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Abstract

Graph embedding, especially as a subgraph of a grid, is
an old topic in VLSI design and graph drawing. In this
paper, we investigate related questions relating to the
complexity of embedding a graph G in a host graph that
is the strong product of a path P with a graph H that
satisfies some properties, such as having small treewidth,
pathwidth or tree depth. We show that this is NP-hard,
even under numerous restrictions on both G and H. In
particular, computing the row pathwidth and the row
treedepth is NP-hard even for a tree of small pathwidth,
while computing the row treewidth is NP-hard even for
series-parallel graphs.

1 Introduction

Layered treewidth, layered pathwidth, and row treewidth
are structural parameters of graphs that have played
a central role in recent developments in graph product
structure theory. (The original graph product struc-
ture theorem was proved by Dujmovíc et al. [7]; see
also [6, 9, 19] for improvements and related results.)
Testing whether a graph has layered pathwidth ≤ 1
is NP-complete [2]. In this work we ask analogous ques-
tions about the computational complexity of the row
treewidth of a graph G, the minimum possible treewidth
of a graph H such that G is a subgraph of the strong
product H�P∞ where P∞ is a 1-way infinite path:

• Is it NP-hard to compute the row treewidth?
• Is it NP-hard to test whether a planar graph has

row treewidth 1, its smallest nontrivial value?
• How complicated must G be for these problems to

be hard? Are they easier for planar graphs?
Row treewidth can be naturally generalized to other

product forms for H. For example, the row pathwidth
of a graph G is the smallest possible pathwidth of a
graph H such that G is a subgraph of H�P∞, and
similarly one can define the row treedepth or row simple
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treewidth or row simple pathwidth. The above questions
could be asked for any of these parameters.

These questions have a geometric flavor coming from
the grid-like graph products they concern. They are
special cases of subgraph isomorphism, which is hard
even under strong restrictions on both G and the host
graph [17]. Our answers are that these problems are in-
deed hard, even for very simple graphs. It is NP-hard to
test whether a tree of bounded pathwidth has row path-
width one, and the same holds for row simple pathwidth
and row treedepth. Row treewidth is trivial for trees,
but it is NP-hard to test whether series-parallel graphs
of bounded degree and bounded pathwidth have row
treewidth one. Under the small set expansion conjecture
(a strengthening of the unique games conjecture from
computational complexity theory), row treewidth, row
pathwidth, layered treewidth, and layered pathwidth are
hard to approximate with constant approximation ratio.
We provide a few positive results as well: Testing embed-
dability in P�P (a grid with diagonals) is polynomial for
caterpillars, and testing embeddability in P�P (a grid)
is polynomial for planar graphs of bounded treewidth
and bounded face size.

1.1 Definitions

A tree decomposition of a graph G is a tree T whose
vertices are labeled with subsets of vertices of G, called
bags. Each vertex must belong to bags forming a con-
nected subtree of T , and each edge of G must have both
endpoints included together in at least one bag. If T
is a path, it forms a path decomposition. The width of
the decomposition is the size of the largest bag, minus
one. The treewidth of G is the smallest width of a tree
decomposition of G, and the pathwidth is the smallest
width of a path decomposition. A tree decomposition
is w-simple if each set of w vertices belongs to at most
two bags. The simple pathwidth [simple treewidth] of
G is the smallest w such that G has a w-simple path
[tree] decomposition of width ≤ w. The treedepth of a
graph G is the smallest height of a rooted tree T on
the vertices of G such that every edge of G connects an
ancestor-descendant pair in T .
For connected graphs with at least one edge, these

width parameters have minimum value one. The graphs
with treewidth one are trees. The graphs with treewidth
two are the series-parallel graphs and their subgraphs.
The graphs with pathwidth one are not just paths, but
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caterpillars: trees whose non-leaf vertices form a path
called the spine. (The leaves of a caterpillar are called
legs.) The graphs with simple pathwidth one are paths.
The graphs with treedepth one are stars, graphs K1,` for
integer `. To avoid having to specify a specific number of
vertices, it is convenient to let P∞ = 〈p0, p1, . . . 〉 denote
a ray, a one-way infinite path, to let C∞ denote the
caterpillar with infinite-length spine and infinitely many
legs at each spine-vertex, and to let S∞ be a star with
infinitely many degree-1 vertices.
The strong product of two graphs G�H has a vertex

(ui, vj) for each pair of a vertex ui in G and a vertex
vj in H, and an edge connecting two pairs (ui, vj) and
(ui′ , vj′) when ui and ui′ are either adjacent in G or
identical, and vi and vi′ are either adjacent in H or
identical. For instance, the strong product of two paths
is a king’s graph, the graph of moves of a chess king on
a chessboard whose rows and columns are indexed by
the vertices of the paths (see also Fig. 1).
A layering of a graph G is a partition of the vertices

into sets L0, L1, . . . such that for any edge the endpoints
are in the same or in consecutive sets. It can be under-
stood as a representation of a graph G as a subgraph of
P�K for a path P and a complete graph K; the layers
of the layering are the subsets of vertices in this prod-
uct coming from the same vertex of the path. Layered
tree decompositions and path decompositions of a graph
consist of a tree or path decomposition of the graph,
together with a layering. Their width is the size of the
largest intersection of a bag with a layer, minus one.
The layered treewidth [8, 18] or layered pathwidth [2]
of G is the minimum width of such a decomposition.
Instead, the row treewidth or row pathwidth of G is the
minimum treewidth or pathwidth of a graph H for which
G is a subgraph of P�H for some path P . Intuitively,
row treewidth and row pathwidth restrict the notion
of layered treewidth and layered pathwidth by requir-
ing each layer to have the same decomposition. These
concepts are not equivalent: the layered treewidth of
any graph G is at most its row treewidth plus one, but
there exist graphs with layered treewidth one and arbi-
trarily large row treewidth. A similar separation occurs
also between layered pathwidth and row pathwidth [5].
We can similarly define layered simple treewidth/simple
pathwidth/treedepth and row simple treewidth/simple
pathwidth/treedepth; to our knowledge these parameters
have not been studied previously.

We show that the following problems are NP-hard:
• RowSimplePathwidth: Given a graph G and an

integer k, does G have row simple pathwidth at
most k? We will show that this is NP-hard even for
k = 1, where it becomes the question whether G is
a subgraph of P∞�P∞, i.e., the king’s graph, which
is why we also call this problem KingGraphEm-
bedding. See Section 2 and Appendix A.

• RowPathwidth: Given a graph G and an integer
k, does G have row pathwidth at most k? We will
show that this is NP-hard even for k = 1, where it
becomes the question whether G is a subgraph of
C∞�P∞. See Section 3.

• RowTreewidth: Given a graph G and an integer
k, does G have row treewidth at most k? We will
show that this is NP-hard even for k = 1, where
it becomes the question whether G is a subgraph
of T�P∞ for some tree T . See Section 4 and Ap-
pendix B.

• RowTreedepth: Given a graph G and an integer
k, does G have row treedepth at most k? We will
show that this is NP-hard even for k = 1, where it
becomes the question whether G is a subgraph of
S∞�P∞. See Appendix C.

It is helpful to introduce some notation for the strong
product H�P∞. Recall that P∞ is a ray 〈p0, p1, . . . 〉.
For any vertex v ∈ H, the P -extension is the set of
vertices 〈v × p0, v × p1, . . . 〉. For any vertex v × pi ∈
H × P∞, the H-projection is the vertex v and the P -
projection is the vertex pi. These concepts naturally
expand to edges and paths. Inspired by the caseH = P∞
(whereH�P∞ is the king’s graph) we define the following
edge-orientations: An edge vw of H�P∞ is horizontal
if v, w have the same H-projection, vertical if they have
the same P -projection, and diagonal otherwise. Every
vertex has only two incident horizontal edges.

We will occasionally also study the Cartesion product
H�P∞ of two graphs, which is the same as the strong
product except diagonals are omitted. In particular,
P∞�P∞ is the rectangular grid.

2 Grid embeddings

In this section we study KingGraphEmbedding. This
problem is closely related to GridEmbedding, the ques-
tion whether a given graph G is a subgraph of P∞�P∞.
GridEmbedding is old and well-studied since at least
the 1980s due to its connections to VLSI design. Bhatt
and Cosmadakis showed in 1987 [3] that GridEmbed-
ding is NP-hard even for trees of pathwidth 3 (the
pathwidth was not studied explicitly by the authors,
but can be verified from the construction). Gregori [13]
expands their proof to binary trees. Both proofs use a
technique later called the “logic engine” by Eades and
Whitesides [10]. Recently, Gupta et al. [15] strengthened
the result to trees of pathwidth 2.
Theorem 1 (Gupta et al. [15]). GridEmbedding is
NP-hard even for a tree of pathwidth 2.

The reductions in [3, 15] can be modified to work
for KingGraphEmbedding. Even easier is to use the
following general-purpose transformation.
Define T1 and T2 to be the trees shown in Fig. 2,

formed by subdividing one edge of K1,1 and K1,4 respec-



Figure 1: The graphs P∞�P∞, C∞�P∞, and T�P∞ for a tree T .
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Figure 2: The trees T1, T2, and T (v) in Observation 2.
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Figure 3: If G ⊂ P∞�P∞, then G′ ⊂ P∞�P∞. (We
show a 45◦ rotation of P∞�P∞.)

tively. For a given vertex v, define T (v) be a tree rooted
at v with eight children: four copies each of T1 and T2,
connected to v at their degree-2 vertices. The following
is not hard to verify (see Appendix A):

Observation 2. Let G be a simple graph. Form G′

by replacing each vertex v in G by a new tree T (v),
and connecting a degree-4 vertex in T (u) with a degree-4
vertex in T (v) for each edge uv in G. Then G ⊂ P∞�P∞
if and only if G′ ⊂ P∞�P∞.

The transformation clearly maintains a tree. Replac-
ing each vertex v by a tree T (v) of radius 3 increases the
pathwidth by at most 3, so applying the transformation
to the tree of Gupta et al. [15] gives the following.

Corollary 3. KingGraphEmbedding is NP-hard,
even for a tree of pathwidth at most 5.

In fact, one can easily adapt the reduction of Gupta et

al. [15] to show NP-hardness of KingGraphEmbedding
even for a tree of pathwidth 2; see Fig. 5 in the appendix
for an illustration.

2.1 Caterpillars

On the other hand, for pathwidth 1 (i.e., caterpillars),
we can solve KingGraphEmbedding in linear time.

Theorem 4. For any caterpillar G the following are
equivalent.
(1) G ⊂ P∞�P∞
(2) G can be embedded in P∞�P∞ such that all spine

edges are diagonal
(3) For every subpath Q of the spine of G we have∑

v∈V (Q) deg(v) ≤ 6|V (Q)|+ 2.

Proof. (1)=⇒ (3): Assume that G is a caterpillar
that is a subgraph of H = P∞�P∞. Let Q be any
fixed subpath of the spine of G. Clearly, for any vertex
v ∈ P∞�P∞ we have |NH(v)| ≤ 8 and for any edge uv ∈
P∞�P∞ we have |NH(u) ∩NH(v)| ≥ 2. As caterpillar
G contains no triangles, for any two adjacent vertices
x, y in G we have NG(x) ∩NG(y) = ∅. Hence∑

v∈V (Q)

deg(v) ≤ 8|V (Q)| − 2|E(Q)| = 6|V (Q)|+ 2.

(3) =⇒ (2): Assume that G = (V,E) is a caterpillar,
say with spine 〈v1, . . . , vk〉. The vertices of P∞�P∞
naturally corresponds N×N, where (pi, p

′
j) is mapped to

(i, j). We embed the spine of G along the main diagonal,
i.e., place vi at (i, i) for i = 1, . . . , k. Then, we proceed
along the spine from v1 to vk, always placing the next
leg at vi at the positions (x, y) adjacent to (i, i) with
x+y as small as possible. Let us say that vi is free if two
leaves at vi are embedded successfully at (i− 1, i) and
(i, i− 1), respectively. In particular, the first vertex with
degree at least 4 is always free. (We assume there exists
such a vertex, otherwise G clearly can be embedded.)
Assume that this embedding procedure fails to find

a suitable position for a leaf at vj for some j ∈ [k]. Let
i ≤ j be the largest index such that vi is free, and Q =
〈vi, . . . , vj〉 be the subpath of the spine of G from vi to vj .
Observe that degG(vi),degG(vj) ≥ 4 and further that for



A = {(i, i), . . . , (j, j)}, there is a vertex in V (Q)∪NG(Q)
on each of the 5(j−i)+9 points in A∪N(A) in P∞�P∞.
With |V (Q) ∪NG(Q)| =

∑
v∈V (Q) deg(v)− (j − i) + 1,

it follows that

|V (Q) ∪NG(Q)| > |A ∪N(A)|

⇔
∑

v∈V (Q)

deg(v)− (j − i) + 1 > 5(j − i) + 9

⇔
∑

v∈V (Q)

deg(v) > 6(j − i) + 8 = 6(j − i+ 1) + 2

= 6|V (Q)|+ 2,

which implies that G does not satisfy (3).

(2) =⇒ (1): This is immediate.

Corollary 5. KingGraphEmbedding can be solved
in linear time for n-vertex caterpillars.

Proof. Let G be a caterpillar with spine 〈v1, . . . , vk〉,
k ≤ n. Using (3) in Theorem 4, G admits no embedding
into P∞�P∞ if and only if the sequence (deg(vi)−6)i∈[k]
has a contiguous subsequence whose sum is at least 3.
Finding such a subsequence is the MaximumSubarray
problem and can be solved in time O(k) [14].

3 Row pathwidth

Now we consider the row pathwidth, and show that test-
ing whether the row pathwidth is 1 is NP-hard. This is
the same as asking whether a given graph G is a sub-
graph of C∞�P∞. We also consider the related problem
of embedding in C∞�P∞. Both problems are easily
shown NP-hard using another observation concerning
how graph transformations affect embeddability.

Observation 6. Let G be a simple graph, and for k ∈
{4, 6} let G′k be the result of adding (at any original
vertex v of G) max{0, k−deg(v)} leaves that are adjacent
to v. Then

• G ⊂ P∞�P∞ if and only if G′4 ⊂ C∞�P∞.
• G ⊂ P∞�P∞ if and only if G′6 ⊂ C∞�P∞.

Proof. The forward direction is obvious: If G is such a
subgraph, then take the embedding of G in the grid, and
use the P -extensions of k legs at each spine-vertex of
C∞ to place the added leaves at each vertex v.
For the other direction, observe that all vertices on

P -extensions of legs of C∞ have degree at most 3 in
C∞�P∞, and degree at most 5 in C∞�P∞. We con-
structed G′k (for k ∈ {4, 6}) such that the vertices of G
have degree k, so they must be placed on the P -extension
of a spine-vertex. If we set π to be the spine of C∞,
therefore G is embedded in π�P∞ (respectively π�P∞)
as desired.

Theorem 7. It is NP-hard to test whether a tree is a
subgraph of C∞�P∞. It is also NP-hard to test whether
a tree is a subgraph of C∞�P∞. Both results hold even
for trees with constant maximum degree and pathwidth 3.

Proof. By the discussion after Corollary 3, testing
whether G ⊂ P∞�P∞ is NP-hard, even for a tree with
pathwidth 2. Convert G into G′ using Observation 6
with k = 6. This preserves a tree, increases the path-
width by at most 1, and the maximum degree is 8. Also
G ⊂ P∞�P∞ if and only if G′ ⊂ C∞�P∞, which proves
the first claim. The second claim is similar, using Theo-
rem 1 and Observation 6 with k = 4.

Corollary 8. RowPathwidth(G) is NP-hard, even
for trees of bounded degree and pathwidth, and even if
we only want to know whether the row pathwidth is 1.

4 Row treewidth

We now sketch why computing row treewidth NP-hard,
even for testing whether it is 1, i.e., whether a given
graph can be embedded in T�P∞ for some tree T . (The
full proof is in the appendix.)

Theorem 9. It is NP-hard to test whether a graph G
is a subgraph of T�P∞ for some tree T , even for a
series-parallel graph G.

Our reduction from NAE-3SAT uses the logic engine
of Eades and Whitesides [10]. Fix an instance I of NAE-
3SAT; we assume that one clause is xn ∨ xn because we
can add this without affecting existence of a solution.
We first construct a graph G0 and designate some edges
as horizontal/vertical. (Figure 6 in the appendix shows
G0, while Figure 4 shows the graph derived from it.)
Start with the frame (orange) which consists of three
paths connecting two vertices t, b; the middle path has
H := m + 2n + 1 vertical edges, while the two outer
paths have 2n horizontal, H vertical, and then another
2n horizontal edges each. Next add the armature of xi

(light/dark cyan) for each variable xi, which consists of
two paths that attach at the vertices of the middle path
at distance i from t and b. The paths are assigned to
literals xi and xi and consist of 2n+ 1− 2i horizontal
edges at both ends with H − 2i vertical edges inbetween.
The middle m rows of our drawing are called the clause-
rows and assigned to one clause each. Finally we attach
flags (green). Namely, at the vertex where the armature
of literal `i intersects the row of cj , we attach a leaf (via
a horizontal edge) if and only if `i does not occur in cj .
This finishes the construction of G0.

Next we add more vertices and edges that force edge-
orientations to be what we specified for G0. First, “triple
the width”: insert a new column before and after every
column that we had in our drawing of G0, subdivide
each horizontal edge of G, and for every vertex v with



x1 x1

x4 x4

x3 x3

c1 : x1 ∨ x2 ∨ x3

c2 : x2 ∨ x3 ∨ x4

c3 : x1 ∨ x2 ∨ x4

c4 : x1 ∨ x3 ∨ x4

x2x2
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Figure 4: The reduction for row-treewidth. Bold edges indicate an attached K2,5. Vertices of G0 are solid.

k incident horizontal edges, add 2−k new leaves con-
nected via horizontal edges. (New vertices are hollow
in Fig. 4.) Next add an arrow-head at some vertical
edges vw. Assuming v is below w, this means adding
the edges (v`, w) and (vr, w), where v`, vr are the two
neighbours of v adjacent to it via horizontal edges. We
add arrow-heads at any vertical edge for which the lower
endpoint v does not belong to an armature. Call the
result G′. Finally we turn G′ into G by adding a K2,5 at
every horizontal edge uv, i.e., adding five new vertices
that are adjacent to both u and v. (To avoid clutter we
do not show K2,5 in Fig. 4, but indicate it with a bold
edge.) Call the resulting graph G, and verify that it is
indeed a series-parallel graph.
One can argue (see the appendix) that if G is em-

bedded in T�P∞ for some tree T , then all edges with
attached K2,5 must be horizontal. This in turn forces
that G′ is actually embedded within P∞�P∞ (this is
the hardest part). The arrow-heads force the edges
at which they are attached to be vertical, and with a
counting-argument therefore the embdding of G′ im-
plies an embedding of G0 in P∞�P∞P∞�P∞ where
the designated orientations are respected. This is (with
the standard logic engine argument) easily seen to be
equivalent to the NAE-3SAT instance having a solution.
The graph in our construction has maximum degree

16 and pathwidth O(1), so computing the row treewidth

remains NP-hard even if we restrict the maximum degree
or the pathwidth.

Corollary 10. RowTreewidth is NP-hard, even for
series-parallel graphs of bounded degree and pathwidth,
even if we only want to know whether the row treewidth
is 1.

An similar construction shows that testing whether
G ⊂ T�P∞ for some tree T is also NP-hard. Namely,
use the same construction (G0 to G′ to G), except omit
the diagonal edges and replace ‘K2,5’ by ‘three paths
of length 2’. This forces all ‘horizontal’ edges to have
the desired orientation in any embedding of G in T�P∞.
Argue as above that then G lies within π�P∞ for a
path π. Therefore any ‘vertical’ edge uv must have
this orientation, because both u, v have two incident
horizontal edges. So this gives an embedding of G0 in
the grid that respects the given orientation, hence a
solution to NAE-3SAT.

5 Inapproximability

It is not known whether the treewidth or pathwidth of a
graph may be approximated to within a constant factor
in polynomial time, but the impossibility of doing so
is known to follow from a standard assumption in com-
putational complexity theory, the small set expansion



conjecture [20], and the best approximation ratio known
for a polynomial-time approximation algorithm for the
treewidth is O(

√
logw), where w is the treewidth [11].

As we now show, the same hardness results apply to
the approximation of row treewidth and row pathwidth:

Theorem 11. If there exists an approximation algo-
rithm for row treewidth, row pathwidth, layered treewidth,
or layered pathwidth with approximation ratio ρ, then
there exists an approximation algorithm for treewidth or
pathwidth (respectively) with approximation ratio at most
3ρ. As a consequence, the small set expansion conjecture
implies that ρ cannot be O(1).

Proof. Let G be a graph for which we wish to approxi-
mate the treewidth or pathwidth, let w be its treewidth
or pathwidth, and form graph G+ with treewidth or
pathwidth w+ 1 by adding a universal vertex to G. The
universal vertex forces every layering of G+ to use at
most three layers. G+ has a trivial layering with one
layer and row treewidth or row pathwidth w + 1. Any
other layering has row treewidth, row pathwidth, lay-
ered treewidth, or layered pathwidth at least w + 1/3,
because it gives a tree decomposition for G+ with bags
that are the unions of bags in three layers. Therefore,
any approximation for the row treewidth, row pathwidth,
layered treewidth, or layered pathwidth of G+ gives an
approximation for the treewidth or pathwidth of G+,
and therefore of G, with approximation ratio increased
by at most a factor of three.

Note that the constructed graph G+ is not necessar-
ily planar. In fact, for planar graphs there are O(1)-
approximation algorithms for the treewidth [16].

6 Outlook

In this paper, we proved that computing graph parame-
ters such as the row pathwidth and row treewidth are
NP-hard to compute, even under strong restrictions on
the input graph. In fact, most of these restrictions rule
out hopes for fixed-parameter tractability (or at least
the possibility of finding polynomial-time algorithms in
special situations). We do state here a few possibili-
ties of situations where finding an embedding may be
polynomial, but this mostly remains for future work:

• Give a graph with bounded radius, is it possible
to solve RowTreewidth or RowPathwidth in
polynomial time? In all our hardness constructions,
the graph had radius Θ(n). Bounded radius forces
any layering to use a bounded number of rows, so if
the row treewidth or row pathwidth is also bounded,
then the treewidth or pathwidth of the original
graph must also be bounded, but it is not obvious
how to take advantage of this in an algorithm.
Note that GridEmbedding is polynomial for
graphs of bounded radius, because a graph can

be embedded in a grid only if it has bounded maxi-
mum degree, and together with bounded radius this
would imply bounded size, hence a constant-time
algorithm.

• For the results for GridEmbedding ([3] and our
construction in Claim 13), we very much needed
the ability to change the embedding of the graph,
so that we could flip armatures and flags. What is
the status if the embedding is fixed? In particular,
is testing whether a tree can be embedded in a
grid NP-hard if the embedding of the tree is fixed,
possibly similar to the results in [1]?

One could also ask for results for planar graphs with
a fixed embedding where faces have small degrees, for
example triangulated planar graphs. In all our con-
structions, some faces have degree Θ(n). Can we solve
any of the problems (but especially KingGraphEm-
bedding) for triangulated planar graphs? This remains
open, but we can make some progress if additionally also
the treewidth is small.

Theorem 12. Let G be a planar graph with treewidth t
and a planar drawing Γ where all faces have degree at
most ∆. Then we can test whether G can be embedded
in the grid (in a way that respects embedding Γ) in time
O∗(n3(t+1)∆), i.e., in polynomial time if t ·∆ ∈ O(1).

Proof. In 2013, the first author and Vatshelle [4] studied
the PointSetEmbedding problem, where we are give
a set of points S and a planar graph G, and we ask
whether G has a planar straight-line drawing where all
vertices are placed at points of S. They showed that if G
has treewidth at most t and face-degree at most ∆, then
PointSetEmbedding can be solved in O∗(|S|1.5(t+1)∆)
time. Their approach is to use a so-called carving decom-
position of the dual graph, which results in a hierarchical
decomposition of G into ever smaller subgraphs H (end-
ing at one face) for which the boundary (the vertices of
H that may have neighbours outside H) has small size.
The main idea to solve PointSetEmbedding is then
to do dynamic programming in this carving decomposi-
tion, and the parameter for the dynamic program is all
possible embeddings of the boundary of H in the given
point set S.
To adapt this algorithm to our situation, we need

two changes. First, we fix the point set S to be the
points of an n× n-grid. (Clearly no bigger grid can be
required.) In particular, we have |S| = n2. Second, when
considering possible embeddings of the boundary of H,
we only consider such embedings where this boundary is
drawn along edges of the grid with diagonals. With this
restriction, the same dynamic program will test whether
a grid embedding exists in the desired time.

Sadly this approach only works if the host graph is
planar. Otherwise, the boundary of a subgraph does not
separate its drawing from the rest.
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A Missing details from Section 2

We first give a proof of Observation 2: Any graph G can
be modified into a graph G′ such that G has an embed-
ding in P∞�P∞ if and only if G′ has an embedding in
P∞�P∞.

Proof. The forward direction is obvious: If G ⊂
P∞�P∞, then take the embedding, rotate it by 45◦
and stretch it such that neighboring grid vertices are
5
√

2 units apart. Place this in P∞�P∞ and verify that
each T (v) can be placed, and for each edge of G the two
respective degree-4 can be connected as in Fig. 3.

For the other direction, assume G′ has an embedding
in P∞�P∞. Observe that for any vertex v in G, the
set Sv = {w ∈ V (G′) : dist(v, w) ≤ 2} has size |Sv| =
1 + 8 + 16 = 25, and thus Sv occupies a 5 × 5 square
area Av in P∞�P∞. For any edge e = uv in G, the
corresponding 5-path u-s1-s2-s3-s4-v must be embedded
along five diagonals of P∞�P∞ with the same slope.
This holds as s2 has four neighbors outside Su (s3 and
three vertices of T (u) \ Su) and thus must be on a
corner of Au; and symmetrically s3 lies on a corner of
Av. Finally (s2, s3) must be diagonal (and have the
same slope), otherwise there would not be six vertices
of P∞�P∞ that are outside Su ∪ Sv but adjacent to s2
or s3.

Next we sketch (in Fig. 5) how to take the specific
tree from the NP-hardness construction from [15], and
directly construct a tree T ′ of pathwidth 2 that has an
embedding in P∞�P∞ if and only if T has an embedding
in P∞�P∞. Thus KingGraphEmbedding is NP-hard
even for trees of pathwidth 2.

B Row treewidth

We prove here Theorem 9: It is NP-hard to test whether
a graph G is a subgraph of T�P∞ for some tree T , even
for a series-parallel graph G. We already sketched the
construction in Section 4; we repeat the full construction
here for ease of reading.
The reduction is from NAE-3SAT and uses the logic

engine by Eades and Whitesides [10]. We first show
NP-hardness of a closely related problem. Assume that
with a graph G, we are also given labels ‘hor’ and ‘ver’
on some of its edges. We say that an embedding of G
in T�P∞ is orientation-constrained if the edges marked
‘hor/ver’ are horizontal and vertical, respectively. (Recall
that horizontal/vertical means that the two endpoints
of the edge have the same T -projection/P -projection.)

Claim 13. Consider the following problem: ‘Given a
graph G with labels hor/ver on some edges, does it have
an orientation-constrained embedding in T�P∞ for some
tree T?’ This is NP-hard, even for a series-parallel
bipartite graph G.

http://dx.doi.org/10.1613/jair.4030
http://dx.doi.org/10.1613/jair.4030


x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 = true

x3 = falsex2 = false

Figure 5: Left: The tree of pathwidth 2 of Gupta et al. [15] for the NAE-SAT instance ϕ = (x1∨x2∨x3)∧(x1∨x2∨x3)
in its GridEmbedding for solution {x1 = true, x2 = false, x3 = false}. Right: A corresponding tree of pathwidth 2
in its corresponding king’s graph embedding.

Proof. Let I be an instance of NAE-3SAT with n vari-
ables and m clauses. We construct G and at the same
time discuss possible orientation-constrained embeddings
of G in the grid (i.e., in P∞�P∞), see also Fig. 6. (Since
we restrict all edges to be horizontal or vertical, it does
not matter whether the grid includes the diagonals or
not.) Start with the frame (orange in the figure) which
consists of three paths connecting two vertices t, b; the
middle path has H := m+ 2n+ 1 vertical edges, while
the two outer paths have 2n horizontal, H vertical, and
then another 2n horizontal edges each. An orientation-
constrained embedding of the frame in the grid is unique
up to symmetry. The middle m rows of this embedding
are called the clause-rows and marked with one clause
each.

Next we add the armature of xi (light/dark cyan) for
each variable xi. This consists of two paths that attach
at the vertices of the middle path at distance i from t
and b. Each path consist of 2n+ 1− 2i horizontal edges
at both ends with H − 2i vertical edges inbetween. The
paths are assigned to literals xi and xi. An orientation-
constrained embedding of frames and armatures in the
grid is unique up to symmetry and up to horizontally
flipping each armature; in particular the row of each
vertex is unchanged over all such embeddings.

Finally we attach flags (green) at the intersections
of armatures and clause-rows. Namely, at the vertex
where the armature of literal `i intersects the row of cj ,
we attach a leaf (via a horizontal edge) if and only if `i

does not occur in cj . For each flag we have the choice of
whether to place it to the right or to the left of its attach-
ment vertex, as long as this spot has not been used by a
different flag already. Graph G is clearly series-parallel,
because we can reduce it to an edge by deleting leaves
and multiple edges and contracting degree-2 vertices.

(We remind the reader of the following equivalent defi-
nitions of series-parallel graphs: (a) Connected graphs
without aK4-minor, (b) connected graphs of treewidth 2,
(c) graphs obtained from an edge by attaching leaves and
duplicating or subdividing edges, (d) connected graphs
for which all 3-connected components contain at most
three vertices.)
If I has a solution, then flip the armatures such that

the left paths correspond to the literals of the solution.
For each clause cj there exists at least one true literal,
hence there are at most n − 1 flags in the row of cj

and left of the middle path; we can arrange them as to
fit within the gaps. There also exists at least one false
literal, hence at most n− 1 flags in the row of cj to the
right of the middle path. So we can find an orientation-
constrained embedding of G in the grid. Vice versa, if
we have such an embedding, then taking the literals that
are left of the middle path gives a solution to I because
for each clause cj there must be at most n− 1 flags on
each side of the middle path, so at least one literal is
true and at least one literal is false.

So I has a solution if and only if G has an orientation-
constrained embedding in the grid. To finish the
NP-hardness, we must argue that any orientation-
constrained embedding of G in T�P∞ for some tree
T actually must reside within a grid. To see this, let π
be the path in T that corresponds to the T -projection of
one outer path of the frame. Since the edge-orientations
on the outer path are fixed, π has length H and connects
the T -projections t′, b′ of t and b, so t′, b′ have distance
H in T . We claim that the embedding of G actually
resides within π�P∞, i.e., for any vertex v of G the
T -projection v′ of v is on π. To show this, observe that
we can find a path from t to v by walking through the
frame, then (perhaps) an armature and then (perhaps)
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Figure 6: The reduction for row-treewidth if we can fix the orientation of edges.

along a flag, and always only go downward. Similarly
find a path from v to b that only goes downward. The
combined walk σv from t to b via v uses exactly H non-
horizontal edges. The T -projection σ′v of σv connects t′
to b′ and has length H, which by uniqueness of paths in
trees implies that σ′v = π contains v′.

To prove Theorem 9, we take the construction of
Claim 13, but add more vertices and edges to obtain a
graph G for which edge-orientations are forced in any
embedding of G in T�P∞.
So assume that we are given an instance I of NAE-

3SAT. We may assume that one clause of I is xn ∨ xn,
for if there is no such clause, then we can add it without
affecting the solvability of I. Now let G0 be the graph
constructed for instance I as in the proof of Claim 13.
As before, G0 has a unique orientation-constrained em-
bedded in the grid up to horizontal flipping of armatures
and flags, so the y-coordinates of vertices are fixed. We
call the vertices and edges of G0 original.
As our next step, we “triple the width”. Roughly

speaking, we insert a new column before and after every
column that we had in the drawing of G0. Formally
(and explained on the graph, rather than the drawing),
subdivide every horizontal edge twice, and at any vertex
v incident to k horizontal edges, attach 2− k leaves. All
new edges are again required to be horizontal. See Fig. 4,
ignoring bold lines and diagonal edges for now. The re-
sulting graph G1 likewise has an orientation-constrained
embedding in the grid if and only if the NAE-3SAT
instance has a solution. It also clearly is series-parallel

since it is obtained from G0 by subdividing edges and
attaching leaves.

Next we obtain G2 by adding an arrow-head at some
vertical edges vw. Assuming v is below w, this means
adding the edges (v`, w) and (vr, w), where v`, vr are the
two neighbours of v adjacent to it via horizontal edges.
We add arrow-heads at any vertical edge of G1 for which
the lower endpoint v does not belong to an armature.
The graph stays series-parallel since each arrow-head
{v`, v, vr, w} contains a cutting pair that separates it
from the rest of the graph, so adding the edges of the
arrow-heads does not affect whether there are non-trivial
3-connected components.

For the final modification we need a simple but cru-
cial observation, which one proves by inspecting the
neighbourhood of two adjacent vertices in T�P∞ for all
possible orientations of the edge between them.

Observation 14. Let G be a graph embedded in T�P∞
for some tree T . If uv is an edge of G for which u, v
have at least five common neighbours, then uv must be
horizontal.

Thus, we turn G2 into G by adding a K2,5 at every
horizontal edge uv of G2, i.e., adding five new vertices
that are adjacent to both u and v. This keeps the
graph series-parallel and force uv to be horizontal in any
embedding of G in T�P∞. To avoid clutter we do not
show K2,5 in Fig. 4, but indicate it with a bold edge.
This ends the description of our construction. It

should be straightforward to see that a solution to the
NAE-3SAT instance I implies that G can be embedded



in C∞�P∞. Namely, we can embed G0 in π�P∞ where
π is the spine of C∞, subdivide each edge of P∞ twice
to embed G1, realize the arrow-heads along diagonals,
and finally use 5 legs at each vertex of π to embed the
attached K2,5’s on their P -extensions. Vice versa, as-
sume that G is embeded in T�P∞ for some tree T . We
know that all bold edges must be horizontal. We also
claim that if vw was a vertical edge of G1 that received
an arrow-head, then the orientation of vw in the embed-
ding is vertical. To see this, assume that the arrow-head
was {v`, v, vr, w}, with v`, vr connected to v via horizon-
tal edges. Then vw belongs to two triangles {v`, v, w}
and {vr, v, w}, and the two horizontal edges (v`, v) and
(vr, v) of these triangles share endpoint v. No two such
triangles exist at a diagonal edge, and vw cannot be
horizontal since the two horizontal edges at v are vv`

and vvr. So vw is vertical.
We claim that the embedding of G2 in T�P∞ actually

resides within π�P∞ for some path π, i.e., in a grid. This
is argued almost exactly as in Claim 13. Let π be the T -
projection of one outer path of G0; since the orientations
of the edges on the outer path is fixed π has length H.
For any vertex v of G2, we can find a walk σv from t to
b via v that uses exactly H non-horizontal edges (they
may now be diagonal). As before this implies that the
T -projection of v is also in π, so the embedding of G2 is
within π�P∞, i.e., the king’s graph. As before, we can
hence associate vertices of G2 with points in N×N, and
speak of rows and columns of this embedding.
Since the orientations of edges on the outer paths

are fixed, the drawing of the outer paths is fixed up to
symmetry and spans 12n + 3 columns (including the
space for the arrowheads). The rest of G2 must lie
inside the outer-paths, so in particular the row of clause
xn∨xn (which we call the spacer-row) has 12n+3 points
that could host vertices. But there are three paths of
the frame, 2n armature-paths and 2(n− 1) flags in this
row, meaning 4n + 1 original vertices use the spacer-
row. Since we tripled the width, all 12n + 3 possible
points in the spacer-row are used in the embedding of
G2. Furthermore, the vertices in the spacer-row come as
triplets connected by horizontal edges, with the middle
vertex the original vertex. Up to a translation therefore
all original vertices in the space-row have x-coordinate
divisible by 3. This forces any original spine-vertex w to
have x-coordinate divisible by 3 as well, because we can
get from w to an original vertex v in the spacer-row using
only edges that must be vertical (due to an arrow-head)
or horizontal (due to a K2,5), and the horizontal parts
have length divisible by 3. In consequence, all edges
on the middle path of the frame must be vertical, even
those that do not have an arrowhead on them.1 With
this, the embedding of G implies an embedding of G1

1This argument would be simplified if we added arrow-heads
everywhere, but then the graph would not be series-parallel.

in π�P∞ that is orientation-constrained, and we can
hence extract a solution to the NAE-3SAT instance as
Claim 13. This finishes the proof of Theorem 9]

C Row treedepth

Recall that S∞ (the infinite star) is the tree that consists
of one center that is adjacent to all other vertices (the
leaves), with no restriction on its number of leaves.
Theorem 15. It is NP-hard to test whether a tree is a
subgraph of S∞�P∞, even for a tree of pathwidth 2.
Proof. We use a reduction from 3-partition, where the
input is a multi-set A = {a1, . . . , a3n} that we want to
split into n groups that all sum to the same integer
B = 1

n

∑3n
i=1 ai. This is strongly NP-hard [12], i.e., it

remains NP-hard even if A is encoded in unary. We
may assume that all input-numbers are multiples of
8 (otherwise multiply all of them by 8; this does not
affect NP-hardness). We describe the construction of
our tree T and at the same time also argue what any
embedding Γ of T in S�P must look like. In S∞�P∞,
we call the P -extension of the center c the center-row;
as in Observation 6 we use a degree-argument to force
many vertices of T to be in the center-row, and finding
enough space to hold all of them is the crucial idea for
our reduction.
Tree T consists of a frame as well as a paddle for

each ai, i = 1, . . . , 3n. The frame is a very long path,
with most vertices on the path having 6 leaves attached.
(These leaves are not shown in our picture.) The vertices
with attached leaves are called c-vertices and are forced
to be on the central row since all other vertices of S�P
have degree 5. All other vertices of the frame are called
`-vertices because they could be on a leaf-row (the P -
extension of a leaf of S∞). The specific spacing along
the path is as follows:

• Begin with n(B+8) c-vertices (the left blocker).
Since c-vertices must be on the central row, and no
two central-row vertices are adjacent unless they
are consecutive, this path (and similarly any path
of c-vertices used below) occupies a consecutive set
of vertices on the central row.

• Continue with B `-vertices, followed by 8 c-vertices.
The `-vertices could be on a leaf-row, hence keep
up to B vertices of the central row unused. We call
this a group-gap.

• We create n consecutive group-gaps (in Fig. 7, n =
2).

• The last vertex Z of the last group-gap is called the
anchor; the paddles (defined below) will attach at
Z.

• Starting at Z, we alternate between three c-vertices
and one `-vertex that together define one fold-gap
(it permits to omit one center-row vertex). There
are 1

8n(B + 8) fold-gaps.
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Figure 7: NP-hardness of embedding in S�P , figure is not to scale. Filled dots represent c-vertices (hence have 6
leaves attached). We only show two paddles, one green and one blue.

• Finally we finish with n(B+8) c-vertices (the right
blocker).

Note that the left and right blocker are so long that
no sub-path of `-vertices could extend beyond them; in
particular this forces all c-vertices that are not in the
blockers to be between them in the central row.
Now for each ai ∈ A, we define the ai-paddle. This

starts at anchor Z, continues with a path (the handle)
that has n(B+8)−1 `-vertices, and culminates at the
blade, which consists of ai c-vertices. The handle is
not long enough to extend beyond the blockers, so the
c-vertices of the blade must be at ai ≥ 2 consecutive
central-row vertices between the blockers. Since each
fold-gap leaves at most one central-row vertex free, the
blade must hence occupy central-row vertices left free
by a group-gap. There are at most nB such central-row
vertices in Γ, and they come in blocks of at most B
consecutive central-row vertices each. By

∑3n
i=1 ai = nB,

it follows that in any realization Γ the group-gaps leave
exactly n blocks of exactly B central-row vertices each,
and the blades exactly fill these gaps, hence giving the
desired partition of A.
We must still argue that if there is a solution to 3-

partition, then we can embed T in S�P , and for this,
need the fold-gaps and Θ(n) leaves for star S. Embed
first the frame as in the picture, so all gaps leave the
maximal possible number of central-row vertices free.
(We also use 6 leaf-rows, not shown here, to embed
the leaves attached at c-vertices.) We treat the center-
row as if it were the x-axis with Z at the origin; this
defines an x-coordinate x(·) for all embedded vertices
with x(Z) = 0. Embed the blades of a1, . . . , a3n in
the group-gaps according to the solution to 3-partition.
For i = 1, . . . , 3n, let vi be the rightmost central-row
vertex of the blade of ai. To place the handle, we use
two further leaf-rows, say `′i and `′′i . We go from vi

diagonally rightward to `′i, then rightward for |x(vi)| − 1
edges to reach x-coordinate −1. Hence we could now
go to the anchor diagonally, but the handle is longer
than this. Therefore we continue rightward for another
di := 1

2 (n(B + 8)− |x(vi)|) edges along `′i. Recall that
each ai (and hence also B) is divisible by 8. Since there

are 8 c-vertices at each group-gap, and all group-gaps
are completely filled by paddles, x-coordinate x(vi) is
also divisible by 8. Thus di is divisible by 4, and the
vertex w′i that we reach is one unit left of the central-row
vertex wi of some fold-gap. Go diagonally from w′i to wi,
and from there diagonally back to x(w′i) on the other
leaf-row `′′i . Then we go leftward along leaf-row `′′i to
x-coordinate 1 and then diagonally to Z. In total we
have used |x(vi)|−1+2di = n(B+8)−1 vertices, which
is exactly the length of the handle. Observe that vertex
wi cannot have been used by a different paddle (say
the aj-paddle) because vj 6= vi are distinct central-row
vertices, and their x-coordinates determine the fold-gap
to be used.
Thus a solution to 3-partition gives an embedding of

G in S�P and vice versa and the problem is NP-hard.
Clearly we constructed a tree T ; and if we removed the
path π that defined the frame then all components of
T \ π are either singleton-vertices (at c-vertices of the
frame) or caterpillars (at the paddles). Therefore T has
pathwidth 2.

The same result also holds for embedding in S�P .
We use exactly almost the same tree T , except at each
gap of the frame the path of `-vertices is longer by two
vertices and the handle-vertices have four more vertices.
Details are left to the reader.

Our constructed trees have pathwidth 2. For a tree T
of pathwidth 1, the answer to ‘is T ⊂ S∞�P∞’ is trivial
because the answer is always ‘Yes’: Such a tree is a
subgraph of C∞, and C∞ can be embedded in S∞�P∞
by placing the spine on the center-row.
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