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ABSTRACT
Many organizations are involved in the development of complex
systems, e.g., cyber-physical systems. Organizations work collabo-
ratively to describe these systems, using models, which are devel-
oped using multiple languages and tools. The models may contain
intellectual property that must be protected from other parties,
including other contributors. To enable the ongoing exchange of
models and to ensure intellectual property protection, our new
idea is to use encrypted deltas, i.e., arbitrary changes made to a
model. These encrypted deltas are stored on a chain, which we call
Deltachain. Encryption enables free exchange of the Deltachain,
e.g., on third-party commercial file storage servers. Collaborators
involved in the development of the model can access the encrypted
Deltachain, decrypt the parts to which they have access, and then
work with those decrypted parts which are created by applying the
deltas. Subsequently, the collaborators can encrypt their deltas to
the model parts and append the encrypted deltas to the Deltachain.
Our vision is the use of this Deltachain by collaborating organiza-
tions as a single source of truth.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development; • Computing methodologies Modeling method-
ologies; • Information systems→Data layout;Data exchange;
Information integration; • Security and privacy → Database
and storage security;
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1 INTRODUCTION
Collaboration improves the effectiveness of work [22]. A part of
cross-organizational collaborative work is the sharing of models
that are developed collaboratively [17]. A model can, e.g., be a
UnifiedModeling Language (UML)1 model or an AUTOSAR2 model.
Themodels may contain intellectual property (IP), whichwe have to
protect with means of intellectual property protection (IPP) [4, 16].
Besides the need for IPP, the development of new complex systems,
e.g., the development of an electric car, requires many stakeholders
that bring in their own knowledge and domains. They produce
different models, that share some parts, i.e., their common parts.
We call the common parts of the models the interface between
models.

One interface for the development of an electric car may consist
of the deployment of software components from the UML model
and the electronic control units (ECU) as part of the E/E architecture
model. In this scenario, the software components are deployed on
the ECUs. This deployment model, illustrated in Figure 3, may
be modified by both the systems engineer working for the ECU
manufacturer and by the software engineer, which both have their
instance of the model. To synchronize the deployment model or in
general the interfaces between the different models of the system,
stakeholders exchange the interfaces and discuss changes they have
applied to the interfaces. This results in the exchange of a specific
version of model (parts) which are then used by the collaborating
organizations until new, updated models are provided.

Usually, the stakeholders store their models locally and only ex-
change copies of parts of them, i.e., the aforementioned interfaces.
The IPP is ensured by carefully analyzing the models and searching
for the common parts that have to be synchronized. If these inter-
faces are stable, a one-time exchange is sufficient. If not, changes
have to be synchronized by sharing the interfaces. The scope of
this sharing may vary, as illustrated in Table 1 [24]. Different orga-
nizations may prefer different sharing scopes. In order to use a data
structure as a single source of truth, we thus have to allow for all
five collaborative sharing scopes. To facilitate the constant sharing
of model parts, the usage of model changes is beneficial [29].

We want to avoid the need for synchronization by providing a
single source of truth instead of providing interfaces, i.e., partial
copies of models. The single source of truth also needs a physical
location for storage. Because collaborating organizations may not
share a common trusted storage, e.g., due to legal reasons, we want
to be able to also use untrusted hardware. This brings up several
requirements for our data structure, derived from related literature
and explained in the following:

1www.omg.org/spec/UML/2.5.1, accessed 29.07.2024
2www.autosar.org, accessed 29.07.2024
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R1 The data structure can be used as a single source of truth [13].
R2 Collaborating organizations do not provide copies of model

parts but access to the model parts [6].
R3 The data structure includes IPP [4].
R4 All five collaborative information sharing scopes from Ta-

ble 1 are possible [24].
R5 The data structure providesmodel changes rather thanmodel

states [29].
R6 The data structure can be shared on untrusted hardware [28].
R7 The data structure supports domain specific constructs [23],

e.g., the addition of a UML class as well as domain indepen-
dent constructs, e.g., text files and lines in text files like Git
or other version control systems [30].

R1. Hijazi et al. [13] propose a new approach for storing building
information modelling (BIM) models on a blockchain and to use it
as a single source of truth. The authors argue that the construction
industry and its complex structure and fragmented supply chain
benefited from the introduction of a BIM, but its storage at a single
stakeholder reduces trust. We transfer their observations to the
software engineering domain, where complex supply chains, the
trust in them, and fragmentation of models are also subject of cur-
rent research [10, 14, 16] and the introduction of a single source of
truth, similar to a single underlying model [3], can provide benefits
similar to the ones obtained in the construction domain.

R2. Cai et al. [6] present the challenge of effective information
sharing for product assembly models. The need for information
sharing stems from collaboration, and the employed technique is
encryption. Collaborators see the whole artifact and can access
parts of it, based on the keys they received beforehand. We also
see the problem of information sharing while preserving IP, or
in general restrict access, in general model-driven processes, and
envision encryption as one possible solution to not share copies of
models or model parts but access to them [7, 16].

R3. Basciani et al. [4] discuss model repositories and challenges
that have to be solved before model repositories become reality
in model-driven engineering. Two challenges they discuss are the
federation of model repositories which needs IPP, and the licensing
related to shared artifacts, which also necessitates IPP. Thus, we
argue, that a data structure for model sharing should support IPP.

R4. Sung et al. [24] discuss collaborative sharing scopes they
employed to improve the information sharing between a mother
company and its suppliers. We also think different sharing scopes
are necessary to satisfy the different needs of different collaboration
scenarios, and thus we think, that a single source of truth should
provide all five sharing scopes.

R5. Yohannis et al. [29] propose a new approach to persist mod-
els as a sequence of changes instead of their state. One of the core
benefits of this approach, which is minimizing the cost of change
identification, is also important for collaborative development, be-
cause changes in shared models may require further changes in
other, non-shared models. Reducing the effort of the identification
of changes thus improves the overall effectiveness.

R6. Xu et al. [28] present an approach for an end-to-end en-
crypted version control system to reduce the necessary trust into

Level Description
1 No sharing of collaboration information
2 A portion of collaboration information shared as needed
3 Periodically shared collaboration information
4 Frequently shared collaboration information
5 Shared collaborative information in real-time

Table 1: Levels of collaborative information sharing
scopes [24]

software
software

delta SensorService

Figure 1: Software development scenario, where a class Sen-
sorService on the right side is added to the empty package
software on the left side.

the service provider providing the version control system, which is
a goal we also pursue.

R7. Stahl et al. [23] present and discuss model driven software
development and point out the advantages of an explicit domain
modeling. We want to also include the domain modeling into our
data structure, i.e., to directly persist domain specific deltas, instead
of unspecific ones.

To the best of our knowledge, there is no system available, that
fulfills all these requirements. To fulfill these requirements, we
propose our new idea, the usage of a Deltachain. The Deltachain
combines two existing approaches. On the one hand, we use the
model representation via changes [29]. We call arbitrary changes
that we work with deltas, because they represent the difference
between two model versions or variants. This notion is broader
than the notion of delta modules, because we do not assume the
existence of a core module [20]. Furthermore, the application of a
delta does not necessarily create a product (as opposed to product
line engineering) [20]. This representation allows incrementality.

On the other hand, we encrypt model parts [6], represented as
deltas. That way, the model parts are not encrypted directly, but the
deltas constructing the model part. A model part consists of model
elements. A Deltachain consists of a list of encrypted deltas. A delta
can be the addition or deletion of a model element (or any more
fine-grained definition of an operation, e.g., the modification or
replacement of an element). Figure 1 illustrates a common scenario
in software development, i.e., the addition of a class to a package.

The delta describing this operation is illustrated in Figure 2. It
is domain specific, as the AddDelta contains a package into which
the added element with a name is inserted. On the other hand, it
is generic with the UMLClass parameter, which allows using it for
different application scenarios that use package hierarchies.

Different deltas are encrypted with different keys, in order to
grant access to different stakeholders. The use of fine-grained en-
cryption allows us to share the model through the Deltachain as a
whole, because the stakeholders can only access those parts of the
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: AddDelta

name=SensorController
package=software

UMLClass

Figure 2: Delta between the two states from Figure 1

chain to which they have been granted access to by receiving keys.
The stakeholders grant access to each other by assigning them roles,
deriving keys for each role, and providing the other stakeholders
with the necessary keys. Therefore, stakeholders generate their
view on the system by decrypting all deltas they can decrypt and
by deriving their interfaces with other stakeholders as well as their
owned model parts (i.e., applying all the decrypted deltas which
construct the model parts). This avoids the duplication while still
restricting the access. Intellectual property protection is only one
possible reason for restricting access. This work builds on our pre-
vious work [26], which gave a very rough overview on our idea of
the Deltachain as a single source of truth, while we concretize that
in every aspect in this paper. We define requirements for our single
source of truth, which we will implement with the Deltachain. Fur-
thermore, we added a detailed example scenario and details about
the different parts of the Deltachain. The discussion and related
work sections are improved.

2 NEW IDEA AND VISION
The new idea we propose, i.e., the Deltachain, lays the foundations
for an incremental and IP-preserving logical model storage. With
the term logical, we want to emphasize that the approach does
not require a single physical model store, but instead supports a
distributed system of model stores, which are connected.

An example for this logical view is illustrated in Figure 3. The
SensorService component is deployed on the ECU execution envi-
ronment. Both the software developer and the systems engineer
work collaboratively on this model, because the software developer
develops the software component and the systems engineer devel-
ops the ECU. Their interface is the deployment model in Figure 3.
If the software engineer changes the name of the component, the
deployment model of the systems engineer is incorrect. This can
either be solved by introducing consistency mechanisms, or by
avoiding the duplication, introduced by the necessary sharing of
the deployment model. The idea of a logical view on the system is
also part of the Single Underlying Model (SUM) from orthographic
software modelling [3].

We use the Deltachain as a single source of truth, i.e., we store
all models on it. By a single source of truth is not meant that there
is only one physical place where the model is stored, but rather in
the above-mentioned logical sense of the word. Because we share
access to the model and not the model (or parts of it) itself, we
avoid any logical duplication. Thus, we conceptually exclude data
duplication issues arising from the physical duplication, e.g., due to
performance improvements. We consider this physical replication
as orthogonal to our approach for IPP and incrementality, and thus
keep it out of scope for this paper.

SensorServiceSensorService deploy

Figure 3: Deployment model which contains a SensorService
component, developed by a software developer, which is de-
ployed on an ECU, developed by a systems engineer. This
deployment model is the interface between the organiza-
tions of the software engineer and the systems engineer.

The Deltachain consists of the modeling of the deltas explained
in subsection 2.1, the encryption and storage of deltas in subsec-
tion 2.2, the derivation of encryption rules in subsection 2.3, and a
process to define key exchanges and collaboration in a framework
in subsection 2.4. We will not develop cryptographic methods, but
use established ones, such as symmetric and asymmetric encryp-
tion, hashing, and signatures. We discuss the fulfillment of our
requirements from section 1 in subsection 2.5. A first iteration of
the prototype for this paper is publically available on Zenodo3.

2.1 Semantics of Deltas
In order to be able to work with all possible models in an incremen-
tal and uniform way, we propose the usage of deltas. An example
for a delta model can be found in the Edelta approach [5]. Deltas
can be applied to an empty model to derive the model state encoded
in the deltas. The central data structure of our approach is a chain,
i.e., a list, of those deltas. To protect IP, we want to encrypt the
deltas. Mechanisms known from other version control systems, e.g.,
branching, versioning, and merging, depend on additional meta-
data annotated to a delta. Because we want to be able to share
the Deltachain on untrusted hardware, we want to avoid sharing
unencrypted metadata too. Thus, the Deltachain only consists of a
list of encrypted data and mechanisms like branching have to be
implemented elsewhere, as detailed in subsection 2.4.

The benefits to gain from using deltas instead of model states are
strongly related to the semantics of a delta, i.e., the information it
can contain. The information can range from graph level deltas, e.g.,
add a node, up to deltas defined within the domain itself, e.g., add
a UML class into a UML package. Both levels of semantics are of
value, as different analyses can be executed on either of them. The
semantics are defined on the logical view of the system. The graph
can be used for reachability analyses, while a formal description
of domain semantics enables specialized analyses, e.g., checking
whether UML packages contain specific classes.

We want to research different levels of semantics for deltas and
how to connect them. The addition of a new UML class can, e.g.,
be represented using a delta similar to Figure 2 or using domain
agnostic graph deltas which add a central node representing the
class and different other nodes containing information as a name
or a location which are connected with edges annotated with the
role of the node. We want to investigate how to connect those rep-
resentations and generate the most appropriate one for a task. The
first part of our idea is a classification schema for delta semantics

3https://zenodo.org/doi/10.5281/zenodo.12530303
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MODELS ’24, September 22–27, 2024, Linz, Austria Thomas Weber and Sebastian Weber

that allows stakeholders to choose delta semantics to meet their
requirements.

2.2 Delta Encryption and Storage
One main benefit of our new idea presented in this paper is the
ability to share the Deltachain freely. To achieve this, the Deltachain
must be encrypted. The second part of our idea will thus be an
approach to encrypt deltas and a way to store them in a Deltachain.
On theDeltachain, we have to ensure the order of the deltas, because
a delta is only applicable to a model state if the model parts it
references are present in the state prior to the application of the
delta. For this reason, deltas in a Deltachain cannot be reordered.
Furthermore, we will investigate different kinds of metadata to
attach to deltas and how to encrypt it. The need for metadata stems
from different application scenarios, e.g., the traceability of deltas,
which requires the addition of author information to a delta.

Additionally, other services, e.g., similar to git blame, can be
implemented or used independently of the deltachain, because
their information can also be saved on the deltachain and then
used to implement the service. For this, their metadata needs to be
metamodeled and added as a shared model for all users, that use
the service and are allowed to see the metadata.

2.3 Derivation of Encryption Rules
The definition of access control rules at the level of deltas is not
useful, because it requires the (re-)definition of access control rules
for every new delta. While the redefinition may be used, e.g., when
formerly unclassified attributes are filled with classified data by a
delta, we assume that is not the common case. Instead, the stake-
holders with access to an element and its features mostly remain
the same over the course of the development of the system. Thus,
the access control rules remain largely the same. Additionally, we
want to be able to use existing access control systems, which are, if
present, usually defined to restrict access to model parts and not
to deltas. Thus, the third part of our idea is an approach to derive
encryption rules for deltas based on access control rules on model
parts. We plan to implement this approach with Role-Based-Access-
Control. Our proposed idea is independent of the access control
system used. We will use symmetric encryption for read and write
access and asymmetric encryption and signatures to differentiate
between read and write access.

A small example for the derivation of encryption rules is pre-
sented in Figure 4 and Figure 5. The complete rectangle represents
a model that is collaboratively developed by a Vehicle manufacturer
(OEM) and a supplier. They develop parts themselves, but also mod-
ify a shared part, i.e., the interface, in the middle of the rectangle, as
illustrated in Figure 4. The derivation of encryption rules thus gen-
erates three different keys, one for the part of the model exclusively
modified by the OEM, one for the part exclusively modified by the
supplier and one for the shared part. The key for the shared part,
key 3 in Figure 5, is distributed to both organizations and allows
them to only disclose the parts of the model they have to disclose.
Both organizations generate the keys for their parts for themselves
and the key for the interface is generated by the organization that
owns, i.e., prescribes, the interface.

Figure 4: A model divided into two overlapping parts, the
OEM (dots) and supplier 1 (hatch) can modify

Figure 5: Keys generated to encrypt deltas modifying model
parts for Figure 4. The OEM gets key 1 and 3, supplier 1 gets
key 2 and 3

OEM

Cloud Storage ProviderUnencrypted

data

Supplier 1

Unencrypted

data

Data

encryption

keys 1,3

Data

encryption

keys 2,3

Cache Server

Deltachain

Encrypted

data

Encrypted

data

Cache Server

Model1

Model2

Client

Client

Client

Client

Encrypted

data

Figure 6: A Deltachain hosted at a cloud storage provider and
two organizations with cache servers and clients collabora-
tively developing the model from Figure 4

2.4 Framework
The fourth part of our idea is the definition of a framework, which
uses the first three contributions as conceptual basis. The frame-
work uses the Deltachain as core data structure and will define
processes between organizations collaboratively working on it. The
central parts of the envisioned framework are illustrated in Figure 6
with the Deltachain on the right, hosted on a cloud storage provider.

The deltas are stored encrypted and are retrieved encrypted by
the cache servers from the OEM and supplier 1. The cache servers
decrypt the subset of the deltas the organization has keys for and
generates the model parts. On the cache server, we have access to
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the decrypted deltas and its metadata and can thus use existing
technologies to implement features like branching or versioning.

The caching does not add logical copies, thus preserving the
Deltachain as a single source of truth. The clients inside the organi-
zations can edit the models. The resulting deltas are encrypted by
the cache server and appended to the Deltachain. The use of the
Deltachain will enable incremental development processes due to
its incremental model storage.

Furthermore, the framework for collaboration between organi-
zations can protect the intellectual property of the participating or-
ganizations with the encrypted deltas. Additionally, the framework
will define role types for participating organizations, supported
types of collaboration between organizations and how they can
interact with each other and the Deltachain.

The framework defines organization boundaries. Both the OEM
and the supplier 1 define such a boundary in Figure 6. Inside an or-
ganization boundary, the models (or model parts) are unencrypted
and can be modified. Operations on the decrypted Deltachain, e.g.,
merging, versioning or branching, are implemented inside the or-
ganizational boundaries to avoid sharing unencrypted metadata.
Stakeholders access the model on a cache server, which interacts
with the Deltachain by retrieving encrypted deltas from or append-
ing new encrypted deltas to the Deltachain, entering and leaving
the organization boundary. The appended deltas result from modifi-
cations by the stakeholders. The interaction with the cache servers
is identical to the interaction with any model server and trans-
parent to the stakeholder. Lastly, we want to investigate the use
of usage control and monitoring, which are not necessary for the
Deltachain, but may further improve the security of the data stored
on the Deltachain.

2.5 Requirements
We argue, that the Deltachain fulfills all requirements we stated in
section 1. Because we can apply arbitrary deltas to the Deltachain,
we can use it to store any model and thus use it as a single source of
truth (R1). Additionally, our framework provides access to specific
deltas, which provide access to model parts. The physical copies
created on the cache servers do not introduce logical copies (R2). Be-
cause we use fine-grained encryption, we can protect IP or restrict
access due to other reasons (R3). Our framework allows for different
collaborative information sharing scopes, as described in Table 1
(R4). The first level of not sharing any information is possible by
not sharing any keys. The sharing of a portion of the collaboration
information is possible by switching to new keys after exchanging
them. The collaborators can decrypt the Deltachain parts until the
new key is introduced. To improve this exchange to periodically or
frequently, the key switch and exchange can be implemented with
the needed frequency. The exchange of information in real-time can
be implemented by not switching the key and constantly pulling or
pushing to the Deltachain. While it is possible to use the Deltachain
this way, we do not envision it as its usual use case, because the
Deltachain cannot, e.g., detect concurrent editing of the same model
elements or inconsistencies, because the deltas are encrypted. This
has to be done on the cache server, which introduces high latency
due to the frequent encryption and decryption and communication
with the Deltachain. The Deltachain uses model deltas (R5) which

are encrypted, so the resulting Deltachain can be exchanged freely,
e.g., on untrusted hardware (R6). Because we use model deltas, we
can use domain specific or domain agnostic deltas, if they provide
a metamodel (R7).

3 RELATEDWORK
Cross-Organizational Collaboration. Gionis et al. [12] developed

a model-driven architecture for cross-organizational collaboration.
They focused on business and legal rules in private and collaborative
processes. In contrast, we focus on the technical realization and the
conceptual building blocks, that their system may use to enable it
to use general purpose untrusted third-party infrastructure. Soosay
et al. [22] conducted semi-structured interviews with 23 managers
to investigate the opportunities of collaborative relationships for
continuous innovation. They concluded, that among other things,
the ability to work collaboratively increased the effectiveness. David
and Syriani [8] propose a real-time collaborative multi-level mod-
eling framework. Their framework builds on custom conflict-free
replicated data types to support advanced modeling scenarios. The
framework the authors propose is specifically designed for the
needs of collaborative modeling environments, but lacks support
for IPP. Aslam et al. [2] provide an approach for cross-platform
real-time collaborative modeling. The approach is independent of
the modeling platform and of domain-specific modeling languages,
as is our approach. The authors focus on the ability to work on
the head revision of models, as well as starting and terminating
real-time collaborative modeling sessions. The approach also lacks
consideration of IPP.

Model Repositories. Model repositories, e.g., EMFStore [15], are
one option for the collaborative development of systems. A model
repository contains all project information as models. Basciani
et al. [4] give an overview of current model repository approaches,
as well as opportunities and research challenges. They list among
other challenges the licensing of shared models or more general
the protection of intellectual property, as well as the federation of
model repositories.

Encrypted Blockchain Databases. As we want to share the Del-
tachain on third-party hardware that does not have to be trusted,
we need to encrypt the Deltachain. Very close to that approach
is the encryption of blockchain databases. Adkins et al. [1] devel-
oped three encrypted blockchain databases with different trade-offs
between query, add, and delete efficiency. They concluded, that
their approach is practical and substantiated that with an empirical
efficiency evaluation. Storing encrypted deltas is only part of our
approach, and the approach of the authors is not designed for model
deltas. A special case of a blockchain database is presented by Hijazi
et al. [13]. The authors use blockchain to build a single source of
truth for the construction industry, which has a complex structure
and a fragmented supply chain. We want to advance beyond that
by providing a generalized approach for arbitrary models.

Access Control in Model-Driven Engineering. Controlling the ac-
cess to information in model-driven engineering is possible in dif-
ferent ways. Debreceni et al. [11] proposed an approach that uses
bidirectional model transformations to generate views for collabo-
rating organizations. An organization obtains a filtered copy that



MODELS ’24, September 22–27, 2024, Linz, Austria Thomas Weber and Sebastian Weber

only contains model elements it is allowed to read. This approach
requires the existence of a server where the complete model is
stored unencrypted. Our approach avoids that constraint and the
views, which are copies, and is thus more flexible regarding the
distribution of the system. We avoid views for the collaboration
between organizations, inside organizations views may still be used,
e.g., to display information to a client. Cai et al. [6] proposed encryp-
tion for assembly models to support collaboration while protecting
other confidential information. They developed a classification al-
gorithm to decide whether a feature of the model state should be
shared and encrypt the feature accordingly. While the authors re-
strict their approach to assembly models, we want to support all
model types by using generic model deltas. Debreceni et al. [10]
present a collaborative modeling framework that work with views
to ensure access control. They define model access for each collab-
orator rule-based for model elements with access control policies.
The authors assume a gold model, which is not directly accessible
to collaborators. This gold model has to be saved on a commonly
trusted but inaccessible server. Our approach can overcome this
limitation by storing the model as encrypted deltas.

IPP in Collaborative Development. Martínez et al. [16] proposed
a roadmap towards the protection of IP in collaborative modeling
scenarios. They discussed cryptography, access control and digital
rights management and how they can be integrated in a framework
to protect IP. While the authors proposed interesting ideas, they
required a server with model access, where the access control rules
can be evaluated. Our approach does not require such a server
because we integrate the access control into the encryption.

Encrypted Version Control System. Xu et al. [28] propose Gringotts,
an end-to-end encrypted version control system. It can be used for
read and write access control. Furthermore, it supports version
control and file compression. While our approach shares the moti-
vation of distrust towards the service provider, Gringotts is limited
to strings. Thus, domain-specific constructs are not supported and
tools reacting to a domain-specific delta have to reconstruct it from
a list of string deltas.

Distributed Ledger. Sunyaev [25] provide an overview over the
distributed ledger technology. A distributed ledger consists of a
ledger and several nodes, which replicate the ledger. The nodes
employ a consensus mechanism to agree on information to ap-
pend to the ledger. The ledger and its replication are similar to our
approach, but we do not need consensus algorithms, because we
envision the use of our approach between organizations, that want
to collaborate. Thus, they will not try to undermine the data struc-
ture used. If the central Deltachain should be replicated, e.g., due
to performance reasons, distributed ledger is a suitable approach
for doing that.

4 DISCUSSION
4.1 Expected Benefits
The main benefit of our idea is that it enables incremental devel-
opment, as no explicit sharing of interfaces is needed. Instead, the
stakeholders can develop on the most recent version of a model and
with the most recent versions of the interfaces, as they themselves

can define which version to use by deriving it from the Deltachain.
Stakeholders may also choose to hold back deltas from the Delta-
chain until a state is reached they are willing to share. The Delta-
chain can be shared freely, e.g., on general purpose cloud services
like AmazonWeb Services (AWS) or on Content Delivery Networks,
because it is encrypted. As everything can be expressed as deltas,
i.e., structural models but also models with execution semantics
like simulations, every model can be stored on the Deltachain, as
long as it has a metamodel.

With every aspect of the system modeled and on the Deltachain,
we have a complete logical view of the system. This complete logical
view may be spread across different deltachains or involve other
data structures. However, this complete logical view will likely not
be accessible by anyone, as the different organizations will have
different access to the systems’ models. This is by design, because
no single organization owns all the intellectual property used to
develop a complex system. Organizations may assign other organi-
zations access to the models (or model parts) they administer by
providing them the according keys. Thus, stakeholders can have het-
erogeneous privileges, but there is no central authority managing
the privileges.

The Deltachain can be used to any extent useful for the develop-
ment of the system, as it is a data structure. This includes to not use
the Deltachain inside an organization, as trusted infrastructure and
a shared access control system should be available. Furthermore,
the Deltachain introduces performance disadvantages with the en-
cryption and prevents operations like branching or merging on the
data structure itself. Thus, its main use is to bridge the gap between
organizations for continuously sharing interfaces due to the lack
of commonly trusted hardware. We can ensure IPP, because we
encrypt the deltas.

4.2 Extensions
Non-Modifiability. If the Deltachain also includes mechanisms

used in blockchains, e.g., bitcoin [19], we can gain additional bene-
fits. Blockchains [21] incorporate the hash of the previous block in
the following one. This makes them tamper-proof, as a modifica-
tion of a block requires the modification of all subsequent blocks
to reflect the changed hash of the modified block, which is gener-
ally infeasible. With using hashes of previous encrypted deltas, we
gain the benefit of the non-modifiability of deltas already on the
Deltachain.

Modifiability. In contrast, undoing of deltas may be required
for a certain use case, although it conflicts with the idea of a non-
modifiability of the Deltachain, e.g., to be able to use it in incremen-
tal type approval. Undoing a delta would thus be adding the inverse
of the delta instead of removing the delta. If the non-modifiability
is not needed for the scenario, the Deltachain may allow to also
remove or change deltas. We do not plan to use existing blockchain
implementations, but to adopt useful concepts.

Agile Type Approval. Additionally, we can add a cryptographic
signature of the author of a delta as metadata, which is also en-
crypted and part of the hash. In combination with using the hash
in the next block, the Deltachain also gains the non-repudiation of
deltas. That is especially interesting for agile type approval, e.g.,
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Figure 7: A model divided into three overlapping parts the
OEM (dots), supplier 1 (zigzag) and supplier 2 (hatch) can
modify

Figure 8: Keys generated to encrypt deltas modifying model
parts for Figure 7. The OEM gets key 1 and 3; supplier 1 gets
key 2, 3 and 5; supplier 2 3 gets keys 4 and 5

homologation [18], where it is easy to derive the list of changes
and verify their authors since the last type approval, and only ap-
prove them and not the whole product anew. The same applies to
incremental testing.

Part Access. If an organization has access to only a part of a
model, reference targets, especially containment reference target,
i.e., containers, may not be accessible. To still gain a valid model
state, we plan to implement anonymous parts to be able to use
the existing tooling, which requires, among other things, a com-
plete containment hierarchy. If a consistency management is used,
messages from the consistency management may leak information
about parts of a model that are not accessible. We see this issue as
orthogonal to the Deltachain approach itself, as the access control
should have been defined in a way that does not permit access to
the consistency management message.

4.3 Expected Limitations
The main drawback of our idea is the limited flexibility regarding
changes in roles of the collaborating organizations. Adding an or-
ganization that has access to different model parts than any already
participating organization, i.e., introducing a new role, requires the
generation of new keys. The example from Figure 4 is extended by
a second supplier in Figure 7. The new supplier 2 shares access to
model parts with supplier 1. The key 2 generated in Figure 5 can
no longer be used for the model parts for supplier 1 and supplier 2
and their interface, but is still used for the part only supplier 1 has
access to. Thus, key 4 and 5 are introduced in Figure 8 and used by
supplier 1 and 2. To make the model parts available to supplier 2, the
model parts now shared with supplier 2 and encrypted with the key
2 have to be deleted by appending deltas deleting the model parts,
encrypted with the key 2. Afterward, the model parts have to be
appended with creation deltas, encrypted with the new keys 4 and
5 accordingly. Thus, for our approach to be efficiently usable, we
assume that the roles of collaborating organizations do not change
frequently and are limited in number.

Furthermore, the process to exchange keys may become quite
complex, depending on the number of different roles, i.e., the model
parts an organization has access to, as they require new keys. For
this reason, we envision the usage of our approach with a low
number of roles that are stable.

Conflict Handling. Because the Deltachain has no knowledge
about the information stored on it, we cannot assess problems be-
tween deltas, e.g., merge conflicts on the Deltachain itself. Instead,
we will handle conflicts inside organizational boundaries on the
cache servers. If the collaborating organizations agree on a com-
mon model management approach, e.g., EMFStore [15], the conflict
management provided by the model management can be used. The
metadata from the common model storage approach is then also
saved on the Deltachain encrypted and allows using the model
management approach inside the cache server. If non-modifiability
is needed, the cache server adds one or more merging deltas and
pushes them back to the Deltachain. Otherwise, the deltas can be
changed into a merge delta.

Performance. While the Deltachain can be used for real-time
collaboration, we do not envision that as its usual use case. Instead,
we think for most of the collaboration, a pull and push scenario like
Git is more likely, for which performance, especially latency, is not
that critical. The resulting size of a Deltachain, for our prototype,
available at Zenodo4, ranges between two to three times the size
of the serialized model, using the default XMI serialization. If non-
modifiability is not needed, e.g., for a version of the model that has
been certified as a model and not as a deltachain, we can “clean” the
deltachain by constructing the model and deriving a new, minimal
deltachain, in order to reduce its size.

5 FUTURE PLANS
We plan to implement the four parts of our idea in a prototype and
evaluate it regarding applicability, performance, and correctness.
Additionally, we plan to publish the investigation of our vision
of the semantics of deltas in a separate paper. To do so, we plan
to evaluate their expressiveness, as well as their scalability. Our
idea is independent of processes, but we think it will prove useful
to investigate its usage in the context of agile development. We
envision the Deltachain as a possible backend for different data
structures, e.g., Git, Blockchain, and Model Repositories.

The use of domain-specific deltas also allows for incremental
analyses. These analyses can, e.g., be concerned with consistency,
as a heuristic for eventual correctness [9], to either check or restore
it. To evaluate this application scenario, we plan to implement the
Deltachain as a storage back-end for an existing model repository.
Additionally, we plan to scrapeGitHub repositories and their history
and evaluate the storage overhead and time overhead of saving
their content to a Deltachain in comparison to Git. This also allows
evaluating other factors like latency and scalability. The models
can be converted to deltas using existing infrastructure [27] and
stored on a Deltachain. Lastly, we plan to evaluate our approach
with an industry partner.
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