,v4) ∈ V1× . . .×V4. In other words, the
outermost existential quantifier in the definition of 4-OV corresponds to the existential quantifier
over the translation τ in the Fréchet distance under translation.

The next part in the definition of 4-OV is the universal quantifier over all dimensions j ∈ [D].
For this, our constructed curves π ,σ are split into π = π (1) . . . π (D ),σ = σ (1) . . . σ (D ) such that
π (i ),σ (j ) are very far for i � j. This ensures that the Fréchet distance of π ,σ is the maximum over
all Fréchet distances of π (i ),σ (i ) , and thus simulates a universal quantifier.

The next part is an existential quantifier over i ∈ [k]. Here, we need an OR-gadget for the
Fréchet distance. Such a construction in principle exists in previous work [1, 14], however, no
previous construction would work with translations, in the sense that a translation in y-direction
could only decrease the Fréchet distance. By constructing a more complex OR-gadget, we avoid
this monotonicity.

Finally, we need to implement a check whether the translation τ corresponds to a particu-
lar choice of vectors. We exemplify this with the first dimension of the translation, which we
call τ1, explaining how it corresponds to choosing (v1,v2). Let ind(v1), ind(v2) ∈ {0, . . . ,N − 1}
be the indices of these vectors in their sets V1,V2, respectively. We want to test whether τ1 =

ε · (ind(v1) + ind(v2) · N ). We split this equality into two inequalities. For the inequality τ1 ≥
ε · (ind(v1) + ind(v2) · N ), in one curve we place a point at π1 = (1 + ε · ind(v1),−1 − η), and
in the other we place a point at σ1 = (−1 − ε · ind(v2) · N ,−1 − η), for some η > 0, which we
specify later in this work. Then the distance of π1 to the translated σ1 is essentially their differ-
ence in x-coordinates, which is (1 + ε · ind(v1)) − (−1 − ε · ind(v2) · N + τ1) = 2 + ε · (ind(v1) +
ind(v2) · N ) − τ1. This is at most 2 if and only if the inequality for τ1 holds. We handle the oppo-
site inequality similarly, and we concatenate the constructed points for both inequalities to test
equality.

In total, our construction yields curves π ,σ such that their discrete Fréchet distance under trans-
lation is at most 1 if and only if V1, . . . ,V4 contain orthogonal vectors. The curves π ,σ consist of
n = O (D · N ) vertices. Hence, an algorithm for the discrete Fréchet distance under translation
in time O (n4−ε ) would yield an algorithm for 4-OV in time O (N 4−ε poly(D)), and thus violate the
Strong Exponential Time Hypothesis. See Section 5 for details.

1.2 Further Related Work

On directed planar/grid graphs. In this article, we improve offline dynamic s-t-reachability in
directed grid graphs. The previously best algorithm for this problem came from a more general so-
lution to dynamic reachability in directed planar graphs. For this problem, a solution with Õ (N 2/3)

update time was given by Subramanian [50], which was later improved to update time Õ (
√
N ) by

Diks and Sankowski [27]. In particular, our work yields additional motivation to study offline vari-
ants of classic dynamic graph problems.
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Related work on dynamic directed planar or grid graphs includes, e.g., shortest path computa-
tion [3, 40, 42], reachability in the decremental setting [39], or computing the transitive closure [27].
Recently, the first conditional lower bounds for dynamic problems on planar graphs were shown
by Abboud and Dahlgaard [2], however, they did not cover dynamic reachability in directed planar
graphs.

Other work on directed planar and grid graphs studies, e.g., the minimum amount of space
necessary to determine reachability between two nodes in polynomial time, can be found in Ref-
erences [8, 9]. For grid graphs this was recently improved from Õ (

√
N ) to Õ (N 1/3) [9], but with

very different techniques compared to ours.

On related distance measures. A related distance measure to the Fréchet distance, which does not
take traversals into account, is the Hausdorff distance. The Hausdorff distance can be computed
in almost linear time in the plane. As for the Fréchet distance, there are also related variants of the
Hausdorff distance that allow rigid motions of one of the input curves. For the Hausdorff distance
under translation there exists a cubic-time algorithm [36] for all Lp norms in the plane. For the L1

and L∞ norm, there even is a quadratic-time algorithm for the Hausdorff distance under translation
in the plane [24]. Surprisingly, despite this quadratic-time algorithm, the is a cubic lower bound
for the size of the arrangement of the Hausdorff distance under translation that holds for all Lp

norms [49].
The cubic-time algorithm for the Hausdorff distance under translation constructs the upper en-

velope of Voronoi surfaces and then tests for minima on the vertices and edges of this construction.
Thus, this algorithm is also an arrangement-based approach. Similarly, the first algorithms [7, 30]
for the continuous Fréchet distance under translation as well as the weak continuous Fréchet dis-
tance under translation relied on arrangement constructions.

A recently introduced variant of the Fréchet distance is the Fréchet gap [32, 33]. Some researchers
have argued that this measure is similar to the Fréchet distance under translation in certain aspects,
in particular, since the Fréchet gap between a curve π and a translation π + τ of the same curve is
0 [32]. Moreover, the Fréchet gap can be computed significantly faster, with the currently fastest
known algorithm running in time O (n3) [33]. In some sense, our conditional lower bound in Theo-
rem 1.2 explains why replacing the Fréchet distance under translation by such a surrogate measure
is necessary to obtain more efficient algorithms. Additionally, the discrete Fréchet distance with

shortcuts was also recently considered in a translation-invariant setting [34].

On related reachability data structures. In Reference [6], a reachability data structure on the
free-space diagram is given to compute the Fréchet distance between closed curves and also to
compute the best matching to any subcurve under the Fréchet distance. In Reference [44], a data
structure called the free-space map is presented, which improves the reachability data structure of
Reference [6] and as a consequence shaves off logarithmic factors in the running time for comput-
ing the above-mentioned applications as well as improving the running time for other applications.

1.3 Organization

We start off with introducing basic definitions, notational conventions, and algorithmic tools in
Section 2. Afterwards, in Section 3, we give an overview of our algorithmic result and we reduce
the problem to designing a certain data structure for Offline Dynamic Grid Reachability. This data
structure, our main technical contribution, is developed in Section 4. Finally, we prove our condi-
tional lower bound of n4−o (1) in Section 5.

2 PRELIMINARIES

We let [n] denote the set {1, . . . ,n}. Furthermore, for convenience, we use as convention that
min ∅ = ∞ and max ∅ = −∞.
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2.1 Curves, Traversals, Fréchet distances, and more

A polygonal curve π of length n over Rd is a sequence of points π1, . . . ,πn ∈ Rd . Throughout the
article, we only consider polygonal curves in the Euclidean plane, i.e., d = 2. Given any translation
vector τ ∈ R2, we denote by π + τ the polygonal curve π ′ = (π ′1, . . . ,π

′
n ) given by π ′i = πi + τ .

We call any pair (i, j ) ∈ [n] × [n] a position. A traversal T is a sequence t1, . . . , t� of positions,
where tk = (i, j ) implies that tk+1 is either (i + 1, j ) (that is, we advance one step in π while staying
in σj ), (i, j + 1) (we advance in σ while staying in πi ) or (i + 1, j + 1) (we advance in both curves
simultaneously). We call T = (t1, . . . , t� ) a traversal of π ,σ , if t1 = (1, 1) and t� = (n,n).

We now define two types of concatenations: a concatenation of curves and a concatenation of
traversals. Let π = (π1, . . . ,πn ),σ = (σ1, . . . ,σn ) be polygonal curves of lengths n. We define
the concatenation of π and σ as π ◦ σ � (π1, . . . ,πn ,σ1, . . . ,σn ). The resulting curve has length
2n. We now define the concatenation of traversals. Given two traversals T = (t1, . . . , t� ) and T ′ =
(t ′1, . . . , t

′
�′ ) with t� = t ′1, we define the concatenated traversal asT◦T ′ � (t1, . . . , t� = t ′1, t

′
2, . . . , t

′
�′ ).

Note that we obtain a traversals from t1 to t ′
�′ .

The discrete Fréchet distance is formally defined as

δF (π ,σ ) � min
T=((i1, j1 ), ..., (i�, j� ))

max
1≤k≤�

‖πik
− σjk

‖,

where T ranges over all traversals of π ,σ and ‖ · ‖ denotes the Euclidean distance in R2.
We obtain a well-known equivalent definition as follows: Fix some distance δ ≥ 0. We call a

position (i, j ) free if ‖πi − σj ‖ ≤ δ . We say that a traversal T = (t1, . . . , t� ) of π ,σ is a valid

traversal for δ if t1, . . . , t� are all free positions. The discrete Fréchet distance of π ,σ is then the
smallest δ such that there is a valid traversal of π ,σ for δ .

Analogously, consider the n × n matrix M with Mi, j = 1 if (i, j ) is free, and Mi, j = 0 otherwise.
We call any traversal T = (t1, . . . , t� ) a monotone path from t1 to t� . If all positions (i, j ) visited by
T satisfy Mi, j = 1, then we callT a monotone 1-path from t1 to t� in M . As yet another formulation,
consider then×n grid graphGM where vertex (i, j ) has directed edges to all of (i, j+1), (i+1, j ), and
(i + 1, j + 1) (in case they exist). Deactivate (i.e., remove) all non-free vertices (i, j ) fromGM . Then
a monotone 1-path in M corresponds to a (directed) path inGM . Hence, δF (π ,σ ) ≤ δ is equivalent
to the existence of a valid traversal of π ,σ for δ , which in turn is equivalent to the existence of a
monotone 1-path from (1, 1) to (n,n) in the matrix M , and to vertex (n,n) being reachable from
(1, 1) in GM .

Finally, we define the discrete Fréchet distance under translation as minτ ∈R2 δF (π ,σ + τ ), i.e.,
the smallest discrete Fréchet distance of π to any translation of σ .

2.2 Hardness Assumptions

The Strong Exponential Time Hypothesis (SETH) was introduced by Impagliazzo and Paturi [37]
and essentially postulates that there is no exponential-time improvement over exhaustive search
for the Satisfiability Problem.

Hypothesis 2.1 (Strong Exponential Time Hypothesis (SETH)). For any ϵ > 0 there exists k ≥ 3
such that k-SAT has no O ((2 − ϵ )n )-time algorithm.

In fact, our reductions even hold under a weaker assumption, specifically, the k-OV Hypothesis.5

Recall the k-OV problem: Given sets V1, . . . ,Vk of N vectors in {0, 1}D , the task is to determine

5In fact, we only need the corresponding hypothesis for 4-OV.
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whether there are v1 ∈ V1, . . . ,vk ∈ Vk such that for all j ∈ [D] there exists an i ∈ [k] with
vi [j] = 0.

Hypothesis 2.2 (k-OV Hypothesis). For any k ≥ 2 and ϵ > 0, there is no O (N k−ϵ poly(D))-time

algorithm for k-OV.

The well-known split-and-list technique due to Williams [52] shows that SETH implies the k-
OV Hypothesis. Thus, any conditional lower bound that holds under the k-OV hypothesis also
holds under SETH.

2.3 Orthogonal Range Data Structures

We will use a tool from geometric data structures, namely, (dynamic) orthogonal range data struc-

tures. Let S be a set of key-value pairs s = (ks ,vs ) ∈ Zd ×Z; in our applications, we will have d = 2
or d = 3. An orthogonal range data structure on S enables us to query the maximal value of any
pair in S whose key lies in a given orthogonal range. Formally, we say OR stores vs under the key

ks for s ∈ S for minimization queries, if OR supports, for any �1,u1, �2,u2, . . . , �d ,ud ∈ Z∪{−∞,∞},
queries of the form

OR .min([�1,u1] × · · · × [�d ,ud ]) : return min{vs | s = (ks ,vs ) ∈ S,ks ∈ [�1,u1] × · · · × [�d ,ud ]}.
We will also consider analogous maximization queries.

Classic results [23, 35] show that for any set S of size n and d = 2, we can construct such a data
structure OR in time and space O (n logn), supporting minimization (or maximization) queries in
time O (logn).

In Section 4.6.2, we will also use an orthogonal range searching data structure that allows (1)
to report all values of pairs in S whose keys lie in a given orthogonal range and (2) to remove a
key-value pair from S . Formally, we say that OR storesvs under the key ks for s ∈ S for decremental

range reporting queries, if OR supports, for any �1,u1, �2,u2, . . . , �d ,ud ∈ Z ∪ {−∞,∞}, queries of
the form

OR .report([�1,u1] × · · · × [�d ,ud ]) : return {vs | s = (ks ,vs ) ∈ S,ks ∈ [�1,u1] × · · · × [�d ,ud ]},
as well as deletions from the set S .

Mortensen [46] and Chan and Tsakalidis [22] showed how to construct such a data structureOR
for any set S of size n in time and space O (n logd−1 n), deletion time O (logd−1 n), and query time
O (logd−1 n + k ), where k denotes the output size of the query. (These works obtain even stronger
results, however, we use simplified bounds for ease of presentation.)

3 ALGORITHM: REDUCTION TO GRID REACHABILITY

In this section, we prove our algorithmic result by showing how a certain grid reachability data
structure (that we give in Section 4) yields an Õ (n4+2/3)-time algorithm for computing the discrete
Fréchet distance under translation.

We start with a formal overview of the algorithm. First, we reduce the decision problem (i.e., is
the discrete Fréchet distance under translation of π ,σ at most δ?) to the problem of determining
reachability in a dynamic grid graph, as shown by Ben Avraham et al. [12]. However, noting that all
updates and queries are known in advance, we observe that the following offline version suffices.

Problem 3.1 (Offline Dynamic Grid Reachability). Let M be an n × n matrix over {0, 1}. We

call u = (p,b) with p ∈ [n] × [n] and b ∈ {0, 1} an update and define M[[u]] as the matrix obtained

by setting the bit at position p to b, i.e.,

M[[(p,b)]]i, j =
⎧⎪⎨⎪⎩
b if p = (i, j ),

Mi, j otherwise.
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For any sequence of updates u1, . . . ,uk ∈ ([n]× [n]) × {0, 1} with k ≥ 2, we define M[[u1, . . . ,uk ]] �
(M[[u1]])[[u2, . . . ,uk ]].

The Offline Dynamic Grid Reachability problem asks to determine, given M and any sequence of

updates u1, . . . ,uU ∈ ([n] × [n]) × {0, 1}, whether there is a monotone 1-path from (1, 1) to (n,n) in

M[[u1, . . . ,uk ]] for any 1 ≤ k ≤ U .

We show the following reduction in Section 3.1.

Lemma 3.2. Assume there is an algorithm solving Offline Dynamic Grid Reachability in time

T (n,U ). Then there is an algorithm that, given δ > 0 and polygonal curves π ,σ of length n over

R
2, determines whether δF (π ,σ + τ ) ≤ δ for some τ ∈ R2 in time O (T (n,n4)).

Our speedup is achieved by solving Offline Dynamic Grid Reachability in timeT (n,U ) = Õ (n2+

Un2/3) (Ben Avraham et al. [12] achieved T (n,U ) = O (n2 + Un)). To this end, we devise a grid

reachability data structure, which is our central technical contribution.

Lemma 3.3 (Grid Reachability Data Structure). Given an n × n matrix M over {0, 1} and a

set of terminals T ⊆ [n] × [n] of size k > 0, there is a data structure DM,T with the following

properties.

(i) (Construction:) We can construct DM,T in time O (n2 + k log2 n).
(ii) (Reachability Query:) Given F ⊆ T , we can determine in time O (k log3 n) whether there is a

monotone path from (1, 1) to (n,n) using only positions (i, j ) with Mi, j = 1 or (i, j ) ∈ F .

(iii) (Update:) Given T ′ ⊆ [n] × [n] of size k and an n × n matrix M ′ over {0, 1} differing from M

in at most k positions, we can update DM,T to DM ′,T ′ in time O (n
√
k logn + k log2 n). Here,

we assume M ′ to be represented by the set Δ of positions in which M and M ′ differ.

Section 4 is dedicated to devising this data structure, i.e., proving Lemma 3.3. Equipped with
this data structure, we can efficiently batch updates and queries to the data structure. Specifically,
we obtain the following theorem:

Theorem 3.1. Offline Dynamic Grid Reachability can be solved in time O (n2 +Un2/3 log2 n).

We prove this theorem in Section 3.2. Finally, it remains to use standard techniques of parametric
search to transform the decision algorithm to an algorithm computing the discrete Fréchet distance
under translation. This has already been shown by Ben Avraham et al. [12]; we sketch the details
in Section 3.3.

Lemma 3.4. Let Tdec (n) be the running time to decide, given δ > 0 and polygonal curves π ,σ of

length n over R2, whether δF (π ,σ + τ ) ≤ δ for some τ ∈ R2. Then there is an algorithm computing

the discrete Fréchet distance under translation for any curves π ,σ of length n over R2 in time O ((n4 +

Tdec (n)) logn).

Combining Lemma 3.4, Lemma 3.2, and Theorem 3.1, we obtain an algorithm computing the
discrete Fréchet distance under translation in time

O ((n4 +T (n,n4)) logn) = O (n4+2/3 log3 n),

as desired. In the remainder of this section, we provide the details of all steps mentioned above,
except for Lemma 3.3 (which we prove in Section 4).

3.1 Reduction to Offline Dynamic Grid Reachability

In this section, we prove Lemma 3.2. Given polygonal curves π ,σ of length n over R2 and δ > 0,
we determine whether δF (π ,σ + τ ) ≤ δ for some τ ∈ R2 as follows:

For any radius r and point p ∈ R2, we let Dr (p) denote the disk of radius r with center p.
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Fig. 2. Arrangement Aδ and construction of Gδ .

Observation 3.5. Let τ ∈ R2 and define the n × n matrix Mτ over {0, 1} by

Mτ
i, j = 1 ⇐⇒ τ ∈ Dδ (πi − σj ).

We have δF (π ,σ + τ ) ≤ δ if and only if there is a monotone 1-path from (1, 1) to (n,n) in Mτ .

By the above observation, it suffices to check for the existence of monotone 1-paths from (1, 1)
to (n,n) in a bounded number of matrices. To this end, let Q � {πi − σj | i, j ∈ [n]}. We construct
the arrangement Aδ of the disks Dδ (q) for q ∈ Q , in the sense that we construct the following
plane graphGδ (cf. Figure 2): First, we include the vertices ofAδ in its node set (i.e., intersections
of disks Dδ (q),Dδ (q′) with q,q′ ∈ Q). Second, for each q ∈ Q for which Dδ (q) intersects no Dδ (q′)
for q′ ∈ Q \ {q}, we include an arbitrary τq on the boundary of Dδ (q). Finally, we add an arbitrary
vertex τ0 ∈ R2 lying in the outer face of Aδ to the node set. Any nodes τ ,τ ′ of Gδ are connected
by an edge if they are neighboring vertices on the boundary of some face of Aδ ; additionally, we
connect τ0 to all nodes that lie on the boundary separating the outer face from some other face.
Observe that Gδ is a connected plane graph, has O ( |Q |2) = O (n4) nodes and edges, and can be
constructed in time O (n4).

Note that by Observation 3.5, it suffices to check whether δF (π ,σ + τv ) ≤ δ for any node τv in6

Gδ : for any (bounded) face f of Aδ , there is at least one point τv in Gδ that lies on the boundary
of f . The corresponding matrix Mτv has at least the same 1-positions as the matrix Mτ for any
τ ∈ f (and might have more).

To obtain a walk visiting all nodes in Gδ , we simply compute a spanning tree T of Gδ , double
all edges of T , and find an Eulerian cycle starting and ending in τ0. Denote this cycle by τ0, . . . ,τL

and observe that L = O (n4). Let M0 = Mτ0 be the n × n all-zeroes matrix. For any 0 ≤ i < L, we
construct an update sequence ūi that first sets all positions (i, j ) withMτi = 1 andMτi+1 = 0 to zero,
and then sets all positions (i, j ) with Mτi = 0 and Mτi+1 = 1 to 1. Thus, if we start with Mτi and
perform the updates in ūi , then at any point in time, the current matrix is dominated by either Mτi

or Mτi+1 (that is, the free positions of the current matrix are always a subset of Mτi ’s free positions
or a subset of Mτi+1 ’s free positions), and at the end, we obtain Mτi+1 . Thus, by concatenating all
updates to ū0, . . . , ūL−1, we obtain an instance of the Offline Dynamic Grid Reachability problem
with initial matrix M0 and update sequence u1, . . . ,uL′ with the following property: There is some

6Note that our approach here deviates somewhat from the description in the introduction. This is due to the fact that
for adversarial δ , we might need to consider degenerate faces consisting of a single point only; due to the parametric
search that we describe in Section 3.3, we may not assume δ to avoid such degenerate cases. Traversing vertices of the
arrangement instead of the faces takes care of such border cases in a natural manner.
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i ∈ {0, . . . ,L}with δF (π ,σ+τi ) ≤ δ if and only if there is some i ′ ∈ [L′] such that (n,n) is reachable
from (1, 1) via a monotone 1-path in M0[[u1, . . . ,ui′]]. Since τ0, . . . ,τL visits all nodes inGδ , this is
equivalent to testing whether δF (π ,σ + τ ) ≤ δ for any τ ∈ R2.

It remains to bound L′. We assume general position of the input points P ∪ S where P = {πi |
i ∈ [n]} and S = {σj | j ∈ [n]}. Observe that there is some universal constant C such that no
C points in Q lie on a common circle.7 Thus, if we move from vertex τi to τi+1 along an edge in
Gδ , e.g., from one vertex of the boundary of some face to a neighboring vertex on that boundary,
then there are at most 2C entries that change from Mτi to Mτi+1 , since for both τi and τi+1, there
are at most C disks intersecting this vertex and no other entries change when moving along this
edge (by construction of Gδ ). Thus, L′ ≤ 2CL = O (n4). Consequently, given an algorithm solving
Offline Dynamic Grid Reachability in time T (n,U ), we can determine whether δF (π ,σ + τ ) ≤ δ
for some τ ∈ R2 in time O (T (n,L′)) = O (T (n,n4)).

3.2 Solving Offline Dynamic Grid Reachability

We prove Theorem 3.1 using the grid reachability data structure given in Lemma 3.3. Specifi-
cally, we claim that the following algorithm (formalized as Algorithm 1) solves Offline Dynamic
Grid Reachability in time O (n2 + Un2/3 log2 n). We partition our updates u1, . . . ,uU into groups
ū1, . . . , ūO (U /k ) containing k updates each. For any group ūi , let Mi be obtained from M by per-
forming all updates prior to ūi . Note that ūi will update a set of at most k positions; denote this
set by Ti . We build the grid reachability data structure Di = DM0

i ,Ti with terminal set Ti and ma-

trix M0

i obtained from Mi by setting the positions of all terminals Ti to 0. Observe that the state
after any update within ūi corresponds to M0

i with some additional positions in Ti set to 1 (the
free terminals). Thus, for each update within ūi , we can determine whether it creates a monotone
1-path from (1, 1) to (n,n) by simply determining the set F ⊆ Ti of free terminals at the point of
this update and performing the corresponding reachability query in Di . It is straightforward to
argue that the resulting algorithm correctly solves Offline Dynamic Grid Reachability.

To analyze the running time of Algorithm 1, note that each data structureDM0

i ,Ti has a terminal

set of size at most k and each M0

i+1 differs from M0

i in at most 2k entries. Thus, by Lemma 3.3,
we need time O (n2 + k log2 n) to build D1 = DM0

1 ,T1 in Line 7. The time spent for handling a
single group ūi is bounded by the time to perform k queries in Di = DM0

i ,Ti plus the time to

updateDi = DM0

i ,Ti toDi+1 = DM0

i+1,Ti+1
, which amounts to O (k2 log3 n +n

√
k logn + k log2 n) =

O (k2 log3 n + n
√
k logn) by Lemma 3.3. Thus, in total, we obtain a running time of

O
(
n2 + k log2 n +

U

k

(
k2 log3 n + n

√
k logn

))
= O

(
n2 +U

(
k log3 n +

n
√
k

logn

))
.

This expression is minimized by setting k � n2/3/ log4/3 n, resulting in a total running time of
O (n2 +Un2/3 log1+2/3 n) = O (n2 +Un2/3 log2 n), as desired.

7To be more precise, we sketch how to argue that the general position assumption for P ∪ S “transfers” to Q . Assume that
there exist points q1, . . . , q� ∈ Q lying on a common circle. For all i , we must have qi = pi − si for some pi ∈ P, si ∈ S .
First assume that � = 4 and that there is some s such that si = s for all i ∈ {1, 2, 3, 4}. Then already p1, . . . , p4 lie
on a common circle (it has the same radius as the original circle, and its center is translated by s ), which violates the
general position assumption of points in P . Otherwise, let the points q1, . . . , q� be arbitrary with � ≥ 36. By the first case,
any si appears at most three times among s1, . . . , s� . After removing copies, we may assume without loss of generality
that q1, . . . , q�′ with �′ ≥ �/3 have distinct si ’s. Similarly, we may also assume that q1, . . . , q�′′ with �′′ ≥ �/9 ≥ 4
have distinct pi ’s as well. The fact that q4 lies on the circle defined by q1, q2, q3 can be expressed by a nonzero degree-2
polynomial Pq1,q2,q3 (x, y ) vanishing on q4. Since q4 = p4 − s4, we obtain a nonzero degree-2 polynomial P ′q1,q2,q3

(p, s )

vanishing on (p4, s4). This contradicts general position of P ∪ S .
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3.3 Parametric Search

In this section, we sketch how to use parametric search techniques (due to Megiddo [45] and
Cole [25]) to reduce the optimization problem to the decision problem with small overhead,
i.e., we prove Lemma 3.4. Specifically, for the readers’ convenience, we describe the arguments
made by Ben Avraham et al. [12] in slightly more detail.

ALGORITHM 1: Solving Offline Dynamic Grid Reachability on matrix M and update sequence
u1, . . . ,uU .

1: function OfflineDynamicGridReachability(M , u1, . . . ,uU )
2: parameter: k

3: Divide u1, . . . ,uU into s =
⌈

U
k

⌉
subsequences ū1, . . . , ūs of length k .8

4: Initialize M1 ← M
5: Set T1 to the set of positions updated in ū1.
6: Let M0

1 be obtained from M1 by updating all positions in T1 to 0
7: Build DM0

1 ,T1
8: for i ← 1 to s do

9: for j ← 1 to k do

10: Let F ⊆ Ti be the free terminals in Mi [[ūi [1], . . . , ūi [j]]]
11: if reachability query in DM0

i ,Ti with free terminals F is successful then

12: return true

13: Set Mi+1 ← Mi [[ūi ]]
14: Set Ti+1 to the set of positions updated in ūi+1.9

15: Let M0

i+1 be obtained from Mi+1 by updating all positions in Ti+1 to 0
16: update DM0

i ,Ti to DM0

i+1,Ti+1

17: return false

Our aim in this section is to compute the discrete Fréchet distance under translation of polygonal
curves π ,σ of length n over R2, i.e., to determine

δ ∗ � min
τ ∈R2

δF (π ,σ + τ ).

Using the decision algorithm, we can determine, for any δ > 0, whether δ ∗ ≤ δ in time Tdec (n).
As we shall see below, there is a range of O (n6) possible values (defined by the point set of π ,σ )
that δ ∗ might attain (called critical values). Naively computing all critical values and performing
a binary search would result in an O ((n6 + Tdec (n)) logn)-time algorithm, which is too slow for
our purposes. Instead, we use the parametric search technique to perform an implicit search over
these critical values.

Conceptually, we aim to determine the combinatorial structure of the arrangementAδ ∗ defined
in Section 3.1 (captured by the graph Gδ ∗ ) without knowing δ ∗ in advance. To specify this combi-
natorial structure, define for every q ∈ Q the set

Iδ (q) � {q′ ∈ Q \ {q} | Dδ (q),Dδ (q′) intersect}.
Note that for every q′ ∈ Iδ (q), there are one or two intersection points of Dδ (q), Dδ (q′), which
we denote by C1

δ
(q,q′) and C2

δ
(q,q′) (note that we allow these points to coincide if Dδ (q),Dδ (q′)

intersect in a single point only)—we assume this notation to be chosen consistently in the sense

8If necessary, then repeat the last element of the last group to make all groups consist of exactly k updates.
9We let ūs+1 consist of k arbitrary updates, as we will never make use of these values.
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Fig. 3. Critical values for the lists Lδ (q),q ∈ Q .

thatC1
δ

(q,q′) andC1
δ

(q′,q) refer to the same point (likewise forC2
δ

(q,q′) andC2
δ

(q′,q)). We denote
by Cδ (q) the set of all intersection points on the boundary of Dδ (q), i.e.,C1

δ
(q,q′),C2

δ
(q,q′) for all

q′ ∈ Iδ (q). We obtain a list Lδ (q) by starting with the rightmost point on the boundary of Dδ (q),
say, rq , and listing all intersection points C ∈ Cδ (q) in counter-clockwise order. Observe that the
combinatorial structure of Aδ is completely specified by the lists Lδ (q) for q ∈ Q .

We wish to construct Lδ ∗ (q) for all q ∈ Q using calls to our decision algorithm, i.e., queries of the
form “Is δ ∗ ≤ δ?” Along the way, we maintain a shrinking interval (α , β] such that δ ∗ ∈ (α , β]—our
aim is that in the end (α , β] no longer contains critical values except for β , and thus δ ∗ = β can be
derived. We proceed in two steps.

Step 1: Determining Iδ ∗ (q). The critical values for this step are the half-distances of all pairs
q,q′ ∈ Q (cf. Figure 3(a)). We list all these values and perform a binary search over them, using our
decision algorithm. Since there are at most O ( |Q |2) = O (n4) such values, we obtain an algorithm
running in time O ((n4+Tdec (n)) logn) returning an interval (α1, β1] such that δ ∗ ∈ (α1, β1] and no
half-distance of a pair q,q′ ∈ Q is contained in (α1, β1). Thus, from this point on we know Iδ ∗ (q)
for all q ∈ Q (without knowing the exact value of δ ∗ yet).

Step 2: Sorting Lδ ∗ (q). We use the following well-known variant of Meggido’s parametric search
that is due to Cole [25].

Lemma 3.6 (Implicit in [25]). Let parametric values f1 (δ ), . . . , fN (δ ) be given. Assume there is

an unknown value δ ∗ > 0 and a decision algorithm determining, given δ > 0, whether δ ∗ ≤ δ in time

T (N ). If we can determine fi (δ ∗) ≤ fj (δ ∗) for any i, j ∈ [N ] using only a constant number of queries

to the decision algorithm, then in timeO ((N+T (N )) logn), we can sort f1 (δ ∗), . . . , fN (δ ∗) and obtain

an interval (α , β] such that δ ∗ ∈ (α , β] and no critical value for the sorted order of f1 (δ ), . . . , fN (δ )
is contained in (α , β ).

Consider first the problem of sorting Lδ ∗ (q) for some q ∈ Q . By the above technique, we only
need to argue that we can determine whether someCa

δ ∗
(q,q′) withq′ ∈ Q,a ∈ {1, 2} precedes some

Cb
δ ∗

(q,q′′) with q′′ ∈ Q,b ∈ {1, 2} in Lδ ∗ (q). Note that Ca
δ

(q,q′),Cb
δ

(q,q′′) move continuously on
the boundary of Dδ (q) (while δ varies) and there are only constantly many choices of δ for which
any of the pointsCa

δ
(q,q′),Cb

δ
(q,q′′), rq coincide (and thus the order might possibly change).10 By

10The important critical values for this step are the O ( |Q |3) = O (n6) radii of points with three (or more) points of Q on
their boundary. See Figure 3 for an illustration of all types of critical values.
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testing for these O (1) critical values of δ , we can determine the order of Ca
δ ∗

(q,q′),Cb
δ ∗

(q,q′′), rq

on the boundary of Dδ (q), and thus resolve a comparison ofCa
δ ∗

(q,q′) andCb
δ ∗

(q,q′′) in the order
of Lδ ∗ (q) using only a constant number of calls to the decision algorithm.

Note that by arbitrarily choosing an order ofQ , we may use Cole’s sorting procedure (Lemma 3.6)
to construct all lists Lδ ∗ (q),q ∈ Q simultaneously (we simply need to adapt the comparison func-
tion to compare Ca

δ ∗
(q,q′),Cb

δ ∗
(q̃,q′′) according to the order of Q if q � q̃). Note that in this appli-

cation of Lemma 3.6, we have N =
∑

q∈Q |Cδ ∗ (q) | = O ( |Q |2) = O (n4).
It follows that in time O ((n4 +Tdec (n)) logn), we can obtain an interval (α2, β2] such that δ ∗ ∈

(α2, β2], while β2 is the only value for δ for which the combinatorial structure of Aδ changes in
(α2, β2]. Thus, δ ∗ = β2, as desired.

The overall running time of the above procedure amounts to O ((n4 + Tdec (n)) logn), which
concludes the proof of Lemma 3.4.

4 GRID REACHABILITY DATA STRUCTURE

In this section, we prove Lemma 3.3, which we restate here for convenience.

Lemma 3.3 (Grid Reachability Data Structure). Given an n × n matrix M over {0, 1} and a

set of terminals T ⊆ [n] × [n] of size k > 0, there is a data structure DM,T with the following

properties.

(i) (Construction:) We can construct DM,T in time O (n2 + k log2 n).
(ii) (Reachability Query:) Given F ⊆ T , we can determine in time O (k log3 n) whether there is a

monotone path from (1, 1) to (n,n) using only positions (i, j ) with Mi, j = 1 or (i, j ) ∈ F .

(iii) (Update:) Given T ′ ⊆ [n] × [n] of size k and an n × n matrix M ′ over {0, 1} differing from M

in at most k positions, we can update DM,T to DM ′,T ′ in time O (n
√
k logn + k log2 n). Here,

we assume M ′ to be represented by the set Δ of positions in which M and M ′ differ.

The rough outline is as follows: We obtain the data structure by repeatedly splitting the free-
space diagram into smaller blocks. This yields O (logn) levels of blocks, where in each block we
store reachability information from all “inputs” to the block (i.e., the lower-left boundary) to all
“outputs” of the block (i.e., the upper-right boundary). Any change in the matrix M is reflected
only in O (logn) blocks containing this position, thus, we can quickly update the information.
This approach was pursued already by Ben Avraham et al. [12].

In addition, however, we need to maintain reachability of all terminals T to the inputs and from
the outputs of each block. Surprisingly, we only need an additional storage of O ( |T |) per block.
We show how to maintain this information also under updates and how it can be used by a divide
and conquer approach to answer any reachability queries.

To this end, we start with some basic definitions (block structure, identifiers for each position,
etc.) in Section 4.1. We can then prove the succinct characterization of terminal reachability in
Section 4.2, which is the key aspect of our data structure. Given this information, we can define
exactly what information we store for each block in Section 4.3. We give algorithms computing
the information for some block given the information for its children in Section 4.4, which allows
us to prove the initialization and update statements (i.e., ((i) and (iii) of Lemma 3.3) in Section 4.5.
Finally, Section 4.6 is devoted to the reachability queries, i.e., proving ((ii) of Lemma 3.3).

4.1 Basic Structures and Definitions

Without loss of generality, we may assume that n = 2κ + 1 for some integer κ ∈ N. Otherwise, for
any n × n matrix M over {0, 1}, we could define an n′ × n′ matrix M ′ with (1) n′ = 2κ + 1 for some
κ ∈ N with n < n′ ≤ 2n and (2) setting M ′i, j = Mi, j for all (i, j ) ∈ [n] × [n] and setting M ′i, j = 1 if
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and only if i = j for all (i, j ) ∈ [n′] × [n′] \ [n] × [n]. Clearly, existence of a monotone 1-path from
(1, 1) to (n,n) in M is equivalent to existence of a monotone 1-path from (1, 1) to (n′,n′) in M ′.

Canonical blocks. Let I , J be intervals in [n] with n = 2κ + 1. We call I × J ⊆ [n] × [n] a block. In
particular, we only consider blocks obtained by splitting the square [n]×[n] alternately horizontally
and vertically until we are left with 2×2 blocks. Formally, we defineB0 � {([n], [n])} and construct
B�+1 inductively by splitting each block B ∈ B� as follows:

• For � = 2i with 0 ≤ i < κ, we have B = (I , J ) with |I | = |J | = 2κ−i + 1. We split J into
intervals J1, J2, where J1 contains the first (2κ−i−1 + 1) elements in J and J2 contains the last
(2κ−i−1 + 1) elements in J (thus J1 and J2 intersect in the middle element of J ). Add (I , J1)
and (I , J2) to B�+1.
• For � = 2i + 1 with 0 ≤ i < κ, we have B = (I , J ) with |I | = 2κ−i + 1 and |J | = 2κ−i−1 + 1.

Analogous to above, we split I into two equal-sized intervals I1, I2, where I1 contains the first
(2κ−i−1 + 1) elements in I and I2 contains the last (2κ−i−1 + 1) elements in I . Add (I1, J ) and
(I2, J ) to B�+1.

We let B � ⋃2κ
�=0 B� be the set of canonical blocks, and call each block B ∈ B� a canonical

block on level �. The blocks B1 = (I1, J ),B2 = (I2, J ) ∈ B�+1 (or B1 = (I , J1),B2 = (I , J2) ∈ B�+1,
respectively) obtained from B = (I , J ) ∈ B� are called the children of B. See Figure 4.

Boundaries. For any B = (I , J ) ∈ B, we denote the lower left boundary of B as B− = {min I }× J ∪
I × {min J }, and call each p ∈ B− an input of B. Analogously, we denote the upper right boundary
of B as B+ = {max I } × J ∪ I × {max J } and call each q ∈ B+ an output of B. By slight abuse of
notation, we define |∂B | = |B− ∪ B+ | as the size of the boundary of B, i.e., the number of inputs
and outputs of B.

If B splits into children B1,B2, then we call Bmid = B+1 ∩ B−2 the splitting boundary of B.

Indices. To prepare the description of this information, we first define, for technical reasons,
indices for all positions in [n] × [n]. It allows us to give each position a unique identifier with the
property that for any canonical block B, the indices yield a local ordering of the boundaries.

Observation 4.1. Let ind : [n] × [n] → N, where for any point p = (x ,y) ∈ [n] × [n], we set

ind(p) � (y−x ) (2n)+x . We call ind(p) the index ofp. This function satisfies the following properties:

(1) The function ind is injective, can be computed in constant time, and given i = ind(p), we can

determine ind−1 (i ) � p in constant time.

(2) For any B ∈ B, ind induces an ordering of B+ in counter-clockwise order and an ordering of B−

in clockwise order.

We refer to Figure 5 for an illustration of a block B, its boundaries, and the indices of all positions.

4.2 Reachability Characterization

Our aim is to construct a data structure DM,T = (DM,T (B))B∈B , where DM,T (B) succinctly
describes reachability (via monotone 1-paths) between the boundaries B−,B+ and the terminals
TB � T ∩B inside B. In particular, we show that we only require space O ( |∂B |+ |TB |) to represent
this information.

To prepare this, we start with a few simple observations that yield a surprisingly simple charac-
terization of reachability from any terminal to the boundary.

Compositions of crossing paths. We say that we reach q from p, written p � q, if there is a tra-
versal T = (t1, . . . , t� ) with t1 = p, t� = q, and ti is free for all 1 < i < � (note that we do not
require t1 and t� to be free). We call such a slightly adapted notion of traversal a reach traversal. By
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Fig. 4. The sets of canonical blocks B0,B1,B2, . . . ,B2κ . We alternate between horizontal and vertical splits.
Note that child blocks overlap at their boundary.

Fig. 5. Structure of a block B.
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connecting the points of T by straight lines, we may view T also as a polygonal curve in R2. The
following property is a standard observation for problems related to the Fréchet distance.

Observation 4.2. LetT1,T2 be reach traversals from p1 to q1 and from p2 to q2, respectively. Then

if T1 and T2 intersect, we have p1 � q2 (and, symmetrically, p2 � q1).

Proof. Let t ∈ [n] × [n] be a free position in which T1,T2 intersect (observe that such a point
with integral coordinates must exist unless p1 = p2 or q1 = q2; in the latter case, the claim is trivial).
Note that t splits T1,T2 into T1 = T a

1 ◦ T b
1 and T2 = T a

2 ◦ T b
2 such that T a

1 ,T
a
2 are reach traversals

ending in t and T b
1 ,T

b
2 are reach traversal starting in t . By concatenating T a

1 and T b
2 , we obtain a

reach traversal from p1 to q2. Symmetrically, T a
2 ◦T b

1 proves p2 � q1. �

Let B ∈ B and recall that ind(·) orders B+ counter-clockwise. For any p ∈ B, we define A(p) �
min{ind(q) | q ∈ B+,p � q}, and analogously Z(p) � max{ind(q) | q ∈ B+,p � q} (note that
A(p) and Z(p) correspond to the lowest/rightmost and highest/leftmost pointer, respectively, in
Reference [6, Section 3.2]). These two values define a corresponding reachability interval I (p) �
[A(p),Z(p)] that contains all q ∈ B+ with p � q. In the following analysis, we slightly abuse
notation by also using ind(p) to denote the corresponding (unique) position p ∈ [n] × [n].

Definition 4.3. Let p ∈ B with ∞ > A(p),Z(p) > −∞ and fix any reach traversals TA,TZ from p
to A(p) and Z(p) such that we can write

TA = Pcom ◦ P ′A,
TZ = Pcom ◦ P ′Z ,

for some polygonal curves Pcom, P
′
A, P

′
Z with P ′A, P

′
Z non-intersecting. Let F be the face enclosed

by P ′A, P
′
Z and the path from A(p) to Z(p) on B+ (if A(p) = Z(p), we let F be the empty set). We

define the reach region of p as

R (p) � F ∪ Pcom.

We refer to Figure 6 for an illustration. Observe that the desired traversals TA,TZ for defining
R (p) always exist: For any reach traversals T ′A,T

′
Z from p to A(p) and Z(p), respectively, consider

the latest point in which T ′A,T
′
B intersect, say, t . We can define reach traversals TA and TZ by

followingT ′A until t and then following the remainder ofT ′A orT ′Z to reach A(p) or Z(p), respectively.
These traversals satisfy the conditions by construction. (Strictly speaking, any feasible choice for
TA,TZ gives a potentially different reach region R (p). However, any fixed choice will be sufficient
for our proofs, e.g., choosing lexicographically smallest/largest traversals.)

The following property generalizes an insightful property of reachability from the inputs to the
outputs (cf. Reference [6, Lemma 10] and Reference [12, Corollary 4.2]) to a similar property for
reachability from arbitrary block positions to the outputs, using the same argument of crossing
traversals.

Proposition 4.4. Let p,p ′ ∈ B, q ∈ B+ with ind(q) ∈ I (p) and p ′ � R (p). Then p ′� q implies

p � q.

Proof. The claim holds trivially if ind(q) = A(p) or ind(q) = Z(p). Thus, we may assume that
A(p) < Z(p), which implies that the face F in R (p) is nonempty with q ∈ F and p ′ � F . Hence,
any reach traversal T from p ′ to q must cross the boundary of F , in particular, the path P (TA) or
P (TZ ), where TA,TZ both originate in p. By Observation 4.2, this yields p� q. �
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Fig. 6. Illustration of R (p), Proposition 4.4 and Lemma 4.5: Any reach traversal from p′ � R (p) must cross
P ′

A
or P ′

Z
to reach q. However, if p′′� q but p′′ ∈ R (p), then q might not be reachable from p. A sufficient

condition for p′ � R (p) is that p′ � p and L(p′) ≤ L(p) (indicated by the orange triangular area).

Reachability Labelling. We define a total order on nodes in B that allows us to succinctly repre-
sent reachability towards B+ for any subset S ⊆ B in space Õ ( |S | + |B+ |). The key is a labelling
L : [n] × [n] → N, defined by L((x ,y)) = x + y, that we call the reachability labelling. For an
illustration of the following lemma, we refer to Figure 6.

Lemma 4.5. Let p = (x ,y),p ′ = (x ′,y ′) ∈ B with L(p ′) ≤ L(p) and q ∈ B+ with ind(q) ∈ I (p).
Then p ′� q implies p � q.

Proof. The proof idea is to show that L(p ′) ≤ L(p) implies that p ′ � R (p), and hence Proposi-
tion 4.4 shows the claim. Note that by monotonicity of reach traversals, any point r = (rx , ry ) ∈
R (p) satisfies rx ≥ x and ry ≥ y. Thus, p ′ ∈ R (p) only if x ′ ≥ x , y ′ ≥ y, but this together with
x ′+y ′ = L(p ′) ≤ L(p) = x +y implies (x ′,y ′) = (x ,y). Summarizing, we either have p = p ′, which
trivially satisfies the claim, or p ′ � R (p), which yields the claim by Proposition 4.4. �

For any S ⊆ B, this labelling enables a surprisingly succinct characterization of which terminals
in S have reach traversals to which outputs in B+ by the following lemma (greatly generalizing a
simpler characterization11 for the special case of S = B−, cf. Reference [6, Lemma 10] and Refer-
ence [12, implicit in Lemma 4.4]). This is one of our key insights.

Corollary 4.6. Let q ∈ B+ and define �(q) � min{L(p) | p ∈ B,p� q}. Then for any

p ∈ B, we have

p � q if and only if ind(q) ∈ I (p) and �(q) ≤ L(p).

11In our language, this characterization is as follows: For any p ∈ B−, q ∈ B+, we have p � q if and only if ind(q ) ∈ I (p )
and there is some p′ ∈ B− with p′� q. It is easy to see that this characterization no longer holds if we replace B− by an
arbitrary subset S ⊇ B−; our approach instead relies on the reachability labelling to obtain a succinct and algorithmically
tractable characterization.
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Proof. Clearly, p � q implies, by definition of A(p),Z(p), and �(q), that A(p) ≤ ind(q) ≤ Z(p)
and �(q) ≤ L(p).

Conversely, assume that ind(q) ∈ I (p) and �(q) ≤ L(p). Take any p ′ ∈ B with p ′� q and
�(q) = L(p ′). Thus, we have L(p ′) = �(q) ≤ L(p), ind(q) ∈ I (p) and p ′� q, which satisfies the
requirements of Lemma 4.5, yielding p � q. �

Given this characterization, we obtain a highly succinct representation of reachability informa-
tion. Specifically, to represent the information that terminals in S have reach traversals to which
outputs in B+, we simply need to store �(q) for all q ∈ B+ as well as the interval I (p) for all p ∈ S .
Thus, the space required to store this information amounts to only O ( |∂B | + |S |), which greatly
improves over a naive O ( |∂B | · |S |)-sized tabulation.

Reverse Information. By defining Lrev ((x ,y)) = −L((x ,y)) = −x − y, we obtain a labelling
with symmetric properties. In particular, define Arev (q) � min{ind(p) | p ∈ B−,p� q},
Zrev (q) � max{ind(p) | p ∈ B−,p � q} and the corresponding reverse reachability interval

Irev (q) � [Arev (q),Zrev (q)]. It is straightforward to prove the following symmetric variant of
Corollary 4.6.

Corollary 4.7. Let p ∈ B− and define �rev (p) � min{Lrev (q) | q ∈ B,p � q}. Then for any

q ∈ B, we have

p � q if and only if ind(p) ∈ Irev (q) and �rev (p) ≤ Lrev (q).

Summary of Reachability Characterization. As a convenient reference, we collect here the main
notation and results introduced in this section.

Summary 4.8. For any p ∈ B, the reachability interval I (p) is defined as [A(p),Z(p)] with

A(p) = min{ind(q) | q ∈ B+,p � q},
Z(p) = max{ind(q) | q ∈ B+,p � q}.

(Note that I (p) might be empty if A(p) = ∞,Z(p) = −∞.) For any q ∈ B+, its reachability
level �(q) is defined as

�(q) = min{L(p) | p ∈ B,p � q},
where L((x ,y)) = x + y. For any p ∈ B,q ∈ B+, we have the reachability characterization that

p � q if and only if ind(q) ∈ I (p) and �(q) ≤ L(p).

For any q ∈ B, we have the reverse reachability interval Irev (q) = [Arev (q),Zrev (q)] with

Arev (q) = min{ind(p) | p ∈ B−,p � q},
Zrev (q) = max{ind(p) | p ∈ B−,p � q}.

(Again, Irev (q) might be empty if Arev (q) = ∞,Zrev (q) = −∞.) For any p ∈ B−, its reverse
reachability level �rev (p) is defined as

�rev (p) = min{Lrev (q) | q ∈ B,p � q},
where Lrev ((x ,y)) = −x − y. For any p ∈ B−,q ∈ B, we have the reachability characterization

that

p � q if and only if ind(p) ∈ Irev (q) and �rev (p) ≤ Lrev (q).

4.3 Information Stored at Canonical Block B

Using the characterization given in Corollaries 4.6 and 4.7, we can now describe which information
we need to store for any canonical block B ∈ B.
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Definition 4.9. Let B ∈ B. The information stored at B (which we denote as DM,T (B)) con-
sists of the following information: First, we store forward reachability information consisting
of,

• for every p ∈ B− ∪ TB , the interval I (p), and
• for every q ∈ B+, the reachability level �(q).

Symmetrically, we store reverse reachability information consisting of,

• for every q ∈ B+ ∪ TB , the interval Irev (q), and
• for every p ∈ B−, the reverse reachability level �rev (p).

Finally, if B has children B1,B2 ∈ B, where B1 is the lower or left sibling of B2, then we
additionally store

• an orthogonal range minimization data structure ORB storing, for each free q ∈ Bmid =

B+1 ∩B−2 , the value �rev
2 (q) under the key (ind(q), �1 (q)). Here, �1 (q) denotes the forward

reachability level in B1, and �rev
2 (q) denotes the reverse reachability level in B2.

4.4 Computing Information at Parent From Information at Children

We show how to construct the information stored at the blocks quickly in a recursive fashion.

Lemma 4.10. Let B ∈ B with children B1,B2. Given the information stored at B1 and B2, we can

compute the information stored at B in time O (( |∂B | + |TB |) log |∂B |).

Proof. Without loss of generality, we assume that B1,B2 are obtained from B by a vertical
split (the other case is analogous)—let Bl,Br denote the left and right child, respectively. As a
convention, we equip the information stored at Bl,Br with the subscript l, r, respectively, and write
the information stored at B without subscript. Furthermore, we let Bmid

free denote the set of free

positions of the splitting boundary Bmid = B+
l
∩ B−r .

Computation of I (p). Let p ∈ B− ∪ TB be arbitrary. We first explain how to compute A(p) (see
Figure 7 for an illustration). If p ∈ Br, then A(p) = Ar (p), since by monotonicity any q ∈ B+ with
p� q satisfies q ∈ B+r . Thus, it remains to consider p � Br.

We claim that for p � Br, we have A(p) = min{A1 (p),A2 (p)}, where

A1 (p) � min
q∈B+∩Bl,

p�q

ind(q)

A2 (p) � min
j ∈Bmid

free,
p�j

min
q∈B+∩Br,

j�q

ind(q).

Indeed, this follows, since each path starting in p ∈ Bl and ending in B+ must end in Bl, or cross
Bmid at some free j ∈ Bmid and end in Br.

To compute A1 (p) note that Corollary 4.6 yields A1 (p) = min{ind(q) | q ∈ B+ ∩ Bl, ind(q) ∈
[Al (p),Zl (p)], �l (q) ≤ L(p)}, which can be expressed as an orthogonal range minimization query.

Likewise, to compute A2 (p), note that B+ ∩ Br = B+r . Thus,

A2 (p) = min
j ∈Bmid

free,
p�j

min
q∈B+r ,
j�q

ind(q) = min
j ∈Bmid

free,
p�j

Ar (j ) = min
j ∈Bmid

free,

ind(j )∈Il (p ), �l (j )≤L(p )

Ar (j ),
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Fig. 7. Computation of I (p). To determine the smallest (largest) reachable index on B+ ∩ Br, we optimize,
over all j ∈ Bmid withp � j, the smallest (largest) reachable index Ar (j ) (Zr (j )) on B+r . In this diagram, bright
(dark) cells show free (non-free) positions. Bmid is the boundary shared by Bl (left of Bmid) and Br (right of
Bmid); see Figure 5 as a reminder of how we split boxes.

where the second and last equalities follow from the definition of Ar and Corollary 4.6, respectively.
It follows that we can compute A2 (p) using a simple orthogonal range minimization query.

Switching the roles of minimization and maximization, we obtain the analogous statements for
computing Z(p). We summarize the resulting algorithm for computing the reachability intervals
I (p) for all p ∈ B− ∪ TB formally in Algorithm 2. Its correctness follows from the arguments
above.

Let us analyze the running time of Algorithm 2: Observe that |Bmid
free | ≤ |∂B |. Thus, we can

construct the orthogonal range data structures ORA, ORZ, and ORtop in time O ( |∂B | log |∂B |)
(see Section 2.3). For each p ∈ B− ∪TB , we perform at most a constant number of two-dimensional
orthogonal range minimization/maximization queries, which takes time O (log |∂B |), followed by
constant-time computation. The total running time amounts to O (( |∂B | + |TB |) log |∂B |).

Computation of �(q). Let q ∈ B+ be arbitrary. If q ∈ Bl, then �(q) = �l (p), since by monotonicity
every p ∈ B with p� q is contained in Bl. Thus, we may assume that q � Bl.

We claim that for q � Bl, we have �(q) = min{�1 (q), �2 (q)}, where

�1 (q) � min
p∈Br,
p�q

L(p)

�2 (q) � min
j ∈Bmid

free,
j�q

min
p∈Bl,
p�j

L(p).

Indeed, this follows, since each path starting in B and ending in q ∈ Br must start in Br, or start in
Bl and cross Bmid at some free j ∈ Bmid.

Observe that the definition of �1 (q) coincides with the definition of �r (q). Thus, it only remains
to compute �2 (q). We write

�2 (q) = min
j ∈Bmid

free,
j�q

min
p∈Bl,
p�j

L(p) = min
j ∈Bmid

free,
j�q

�l (j ) = min
j ∈Bmid

free,

ind(j )∈Irev
r (q ), �rev

r (j )≤Lrev (q )

�l (j ),
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Fig. 8. Computation of �(q). To determine the smallest label of a position in Bl reaching q, we optimize, over
all j ∈ Bmid with j � q, the smallest label �l (j ) of a position p ∈ Bl reaching j.

ALGORITHM 2: Computing I (p) = [A(p),Z(p)] for all p ∈ B− ∪ TB .

1: Build ORA storing Ar (j ) under the key (ind(j ), �l (j )) for all j ∈ Bmid
free (for minimization queries)

2: Build ORZ storing Zr (j ) under the key (ind(j ), �l (j )) for all j ∈ Bmid
free (for maximization queries)

3: Build ORtop storing ind(q) under the key (ind(q), �l (q)) for all q ∈ B+ ∩ Bl (for both queries)
4: for p ∈ (B− ∪ TB ) do

5: if p ∈ Br then

6: I (p) ← Ir (p)
7: else

8: A1 (p) ← ORtop.min([Al (p),Zl (p)] × (−∞,L(p)])
9: A2 (p) ← ORA.min([Al (p),Zl (p)] × (−∞,L(p)])

10: A(p) ← min{A1 (p),A2 (p)}

11: Z1 (p) ← ORtop.max([Al (p),Zl (p)] × (−∞,L(p)])
12: Z2 (p) ← ORZ.max([Al (p),Zl (p)] × (−∞,L(p)])
13: Z(p) ← max{Z1 (p),Z2 (p)}

where the second and last equalities follow from the definition of �l (j ) and Corollary 4.7, respec-
tively. It follows that we can compute �2 (p) using a simple orthogonal range minimization query.
For an illustration of �2 (q), we refer to Figure 8.

We summarize the resulting algorithm for computing the reachability levels �(q) for all q ∈ B+
formally in Algorithm 3. Its correctness follows from the arguments above.

To analyze the running time of Algorithm 3, observe that |Bmid
free | ≤ |∂B |. Thus, we can construct

OR� in time O ( |∂B | log |∂B |) (see Section 2.3). For each q ∈ B+, we then perform at most one
minimization query to OR� in time O (log |∂B |), followed by a constant-time computation. Thus,
the total running time amounts to O ( |∂B | log |∂B |).
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ALGORITHM 3: Computing �(q) for all q ∈ B+.

1: BuildOR� storing �l (j ) under the key (ind(j ), �rev
r (j )) for all j ∈ Bmid

free (for minimization queries)
2: for q ∈ B+ do

3: if q ∈ Bl then

4: �(q) ← �l (q)
5: else

6: �2 (q) ← OR� .min([Arev
r (q),Zrev

r (q)] × (−∞,Lrev (q)])
7: �(q) ← min{�r (q), �2 (q)}

Computation of reverse information. Switching the direction of reach traversals (which switches
roles of inputs and outputs, Bl and Br, etc.) as well as L and Lrev, we can use the same algorithms to
compute the reverse reachability information in the same running time of O (( |∂B |+ |TB |) log |∂B |).

Computation of ORB . Finally, we need to construct the two-dimensional orthogonal range min-
imization data structure ORB : Recall that ORB stores, for each q ∈ Bmid

free, the value �rev
r (q) under

the key (ind(q), �l (q)) for minimization queries. Since |Bmid
free | ≤ |∂B |, this can be done in time

O ( |∂B | log |∂B |) (cf. Section 2.3).

Summary. In summary, we can compute the information stored at B (according to Definition 4.9)
from the information stored at B1 and B2 in time O (( |∂B | + |TB |) log |∂B |), as desired. �

4.5 Initialization and Updates

We show how to construct our reachability data structure (using Lemma 4.10 that shows how to
compute the information stored at some canonical block B given the information stored at both
children). Specifically, the following lemma proves ((i) of Lemma 3.3.

Lemma 4.11. We can construct DM,T in time O (n2 + |T | log2 n).

Proof. We use the obvious recursive algorithm to build DM,T in a bottom-up fashion using
Lemma 4.10. Recall that n = 2κ + 1 for some κ ∈ N. Note that for the blocks B ∈ B2κ in the lowest
level, we can compute the information stored in B in constant time, which takes time O ( |B2κ |) =
O (n2) in total.

It remains to bound the running time to compute DM,T (B) for B ∈ B� for 0 ≤ � < 2κ.
Observe that this running time is bounded by O (

∑2κ−1
�=0

∑
B∈B�

cB ) by Lemma 4.10, where cB �
|∂B | log |∂B | + |TB | log |∂B |.

Let 0 ≤ � < 2κ. By construction, we have |B� | = 2� . Furthermore, for any B ∈ B� , observe that
its side lengths are bounded by 2κ−��/2� + 1, and thus |∂B | ≤ 4 · 2κ−��/2� ≤ 2κ−�/2+3. Hence, we
may compute

2κ−1∑
�=0

∑
B∈B�

|∂B | log |∂B | ≤
2κ−1∑
�=0

|B� |2κ−�/2+3 (κ − �/2 + 3)

=

2κ−1∑
�=0

2κ+�/2+3 (κ − �/2 + 3) (1)

≤ 2 �	
κ∑

i=0

2κ+i+3 (κ − i + 3)
�
= 2(22(κ+3) − 2κ+3 (κ + 5)) = O (22κ ) = O (n2).
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Furthermore, we have

2κ−1∑
�=0

∑
B∈B�

|TB | log |∂B | ≤
2κ−1∑
�=0

4|T |(κ − �/2 + 3) = O ( |T |κ2) = O ( |T | log2 n),

where we used that
∑

B∈B�
|TB | ≤ 4|T | (as any position in [n] × [n] is shared by at most 4 blocks

at the same level). In total, we obtain a running time bound of O (n2 + |T | log2 n), as desired. �

With very similar arguments, we can prove ((iii) of Lemma 3.3).

Lemma 4.12. LetM,M ′ be anyn×n 0-1-matrices differing in at mostk positions and T ,T ′ ⊆ [n]×
[n] be any sets of terminals of size k . Given the data structureDM,T , the set T ′, as well as the set Δ of

positions in which M and M ′ differ, we can updateDM,T toDM ′,T ′ in time O (n
√
k logn + k log2 n).

Proof. Set X � Δ ∪ T ∪ T ′ and note that |X | = O (k ). Observe that for any B ∈ B with
B ∩ X = ∅, we have DM,T (B) = DM ′,T ′ (B), since the information stored at this block does not
depend on any changed entry in M and does not contain any of the old or new terminals. Thus, we
only need to updateDM,T (B) toDM ′,T ′ (B) for all B ∈ B with B∩X � ∅. We do this by computing
the information for these blocks in a bottom-up fashion analogously to Lemma 4.11. Specifically,
for any lowest-level block B ∈ B2κ with B ∩ X � ∅, we can compute the information stored in B
in constant time. Since there are at most 4|X | such blocks, this step takes time O ( |X |) = O (k ) in
total.

It remains to bound the running time to compute DM,T (B) for B ∈ B� with B ∩ X � ∅, where
0 ≤ � < 2κ. For any suchB, we let again cB � |∂B | log |∂B |+ |TB | log |∂B |. Observe that the running
time for the remaining task is thus bounded by O (

∑2κ−1
�=0

∑
B∈B�,B∩X�∅ cB ) by Lemma 4.10.

We do a case distinction into 0 ≤ � < �̄ and �̄ ≤ � < 2κ where �̄ � �logk�. For the first case, we
bound

�̄−1∑
�=0

∑
B∈B�,
B∩X�∅

|∂B | log |∂B | ≤
�̄−1∑
�=0

∑
B∈B�

|∂B | log |∂B |

≤
�̄−1∑
i=0

2κ+i/2+3 (κ − i/2 + 3)

≤ ��	
�̄−1∑
i=0

2i/2
� 2κ+3κ = (1 +
√

2) (2�̄/2 − 1)2κ+3κ = O (
√
kn logn),

where the second inequality is derived as in Equation (1). Recall that for any 0 ≤ � < 2κ, there
are at most 4|X | blocks B ∈ B� with B ∩ X � ∅ and for any B ∈ B� , we have |∂B | ≤ 2κ−�/2+3. We
compute

2κ−1∑
�=�̄

∑
B∈B�,
B∩X�∅

|∂B | log |∂B | ≤
2κ−1∑
�=�̄

4|X |2κ−�/2+3 (κ − �/2 + 3)

≤ 4|X |2κ−�̄/2+3 (κ + 3) ·
2κ−�̄−1∑
�=0

2−�/2

= O
(
|X | n√

k
logn

)
= O (

√
kn logn).
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Furthermore, as in the proof of Lemma 4.11, we again compute

2κ−1∑
�=0

∑
B∈B�,
B∩X�∅

|TB | log |∂B | ≤
2κ−1∑
�=0

4|T |(κ − �/2 + 3) = O ( |T |κ2) = O ( |T | log2 n).

Thus, in total we obtain a running time of O (k +n
√
k logn + |T | log2 n) = O (n

√
k logn +k log2 n).

�

4.6 Reachability Queries

It remains to show how to use the information stored at all canonical blocks to answer reachability
queries quickly. Specifically, the following lemma proves ((ii) of Lemma 3.3).

Lemma 4.13. Given DM,T = (DM,T (B))B∈B , we can answer reachability queries for F ⊆ T in

time O ( |T | log3 n).

Recall that we aim to determine whether there is a monotone path inM using only positions (i, j )
with Mi, j = 1 or (i, j ) ∈ F , i.e., we view F as a set of free terminals (typically, (i, j ) ∈ F is a non-free

position). In this section, we assume, without loss of generality, that (1, 1), (n,n) ∈ TB (whenever
we construct/update to the data structureDM,T , we may construct/update toDM,T ∪{(1,1), (n,n) } in
the same asymptotic running time).

For any block B ∈ B, S ⊆ F ⊆ TB , we define the function Reach(B, S, F ) that returns the set

R � {t ∈ F | ∃f1, . . . , f� ∈ F : f1 ∈ S, f� = t , f1 � f2 � · · ·� f� },
i.e., we interpret S as a set of admissible starting positions for a reach traversal and ask for the
set of positions reachable from S using only free positions or free terminals. We call any such
position F -reachable from S . (Recall that in the definition of p � q, only the intermediate points
on a reach traversal from p and q are required to be free, while the endpoints p and q are allowed
to be non-free.)

We show that Reach(B, S, F ) can be computed in time O ( |TB | log3 n). Given this, we can answer
any reachability query in the same asymptotic running time: The reachability query asks whether
there is a sequence f1, . . . , f� ∈ F ∪ {(1, 1), (n,n)} such that (i) f1 = (1, 1) and f� = (n,n), (ii) both
(1, 1) and (n,n) are free positions or contained in F and (iii) f1 � f2 � · · ·� f� . Since (ii) can be
checked in constant time, it remains to determine whether

(n,n) ∈ Reach([n] × [n], {(1, 1)}, F ∪ {(1, 1), (n,n)}).

4.6.1 Computation of Reach(B, S, F ). To compute Reach(B, S, F ), we work on the recursive
block structure of DM,T . Specifically, consider any canonical block B ∈ B (containing some free
terminal) with children B1,B2. The (somewhat simplified) approach is the following: We first (re-
cursively) determine all free terminals that are F -reachable from S in B1 and call this set R1. Then,
we determine all free terminals in B2 that are (directly) reachable from R1 and call this set T2. Fi-
nally, we (recursively) determine all free terminals in B2 that are F -reachable fromT2∪ (S∩B2) and
call this set R2. The desired set of free terminals that are F -reachable from S is then R1 ∪ R2. The
main challenge in this process is the computation of the setT2; this task is solved by the following
lemma.

Lemma 4.14. Let B ∈ B be a block with children B1,B2. Given S ⊆ B1 \ Bmid and F ⊆ B2 \ Bmid

with S, F ⊆ TB , we can compute the set

T = {t ∈ F | ∃s ∈ S : s � t }.
in time O ( |TB | log2 n). We call this procedure SinдleStepReach(B, S, F ).
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We postpone the proof of this lemma to Section 4.6.2 and first show how this yields an algorithm
for Reach, and thus, for reachability queries.

Proof of Lemma 4.13. We claim that Algorithm 4 computes R in time O ( |T | log3 n).

ALGORITHM 4: Computing Reach(B, S, F ) for B ∈ B, S ⊆ F ⊆ TB .

1: function Reach(B, S, F )
2: if F = ∅ then

3: return ∅
4: else if B is a 2 × 2 block then

5: Compute R by checking all possibilities
6: return R
7: else � B splits into child blocks B1,B2

8: S1 ← S ∩ B1, S2 ← S ∩ B2

9: R1 ← Reach(B1, S1, F ∩ B1)
10: T2 ← SingleStepReach(B,R1 \ Bmid, F \ B1)
11: R2 ← Reach(B2, S2 ∪T2 ∪ (R1 ∩ Bmid), F ∩ B2)
12: return R1 ∪ R2

To ease the analysis, we introduce the shorthand that s �F t if and only if there are f1, . . . , f� ∈
F with f1 = s, f� = t and f1 � f2 � · · ·� f� , i.e., t is F -reachable from s .

We show that Algorithm 4 computes R = {t ∈ F | ∃s ∈ S, s �F t } inductively: The base case
for 2 × 2 blocks B holds trivially. Otherwise, by inductive assumption, we have

R1 = {t ∈ F ∩ B1 | ∃s ∈ S ∩ B1, s �F∩B1 t }.
Note that by definition of SingleStepReach, we furthermore have

T2 = {t ∈ F \ B1 | ∃s ∈ R1 \ Bmid, s � t }.
Finally, by inductive assumption,

R2 = {t ∈ F ∩ B2 | ∃s ∈ S ∩ B2, s �F∩B2 t } ∪
{t ∈ F ∩ B2 | ∃s ∈ T2, s �F∩B2 t } ∪
{t ∈ F ∩ B2 | ∃s ∈ R1 ∩ Bmid, s �F∩B2 t }.

First, we show that any t ∈ R1 ∪ R2 is contained in R: If t ∈ R1, then there is some s ∈ S ∩ B1 ⊆ S
with s �F∩B1 t (trivially implying s �F t ), and thus t ∈ R. Likewise, if t ∈ T2, then there is some
t ′ ∈ R1 \ Bmid with t ′� t . Since t ′ ∈ R1, there must exist some s ∈ S with s �F t ′. Thus, s �F t ′

and t ′� t yields s �F t and t ∈ R. Finally, if t ∈ R2, then there exists some t ′ with t ′�F∩B2 t
and either t ′ ∈ S ∩B2, t ′ ∈ T2, or t ′ ∈ R1 ∩Bmid. In all these cases, there is some s ∈ S with s �F t ′.
Hence, s �F t ′ and t ′�F∩B2 t imply s �F t , placing t in R.

We proceed to show the converse direction that any t ∈ R is contained in R1∪R2: Let s ∈ S with
s �F t . If t ∈ F ∩ B1, then s �F t is equivalent to s �F∩B1 t and s ∈ S ∩ B1 (by monotonicity).
Thus, t ∈ R1. It only remains to consider the case that t ∈ F \ B1. If s ∈ S ∩ B2, then again my
monotonicity s �F∩B2 t must hold, which implies t ∈ R2. Otherwise, we have s ∈ S \ B2. Since
additionally t ∈ F \B1, there must exist either (1) some r ∈ F ∩Bmid with s �F∩B1 r and r �F∩B2 t
or (2) some t ′ ∈ F \ B2, t ′′ ∈ F \ B1 with s �F∩B1 t

′� t ′′�F∩B2 t (by monotonicity). For (1),
note that r ∈ R1 (as shown above), and thus t ∈ R2. For (2), note that t ′ ∈ R1 \ B2 = R1 \ Bmid (as
s ∈ S ∩ B1, t

′ ∈ F \ B2 and s �F∩B1 t
′), t ′′ ∈ T2 (as t ′ ∈ R1 \ Bmid, t ′′ ∈ F \ B1 and t ′� t ′′), and

finally t ∈ R2 (as t ′′ ∈ T2 and t ′′�F∩B2 t ), as desired.
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We analyze the running time of a call Reach(B0, S0, F0). Let T (B) = O ( |TB | log2 n) denote the
running time of SingleStepReach(B, S, F ) for arbitrary S, F . Observe that the running time of
Reach(B0, S0, F0) is bounded by ∑

B∈B,
TB�∅

O (T (B)), (2)

as for TB = ∅, we have F ⊆ TB = ∅, which is a base case of Reach(·). To bound the above term, fix
any �, and note that for any t ∈ T , there are at most 4 level-� blocks B ∈ B� with t ∈ TB (if t is
on the boundary of some block B ∈ B� , then it is shared between different blocks; however, any
position is shared by at most 4 blocks). Thus,

∑
B∈B�

|TB | ≤ 4|T |. Thus, (2) is bounded by

2 log(n−1)∑
�=0

∑
B∈B�,
TB�∅

O ( |TB | log2 n) =

2 log(n−1)∑
�=0

O ( |T | log2 n) = O ( |T | log3 n). �

4.6.2 Computation of SinдleStepReach(B, S, F ). It remains to prove Lemma 4.14 to conclude
the proof of Lemma 4.13.

Proof of Lemma 4.14. Consider B ∈ B. We only consider the case that B is split vertically (the
other case is symmetric); let Bl,Br denote its left and right sibling, respectively. Let S ⊆ Bl \ Bmid,
F ⊆ Br \ Bmid with S, F ⊆ TB be arbitrary. We use notation (subscripts l, r, etc.) as in the proof of
Lemma 4.10.

Observe that for any s ∈ S, f ∈ F , we have that s � f if and only if there exists some j ∈ Bmid
free

with s � j and j � f . To introduce some convenient conventions, let Jmid = {j1, . . . , jN }, where
j1, . . . , jN is the sorted sequence of ind(q) with q ∈ Bmid

free. We call J ⊆ Jmid an interval of Jmid if
J = {ja , ja+1, . . . , jb } for some 1 ≤ a ≤ b ≤ N and write it as J = [ja , jb ]J mid (i.e., [ja , jb ]J mid simply

disregards any indices in [ja , jb ] representing positions not in Bmid
free).

Consider any interval J of Jmid with the property that for all s ∈ S we either have J ∩ Il (s ) = J
or J ∩ Il (s ) = ∅ and for all f ∈ F we either have J ∩ Irev

r ( f ) = J or J ∩ Irev
r ( f ) = ∅. We call

such a J an (S, F )-reach-equivalent interval. Note that by splitting Jmid right before and right after
all points A(s ),Z(s ) with s ∈ S and Arev ( f ),Zrev ( f ) with f ∈ F , we obtain a partition of Jmid into
(S, F )-reach-equivalent intervals J1, . . . , J� with � = O ( |S ∪ F |) = O ( |TB |).12

Claim 4.15. Let J be an (S, F )-reach-equivalent interval J . Let R J be the set of t ∈ F reachable

from S via J , i.e., R J � {t ∈ F | ∃s ∈ S, j ∈ J : s � j � t }. Define

� J � min
j ∈J ,

∃s ∈S :s�j

�rev
r (j ).

We have

R J = {t ∈ F | J ⊆ Irev
r (t ), � J ≤ Lrev (t )}. (3)

Proof. See Figure 9 for an illustration. Indeed, for any t ∈ F with J ⊆ Irev
r (t ) and � J ≤ Lrev (t ),

consider any j ∈ J with �rev
r (j ) = � J and s � j for some s ∈ S . Then, we have j ∈ J ⊆ Irev

r (t ) and
�rev

r (j ) = � J ≤ Lrev (t ). Thus, by Corollary 4.7, j � t , which together with s � j implies s � j � t ,
as desired. For the converse, let t ∈ F with s � j � t for some s ∈ S, j ∈ J . Then by definition
of � J , we obtain � J ≤ �rev

r (j ). Furthermore, by Corollary 4.7, j � t implies that j ∈ Irev
r (t ) with

12To be more precise, we start with the partition J consisting of the singleton J mid. We then iterate over any point j

among A(s ), Z(s ), s ∈ S and Arev (f ), Zrev (f ), f ∈ F and replace the interval J = [ja, jb ]J mid ∈ J containing j by the

three intervals [ja, j )J mid, {j }, (j, jb ]J mid , where the first and the last interval may be empty.
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Fig. 9. Computation of R J for an (S, F )-reach equivalent interval J . Intuitively, we first determine, among
indices in J reachable from some s ∈ S , the index j ∈ J with the best reachability towards F . We then
determine all f ∈ F reachable from j (indicated by hatched boxes).

Lrev (t ) ≥ �rev
r (j ) ≥ � J . Note that j ∈ Irev

r (t ) implies J ⊆ Irev
r (t ) (as J is (S, F )-reach-equivalent),

thus, we obtain that J ⊆ Irev
r (t ) and � J ≤ �rev

r (j ), as desired. �

Thus, after computing � J , an orthogonal range reporting query can be used to report all t ∈ F
reachable from S via J . To compute � J , we observe that for any j ∈ J , we have

∃s ∈ S : s � j
Cor. 4.6
⇐⇒ ∃s ∈ S : j ∈ Il (s ), �l (j ) ≤ L(s ) ⇐⇒ �l (j ) ≤ max

s ∈S,
j ∈Il (s )

L(s ) =: Lj .

Noting (by (S, F )-reach-equivalence of J ) that j ∈ Il (s ) if and only if J ⊆ Il (s ), we have that Lj is
independent of j ∈ J , and, in particular, equal to

LJ � max
s ∈S,

J ⊆Il (s )

L(s ), (4)

which can be computed by a single orthogonal range minimization query. Equipped with this value,
we may determine � J as

� J = min
j ∈J ,

�l (j )≤L J

�rev
r (j ). (5)

Note that given � J , we may determine R J by a single orthogonal range reporting query; by Equa-
tion (3).

We obtain the algorithm specified in Algorithm 5, whose correctness we summarize as follows:
in the ith loop, we consider the ith (S, F )-reach-equivalent interval Ji � [ai ,bi ]J mid in the above

partition of Jmid. Observe that we determine LJi according to its definition in Equation (4), and � Ji

according to Equation (5). Finally, we include in the set Ri all elements of R Ji that have not yet
been reported in a previous iteration, exploiting (3).

Let us analyze the running time. Recall that � = O ( |S ∪ F |) = O ( |TB |). Thus, we can compute
J1, . . . , J� in time O (� log �) = O ( |TB | logn). Furthermore, as discussed in Section 2.3, we can build
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ALGORITHM 5: Computing SingleStepReach(B, S, F ) for B ∈ B, S ⊆ Bl \ Bmid, F ⊆ Br \ Bmid.

1: function SingleStepReach(B, S, F )
2: Compute a partition of Jmid into (S, F )-reach-equivalent intervals J1, . . . , J�
3: Build ORS storing L(s ) under the key (Al (s ),Zl (s )) for all s ∈ S (for maximization queries)
4: Build ORF storing ind( f ) under the key (Arev

r ( f ),Zrev
r ( f ),Lrev ( f )) for all f ∈ F

(for decremental range reporting queries)
5: Recall: (precomputed) ORB stores �rev

2 (q) under the key (ind(q), �1 (q)) for all q ∈ Bmid
free

(for minimization queries)
6: for i = 1, . . . , � do � consider J = [ai ,bi ]J mid

7: LJ ← ORS .max((−∞,ai ] × [bi ,∞))
8: � J ← ORB .min([ai ,bi ] × (−∞,LJ ])
9: Ri ← ORF .report((−∞,ai ] × [bi ,∞) × [� J ,∞))

10: ORF .delete(Ri )

11: return
⋃�

i=1 Ri

ORS in time O ( |S | log |S |) = O ( |TB | logn) to support maximization queries in time O (log |S |) =
O (logn). Also, we can build ORF in time O ( |F | log2 |F |) = O ( |TB | log2 |TB |) to support deletions
in time O (log2 |F |) = O (log2 |TB |) and queries in time O (log2 |F | + k ) = O (log2 |TB | + k ) where k
denotes the number of reported elements. Observe that ORB is already precomputed, as it belongs
to the information stored at block B (see Definition 4.9).

We perform � = O ( |TB |) iterations of the following form: First, we make a query toORS running
in time O (logn), followed by a query to ORB running in time O (log |∂B |) = O (logn). Then, we
obtain a set Ri by a reporting query to ORF running in time O (log2 |TB | + |Ri |). Afterwards, we
delete all reported elements, which takes time O ( |Ri | log2 |TB |). Thus, the total running time is
bounded by O ( |TB | logn +

∑�
i=1 |Ri | log2 |TB |). Observe that we report each element in TB at most

once, which results in
∑�

i=1 |Ri | ≤ |TB |. Hence, the total running time is bounded by O ( |TB |(logn+
log2 |TB |)) = O ( |TB | log2 n), as desired. �

5 CONDITIONAL LOWER BOUND

In this section we prove a lower bound of n4−o (1) for the discrete Fréchet distance under translation
for two curves of length n ∈ R2 conditional on the Strong Exponential Time Hypothesis, or more
precisely, the 4-OV Hypothesis. To this end, we reduce 4-OV to the discrete Fréchet distance under
translation.

Let us first have a closer look at 4-OV. Given four sets of N vectors V1, . . . ,V4 ⊆ {0, 1}D , the
4-OV problem can be expressed as

∃v1 ∈ V1, . . . ,v4 ∈ V4 ∀j ∈ [D] ∃i ∈ {1, . . . , 4} : vi [j] = 0. (6)

Recall from the introduction that we encode choosing the vectorsv1, . . . ,v4 by the canonical trans-
lation τ = (τ1,τ2) = (h1 · ϵ,h2 · ϵ ) with h1,h2 ∈ {0, . . . ,N 2 − 1} for some constant ϵ > 0 that is
sufficiently small. To be concrete, let

ϵ � 0.001/N 4

for the remaining section. Choosing v1 ∈ V1 and v2 ∈ V2, we define

h1 � h(v1,v2) � ind(v1) + ind(v2) · N ,

where ind(vi ) is the index of vector vi in the set Vi ; similarly for v3 ∈ V3,v4 ∈ V4 we define
h2 � h(v3,v4). To perform the reduction, we want to construct two curves π and σ whose Fréchet
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Fig. 10. Overview of how the different gadgets are used in the curves that result from the reduction. We use
one translation gadget, one OV-dimension gadget, D OR gadgets, and O (ND) equality gadgets.

distance decision for some δ is equivalent to the following expression, which is equivalent to
Equation (6):

∃τ ∈ R2 ∀j ∈ [D] ∃i ∈ {1, 2},v ∈ V2i−1,v
′ ∈ V2i : (v[j] = 0 ∨v ′[j] = 0) ∧ (h(v,v ′) · ϵ = τi ). (7)

The expressions (6) and (7) are equivalent as the three quantifiers encode the same choices and we
evaluate if there exists a zero in one of the chosen vectors. In Equation (7) we additionally need
to make sure that the translation chosen by the outermost quantifier indeed is consistent with the
vectors that are chosen by the innermost quantifier, which is done by requiring h(v,v ′) · ϵ = τi .

We can further transform this expression to make it easier to create gadgets for the reduction:

∃τ ∈ [0, (N 2 − 1) · ϵ] × [0, (N 2 − 1) · ϵ] :
∧

j ∈[D]

∨
i ∈{1,2}

v ∈V2i−1,v
′ ∈V2i :

v[j]=0 or v ′[j]=0

[h(v,v ′) · ϵ = τi ].

According to this formula, we will construct gadgets. However, we cannot exactly ensure the equal-
ity h(v,v ′) · ϵ = τi . Therefore, we resort to an approximate equality that still fulfills the intended
usage of mapping translations to vector choices. The approximate values just snap to the closest
canonical values. The gadgets we construct are the following:

• Translation gadget: It ensures that τ ∈ [− 1
4 · ϵ, (N

2 − 3
4 ) · ϵ]× [− 1

4 · ϵ, (N
2 − 3

4 ) · ϵ], i.e., we are
always close to the points in the ϵ-grid of translations that choose our vectors v1, . . . ,v4.
• OV-dimension gadget: AND over all j ∈ [D].
• OR gadget: The big OR in the formula.
• Equality gadget: This gadget is only traversable if the two vectors it was created for corre-

spond to τ , i.e., it ensures that h(v,v ′) · ϵ ≈ τi .

We use the above-mentioned gadgets as follows: The constructed curves π and σ start with
the translation gadget consisting of the curves π (0),σ (0) . They are followed by D different parts
that form the OV-dimension gadget. Each of the D parts is an OR gadget and we call the respective
curves π (j ) andσ (j ) for j ∈ [D]. Each of the OR gadgets (π (j ),σ (j ) ) contains several equality gadgets.
We will use different variations of the equality gadget (one for each set of vectors V1, . . . ,V4) but
they are all of very similar structure. We need four different types of equality gadgets, because for
a certain vi ∈ Vi a part of the gadget is only inserted if vi [d] = 0. Thus, if we traverse an equality
gadget later, then we know that it corresponds to one zero entry and also to the current translation.
See Figure 10 for an overview of the whole construction.
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Fig. 11. Translation gadget.

Without loss of generality, assume that for all dimensions j ∈ [D] at least one vector in V1 ∪
· · · ∪ V4 contains a 0 in dimension j. Now, we give the detailed construction of the gadgets and
the proofs of correctness. The instance of the discrete Fréchet distance under translation that we
construct in the reduction uses a threshold distance of δ = 2 + 1

4ϵ , i.e., we want to know for the
constructed curves π and σ if their discrete Fréchet distance under translation is not more than δ .

Translation Gadget. First, we have to restrict the possible translations. To this end, we build a
gadget to ensure τ ∈ T for

T �
[
−1

4
· ϵ,

(
N 2 − 3

4

)
· ϵ
]
×
[
−1

4
· ϵ,

(
N 2 − 3

4

)
· ϵ
]
.

This is realized by a gadget where curve π (0) consists of only one vertex and curve σ (0) consists of
four vertices:

π (0) � 〈(0, 0)〉,

σ (0) � 〈(2 − (N 2 − 1)ϵ, 0), (0, 2 − (N 2 − 1)ϵ ), (−2, 0), (0,−2)〉.
This gadget is sketched in Figure 11.

Lemma 5.1. Given two curves π = π (0) ◦ π ′ and σ = σ (0) ◦ σ ′ (with π (0),σ (0) as defined above),

such that each p ∈ π (0) has distance greater than 10 to each p ′ ∈ π ′, the following holds:

(i) if τ ∈ [0, (N 2 − 1)ϵ] × [0, (N 2 − 1)ϵ], then δF (π (0),σ (0) + τ ) ≤ δ
(ii) if δF (π ,σ + τ ) ≤ δ , then τ ∈ [− 1

4 · ϵ, (N
2 − 3

4 ) · ϵ] × [− 1
4 · ϵ, (N

2 − 3
4 ) · ϵ

Proof. We start with showing (i), so assume τ ∈ [0, (N 2 − 1)ϵ] × [0, (N 2 − 1)ϵ]. Note that the
maximal distance maxq∈σ (0) maxτ ‖π (0) − (q + τ )‖ is an upper bound on δF (π (0),σ (0) + τ ). By a
simple calculation, we obtain the desired result:

max
q∈σ (0)

max
τ

���π (0) − (q + τ )��� < √22 + ϵ2N 4 <

√
22 + ϵ +

1

16
ϵ2 = 2 +

1

4
ϵ,

where we used ϵ ≤ N −4.
Now, we prove (ii). Note that the start points of π and σ + τ have to be in distance ≤ δ , thus

τ ∈ [−5, 5]2 (using a very rough estimate). As all points of π ′ are further than 10 from any point
in π (0) and thus all points on the postfix π ′ are further than δ from σ (0) + τ , we have to stay in
π (0) while traversing σ (0) . Thus, the following inequalities hold for τi > (N 2− 3

4 )ϵ or τi < − 1
4ϵ and

i ∈ {1, 2} (where ‖v ‖∞ denotes the infinity norm of v):

δF (π ,σ + τ ) ≥ δF (π (0),σ (0) + τ ) ≥ max
i ∈[4]

{���π (0)
1 − (σ (0)

i + τ )���∞} > δ ,

which is the contrapositive of (ii). �
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Fig. 12. The equality gadgets for F and G. The equality gadgets F ′ and G ′ are simply shifted.

OV-dimension Gadget. For every 4-OV dimension j ∈ [D], we construct separate gadgets
π (1), . . . ,π (D ) for π and σ (1), . . . ,σ (D ) for σ . We want to connect these gadgets in a way that the
two curves are in distance not more than δ if and only if all gadgets have distance not more than
δ for a given translation τ . This is done by simply placing the gadgets in distance greater than
δ + N 2 · ϵ from each other and concatenating them.

Lemma 5.2. Given a translation τ ∈ T and curves π = π (1), . . . ,π (D ) and σ = σ (1), . . . ,σ (D )

where for all j ∈ [D] all points of π (j ) are further than δ + 2N 2 · ϵ from each point of σ (j′) with j � j ′,
then δ (π ,σ + τ ) ≤ δ if and only if δF (π (j ),σ (j ) + τ ) ≤ δ for all j ∈ [D].

Proof. First, note that whatever τ we choose in the given range, σ (j ) + τ is still in distance
greater than δ from every π (j′) with j ′ � j.

Now, assume that for all j ∈ [D] the curves π (j ),σ (j ) + τ have distance at most δ . Then, we can
traverse the gadgets in order and do simultaneous jumps between them. Thus, also the distance
of the whole curves π and σ + τ is at most δ . For the other direction, assume that for at least one
j ∈ [D] the distance between π (j ) and σ (j ) + τ is greater than δ . On the one hand, if we do not
traverse simultaneously (i.e., at one point the traversal is in π (j ) and σ (j′) for j � j ′), then due to
large distances of π (j ),σ (j′) +τ for j � j ′, we have distance greater than δ for this traversal. On the
other hand, if we traverse π (j ) and σ (j ) together for all j, then we also have distance greater than
δ due to the gadget with distance greater than δ . �

For the remaining gadgets we define for convenience:

η � 3 · N 2ϵ .

Equality Gadget. An equality gadget F (v1,v2) for the vectors v1 ∈ V1,v2 ∈ V2 is a pair of two
line segments, πF (v1) and σF (v2), (see Figure 12(a)):

πF (v1) � 〈(1 + ϵ · ind(v1),−1 − η), (−1 + ϵ · ind(v1), 1 + η)〉,
σF (v2) � 〈(−1 − ϵ · ind(v2) · N ,−1 − η), (1 − ϵ · ind(v2) · N , 1 + η)〉.

Note that this gives us N 2 different gadgets consisting of 2N different line segments. We later use
the line segments πF (v1) in π and the line segments σF (v2) in σ where they can be combined to
form an equality gadget.

Lemma 5.3. Given curves πF (v1),σF (v2) for some v1 ∈ V1 and v2 ∈ V2, and given a translation

τ ∈ T , the following properties hold:

(i) if τ1 = ϵ · (ind(v1) + ind(v2) · N ), then δF (πF (v1),σF (v2) + τ ) ≤ δ ,
(ii) if δF (πF (v1),σF (v2) + τ ) ≤ δ , then |ϵ · (ind(v1) + ind(v2) · N ) − τ1 | ≤ 1

3ϵ .

Proof. To prove (i), it suffices to give a valid traversal. We traverse πF (v1) = (p1,p2) and
σF (v2) = (q1,q2) simultaneously. Thus, we just want an upper bound on the distance between the
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(translated) first points p1,q1 +τ and the distance between the (translated) second points p2,q2 +τ
to get an upper bound on δF (πF (v1),σF (v2) + τ ). These distances are

��p1 − (q1 + τ )��2
= (2 + ϵ · ind(v1) + ϵ · ind(v2) · N − τ1)2 + τ 2

2 = 4 + τ 2
2 ≤ 4 + ϵ +

1

16
ϵ2 = δ 2,

��p2 − (q2 + τ )��2
= (−2 + ϵ · ind(v1) + ϵ · ind(v2) · N − τ1)2 + τ 2

2 = 4 + τ 2
2 ≤ δ 2,

where we used |τ2 | ≤ N 2ϵ and thus τ 2
2 ≤ N 4ϵ2 ≤ ϵ , since ϵ ≤ N −4. Both distances are at most δ

and thus the discrete Fréchet distance is at most δ as well.
For proving (ii), first note that the first (respectively, second) point of πF (v1) is far from the

second (respectively, first) point of σF (v2), due to η ≥ N 2ϵ . Thus, we have to traverse the gadget
simultaneously. Let Δ � ϵ · ind(v1) +ϵ · ind(v2) ·N −τ1, it remains to show that Δ ≤ 1

3ϵ . For p1,q1,
we then get

��p1 − (q1 + τ )��2
= (2 + ϵ · ind(v1) + ϵ · ind(v2) · N − τ1)2 + τ 2

2 ≤ (2 + 1
4ϵ )2

⇔ (2 + Δ)2 + τ 2
2 ≤ 4 + ϵ + 1

16ϵ
2

⇔ 4 + 4Δ + Δ2 + τ 2
2 ≤ 4 + ϵ + 1

16ϵ
2

⇒ 4Δ ≤ ϵ + 1
16ϵ

2

⇒ Δ ≤ 1
4ϵ +

1
64ϵ

2 ≤ 1
3ϵ .

The last inequality follows from plugging in ϵ = 0.001/N 4 and using the fact that N ≥ 1. With a
similar calculation for p2,q2 we obtain that Δ ≥ − 1

3ϵ , and thus |Δ| ≤ 1
3ϵ . �

Now, we introduce three gadgets that have the same properties as the equality gadget but are
slightly different. The aim is to have four types of gadgets that are pairwise further than a discrete
Fréchet distance of δ apart such that we can use them together in one big OR expression.

Shifted Equality Gadget. As described in the introduction of this section, we want to use the
curves πF (v1),σF (v2) in case v1[j] = 0 and we need an additional gadget for v2[j] = 0. However,
those two gadgets should not be too close such that the curves cannot be matched but also not
too far such that the OR gadget (which we introduce later) still works. Thus, we introduce another
gadget F ′(v1,v2) that consists of a pair of curves πF ′ (v1),σF ′ (v2) that are just shifted versions of
πF (v1),σF (v2); shifted by N 2ϵ in the first dimension. More formally,

πF ′ (v1) � πF (v1) + (N 2ϵ, 0),

σF ′ (v2) � σF (v2) + (N 2ϵ, 0).

Before proving the desired properties, we introduce the remaining two variants of the equality
gadget.

Equality Gadget for V3 and V4. The above introduced equality gadgets only work for vectors in
V1 and V2 but we also need a gadget for vectors in V3 and V4. Therefore, we introduce the gadget
G (v3,v4), which is a mirrored equality gadget consisting of the curves πG (v3) and σG (v4) (see
Figure 12(b)):

πG (v3) � 〈(−1 − η, 1 + ϵ · ind(v3)), (1 + η,−1 + ϵ · ind(v3))〉,
σG (v4) � 〈(−1 − η,−1 − ϵ · ind(v4) · N ), (1 + η, 1 − ϵ · ind(v4) · N )〉.
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Shifted Equality Gadget for V3 and V4. We define G ′(v3,v4) similarly to F ′(v1,v2), i.e., we shift
the curves of G by N 2ϵ , but in contrast to F ′, we shift it in the second dimension. More formally:

πG′ (v3) � πG (v3) + (0,N 2ϵ ),

σG′ (v4) � σG (v4) + (0,N 2ϵ ).

Due to the similar structure of the curve pairs of F (v1,v2) and F ′(v1,v2),G (v3,v4),G ′(v3,v4), analo-
gous statements to Lemma 5.3 also hold for the curve pairs from F ′(v1,v2),G (v3,v4), andG ′(v3,v4).
Specifically, we have:

Lemma 5.4. Given curves πF ′ (v1),σF ′ (v2) for some v1 ∈ V1 and v2 ∈ V2, and given a translation

τ ∈ T , the following properties hold:

(i) if τ1 = ϵ · (ind(v1) + ind(v2) · N ), then δF (πF ′ (v1),σF ′ (v2) + τ ) ≤ δ ,
(ii) if δF (πF ′ (v1),σF ′ (v2) + τ ) ≤ δ , then |ϵ · (ind(v1) + ind(v2) · N ) − τ1 | ≤ 1

3ϵ .

Lemma 5.5. Given curves πG (v3),σG (v4) for some v3 ∈ V3 and v4 ∈ V4, and given a translation

τ ∈ T , the following properties hold:

(i) if τ2 = ϵ · (ind(v3) + ind(v4) · N ), then δF (πG (v3),σG (v4) + τ ) ≤ δ ,
(ii) if δF (πG (v3),σG (v4) + τ ) ≤ δ , then |ϵ · (ind(v3) + ind(v4) · N ) − τ2 | ≤ 1

3ϵ .

Lemma 5.6. Given curves πG′ (v3),σG′ (v4) for some v3 ∈ V3 and v4 ∈ V4, and given a translation

τ ∈ T , the following properties hold:

(i) if τ2 = ϵ · (ind(v3) + ind(v4) · N ), then δF (πG′ (v3),σG′ (v4) + τ ) ≤ δ ,
(ii) if δF (πG′ (v3),σG′ (v4) + τ ) ≤ δ , then |ϵ · (ind(v3) + ind(v4) · N ) − τ2 | ≤ 1

3ϵ .

We now show that all subcurves of different equality gadgets are pairwise further apart than δ .
Here, we say that the curves πF (v1) and σF (v2) have type F . Similarly, the other curves constructed
above have type F ′, G, or G ′.

Lemma 5.7. For any vectors v1 ∈ V1, . . . ,v4 ∈ V4 and any translation τ ∈ T , for any curves

π ∈ {πF (v1),πF ′ (v1),πG (v3),πG′ (v3)} and σ ∈ {σF (v2),σF ′ (v2),σG (v4),σG′ (v4)} of different type,

we have δF (π ,σ + τ ) > δ .

Proof. We first consider πF ′ (v1) and σF (v2). Consider the first point of σF (v2) which we call q.
This point is further than 2+N 2ϵ from both points of πF ′ (v1). When translating σ with τ ∈ T , the
distance is still greater than 2 + 3

4ϵ > δ . Thus, σF (v2) and πF ′ (v1) are in discrete Fréchet distance
greater than δ for any valid τ .

Similarly, consider πF (v1) and σF ′ (v2), and let p be the second point of πF (v1). The point p has
distance greater than 2 + ϵ from σF ′ (v2). With translation τ ∈ T this distance is still greater than
2 + 3

4ϵ > δ and thus πF (v1) and σF ′ (v2) are in discrete Fréchet distance greater than δ for any
valid τ . The proof for types G and G ′ is symmetric.

Now, we prove the lemma for types F and G. First note that every point of πF (v1) is in distance
1 + η of the first coordinate axis and every point of σG (v4) is in distance 1 + η of the second
coordinate axis. Additionally, no point of πF (v1) is closer than 1 − 2N 2ϵ to the second coordinate
axis while no point of σG (v4) is closer than 1 − 2N 2ϵ to the first coordinate axis. This means that
every point of πF (v1) is in distance at least 2+η−2N 2ϵ = 2+N 2ϵ of any point of σG (v4). Even with
translation this distance is at least 2 + 3

4ϵ > δ . Thus, also the discrete Fréchet distance is greater
than δ . The proofs for the remaining cases are symmetric. �
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Fig. 13. The OR gadget for general diagonal and anti-diagonal curves.

We moreover observe that our equality gadgets lie in very restricted regions. Specifically, call a
curve diagonal if all of its vertices are in R1 ∪ R2 with

R1 � [−1 − 2η,−1 + 2η]2, R2 � [1 − 2η, 1 + 2η]2,

and we call it anti-diagonal if all of its vertices are contained in R3 ∪ R4 with

R3 � [−1 − 2η,−1 + 2η] × [1 − 2η, 1 + 2η], R4 � [1 − 2η, 1 + 2η] × [−1 − 2η,−1 + 2η].

See Figure 13. Also, note that the order in which the curves visit the regions is not specified in the
definition of (anti-)diagonal.

Observation 5.8. The constructed curves πF (v1),πF ′ (v1),πG (v3),πG′ (v3) are anti-diagonal, and

the curves σF (v2),σF ′ (v2),σG (v4),σG′ (v4) are diagonal.

Proof. We observe that each coordinate of a vertex of any of these curves differs from 1 or −1
by at most εN 2 + max{η, εN 2}, by bounding 0 ≤ ind(vi ) ≤ N . Recalling η = 3 · N 2ϵ , we have
εN 2 ≤ η. Therefore, any coordinate differs from 1 or −1 by at most 2η, that is, each coordinate lies
in R1∪R2∪R3∪R4. The general shape of being (anti-)diagonal can be inferred from Figure 12. �

We are now ready to describe the last gadget. For proving its correctness, we will essentially
only use the diagonal and anti-diagonal property of the curves.

OR Gadget. We construct an OR gadget over diagonal and anti-diagonal curves that we will later
apply to equality gadgets. Before introducing the gadget itself, we define various auxiliary points
whose meaning will become clear later. Here we keep notation close to Reference [14], although
the details of our construction are quite different.

s1 �
(
− 1

4 ,−
1
4

)
, t1 �

(
1
4 ,

1
4

)
, r1 �

(
99
100 ,−

5
4

)
, r ′1 �

(
− 99

100 ,
5
4

)
,

s2 � (0, 0), s∗2 �
(
− 3

2 ,−
3
2

)
, t∗2 �

(
3
2 ,

3
2

)
, t2 � (0, 0), r2 �

(
− 99

100 ,−
5
4

)
, r ′2 �

(
99
100 ,

5
4

)
.

Now, given diagonal curves σ̂ 1, . . . , σ̂ � and anti-diagonal curves π̂ 1, . . . , π̂k , we define the two
curves of the OR gadget as

πOR � ©
i ∈[k]

s1 ◦ r1 ◦ π̂ i ◦ r ′1 ◦ t1,

σOR � s2 ◦ s∗2 ◦ ( ©
j ∈[�]

r2 ◦ σ̂ j ◦ r ′2) ◦ t∗2 ◦ t2.
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See Figure 13 for a visualization. Now let us prove correctness of the gadget.

Lemma 5.9. Given an OR gadget over diagonal curves σ̂ 1, . . . , σ̂ � and anti-diagonal curves

π̂ 1, . . . , π̂k , for any translation τ ∈ T , we have δF (πOR,σOR+τ ) ≤ δ if and only if δF (π̂ i , σ̂ j +τ ) ≤ δ
for some i, j.

Proof. We first observe that for none of the auxiliary points p ∈ πOR and q ∈ σOR, we have
that ��p − q�� ∈ [1.99, 2.01]. This can be verified by calculating all distances, but we omit this due
to readability of the proof. Also observe that T ⊂ [−0.001, 0.001] and δ ∈ [2, 2.001]. It follows
from the above observations that the translation τ does not change whether auxiliary points are
closer than δ or not. Thus, we can ignore the translation for distances between auxiliary points in
this proof. For reference, we state which auxiliary points are closer than δ for all τ ∈ T . For each
auxiliary point in πOR, we list its close auxiliary points in σOR:

s1 : s2, s
∗
2 , t2, r2, r

′
2,

t1 : s2, t2, r2, r
′
2,

r1 : s2, t2, r2,

r ′1 : s2, t2, r
′
2.

All other pairs are in distance greater than δ . Note that for the remainder of the proof, we do not
have to consider the specific value for τ anymore.

We first show that if δF (π̂ i , σ̂ j +τ ) ≤ δ for some i, j, then δF (πOR,σOR +τ ) ≤ δ by giving a valid
traversal. We start in s1, s2 + τ . Then, we traverse πOR until the copy of s1 that comes before the
subcurve π̂ i . While staying in s1, we traverse σOR +τ until we reach the copy of r2 +τ right before
the subcurve σ̂ j + τ . We then do one step on πOR to r1. Now, we step to the first nodes of π̂ i and
σ̂ j + τ simultaneously, and then traverse these two subcurves in distance δ , which is possible due
to δF (π̂ i , σ̂ j + τ ) ≤ δ . We then step to the copies of r ′1 and r ′2 + τ simultaneously. We then step to
t1 on πOR, while staying at r ′2 + τ in σOR + τ . Subsequently, while staying in t1, we traverse σOR + τ
until we reach its last point, namely, t2 + τ . Now, we can traverse the remainder of πOR. One can
check that this traversal stays within distance δ .

We now show that if δF (πOR,σOR +τ ) ≤ δ , then there exist i, j such that δF (π̂ i , σ̂ j +τ ) ≤ δ . Pick
any valid traversal for which δF (πOR,σOR + τ ) ≤ δ . We reconstruct in the following how it passed
through πOR and σOR + τ . Consider the point when s∗2 + τ is reached. At that point, we have to be
in some copy of s1, as this is the only type of node of πOR that is in distance at most δ from s∗2 + τ .
Let π̂ i be the subcurve right after this copy of s1. When we step to the copy of r1 right after this
s1, there are only three types of nodes from σOR + τ in distance δ : s2 + τ , t2 + τ , r2 + τ . Note that
we already passed s2 + τ , and we cannot have reached t2 + τ yet, as t∗2 + τ is neither in reach of s1

nor r1. Thus, we are in r2 + τ . Let the curve right after r2 + τ be σ̂ j + τ . The only option now is to
do a simultaneous step to the first nodes of π̂ i and σ̂ j + τ . Now, consider the point when either r ′1
or r ′2 + τ is first reached. All points of π̂ i are far from r ′2 + τ and all points of σ̂ j + τ are far from
r ′1 and thus we have to be in r ′1 and r ′2 + τ at the same time. This implies that we traversed π̂ i and
σ̂ j + τ from the start to the end nodes in distance δ and therefore δF (π̂ i , σ̂ j + τ ) ≤ δ . �

Assembling π (j ) and σ (j ) . Now, we can apply the OR gadget to the equality gadgets in the follow-
ing way: For each of the D dimensions, we construct an OR gadget. The OR gadget for dimension
j ∈ [D] contains as anti-diagonal curves all πF (v1) with v1[j] = 0, all πF ′ (v1), all πG (v3) with
v3[j] = 0, and all πG′ (v3); and as diagonal curves it contains all σF (v2), all σF ′ (v2) with v2[j] = 0,
all σG (v4), and all σG′ (v4) with v4[j] = 0. Note that these curves fulfill the requirements stated
in Observation 5.8 for usage in the OR gadget as (anti-)diagonal curves. We denote the resulting
curves by π (j ) and σ (j ) , and we write H (j ) = (π (j ),σ (j ) ). This yields the following lemma:
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Lemma 5.10. Given a 4-OV instance V1, . . . ,V4, and consider the corresponding OR gadget H (j ) =
(π (j ),σ (j ) ) for some j ∈ [D]. It holds that:

(i) For any vectorsv1 ∈ V1, . . . ,v4 ∈ V4 withv1[j]·v2[j]·v3[j]·v4[j] = 0 we haveδF (π (j ),σ (j )+τ ) ≤
δ for τ = ((ind(v1) + ind(v2) · N ) · ϵ, (ind(v3) + ind(v4) · N ) · ϵ ).

(ii) If δF (π (j ),σ (j ) + τ ) ≤ δ for some τ ∈ T , then

• ∃v1 ∈ V1,v2 ∈ V2 : v1[j] · v2[j] = 0 and |ϵ · (ind(v1) + ind(v2) · N ) − τ1 | ≤ 1
3ϵ

or

• ∃v3 ∈ V3,v4 ∈ V4 : v3[j] · v4[j] = 0 and |ϵ · (ind(v3) + ind(v4) · N ) − τ2 | ≤ 1
3ϵ .

Proof. For (i), from v1[j] ·v2[j] ·v3[j] ·v4[j] = 0 it follows that at least one gadget of F (v1,v2),
F ′(v1,v2),G (v3,v4),G ′(v3,v4) is contained inH (j ). By Lemmas 5.3 to 5.6, we know that the discrete
Fréchet distance of this gadget is small. By Lemma 5.9 it then follows that δF (π (j ),σ (j ) + τ ) ≤ δ .

For (ii), from δF (π (j ),σ (j ) + τ ) ≤ δ it follows by Lemmas 5.9 and 5.7 that there exists a gadget Γ
for which the discrete Fréchet distance is at most δ . From Lemmas 5.3 to 5.6 it then follows that

|ϵ · (ind(v1) + ind(v2) · N ) − τ1 | ≤
1

3
ϵ or |ϵ · (ind(v3) + ind(v4) · N ) − τ2 | ≤

1

3
ϵ

for some vectors v1 ∈ V1, . . . ,v4 ∈ V4. As Γ is contained in the OR gadget, we additionally have
that v1[j] · v2[j] = 0 or v3[j] · v4[j] = 0, respectively. �

Final Curves. The final curves π and σ are now defined as follows: We start with the translation
gadget π (0) (σ (0)). Then the curves π (j ) (σ (j )) follow for j ∈ [D]. Note that we have to translate
these curves to fulfill the requirements of Lemmas 5.1 and 5.2, thus, we translate π (j ) (σ (j )) by
(100 · j, 0). More explicitly, the final curves are

π � π (0) ©j ∈[D] π
(j ) + (100 · j, 0),

σ � σ (0) ©j ∈[D] σ
(j ) + (100 · j, 0).

We are now ready to prove Theorem 1.2. Recall its statement:
Also recall that it suffices to prove a lower bound under the 4-OV hypothesis. For clarity of

structure, we split the proof into Lemma 5.11 and Lemma 5.12, which together imply Theorem 1.2.

Lemma 5.11. Given a YES-instance of 4-OV, the curves π and σ constructed in our reduction have

discrete Fréchet distance under translation at most δ , i.e., minτ δF (π ,σ + τ ) ≤ δ .

Proof. Let v1 ∈ V1, . . . ,v4 ∈ V4 be orthogonal vectors and let τ = ((ind(v1) + ind(v2) · N ) ·
ϵ, (ind(v3) + ind(v4) · N ) · ϵ ) be the translation corresponding to those vectors. From Lemma 5.1,
we know that δF (π (0),σ (0) + τ ) ≤ δ , and thus there is a valid traversal to the endpoints of the
translation gadget. Then, we simultaneously step to the start of π (1) and σ (1) . From Lemma 5.10,
we know that there also exist traversals of π (1), . . . ,π (D ) and σ (1) + τ , . . . ,σ (D ) + τ of distance at
most δ . It follows from Lemma 5.2 that we can also traverse those gadgets sequentially in distance
δ and thus δF (π ,σ + τ ) ≤ δ . �

Lemma 5.12. If the curves π and σ constructed in our reduction have discrete Fréchet distance under

translation at most δ , then the given 4-OV instance is a YES-instance.

Proof. Let τ be a translation such that δF (π ,σ + τ ) ≤ δ . We know from Lemma 5.1 that τ ∈ T .
Furthermore, from Lemma 5.2, we know that for all j ∈ [D] it holds that δF (π (j ),σ (j ) + τ ) ≤ δ . It
follows from Lemma 5.10 that for every j ∈ [D] there existv1 ∈ V1,v2 ∈ V2 such thatv1[j]·v2[j] = 0
and |ϵ · (ind(v1) + ind(v2) · N ) − τ1 | ≤ 1

3ϵ or there exist v3 ∈ V3,v4 ∈ V4 such that v3[j] · v4[j] = 0
and |ϵ · (ind(v3) + ind(v4) · N ) − τ2 | ≤ 1

3ϵ . Therefore, every dimension j ∈ [D] gives us constraints
on eitherv1,v2 orv3,v4. Due to Lemma 5.10 these constraints have to be consistent. If in total this
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gives us constraints for v1, . . . ,v4, then we are done. Otherwise, if this only gives us constraints
for v1,v2, then we already found v1,v2, which are orthogonal, and thus we can pick arbitrary
v3 ∈ V3,v4 ∈ V4 to obtain an orthogonal set of vectors. The case of only v3,v4 being constrained is
symmetric. �

Proof of Theorem 1.2. The Strong Exponential Time Hypothesis implies the k-OV hypothesis.
The reduction above from a 4-OV instance of size N over {0, 1}D to an instance of the discrete
Fréchet distance under translation in R2 results in two curves of length O (D · N ). Lemmas 5.11
and 5.12 show correctness of this reduction. Hence, any O (n4−ϵ )-time algorithm for the discrete
Fréchet distance under translation would imply an algorithm for 4-OV in time O ((D · N )4−ϵ ) =
O (poly(D) · N 4−ϵ ), refuting the k-OV hypothesis. �

6 CONCLUSION

In this work, we designed an improved algorithm for the discrete Fréchet distance under transla-
tion running in time Õ (n14/3) = Õ (n4.66... ). As a crucial subroutine, we developed an improved
algorithm for offline dynamic grid reachability. Additionally, we presented a conditional lower
bound of n4−o (1) based on the Strong Exponential Time Hypothesis, which, despite not yet match-
ing our upper bound, strongly separates the discrete Fréchet distance under translation from the
standard discrete Fréchet distance.

Our use of offline dynamic grid reachability yields further motivation for studying the offline
setting of dynamic algorithms for potential use as subroutines in static algorithms. Problems left
open by this article include: (1) Closing the gap between our upper and conditional lower bound.
This might require a solution to offline dynamic grid reachability with polylogarithmic amortized
update time. (2) Generalizing our bounds to d = 1 or higher dimensions d ≥ 3, as in this article,
we only considered curves in the plane. While generalizing our algorithm to d = 1 or d ≥ 3
seems rather straightforward but technical, obtaining strong conditional lower bounds for these
cases is more interesting. (3) Considering different transformations such as scaling, rotation, or
affine transformations in general; here, we only treated translations. Significantly new ideas seem
necessary to obtain meaningful lower bounds for other transformations. (4) Determine whether
the time complexity of variants of the discrete Fréchet distance, such as the continuous or weak
Fréchet distance, have similar or different relationships to their translation-invariant analogues.
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