KIT | KIT-Bibliothek | Impressum | Datenschutz

On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data

Álvarez Chaves, Manuel ; Gupta, Hoshin V.; Ehret, Uwe 1; Guthke, Anneli
1 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)

Abstract:

Using information-theoretic quantities in practical applications with continuous data is
often hindered by the fact that probability density functions need to be estimated in higher dimensions,
which can become unreliable or even computationally unfeasible. To make these useful quantities
more accessible, alternative approaches such as binned frequencies using histograms and k-nearest
neighbors (k-NN) have been proposed. However, a systematic comparison of the applicability of these
methods has been lacking. We wish to fill this gap by comparing kernel-density-based estimation
(KDE) with these two alternatives in carefully designed synthetic test cases. Specifically, we wish
to estimate the information-theoretic quantities: entropy, Kullback–Leibler divergence, and mutual
information, from sample data. As a reference, the results are compared to closed-form solutions or
numerical integrals. We generate samples from distributions of various shapes in dimensions ranging
from one to ten. We evaluate the estimators’ performance as a function of sample size, distribution
characteristics, and chosen hyperparameters. We further compare the required computation time and
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175632
Veröffentlicht am 28.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1099-4300
KITopen-ID: 1000175632
Erschienen in Entropy
Verlag MDPI
Band 26
Heft 5
Seiten Art.-Nr.: 387
Vorab online veröffentlicht am 30.04.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page