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1 Introduction

How did the hot early Universe evolve around the electroweak epoch? The answer to this
question is critically important not only to our understanding of the present-day Universe
but also to the quest for physics beyond the Standard Model (SM). In particular, this
evolution is a remarkable testbed, complementary to collider searches, for the models beyond
the SM which make use of extended scalar sectors. Around the electroweak epoch, the
Universe may have experienced a sequence of phase transitions of different nature [1, 2],
possibly evolving through exotic intermediate phases. Violent phase transitions produced
primordial gravitational waves (GW), which may be within the reach of future space-borne
GW observatories. A strong first-order phase transition within a CP-violating Higgs sector is
a key part of electroweak baryogenesis [3–11], in which the matter-antimatter asymmetry
was seeded through the true vacuum bubble wall sweeping the hot plasma. Phase transitions
induced by the vacuum structure of the finite-temperature scalar potential could also be
connected with symmetries, which in turn could stabilize scalar dark matter candidates.

All these interrelated processes dramatically depend on the structure of the Higgs sector
of our Universe. The SM is unable to correctly account for the above astroparticle and

– 1 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
2

cosmological phenomena [12, 13], but minimally extended Higgs sectors can. For example,
within the 2-Higgs-Doublet Model (2HDM) [14–16], one can achieve a strong first-order
electroweak (EW) phase transition [17–37] and electroweak baryogenesis, provided there is
sufficient CP violation in the scalar sector.

Extended Higgs models also allow for multi-step phase transitions in the early Universe.
This possibility that was already described by Weinberg in [38], was later analyzed, within
specific models, in [39–47]. A sequence of phase transitions could lead to the remarkable
opportunity of a charge-breaking (CB) phase at intermediate temperatures. In this phase,
the vacuum expectation values (VEVs) of the Higgs fields break the electroweak symmetry
completely, the photon becomes massive, and the electric charges of the fermions are no
longer conserved. This exotic phase does not correspond to the present-day zero-temperature
vacuum, which must be electrically neutral, but it may have been an important episode
of the thermal history of the Universe.

An additional motivation for investigating CB phases comes from the puzzling origin of
the cosmological magnetic fields (for more details, see reviews, e.g., refs. [48–51]). Various
scenarios have been proposed, including the possibility that magnetic fields were seeded
by the magneto-hydrodynamic turbulence from the first-order EW phase transition, see
e.g. [52–54]. However, an intermediate CB phase, an electromagnetically disruptive event,
could have played a role in this process.

The 2HDM is the simplest Higgs sector in which the CB phase can take place at finite
temperature. In fact, the 2HDM has a very rich vacuum structure, with the possibility of
charge- or CP-breaking vacua and even normal vacua (i.e. vacua conserving charge and CP)
that could have a VEV different from 246 GeV. However, at vanishing temperature it has been
shown that whenever a normal vacuum exists, any charge or CP-breaking stationary point
that possibly exists, must be a saddle point and lie above the normal minimum [55, 56]. There
exists though the possibility that two normal vacua coexist with one another [57–59]. In case
our vacuum is not the global minimum, i.e. is a so-called panic vacuum, the Universe would
be in a metastable state and could tunnel to the deeper normal vacuum with a VEV different
from 246 GeV. In [60, 61], the authors presented the conditions that the parameters of the
potential need to obey to avoid the presence of a panic vacuum in the softly-broken version
of the 2HDM. They also showed that for this model the current LHC data already constrain
the model to necessarily be in the global minimum of the theory. At non-zero temperature,
however, the vacuum structure can change considerably, and the features derived for T = 0
do not hold anymore. The conditions and the gross features of the CB phase were analyzed
in [39, 62] within the high-temperature approximation of the 2HDM potential, in which the
tree-level potential is retained and only the quadratic mass parameters m2

ii (i = 1, 2) receive
corrections from non-zero temperature T , m2

ii → m2
ii(T ) = m2

ii + ciT
2. These works found

that, within the adopted approximation, the following sequence of thermal phase transitions
occurs within a certain region of the 2HDM potential parameters, ending in the EW vacuum
with today’s vacuum expectation value of 246 GeV at T = 0:

EW symmetric (high T ) → neutral → charge-breaking → EW vacuum (T = 0) . (1.1)

The phase transitions leading from the broken neutral phase into and out of the CB phase
were found to be of second order.
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It turns out that this tantalizing possibility has not yet been properly reassessed with the
state-of-the-art numerical codes, which examine the thermal evolution of the loop-corrected
effective potential of the 2HDM, and with all the LHC data and constraints we now have. This
is what we undertake in the present work. In particular, we will address the following questions:

• Do intermediate CB phase scenarios indeed exist within the 2HDM? If so, in which
parameter regions?

• Do the 2HDM versions with an intermediate CB phase comply with the collider
constraints on the Higgs sector? Do they lead to any characteristic collider predictions?

• What sequences of thermal phase transitions do these models exhibit? In particular, do
they always lead to the electroweak symmetry restoration at high T?

In this paper, we investigate these issues within the CP-conserving 2HDM, treated with the
finite temperature loop-corrected effective potential level including thermal masses within
the properly adapted BSMPT code [63, 64]. Guided by the phase diagram technique developed
in the tree-level studies [39, 62], we will search for parameter space regions which exhibit an
intermediate CB phase. We will then analyze the main features of such models and confront
them with the LHC Higgs results. On the way, we will also discuss the relation between
the CB phase and SU(2) symmetry non-restoration at high temperature. Note however,
that in this paper we will not discuss the intriguing gravitational waves and electroweak
baryogenesis opportunities offered by the charge-breaking phase nor the implications that
the sequence of found exotic vacuum phases may have on the cosmological evolution and
dark matter generation. These interesting and wide ranging implications are delegated to
dedicated future work.

The contents of this paper are as follows. In section 2, we remind the reader of the
CP-conserving 2HDM with a softly broken Z2 symmetry. In section 3, we discuss the essence
of the phenomenon in a toy model (Type I 2HDM with an exact Z2 symmetry), which
provides us with a clear qualitative intuition of how to search for the CB phase. Then, in
section 4, we proceed with the thermal effective potential formalism and its relation with
symmetry non-restoration. In section 5, we present numerical results from a parameter search,
show the temperature evolution of several benchmark models, and discuss their collider
implications. Finally, we draw our conclusions in section 6.

2 The CP-conserving 2HDM

In our study, we will consider the CP-conserving 2-Higgs Doublet Model (2HDM) with a
softly broken Z2 symmetry [14] (see e.g. [15] for a review). Its tree-level potential is given by

Vtree = m2
11Φ†

1Φ1 +m2
22Φ†

2Φ2 −m2
12

(
Φ†

1Φ2 + h.c.
)

+ λ1
2
(
Φ†

1Φ1
)2

+ λ2
2
(
Φ†

2Φ2
)2

+ λ3
(
Φ†

1Φ1
) (

Φ†
2Φ2

)
+ λ4

(
Φ†

1Φ2
) (

Φ†
2Φ1

)
+ λ5

2

[(
Φ†

1Φ2
)2

+ h.c.
]
,

(2.1)

where all parameters are assumed to be real. After electroweak symmetry breaking (EWSB)
the two SU(2) scalar doublets Φ1 and Φ2 obtain VEVs ω̄j (j = 1, 2, CP, CB) about which
the Higgs fields can be expanded in terms of the fields ρi, ηi, ζi, and ψi (i = 1, 2),

Φ1 = 1√
2

(
ρ1 + iη1

ζ1 + ω̄1 + iψ1

)
, (2.2)
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u-type d-type leptons

Type I Φ2 Φ2 Φ2
Type II Φ2 Φ1 Φ1

Lepton-Specific Φ2 Φ2 Φ1
Flipped Φ2 Φ1 Φ2

Table 1. The four types for the Yukawa couplings in the 2HDM with a softly broken Z2 symmetry.
The last three columns indicate the Higgs doublet to which the respective fermions couple.

Φ2 = 1√
2

(
ρ2 + ω̄CB + iη2

ζ2 + ω̄2 + i (ψ2 + ω̄CP)

)
. (2.3)

Without loss of generality we rotated the CP-violating part ω̄CP of the VEVs to the second
doublet exclusively. Adopting the most general approach, we also introduced a charge-
breaking VEV ω̄CB, which without loss of generality can be taken real [39]. Our present
vacuum at zero temperature T = 0 is denoted as

vj = ω̄j |T =0 (2.4)

and given by

vCB = vCP = 0 and v ≡
√
v2

1 + v2
2 = 246.22 GeV, (2.5)

with the ratio of the EW VEVs defining

tan β ≡ v2
v1
. (2.6)

We assume CP conservation, and the CB VEV has to be zero in a charge-conserving vacuum.
At T = 0, after rotating to the mass eigenstates, we hence recover the usual CP-even (h,H),
CP-odd (A) and charged Higgs (H±) fields of the CP-conserving 2HDM.

In the SU(2) symmetric phase, all VEVs are zero, ω̄i = 0. The necessary and sufficient
conditions for the tree-level potential of eq. (2.1) to be bounded from below (BFB) are well
known and given by [65, 66],

λ1 > 0 , λ2 > 0 ,
√
λ1λ2 + λ3 > 0 ,

√
λ1λ2 + λ3 + λ4 − |λ5| > 0 . (2.7)

In order to allow for a perturbative treatment of the interactions, the model must not violate
unitarity and thus not be strongly coupled. Constraints on the scalar couplings can be derived
from limits on the eigenvalues of the 2 → 2 scattering matrix [67–70].

The interactions between the Higgs doublets and the fermion fields are given by the
Yukawa couplings. To avoid the appearance of flavour-changing neutral currents (FCNC)
at tree level, we extend the Z2 symmetry also to the fermion sector and each of the three
classes of fermions, i.e. up-type quarks, down-type quarks, and leptons, is restricted to couple
to one of the two Higgs doublets only. Depending on the assignment of the Z2 charges, there
are four different types of Yukawa couplings in the 2HDM, as listed in table 1.
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In the following, we adopt the 2HDM type I. In the context of our work of phase
transitions, the differences between the types of Yukawa couplings are largely irrelevant, as
in all types the Yukawa coupling of the top quark, which has the strongest impact, is the
same, and the influence from the Yukawa couplings of the other fermions is negligible. The
chosen type of the 2HDM has an impact, however, on how much the model is constrained,
and thereby on how much of the parameter space is still allowed, cf. e.g. [71].

3 Intermediate charge-breaking phase

3.1 A toy model: the phase diagram

Before we undertake a full analysis, it is instructive to gain an intuitive understanding of
the phenomenon within a toy model. This model is given by the scalar sector of the 2HDM
with an exact Z2 symmetry, which we treat at tree level and in which, at finite temperature,
we include only the T 2 terms to the quadratic parameters of the potential. This toy model
can accommodate the intermediate CB phase, which can be tracked analytically and easily
visualized as a trajectory on a two-dimensional phase diagram. It matches, in part, the picture
described in [39, 62, 72]. But, in contrast to these papers, we use it here only as a starting
point before moving to the full effective potential treatment of the finite temperature 2HDM.

The 2HDM with the exact Z2 symmetry is given by the scalar potential of eq. (2.1)
with the soft-breaking parameter set to zero, m2

12 = 0. Within the toy model, we assume
that the potential has this functional form at any T , with only m2

11 and m2
22 acquiring the

finite temperature corrections.
To minimize this potential, the usual procedure would be to assume that the minimum

is neutral, to parametrize it in terms of the VEVs of eq. (2.5), and to express the quadratic
parameters via v. However, in this study we look into the richer spectrum of options available
at intermediate temperatures, including the charge-breaking phase. This is why we do not
make any assumption about the VEVs and just proceed with the direct minimization of this
potential. Depending on the values of the quadratic terms, we can have global minima of
different kinds, corresponding to the EW symmetric (⟨Φ1⟩ = ⟨Φ2⟩ = 0), the neutral, the CP-
or the charge-breaking vacuum. In the following, we want to concentrate on the possibility of
a CB phase so that we do not consider a CP-breaking phase here further. We will present the
EW-symmetric, the neutral, and the CB regions in the phase diagram of the model, that is, in
the two-dimensional plane (m2

11,m
2
22) for a specific set of the quartic coefficients λi. Since only

the quadratic parameters evolve with the temperature, we can represent the thermal evolution
of the toy model as a trajectory in this plane ending with the present-day T = 0 point.

The analytical computation is straightforward and yields the necessary and sufficient
conditions for the toy model potential to admit a charge-breaking minimum, see also [62]
for the analysis of the most general 2HDM. There are two groups of conditions. First, in
order for the CB minimum to appear, the quartic coefficients must satisfy, in addition to
the BFB constraints (2.7), the following inequalities:

√
λ1λ2 − λ3 > 0 , λ4 > |λ5| . (3.1)

In particular, we get |λ3| <
√
λ1λ2, but the sign of λ3 is not fixed. Second, if these conditions
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EW symmetric

CB

m2
11

m2
22

v1 = 0

v2 6= 0

v1 6= 0

v2 = 0

λ2
λ3

λ3
λ1

EW symmetric

CB

m2
11

m2
22

v1 = 0

v2 6= 0

v1 6= 0

v2 = 0

λ2
λ3

λ3
λ1

Figure 1. EW symmetric vacuum (red) and CB vacuum (blue) regions in the plane (m2
11,m

2
22) for

λ3 > 0 (left) and λ3 < 0 (right). Labels at the lines should be read as m2
22 = m2

11× the label.

are satisfied, the quadratic parameters must comply with the following constraints:

m2
11
√
λ2 +m2

22
√
λ1 < 0 , m2

11 < m2
22
λ3
λ2
, m2

22 < m2
11
λ3
λ1
. (3.2)

Notice that the signs of λ3, m2
11, and m2

22 are not fixed a priori, so that both sign choices
of λ3 should be explored.

The resulting phase diagrams are shown in figure 1 for λ3 > 0 (left) and λ3 < 0 (right).
The necessary and sufficient conditions for the EW symmetric vacuum (red regions) are
trivial: m2

11 > 0 and m2
22 > 0. If at least one of these coefficients is negative, we can attain a

CB minimum (blue wedge regions), provided the inequalities (3.2) are fulfilled. We stress
once again that these phase diagrams apply only to the case when the quartic coefficients
satisfy (3.1); should this not be the case, no CB vacuum is possible. It is known since [55–
57] that a charge-breaking minimum, if present, is the unique minimum of the potential.
Thus, within the 2HDM, at least at tree level, we never encounter the situation when a
charge-breaking and a neutral minimum would be simultaneously present.

The blank regions on both plots correspond to a neutral vacuum. Within the toy model,
this vacuum corresponds either to v1 = 0 or v2 = 0. A stationary point with both v1, v2 ̸= 0
also exists, but it is always a saddle point due to the negative charged Higgs mass squared.
The region above the blue CB wedge corresponds to the global minimum v1 ̸= 0, v2 = 0.
Since in the 2HDM type I all the fermions get their masses only from the second doublet, this
option is unphysical. The other blank region, to the right of the CB blue wedge, corresponds
to the global minimum v1 = 0, v2 ̸= 0. It is here that the zero-temperature situation must
reside. Within this region, the VEV, the SM-like Higgs mass, and the charged Higgs mass are

v2 = v2
2 = 2|m2

22|
λ2

,
m2

hSM

v2 = λ2 ,
m2

H±

v2 = 1
2λ3

(
1 − m2

11
m2

22

λ2
λ3

)
. (3.3)
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Taking the experimentally known values of mhSM = 125.09 GeV [73] and v, we get λ2 ≈ 1/4.
Notice also that if one approaches the boundary separating the neutral and CB vacuua,
m2

22/m
2
11 = λ2/λ3, the charged Higgs mass vanishes.

This blank region corresponds to the version of the 2HDM known as the inert doublet
model (IDM) [65, 74–76]. It possesses a scalar dark matter candidate and has been extensively
studied. However in the particular version of the IDM with λ4 − |λ5| > 0, the one with
which we deal here, it is the charged Higgs boson that becomes the lightest scalar from
the inert doublet and plays the role of the dark matter candidate. This is why the IDM
was considered in [72] incompatible with the intermediate charge breaking vacuum phase.
In the present paper, we take this scenario only as a toy model before moving on to the
softly broken Z2 symmetry.

3.2 A toy model: temperature evolution

Within the toy model, we take the following one-loop high-T corrections to the quadratic terms,

m2
11(T ) = m2

11 + c1T
2 , m2

22(T ) = m2
22 + c2T

2 , (3.4)

and adopt them for all temperatures. Within the 2HDM type I, the coefficients c1 and
c2 have the following form:

c1 = 1
12 (3λ1 + 2λ3 + λ4) + 1

16
(
3g2 + g′2

)
, (3.5)

c2 = 1
12 (3λ2 + 2λ3 + λ4) + 1

16
(
3g2 + g′2

)
+ 1

12
(
y2

τ + 3y2
b + 3y2

t

)
, (3.6)

where g′ and g denote the U(1)Y and SU(2)L gauge couplings, respectively, and yx (x = τ, b, t)
the Yukawa couplings to the τ lepton, the bottom and the top quark, respectively. Note that
the scalar self-interaction contributions to c1 and c2 differ only in λ1 vs. λ2, the gauge boson
contributions are identical, and the Yukawa couplings of τ , b, t affect only m2

22(T ).
In order to arrange for the phase transition sequence given in eq. (1.1), which we now track

in the reverse order, from T = 0 to high temperatures, we must start at a point (m2
11,m

2
22)

lying within the blank region below the wedge. As T grows, the point (m2
11(T ),m2

22(T )) will
follow a straight ray, which must enter and then exit the charge-breaking wedge (the blue
region). If we insist on high-T restoration of the EW symmetry, the ray must eventually
enter the red quadrant.

It follows directly from the phase diagrams figure 1 that this sequence is impossible
for λ3 < 0 because, in this case, a straight ray starting from anywhere in the blank region
and crossing the blue wedge will unavoidably continue in the blank region, leading to the
remarkable phenomenon of non-restoration of the EW symmetry at high temperatures. The
scenario of symmetry non-restoration has been discussed in the literature, starting from
example 3 of the seminal paper [38] up to more recent studies such as [34, 77–84]. Although
it does not seem to be outright excluded by experiment, let us insist in this section on EW
symmetry restoration at high temperatures. Then, we must take a positive λ3 and consider
figure 1 (left). The positive λ3 leads to c1 > 0, c2 > 0, so that EW symmetry restoration
is not only possible but also guaranteed.

– 7 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
2

T = 0

EW symmetric

m2
11

m2
22

λ2
λ3

λ3
λ1

Figure 2. A possible trajectory (solid thick line) within the toy model exhibiting the charge breaking
phase at intermediate temperatures; the numerical values are given in eq. (3.8). If one drops the
top-quark contribution to c2, one will miss the charge-breaking region (dashed line). The blue
hyperbola inside the wedge shows the CB contour after the inclusion of the soft breaking m2

12 term.

Next, in order to actually cross the blue wedge region, one needs to select the starting
zero-temperature point in the blank region below the wedge and make sure that the ray
rises steeper than the wedge:

c2
c1
>

|m2
22|

|m2
11|

>
λ2
λ3
. (3.7)

Satisfying these inequalities using only bosonic contributions and, at the same time, avoiding
a dangerously small m2

H± is not an easy task. Indeed, let us first check the case of λ1 = λ2
and neglect the fermion contributions. Then the inequality fails: c2/c1 = 1, while λ2/λ3 ≥ 1
because λ3 is limited from above by λ3, max =

√
λ1λ2, see eq. (3.1). To satisfy the inequality,

we need to push c2/c1 above λ2/λ3, max =
√
λ2/λ1. This can be done by increasing λ1 (to

suppress λ2/λ3, max) and, at the same time, to keep λ4 large to prevent c2/c1 from becoming
too low. A large λ1 also allows us to increase λ3, max and, therefore, λ3 in order to avoid
a too light charged Higgs. Also, choosing λ3 close to λ3, max makes the CB blue wedge
narrow and allows the trajectory to cross it even if the zero-temperature starting point lies
significantly below the blue wedge.

Figure 2 shows a possible trajectory which satisfies these constraints. Here, we took

λ1 = 2, λ2 = 0.25, λ3 = 0.6, λ4 = 2.8, |m2
22|

|m2
11|

= 2
3 . (3.8)

With c2/c1 ≈ 0.78 and λ2/λ3 ≈ 0.42, all the inequalities (3.7) hold. The charged Higgs mass
is then mH± ≈ 82 GeV. Trying to significantly increase mH± would force us either to push
λ3 to even larger values, which would unavoidably require a larger λ1 and, as a result, a
less steep trajectory, or to select a larger value of |m2

22|/|m2
11| for the starting point, which

will again put the intermediate CB phase at risk.
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Notice also the instrumental role of the top-quark contribution to c2. Without it, one
would observe a less steep trajectory, shown by the dashed line in figure 2, with c2/c1 ≈ 0.5,
and one would fail to cross the CB wedge region.

Let us now summarize several lessons we have learned from the toy model.

• If we insist on EW symmetry restoration at high temperatures, we need λ3 > 0.

• The preferred choice of the free parameters, which leads to an intermediate CB phase,
is λ1 ≫ λ2 ≈ 1/4, λ3 close to

√
λ1λ2, and large λ4.

• The zero-temperature point should correspond to |m2
22|/|m2

11| not too close to the
CB/neutral boundary in order to avoid a dangerously small charged Higgs mass. At
the same time, |m2

22|/|m2
11| cannot be too large in order not to miss the intermediate

CB phase altogether.

• The top-quark contribution to the thermal evolution coefficient plays a key role in
achieving an intermediate CB phase. If we dropped it from the thermal corrections, we
would be forced either to dramatically increase λ4 or to choose an unacceptably small
charged Higgs mass at the starting point.

3.3 Softly broken Z2 symmetry

The full model we consider in this work, which differs from the toy model by the presence of
the soft Z2 breaking m2

12 term, can also be analyzed within the same geometric framework, at
least at tree level (an extension of the geometric approach to the one-loop effective potential
was recently developed in [85, 86], but we do not rely on it in this work). The phase diagram
now acquires two additional dimensions defined by the real and imaginary parts of m2

12. This
tree-level analysis in its full generality was conducted in [62], and criteria for the charge
breaking vacuum were established. Here, we repeat its main conclusions for the real m2

12 case.

• All the constraints on the quartic coefficients, including the BFB conditions and the
necessary CB conditions eq. (3.1), remain unchanged.

• The first condition from eq. (3.2) is also intact: m2
11
√
λ2 +m2

22
√
λ1 < 0. However, the

region with the CB vacuum now corresponds to the cone in the (m2
11,m

2
22,m

2
12) space

defined by
µ2

1
a2

1
+ µ2

2
a2

2
< 1 , (3.9)

where

µ1 =
∣∣∣∣∣ 2 4√λ1λ2m

2
12

m2
11
√
λ2 +m2

22
√
λ1

∣∣∣∣∣ , a1 = λ4 + λ5√
λ1λ2 + λ3

,

µ2 =
∣∣∣∣∣m2

11
√
λ2 −m2

22
√
λ1

m2
11
√
λ2 +m2

22
√
λ1

∣∣∣∣∣ , a2 =
√
λ1λ2 − λ3√
λ1λ2 + λ3

. (3.10)

Notice that in the case m2
12 = 0 we recover the conditions (3.2).
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As in the toy model, one can adopt the temperature corrections as in eq. (3.4) so that
m2

11 and m2
22 evolve with T , while the soft breaking coefficient m2

12 is unaffected by finite
temperature effects in the high-T approximation. As a result, when tracking the temperature
evolution, we still explore the two-dimensional phase diagram (m2

11,m
2
22) taken at a fixed m2

12.
However, instead of the CB wedge, we now have the hyperbolic conical section illustrated
by the blue curve in figure 2. The larger m2

12, the further the CB region retracts from the
origin. There is a single blank region now which still corresponds to neutral vacua but with
both v1 ̸= 0 and v2 ̸= 0. The trajectory, which still begins with a T = 0 point in the blank
region below the hyperbola, still needs to cross the CB region. Clearly, in order not to miss
it, the value of m2

12 should not be too large.

4 Effective potential and symmetry non-restoration

While so far, we only discussed the high-temperature behaviour of the tree-level potential by
introducing T -dependent quadratic parameters m2

11 and m2
22, in the next step, we want to

study the behaviour of intermediate CB phases for the one-loop-corrected effective potential,
which will be introduced in the following. We furthermore discuss briefly the (non-)restoration
of the EW symmetry at high temperatures for the one-loop effective potential and derive
conditions to distinguish between the possibilities of restoration and non-restoration, so that
in our numerical analysis in section 5, we can study possible connections between finding
viable points with intermediate CB phases and (non-)restoration of the EW symmetry.

4.1 Effective potential

We briefly introduce the one-loop-corrected effective potential V , which is given by

V = Vtree + VCW + VCT + VT , (4.1)

where Vtree is the tree-level potential of eq. (2.1), VCW denotes the temperature-independent
one-loop Coleman-Weinberg potential, VCT indicates the counterterm potential, and VT

accounts for the thermal corrections at finite temperature, respectively. Explicit expressions
for VCW, VCT, and VT are given e.g. in [19, 63]. In the following, we want to focus on the
temperature-dependent part of the effective potential in the limit of high temperatures to
discuss the possibility of (non-)restoration of the EW symmetry for temperatures T → ∞.

The thermal contributions to the potential can be written as [87]

VT =
∑

k

nk
T 4

2π2J
(k)
±

(
m2

k

T 2

)
, (4.2)

where the sum extends over the fields k = H±, h,H,A,WT , ZT ,WL, ZL, γL, t, b, τ and nk de-
notes the number of degrees of freedom which is nk = 2, 1, 1, 1, 4, 2, 2, 1, 1, 12, 12, 4, respectively.
The J+

(
m2

k
T 2

)
and J−

(
m2

k
T 2

)
are the thermal integrals for fermions and bosons, respectively,

J±

(
m2

k

T 2

)
= ∓

∫ ∞

0
dy y2 log

[
1 ± e−

√
y2+m2

k
/T 2
]
. (4.3)
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At high temperatures, the perturbative expansion used to obtain the above one-loop effective
potential becomes unreliable due to higher-order terms not being suppressed [88]. To again
restore the predictive power of the perturbation series, we include contributions from the
resummation of diagrams of higher loop order, the so-called daisy diagrams. In this paper,
we adopt the ‘Arnold-Espinosa’ resummation method [89] for taking into account the daisy
diagrams.1 In practice, these contributions can be included by making the replacements

J
(k)
± =



J−

(
m2

k
T 2

)
− π

6

[(
m2

k
T 2

) 3
2 −

(
m2

k
T 2

) 3
2
]

k = H±, h,H,A,WL, ZL, γL

J−

(
m2

k
T 2

)
k = WT , ZT

J+

(
m2

k
T 2

)
k = t, b, τ

. (4.4)

Note that only the scalar Higgs fields and the longitudinal degrees of freedom of the gauge
bosons receive daisy corrections, while the transversal degrees of freedom of the gauge bosons
as well as the fermions do not. The mk in eqs. (4.2)–(4.3) denote the tree-level masses
of the fields that depend implicitly on the temperature through the VEVs ω̄i = ω̄i(T ) as
discussed in section 2, which are determined by minimising the loop-corrected effective
potential at the temperature T . The mk include thermal Debye corrections and therefore
depend explicitly on T . Analytic expressions for the masses including thermal corrections
can be found in appendix A.

In the limit of high temperatures, the thermal integrals of eq. (4.3) can be approxi-
mated by [91]

J+(x2) T→∞= −7π4

360 + π2

24x
2 + O(x4) , (4.5)

J−(x2) T→∞= −π
4

45 + π2

12x
2 − π

6 (x2)
3
2 + O(x4) , (4.6)

with x ≡ mk/T , where we only keep the leading terms in T relevant for the following
discussion. To summarise, we can approximate the thermal corrections to the effective
potential in the high-temperature limit as2

VT
T→∞≈ −

∑
k

nk



π2

90T
4 − 1

24m
2
kT

2 + 1
12πm

3
kT k = H±, h,H,A,WL, ZL, γL

π2

90T
4 − 1

24m
2
kT

2 + 1
12πm

3
kT k = WT , ZT

7π2

720T
4 − 1

48m
2
kT

2 k = t, b, τ

. (4.7)

1A different method to implement the thermal masses is given by the ‘Parwani’ method [90]. The
two approaches differ in the organization of the perturbative series. While the ‘Arnold-Espinosa’ method
consistently implements the thermal masses at one-loop level in the high-temperature expansion, the ‘Parwani’
method admixes higher-order contributions, which at one-loop level could lead to dangerous artefacts.

2In the expansion of the thermal integrals J±(x2) for small and large x (i.e. high and low temperatures,
respectively) as in [91], a finite shift has to be added to smoothly connect the two regions. In the following
discussion about EW symmetry restoration in the next section, this finite term will, however, not be relevant
and we thus neglect it here.
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4.2 Symmetry non-restoration

Recently, several models have been studied where at high temperatures, the electroweak
symmetry is not restored, see e.g. refs. [34, 78–84]. In this case, the origin of the potential
is not the global minimum at high temperature. The phenomenon can occur even in the
SM when the scalar quartic coupling is large, as we verified explicitly.

In order to analyse the situation in the 2HDM, we study the curvature of the effective
potential with respect to the electroweak VEVs around the origin, i.e. we calculate the
Hessian matrix at the origin,

Hij ≡ ∂2VT

∂ω̄i∂ω̄j

∣∣∣∣
ω̄i,j=0

, i, j = 1, 2. (4.8)

Note that in this discussion, we limit ourselves to the thermal part of the one-loop effective
potential, as we are only interested in the behaviour for T → ∞ and the temperature-
independent parts thus do not play a role. The leading term of Hij in T , which is ∝ T 2,
determines the behaviour for T → ∞. We therefore evaluate Hij/T

2 for T → ∞. We find
that this expression takes the following form,

H ≡ lim
T→∞

H

T 2 = lim
T→∞

(
H11
T 2

H12
T 2

H21
T 2

H22
T 2

)
=
(
H11 0

0 H22

)
, (4.9)

with

H11 = c1 −
1

16π
[√

2
(
3g3 + g′3

)
+ 4 (3√c1λ1 + √

c2 (2λ3 + λ4))
]
,

H22 = c2 −
1

16π
[√

2
(
3g3 + g′3

)
+ 4 (3√c2λ2 + √

c1 (2λ3 + λ4))
]
,

(4.10)

and with c1 and c2 given by eqs. (3.5) and (3.6), respectively. In order for the stationary
point at the origin to be a (local or global) minimum, all eigenvalues of the Hessian matrix
are required to be positive. We therefore obtain the following conditions for a minimum
at the origin,

H11 > 0 and H22 > 0 . (4.11)

If the stationary point is a global minimum, the EW symmetry is restored for T → ∞; if
it is, however, only a local minimum (with a finite probability to tunnel into the deeper
global minimum), or if any of the two inequalities of eq. (4.11) is not fulfilled, we observe
non-restoration of the EW symmetry at T → ∞.

In figure 3, we plot H11 and H22 for two simple cases, one where all λ ≡ λ1 = λ2 = λ3 =
λ4 = λ5 values are set equal (left plot), and one where λ1 is larger than all the other λ2,3,4,5,
more specifically λ ≡ λ1 and λ2 = λ3 = λ4 = λ5 = λ

2 . All other couplings are given by

g = 0.653, g′ = 0.350, yt = 0.991, yb = 0.03, yτ = 0.01 . (4.12)

Electroweak symmetry restoration is only possible if both lines are above zero. The limit on the
scalar couplings up to which a restoration is still possible can therefore be read off as the root
of the lower of the two lines (which in both of our cases is the blue line corresponding to H11).
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2
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1
Figure 3. Curvatures H11 (lower/solid blue) and H22 (upper/dashed magenta) at high-temperatures,
as defined in eq. (4.10). Left: all scalar couplings are set equal, λ ≡ λ1 = λ2 = λ3 = λ4 = λ5. Right: λ1
is twice as large as the other couplings (which are again set equal), λ ≡ λ1 and λ2 = λ3 = λ4 = λ5 = λ

2 .
The remaining coupling values are given in eq. (4.12).

Parameter Scan range

λ1, λ2, λ3, λ4 [0, 4π]
λ5 [−4π, 4π]

m2
11,m

2
22 [−106, 0] GeV2

m2
12 [0, 106] GeV2

Table 2. Scan ranges of the parameters of the 2HDM potential of eq. (2.1).

It can be seen that in the first case, there is the possibility for restoring the EW symmetry at
high temperatures only for λ < 2, while in the second case, higher values are allowed with
λ ≲ 3. Thus there is an upper limit on the quartic couplings up to which EW symmetry can
be restored. The exact values depend on the chosen configuration of the parameters.

5 Numerical analysis

We now turn to the numerical analysis. We want to investigate to which extent the 2HDM
can exhibit a charge-breaking phase at non-zero temperature when we apply the full one-loop
treatment of the effective potential and we require in addition that all relevant theoretical and
experimental constraints are fulfilled. We will also analyse how this relates to EW symmetry
non-restoration. Note that the m2

12 parameter is chosen non-zero in our numerical analysis.
We remind the reader that we are considering the 2HDM type I.

5.1 Set-up of the scan and constraints

In order to find parameter points that are viable in the sense that they satisfy the applied
constraints, which we describe here below, we perform a scan in the input parameters of the
model. For this we use in-house Python routines with an implementation of the CP-conserving
2HDM and its tree-level potential. The scan ranges of the parameters are given in table 2.
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Since an initial random scan in the parameter space did not produce any points which
exhibit a CB phase at non-zero temperature for the full one-loop effective potential and which
are additionally compatible with all required constraints, we had to improve our scanning
method. This is done by starting from seed points based on the simple high-T approximation
outlined in section 3. They are defined as follows:3

We require the temperature-independent conditions for a CB minimum of eq. (3.1) to be
fulfilled (as we are interested in the possibility of a CB phase at non-zero temperature). The
temperature-dependent condition eqs. (3.9) and (3.10), however, must not be fulfilled at T = 0.
Assuming λ3 > 0, we impose the conditions eq. (3.7) on the quadratic mass parameters to
intelligently generate points that lie in suitable regions of the phase diagram, i.e. outside
of the blue CB region (cf. figure 1) and which will always have a trajectory exhibiting an
intermediate CB phase (cf. figure 2) for the toy model of section 3. The resulting points are
then considered in the following as seed points for the appearance of a CB minimum at T > 0.
Note that due to m2

12 > 0 in the model of section 2, it is possible that using the tree-level
potential and the high-T approximation for the evolution of the quadratic parameters only,
the trajectory misses the CB phase, as discussed in section 3.3. Nevertheless, we do not
discard these points as in the full one-loop treatment of the temperature dependence of the
effective potential including the temperature-corrected mass terms, it is possible that the
CB phase is recovered. Since these seed points are based on the derivation for the tree-level
potential with the high-T approximation, it can also be that not all seed points lead to
charge-breaking minima when considering the complete temperature-dependent potential.
They are a good starting point, however, to find suitable scenarios.

Before applying any constraints, we rescaled our parameters such that we obtained the
correct numerical values for the SM-like CP-even Higgs mass, mh = 125.09 GeV, and the
vacuum expectation value, v = 246.22 GeV, i.e.

m2
ij → m2

ij

m2
h

m2
h,0
, i, j = 1, 2, λk → λk

m2
h

m2
h,0

v2
0
v2 , k = 1, . . . , 5, (5.1)

where v0 and mh,0 are the VEV and the lightest neutral CP-even scalar mass, respectively,
as obtained from the parameters before the rescaling. In our scan, we define the mixing
angle α that diagonalises the Higgs mass matrix for the CP-even states such that the lightest
CP-even mass eigenstate always corresponds to the SM-like Higgs boson with mass mh.

We apply the following theoretical constraints on our parameter samples:

• The potential is required to be bounded from below (see eq. (2.7)).

• The quartic couplings have to fulfill perturbativity. More specifically, we demand
|λi| < 4π (i = 1, . . . , 5).

• We demand that tree-level unitarity is preserved [69, 70].
3Let us remark here, that this scan method does not bias our scan, but rather is an informed procedure

to efficiently search for parameter points exhibiting an intermediate CB phase. We explicitly checked this
through an extensive random scan which did not find valid points in regions of the parameter space different
from the one found in the seed-point induced scan.
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• The neutral CP-even tree-level minimum is required to be the global one, which can be
tested through a simple condition [61].

• We furthermore dismiss all points that, at tree level, do not exhibit a neutral vacuum
at T = 0.

On the resulting points, we finally employ the following experimental constraints, using
the program ScannerS [92–96]:

• We demand the 125 GeV Higgs boson to behave SM-like. Compatibility with
the Higgs signal data is checked through HiggsSignals [97], which is linked to
ScannerS. We require 95% C.L. exclusion limits on non-observed scalar states by using
HiggsBounds [98–100].

• We impose compatibility with the electroweak precision data by demanding the com-
puted S, T and U parameter values [101] to be within 2σ of the SM fit [102], taking
into account the full correlation among the three parameters.

• Consistency with recent flavour constraints is ensured by testing for the compatibility
with Rb [103, 104] and B → Xsγ [105–109] in the mH±-tan β plane.

For the thus obtained seed points (obtained with the approximate high-temperature
method outlined above) we then checked if they exhibit intermediate CB phases using the
full one-loop effective potential. This is done with the program BSMPT v2.6.0 [63, 64] which
performs the minimisation of the one-loop effective potential given in section 4.1. Here, we
make use of the R2HDM model implementation.

5.2 Parameter dependence

We now present the results of our parameter scan, and discuss the interplay between the
constraints, the appearance of a CB phase, and the restoration of the EW symmetry. Our
procedure here is as follows:

As we found that it was the hardest to fulfill simultaneously the requirements for a CB
phase and the Higgs signal constraints, we first generated about 5000 seed points as outlined
above while only enforcing the experimental S, T , and U parameter as well as the flavour
constraints. For these seed points, the signal strength of the SM-like Higgs coupling to two
photons, µγγ , was typically significantly below one. Thus, in order to additionally fulfill the
Higgs signal constraints, we varied the parameters of these starting points in the direction
of increasing µγγ until the Higgs signal constraints as checked by ScannerS were satisfied
(together with all other applied experimental constraints). During the course of our analysis,
we found that points exhibiting an intermediate CB phase in the high-T approximation cannot
be made compatible with the experimental constraints as they lead to µγγ values below the
experimental limit. The reason is that a CB phase obtained in this approximation implies too
light charged Higgs masses. Note, that all points generated in the scan lead to the correct EW
minimum at zero temperature using the full one-loop corrections in the effective potential.

In figure 4, we show the results of our scan for the following set of plots displaying
different parameter combinations,
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Figure 4. Parameter points of our scan shown for different parameter planes as discussed in the text.
All points fulfill the experimental constraints from ScannerS. Dark (light) grey points: EW symmetry
(non-)restoration at high temperatures. Magenta points exhibit in addition an intermediate CB phase
at non-zero temperature using the one-loop effective potential.

(a) top left: charged Higgs mass mH± vs. CP-odd Higgs mass mA;

(b) top right: charged Higgs mass mH± vs. heavy CP-even Higgs mass mH ;

(c) bottom left: charged Higgs mass mH± vs. |λmax| ≡ max(|λ1|, |λ2|, |λ3|, |λ4|, |λ5|);

(d) bottom right: Higgs-gauge coupling modifier cos(β − α) vs. tan β.

In all of the plots, points for which the restoration of the EW symmetry at high temperatures is
possible4 are coloured in dark-grey, while those with non-restoration of the EW symmetry are
shown in light-grey. Those points which additionally exhibit an intermediate charge-breaking
phase at non-zero temperature are coloured in magenta.

We first discuss the impact of the experimental constraints and symmetry (non-)restoration
on the parameter regions returned by the scan. As can be inferred from figure 4 (a), the

4For clarity, we again emphasise that even if the conditions of eq. (4.11) are fulfilled, the EW symmetry
could still be broken in the high-temperature limit if the minimum at the origin is not the global one.
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totality of the light and dark grey points features charged Higgs mass values above 100 GeV.
This is due to the application of the experimental constraints. From figures 4 (a) and (b)
in the top row, it can be seen that the majority of the points favour a degenerate configu-
ration of the charged and CP-odd or heavy CP-even scalar masses, as required by the S,
T , U -precision observables.5 Figure 4 (c) shows that only points with |λmax| <∼ 5 lead to
EW symmetry restoration. There are no further dark grey points behind the light grey ones
for |λmax| >∼ 5. The appearance of an upper limit is in accordance with our discussion in
section 4.2. In figure 4 (d), we observe that due to the experimental constraints, only points
with cos(β − α) <∼ 0.23 are allowed. We applied here among others the limits from [110].
Note, however, that the recent analysis [111] constrains cos(β − α) to be close to 0 for the
2HDM type I, with only small non-zero values allowed for larger values of tan β.6

We now additionally require an intermediate CB phase for the one-loop effective potential,
which is fulfilled by the magenta points in figure 4. The number of viable points is significantly
reduced, down to approximately 500 points. None of these remaining points exhibit EW
symmetry restoration, which is also reflected by the fact that we have a relatively large
maximum scalar coupling, 4 <∼ |λmax| <∼ 8, which we typically find to be λ1. When we
relax the experimental constraints, however, points are found that exhibit a CB phase and
simultaneously allow for EW symmetry restoration. We checked this explicitly in a preliminary
step of our scan. The appearance of a CB phase is hence in tension with two constraints
that cannot be reconciled simultaneously: it favours rather large scalar quartic couplings
that hamper electroweak symmetry restoration. On the other hand, it requires relatively low
charged Higgs masses, which puts tension on compatibility with the LHC constraints.

The phenomenological implications for the collider physics are as follows: the bulk of the
points shows a mass degeneracy mH± ≈ mA, which corresponds to λ4 ≈ λ5 (see eqs. (A.11)
and (A.16)). The neutral heavy Higgs mass on the other hand is, for most of the parameter
points, separated from mA and mH± by a gap of >∼ 100 GeV, which would allow for scalar
decays into mixed scalar and gauge boson final states, H → AZ or H → H±W∓. Future
increased sensitivity in the H → AZ search channels (cf. e.g. [114, 115] for existing searches
in the ZA final state) and future searches in the W±H∓ final state, where no experimental
searches exist yet, could hence either confirm these parameter points or further constrain them.
Applying the loop-corrected effective potential to find a CB phase, which is simultaneously
compatible with experimental constraints, also reduces the maximum possible value of the
charged Higgs mass to below ∼210 GeV and it drives the model further towards the SM
limit, as now cos(β − α) <∼ 0.14.

For completeness, we present in appendix B also the parameter distributions in the
quartic couplings λ1 to λ5 and in the squared soft-breaking mass parameter m2

12 as a function
of the charged Higgs mass, respectively, as well as m2

22 versus m2
11. As can be inferred from

the figures, for most of the points, either λ1 or λ4 is the largest self coupling, while for the
points exhibiting an intermediate CB phase, it is almost exclusively λ1. The soft breaking

5For those points in figures 4 (a) and (b), when mA (mH) is not degenerate with mH± , it is the mH (mA)
mass that becomes degenerate then.

6The asymmetric shape of the allowed region in cos(β − α) is driven by recent analyses like the bb̄ final state
in associated production of the Higgs boson with a top quark pair [112], which is dominated by systematic
uncertainties [113].
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mH [GeV] mA [GeV] mH± [GeV] tan β cos(β − α) m2
12 [GeV2]

BP1 562.84 168.56 164.51 16.58 0.128 18933.44
BP2 548.51 175.55 171.43 45.32 0.048 6629.97
BP3 342.52 230.02 183.72 286.00 0.009 410.17
BP4 558.56 194.52 168.43 80.84 0.026 3857.90

Table 3. Selected benchmark points from the parameter scan with the constraints as in figure 4.

parameter m2
12 is reduced to somewhat smaller values due to the relatively small charged

Higgs mass when an intermediate CB phase is required. The values of m2
11 and m2

22 are
negative as required for successful generation of a CB phase, and the m2

22 value is rather
constrained through the measured Higgs mass value (cf. section 3). We remark that the
parameters that we presented in our figures denote the full set of input parameters for the
real 2HDM, including also the parameters v and mh which are fixed to the SM values, so that
all possible desired observables can in principle be derived from the delivered information.

We finally note that we have additionally checked in a separate scan that when requiring
the parameter points to fulfill all three classes of constraints simultaneously, i.e. the experi-
mental constraints, an intermediate CB phase for the one-loop effective potential, and the
possibility for EW symmetry restoration at high temperatures, no viable points are found.

5.3 Temperature evolution

In the following, we discuss the temperature evolution of the absolute values of the EW
and CB VEVs ω̄1, ω̄2, ω̄CB of the scalar fields in eqs. (2.2) and (2.3) for several benchmark
points that have been selected due to different features that they exhibit in the evolution of
the VEVs. They have been selected from the set of magenta points of figure 4, i.e. without
demanding EW symmetry restoration at high temperatures, but requiring a CB phase using
the one-loop effective potential.7 The parameter values of the chosen benchmark points,
given in terms of the physical masses and mixing angles, are listed in table 3.

The temperature evolution is shown in figure 5 which we discuss in more detail now.
First of all, the plots show that we find CB phases (cf. full blue lines) of different durations
and magnitudes. The benchmark point BP1, figure 5 (a), displays the following sequence of
phases (from high temperatures to the EW vacuum with a VEV of 246 GeV at T = 0):

Neutral → CB → EW vacuum.

The intermediate CB phase starts around T = 250 GeV with a duration of approximately
∆T = 50 GeV and a pronounced maximum of |ω̄CB| ≈ 170 GeV. We find a first-order phase
transition from the electrically neutral to the CB phase, while the second phase transition

7In the whole sample of points of figure 4, the CP breaking phase is found to be zero across the scanned
temperature range, i.e. we do not observe spontaneous CP violation.
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Figure 5. Absolute values of the EW and CB VEVs ω̄1 (magenta dashed) ω̄2 (orange dotted) and
ω̄CB (blue solid) as a function of the temperature T , calculated using the BSMPT code, for the selected
benchmark points of table 3: BP1 (a, top left), BP2 (b, top right), BP3 (c, bottom left), and BP4 (d,
bottom right).

from the CB phase to ω̄CB = 0 at T = 200 GeV is of second order.8 In parallel, over the shown
temperature range, the EW VEV ω̄1 decreases, while ω̄2 increases with falling temperature.
They both show a first-order phase transition at the start of the non-zero CB phase at
T = 250 GeV. Afterwards ω̄2 increases (strongly) and ω̄1 continues to decrease (slowly),
a behaviour that is continued by each of the VEVs at the second CB phase transition at
T = 200 GeV but with a different slope. They reach v =

√
v2

1 + v2
2 = 246 GeV at T = 0, as

expected and required. The symmetry non-restoration of the EW VEV at high temperatures
is clearly visible.

The phase evolution for BP2 displayed in figure 5 (b) shows the same qualitative behaviour
as BP1, but with a longer duration of the intermediate CB phase, which amounts to approxi-

8We call a phase transition “first order” if the corresponding VEV shows a jump in its value at the
considered temperature. We call it “strong first order” if the jump of the VEV divided by the temperature
is larger than one. We call the phase transition “second order” if it continuously changes its value across a
non-zero temperature interval.
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mately ∆T = 300 GeV. Additionally, we observe several phase transitions within the CB phase,
which starts around 480 GeV. They lie at T = 460 GeV, 310 GeV, and 280 GeV, respectively,
and according to our definition are of first order, first order, and of second order, respectively.

Benchmark point BP3 features the largest mass splitting mA − mH± ≈ 50 GeV of all
selected benchmark points and a very large value of tan β. As can be inferred from figure 5 (c)
it provides the possibility of having more than one distinct CB phase. We find as the
sequence of phases:9

Neutral → CB → neutral → CB → EW vacuum.

While the first CB phase, starting at around T = 260 GeV, has a duration of approximately
∆T = 50 GeV, the second CB phase is much shorter with approximately ∆T = 5 GeV. We
again find a combination of first- and second-order phase transitions, and an additional phase
transition within the CB phase at around T = 230 GeV. The EW VEVs show the same
qualitative behaviour as in the previous benchmark points with several intermediate phase
transitions at the same temperatures as the CB ones and of first or second order.

While for BP1–BP3, the EW symmetry is not restored at all, for several points, we find
an intermediate restoration of the EW symmetry. We selected BP4 among these points and
show the phase evolution in figure 5 (d). The sequence of transitions is:

Neutral → CB → neutral → neutral → EW symmetric → EW vacuum.

The EW symmetric phase starts at around T = 220 GeV and persists down to approximately
T = 120 GeV. We have a second neutral phase in between the CB phase and the EW
symmetric phase, as in the second neutral phase right before the EW symmetric phase,
the VEV ω̄2 becomes very small and almost vanishes. We find a long CB phase starting
at T = 800 GeV with approximately ∆T = 400 GeV. The phase transition from the EW
symmetric to the broken phase with the EW vacuum is of first order.

To summarise, we confirm the existence of intermediate CB phases in the CP-conserving
2HDM not only in the high-temperature approximation as previously discussed in the
literature [39, 62], but also using the one-loop-corrected effective potential with thermal
corrections. While the existence of a CB phase in the high-temperature approximation
generally requires a small charged Higgs mass mH± <∼ 100 GeV which is in tension with
experimental searches, we find viable parameter points with larger charged scalar masses
which are in agreement with current experimental limits by requiring a CB phase using the
full one-loop effective potential with thermal corrections, not relying on the high-temperature
approximation only. However, as discussed in section 3 in the context of the toy model and
the high-temperature approximation, reasonably large scalar couplings are required for a
CB phase to occur, which is also found to be the case when using the one-loop effective
potential for the CP-conserving 2HDM. In our scan, the magnitudes of the scalar couplings
are consequently in tension with the restoration of the EW symmetry at high temperatures
according to the conditions derived in section 4, and we do not find any points that have
a CB phase at non-zero temperature, fulfill all experimental constraints, and lead to EW

9The wiggles and spikes are numerical instabilities in the determination of the global minimum, when e.g.
different minima are almost degenerate.
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symmetry restoration at high temperatures simultaneously. Nonetheless, we find for several
of the parameter points, besides the appearance of an intermediate CB phase, interesting
phase evolutions, including different sequences of phases with first- or second-order phase
transitions and intermediate phases of EW symmetry restoration.

6 Conclusions and outlook

The Higgs potential of extended Higgs sectors, which are motivated by open puzzles of the
SM, show an interesting and complex vacuum structure. Travelling back in time to higher
temperatures, the complexity of this structure can change and show rich and even exotic
patterns of minima sequences that are acquired. In this paper we investigated the interesting
question if the 2HDM type I could go through a CB phase on its way from the early universe
to today’s electroweak vacuum. Such an intermediate CB phase during the thermal evolution
of the universe could be the seed of magnetic fields in the universe, whose origin is still
unknown, and it could have interesting consequences for the cosmological evolution and the
generation of dark matter. We took in this paper the first step and analysed if such a CB
phase could take place at all and under which conditions. While it was already shown in
previous works, using a simpler high-temperature approximation for the potential, that a
CB phase exists, we demonstrated that this still holds when taking into account the full
one-loop corrected effective potential including thermal masses.

Our investigations showed, however, that a CB phase is in tension with two requirements,
which can be reconciled individually but not simultaneously with a CB phase. The appearance
of a CB phase favours rather large scalar quartic couplings, which works against electroweak
symmetry restoration requiring small quartic couplings. A CB phase is found to require
furthermore rather low charged Higgs masses, which puts tension on compatibility with
the LHC constraints. The bottom line is that the CB phase can accommodate symmetry
restoration at the price of non-compatibility with the experimental constraints. The ap-
pearance of a CB phase can also be in accordance with the experimental constraints but
then at the price of symmetry non-restoration. If we accept symmetry non-restoration by
assuming that at some higher temperature a new mechanism restores the EW symmetry,
then we can derive typical collider features that are provoked by the requirement of a CB
phase during the thermal evolution of the universe. These are found to be for our model,
the 2HDM type I, maximal quartic couplings in the range between about 4 and 8, and
rather light charged Higgs masses between about 130 and 210 GeV (this also explains why
2HDM type II models cannot accommodate a CB phase as here the charged Higgs mass
is constrained to be above 800 GeV [106–109]). They are found to be mostly degenerate
with the pseudoscalar mass, while the heavier neutral scalar mass is typically by more than
100 GeV heavier than the charged Higgs mass. Furthermore, the model is driven closer to
the SM limit with cos(β − α) <∼ 0.14. This implies interesting LHC phenomenology as e.g.
the possibility of H → W±H∓ decays.

Concerning the possible realisation of CB phases at non-zero temperature, performing a
random scan within the a priori identified region of the parameter space favourable for such
a situation, numerous scenarios can be found, albeit requiring a reasonably large scan sample.
There is hence some degree of fine-tuning involved in finding the existence of intermediate
CB phases in the 2HDM during the thermal evolution of the universe.
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Accepting the absence of symmetry restoration at high temperatures, we chose four
benchmark points with an intermediate CB phase which are compatible with the experimental
constraints and investigated the temperature evolution of their VEVs. We found interesting
phase histories, with CB phases of different durations and magnitudes and more or less
complex sequences of consequent or parallel neutral and CB phases from first or second order
phase transitions, including intermediate phases of EW symmetry restoration.

The analysis of the consequences of such thermal histories for cosmology, gravitational
waves, dark matter, and also collider phenomenology is left for a separate dedicated study.
Our analysis has shown, however, in this first important step that CB phases are possible
and under which conditions they are possible. Our investigations furthermore once again
demonstrate how powerful the investigation of the vacuum structure is in providing insights in
beyond-the-SM physics and corners of the particle world where we do not have direct access.
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A Masses in the 2HDM

In this appendix, we show analytic expressions for the masses of all particles relevant for
our discussion of the finite-temperature potential.

A.1 Fermion masses

The fermion masses do not get Debye corrections and, assuming a 2HDM type-I, are therefore
given by,

mf = yf√
2
ω̄2 , (A.1)

where the Yukawa coupling yf is defined via the VEV v2 = ω̄2|T =0 and the fermion mass
mf (T = 0) at zero temperature,

yf =
√

2
v2
mf (T = 0) . (A.2)

A.2 Scalar masses

The scalar mass matrix is obtained from the second derivative of the tree-level potential Vtree
of eq. (2.1). When all ω̄i are non-zero, the scalar mass matrix is a 8 × 8 matrix. In the case
of a neutral CP-conserving vacuum, where only ω̄1,2 are non-zero, the mass matrix becomes
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block-diagonal with a different block for the charged, the neutral CP-even, and the neutral
CP-odd field components. These blocks are always symmetric 2 × 2 matrices of the form

M =
(
M11 M12
M12 M22

)
, (A.3)

with the two solutions

m2 = 1
2 (M11 + M22) ± 1

2

√
(M11 −M22)2 + 4M2

12 . (A.4)

The thermal corrections from the resummation of the daisy diagrams can then be included via

M = M + diag (c1, c2)T 2 =
(
M11 + c1T

2 M12
M12 M22 + c2T

2

)
, (A.5)

with the thermal coefficients c1,2 given in eqs. (3.5) and (3.6), leading to the masses including
thermal corrections

m2 = 1
2
(
M11 + M22 + (c1 + c2)T 2

)
± 1

2

√
(M11 −M22 + (c1 − c2)T 2)2 + 4M2

12 . (A.6)

A.2.1 Charged sector

For the charged sector C, the matrix elements are given by

MC
11 = m2

11 + λ1
2 ω̄

2
1 + λ3

2 ω̄
2
2 , (A.7)

MC
22 = m2

22 + λ2
2 ω̄

2
2 + λ3

2 ω̄
2
1 , (A.8)

MC
12 = −m2

12 + λ4 + λ5
2 ω̄1ω̄2 . (A.9)

This matrix is diagonalised by the angle β of eq. (2.6), and its eigenvalues can be written
for the EW vacuum at T = 0 in the usual form,

mG± = 0 , (A.10)

mH± =
[
m2

12
v1v2

− 1
2 (λ4 + λ5)

]
v2 , (A.11)

where G± denotes the massless charged Goldstone boson, and H± the charged Higgs boson.
Note that we use the Landau gauge.

A.2.2 Neutral CP-odd sector

For the neutral CP-odd sector P , the matrix elements are

MP
11 = m2

11 + λ1
2 ω̄

2
1 + λ3 + λ4 − λ5

2 ω̄2
2 , (A.12)

MP
22 = m2

22 + λ2
2 ω̄

2
2 + λ3 + λ4 − λ5

2 ω̄2
1 , (A.13)

MP
12 = −m2

12 + λ5ω̄1ω̄2 . (A.14)
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Also this matrix is diagonalised by the angle β of eq. (2.6), and we get the two eigenvalues
at T = 0,

mG0 = 0 , (A.15)

mA =
(
m2

12
v1v2

− λ5

)
v2 , (A.16)

where G0 denotes the massless neutral Goldstone boson, and A the CP-odd Higgs boson.

A.2.3 Neutral CP-even sector

Finally, for the neutral CP-even sector S, we have

MS
11 = m2

11 + 3λ1
2 ω̄2

1 + λ3 + λ4 + λ5
2 ω̄2

2 , (A.17)

MS
22 = m2

22 + 3λ2
2 ω̄2

2 + λ3 + λ4 + λ5
2 ω̄2

1 , (A.18)

MS
12 = −m2

12 + (λ3 + λ4 + λ5) ω̄1ω̄2 . (A.19)

The rotation matrix diagonalising this matrix can be written in terms of a mixing angle α.
Due to the two eigenvalues mh,H being relatively long analytical expressions, which are given
by the two solutions in eq. (A.4), we refrain from writing them out explicitly and only state
that by convention mh(H) corresponds to the lighter (heavier) CP-even Higgs boson. We
choose our parameters such that h corresponds to the SM-like Higgs boson with mass 125 GeV.

A.3 Gauge boson masses

The mass matrix for the gauge bosons in the interaction basis (W 1,W 2,W 3, B0) is given by

Mg =


1
4g

2ω̄2 0 0 0
0 1

4g
2ω̄2 0 0

0 0 1
4g

2ω̄2 −1
4gg

′ω̄2

0 0 −1
4gg

′ω̄2 1
4g

′2ω̄2

 , (A.20)

with the SU(2) and U(1) gauge couplings g and g′, respectively, and ω̄2 ≡ ω̄2
1 + ω̄2

2. Its
diagonalisation leads to the well-known eigenvalues at T = 0 for the W±, γ, and Z bosons,

m2
W = g2

4 v
2 , m2

γ = 0 , m2
Z = g2 + g′2

4 v2 . (A.21)

Similarly to the scalar sector, the thermal corrections can be included by adding an additional
term to the mass matrix, and in theories with only extended Higgs sectors (i.e. no additional
fermions, coloured scalars, or vector bosons), this term is diagonal, and, with the exception of
the gauge couplings g and g′, universal for each component. Note that only the longitudinal
degrees of freedom of the gauge bosons will receive thermal corrections, leading also to a
finite longitudinal photon mass. Labelling the thermal coefficient cg, we have:

Mg = Mg + cg diag
(
g2, g2, g2, g′2

)
T 2 , (A.22)
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with [63]

cg = 1
3

(
nH

8 + 5
)

=


11
6 for the SM with nH = 4 ,

2 for the 2HDM with nH = 8 ,
(A.23)

where nH denotes the number of Higgs and Goldstone fields coupling to the gauge bosons.
Then, the thermally corrected longitudinal gauge boson masses become,

m2
W = g2

4 ω̄
2 + cgg

2T 2 , (A.24)

m2
γ = g2 + g′2

2

(
ω̄2

4 + cgT
2
)
− ∆ , (A.25)

m2
Z = g2 + g′2

2

(
ω̄2

4 + cgT
2
)

+ ∆ , (A.26)

with

∆ =

√
(g2 + g′2)2

4

(
ω̄2

4 + cgT 2
)2

− g2g′2
(
ω̄2

2 + cgT 2
)
cgT 2 . (A.27)

B Potential parameter dependences

Figures 6 and 7 show the distributions of the potential parameters λi (i = 1, . . . , 5) and
m2

12, respectively, as a function of the charged Higgs mass, as well as m2
11 versus m2

22 for
all points of our scan compatible with the relevant theoretical and experimental constraints.
Dark (light) grey points (do not) fulfill symmetry restoration at high temperatures. Magenta
points exhibit in addition an intermediate CB phase at non-zero temperature obtained from
the minimization of the one-loop effective potential.
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1Figure 6. Parameter points of our scan shown for λi (i = 1, . . . , 5) as a function of mH± . All
points fulfill the experimental constraints from ScannerS. Dark (light) grey points: EW symmetry
(non-)restoration at high temperatures. Magenta points exhibit in addition an intermediate CB phase
at non-zero temperature using the one-loop effective potential.
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