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Abstract
We introduce a semi-explicit time-stepping scheme of second order for linear poroe-
lasticity satisfying a weak coupling condition. Here, semi-explicit means that the
system, which needs to be solved in each step, decouples and hence improves the
computational efficiency. The construction and the convergence proof are based on
the connection to a differential equation with two time delays, namely one and two
times the step size. Numerical experiments confirm the theoretical results and indicate
the applicability to higher-order schemes.
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1 Introduction

This paper is devoted to the construction and analysis of a semi-explicit time dis-
cretization scheme of second order for linear poroelasticity [16, 27]. The poroelastic
equations can be characterized as a coupled system consisting of an elliptic and a
parabolic equation and appear, e.g., in the field of geomechanics [10, 34]. In many
applications, this coupling is rather weak in a certain sense (cf. (2.4) and (3.9) below as
well as the typical poroelastic parameters stated in [16, p. 25]), which is also a central
assumption in this paper to guarantee convergence. For the temporal discretization
of elliptic–parabolic problems such as poroelasticity, one mainly considers implicit
schemes such as the implicit Euler method [17] or higher-order schemes [19]. This
is primarily due to the fact that a semi-discretization in space yields a differential–
algebraic equation for which explicit time-stepping schemes cannot be used [23].

Then again, one is interested in a decoupled approach, in which the elliptic and
parabolic equations canbe solved sequentially. Such adecouplingdoes not only replace
the solution of a large system by two smaller subsystems to be solved but also enables
the application of standard preconditioners [24]. Moreover, the decoupling of the sys-
tems favors a co-design paradigm, allowing the usage of highly optimized software
packages for the porous media flow (the parabolic equation) and the mechanical prob-
lem (the elliptic equation) separately, and, in addition, includes a linearization step if
the permeability depends on the displacement, cf. [4]. One attempt in this direction are
iterative decoupling methods such as the fixed-stress, fixed-strain, or drained splitting
schemes; see, e.g., [7, 22, 25, 32]. These schemes come along with an additional inner
iteration in each time step that is required to guarantee convergence [28] and, addition-
ally, require a careful selection of tuning parameters. In [12], an alternative method
based on an additional stabilization term rather than an inner iteration is proposed.
Although first-order convergence in time is observed in experiments, the theory pre-
sented in [12, 13] only guarantees suboptimal convergence of order 1/2. Moreover,
an extension to a higher-order method is by far not intuitive. Similarly, extensions of
the aforementioned iterative schemes would require many additional inner iterations
to guarantee the prescribed accuracy, counteracting the aim of an efficient numerical
method.

To combine the advantages of themonolithic and iterative couplingmethods, a semi-
explicit time-stepping scheme was introduced in [5], which decouples the equations
and does not require an additional inner iteration or stabilization parameters. For a
comparison of this method with the monolithic and different decoupling strategies,
we refer to [26]. We emphasize that the semi-explicit scheme equals the implicit Euler
discretization up to a term with a time shift in one of the equations. The perception of
this scheme in terms of delay equations allows proving convergence of the method if
a weak coupling condition is satisfied. This condition is independent of the step size
and can be quantified explicitly.

In this paper, we extend these ideas to construct and analyze a novel higher-order
decoupling time integrator for coupled elliptic–parabolic problems, which include lin-
ear poroelasticity as a special case. To the best of our knowledge, this is the first time
that a rigorous convergence analysis for a higher-order decoupling time discretization
scheme is presented. For the construction of our scheme,we follow the general strategy
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developed in [5] and first construct a nearby delay system, which is then discretized
in time. Recognizing that the first-order semi-explicit scheme analyzed in [5] can be
understood as zeroth-order Taylor expansion, a straightforward approach would com-
bine higher-order Taylor expansions (for the construction of the delay system) with
higher-order time-integration schemes. The resulting delay equation, however, would
be of advanced type, such that a sufficient regularity of the solution cannot be guaran-
teed as indicated in Sect. 3.1. Instead, we proceedwith an expansion includingmultiple
delays and use a backward differentiation formula (BDF) for the time discretization
of the resulting delay equation. Our main contributions are:

– A BDF-type expansion to construct a delay equation that differs with a given
order from the original elliptic–parabolic problem; cf. Theorem 3.1. This results
in multiple delays in the first equation that enable the decoupling of the equations
without the requirement for an inner iteration or additional tuning parameters.

– A convergence proof for the second-order case in Theorems 3.2 and 4.1. For this,
we solely work with the delayed parabolic equation that is obtained by resolving
the elliptic equation and suitably adapt ideas from [5]. Moreover, we point out
how this approach can be extended to higher orders.

As in the first-order case, our method depends on a weak coupling condition,
which we explicitly quantify via the theory of delay differential–algebraic equations
in Sect. 3.5. We emphasize that the coupling strength of the two equations is also of
relevance for the iterative decoupling methods mentioned earlier in the sense that they
requiremore inner iterations if the coupling is stronger. Hence, they become inefficient
for strongly coupled problems.

Since we focus on time discretization, the whole convergence analysis is given on
operator level, i.e., without a spatial discretization. Corresponding results for the fully
discrete scheme can be obtained by the introduction of appropriate Ritz projections,
cf. [3, 5]. We conclude our presentation with three numerical examples in Sect. 5.

Notation

We write a � b to indicate the existence of a generic constant C , independent of
spatial and temporal discretization parameters, such that a ≤ Cb.

2 Poroelastic equations

In this section, we introduce the equations of linear poroelasticity and the cor-
responding abstract formulation as an elliptic–parabolic problem. We consider a
bounded Lipschitz domain Ω ⊆ R

d , d ∈ {2, 3}. We seek the displacement
field u : [0, T ] × Ω → R

d and the pore pressure p : [0, T ] × Ω → R. For a given
time horizon T > 0, the system equations read

− ∇ · σ(u) + ∇(α p) = f in (0, T ] × Ω, (2.1a)

∂t

(
α∇ · u + 1

M
p
)

− ∇ ·
(κ

ν
∇ p

)
= g in (0, T ] × Ω (2.1b)
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together with initial conditions

u(0) = u0, p(0) = p0. (2.1c)

Therein, σ denotes the stress tensor

σ(u) = μ
(∇u + (∇u)T

) + λ (∇ · u) id

with Lamé coefficientsλ andμ, the permeability κ , theBiot-Willis fluid-solid coupling
coefficient α, the Biot modulus M , and the fluid viscosity ν; see [10, 27]. Since some
of these coefficients play a central role for the analysis of our scheme, we report the
coefficients for a selection of different materials in Table 1. The right-hand sides f
and g are the volumetric load and the fluid source, respectively, modeling an injection
or production process. Throughout this paper, we assume homogeneous Dirichlet
boundary conditions, i.e., we set u = 0 and p = 0 on (0, T ] × ∂Ω .

2.1 Abstract formulation

For an abstract formulation of (2.1a), we introduce the Hilbert spaces

V := [H1
0 (Ω)]d , HV := [L2(Ω)]d , Q := H1

0 (Ω), HQ := L2(Ω)

which include the assumed Dirichlet boundary conditions. With the respective dual
spaces of V and Q denoted by V ∗ and Q∗, (V ,HV ,V ∗) as well as (Q,HQ ,Q∗)
form Gelfand triples with dense embeddings; see [33, Ch. 23.4] for more details.
Moreover, we define the bilinear forms

a(u, v) :=
∫

Ω

σ(u) : ε(v) dx, b(p, q) :=
∫

Ω

κ

ν
∇ p · ∇q dx,

c(p, q) :=
∫

Ω

1

M
p q dx, d(u, q) :=

∫

Ω

α (∇ · u) q dx

with the classical double dot notation, i.e., formatrices A, B ∈ R
n×m we have A : B =

trace(AT B), and the symmetric gradient ε(u): = 1
2 (∇u + (∇u)T ) used in continuum

mechanics. With this, the weak formulation of (2.1a) can be written as follows: seek
u : [0, T ] → V and p : [0, T ] → Q such that

a(u, v) − d(v, p) = 〈 f , v〉, (2.2a)

d(u̇, q) + c( ṗ, q) + b(p, q) = 〈g, q〉 (2.2b)

for all test functions v ∈ V , q ∈ Q. Correspondingly, we assume that the right-
hand sides satisfy f : [0, T ] → V ∗ and g : [0, T ] → Q∗ and denote with 〈·, ·〉 the
respective duality pairings.Wewould like to emphasize that it is sufficient to prescribe
initial data for p, since equation (2.2a) defines a consistency condition for p0 and u0
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(which is uniquely solvable for u0; see the forthcoming discussion on the properties
of the bilinear forms).

System (2.2) may also be written in operator form in the dual spaces of V and Q.
For this, letA ,B, C , andD denote the operators corresponding to the bilinear forms
a, b, c, and d, respectively. Then, (2.2) is equivalent to

A u − D∗ p = f in V ∗,
D u̇ + C ṗ + B p = g inQ∗.

It remains to discuss the properties of the bilinear forms. The bilinear form a : V ×
V → R is symmetric, elliptic, and bounded, i.e., there exist positive constants ca,Ca

such that

a(u, u) ≥ ca ‖u‖2V , a(u, v) ≤ Ca ‖u‖V ‖v‖V
for all u, v ∈ V . We would like to emphasize that a is well known from the theory of
linear elasticity and that the ellipticity follows from Korn’s inequality [14, Th. 6.3.4].
Similarly, b : Q × Q → R is symmetric, elliptic, and bounded in Q, i.e., there exist
positive constants cb,Cb such that

b(p, p) ≥ cb ‖p‖2Q, b(p, q) ≤ Cb ‖p‖Q‖q‖Q
for all p, q ∈ Q. The bilinear form c : HQ × HQ → R simply involves the mul-
tiplication by a (positive) constant and, hence, defines an inner product in the pivot
space HQ . In more detail, there exist positive constants cc,Cc such that

c(p, p) ≥ cc ‖p‖2HQ
, c(p, q) ≤ Cc ‖p‖HQ

‖q‖HQ

for all p, q ∈ HQ . The remaining bilinear form d : V ×HQ → Rmodels the coupling
and is continuous, i.e., there exists a positive constant Cd such that

d(u, p) ≤ Cd ‖u‖V ‖p‖HQ

for all u ∈ V and p ∈ HQ .

Remark 2.1 System (2.2) can also be used to model linear thermoelasticity, which
considers the displacement of a material due to temperature changes [11].

More generally, system (2.2) is an elliptic–parabolic system, where the elliptic part
(modeled by a) and the parabolic part (modeled by b and c) are coupled through the
bilinear form d. We emphasize that the forthcoming analysis does not depend on the
specific application, but only on the properties of the bilinear forms introduced above.

2.2 Spatial discretization

Although this paper is mainly concerned with the temporal discretization, we shortly
comment on the finite element discretization of (2.2). For more details, we refer to
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[17]. In order to transfer the convergence results of this paper to the fully discrete
system, one may consider spatial projection operators corresponding to the elliptic
bilinear forms a and b; see [5].

Considering finite-dimensional subspaces Vh ⊆ V and Qh ⊆ Q, one seeks approx-
imations uh ≈ u and ph ≈ p. Here, the parameter h represents the mesh size of the
triangulation used in the construction of Vh and Qh . A direct spatial discretization
of (2.2) then leads to the differential–algebraic equation

[
0 0

D Mc

] [
u̇h

ṗh

]
=

[−Ka DT

0 −Kb

] [
uh

ph

]
+

[
fh

gh

]
.

Therein, Ka and Kb denote the stiffness matrices corresponding to the bilinear forms
a and b, respectively. Due to the assumptions discussed above, Ka and Kb can be
assumed to be symmetric and positive definite. Moreover, Mc equals the mass matrix
corresponding to c, which is thus also symmetric and positive definite, and D is a
rectangular matrix corresponding to d.

Using standard P1 finite elements to define Vh and Qh , one obtains the expected
convergence rates of order one in the energy norms and order two in the L2-norms.
For more precise results also on higher-order approximations, we again refer to [17].

2.3 Temporal discretization of first order

The standard way to discretize system (2.2) in time is the application of the implicit
Euler scheme. This results in a time-stepping scheme of order one as shown in [17].

As already mentioned in the introduction, the differential–algebraic structure rules
out the possibility of a fully explicit discretization in time. In [5], however, a semi-
explicit scheme was introduced. Considering an equidistant decomposition of [0, T ]
with step size τ , this scheme reads

a(un+1, v) − d(v, pn) = 〈 f n+1, v〉, (2.3a)
1
τ
d(un+1 − un, q) + 1

τ
c(pn+1 − pn, q) + b(pn+1, q) = 〈gn+1, q〉 (2.3b)

for all v ∈ V , q ∈ Q. Here, un and pn denote the approximations of u(tn) and p(tn),
tn = nτ , respectively. Note that, in contrast to the implicit Euler discretization, the first
equation contains pn rather than pn+1. Hence, the two equations decouple and can be
solved sequentially. It is shown in [5] that this maintains the first-order convergence
as long as the weak coupling condition

α2M ≤ μ + λ (2.4)

is satisfied. Note that this condition is specific to the equations of poroelasticity. For
general elliptic–parabolic problems defined via the bilinear forms a, b, c, and d, the
weak coupling conditions reads C2

d ≤ cacc.
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For the convergence analysis, the connection of system (2.2) to a related delay
system is used. This idea is also applied in the following sections to construct a semi-
explicit scheme of order two, leading to a more restrictive weak coupling condition.

3 Semi-explicit integration scheme of second order

This section is devoted to the extension of the semi-explicit scheme (2.3) to second
order. Following the idea in [5], we first construct a related delay equation and then
discretize the delay equationwith an implicit scheme of second order. For this, we need
to replace the pressure in the first poroelastic equation by a time-delayed term which
is second-order accurate. We first consider a Taylor expansion before we introduce
discrete derivatives, leading to a system with multiple delays.

In the following, we consider a uniform partition of the time interval [0, T ] with
step size τ > 0 such that N := T /τ ∈ N. Hence, we consider time points tn = nτ

for n = 0, . . . , N . The approximation of a function y at time tn is then denoted by yn .

3.1 Related delay systems by Taylor expansion

In a first attempt, we aim to decouple system (2.2) by replacing p in the first equation
by a Taylor expansion. An expansion of order k at time t − τ yields the delay system

a(ū, v) − d
(
v,

∑k−1
j=0

τ j

j ! Δτ p̄
( j)) = 〈 f , v〉, (3.1a)

d( ˙̄u, q) + c( ˙̄p, q) + b( p̄, q) = 〈g, q〉 (3.1b)

for test functions v ∈ V and q ∈ Q. As initial condition, we set p̄(0) = p(0) = p0.
In contrast to the original system, however, one also needs a so-called history function
Φ̄(t) = p̄

∣∣[−τ,0](t). Since system (3.1) is constructed by the help of aTaylor expansion,

it is no surprise that the solutions (u, p) and (ū, p̄) only differ by a term of order τ k

as long as the solution of the delay systems stays stable. We refer to Appendix A for
further details.

Nevertheless, system (3.1) is not well-suited for the construction of a numerical
scheme. This is due to the appearance of temporal derivatives. Already in the case of
interest, namely k = 2, the resulting delay system (3.1) is of advanced type [9] and,
hence, only well-posed in a distributional setting [30]. Moreover, the solution loses
regularity over time. We refer to [6, 8, 31] for further details. To avoid such advanced
delay systems, we consider an alternative approach and replace the derivatives by
discrete derivatives. This then leads to multiple delays.
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3.2 Discrete derivatives

Based on the discrete difference operator Dyn+1: = yn+1 − yn , we can write discrete
derivatives of any order in a short way. As an example, the difference quotients of
order one and two read

1

τ
Dyn+1 = yn+1 − yn

τ
,

1

τ

(
Dyn+2 + 1

2D
2yn+2) = 3yn+2 − 4yn+1 + yn

2τ
,

leading, e.g., to the well-known BDF schemes. For the upcoming analysis, it is conve-
nient to extend the definition of the difference operator also to continuous functions.
More precisely, we define Dy: = y − Δτ y with the time shift Δτ introduced above.
The resulting order-k approximations of the derivative of a function are summarized
in the following lemma.

Lemma 3.1 (discrete derivative) Let y ∈ Ck([0, T ]) and t ∈ [kτ, T ]. Then, it holds
that

ẏ(t) = 1

τ

k∑
j=1

1
j D

j y(t) + O(τ k).

Moreover, if we have y ∈ Ck+1([0, T ]), then there exist constants c1, . . . , ck such that
the error term can be written as

∑k
j=1 c j

∫ t
t− jτ (t − ξ) j y( j+1)(ξ) dξ .

3.3 Related delay systemwithmultiple delays

As already mentioned, we want to replace the derivatives in (3.1) by discrete deriva-
tives. Focusing on the case k = 2, which will lead to a scheme of second order, we
replace τΔτ

˙̄p by DΔτ p̄ = Δτ p̄ − Δ2τ p̄. This leads to the system

a(ũ, v) − d
(
v, 2Δτ p̃ − Δ2τ p̃

) = 〈 f , v〉, (3.2a)

d( ˙̃u, q) + c( ˙̃p, q) + b( p̃, q) = 〈g, q〉 (3.2b)

for all test functions v ∈ V and q ∈ Q. Note that this is a system with two delays,
namely τ and 2τ . Again, we need to discuss the initial data, which includes p̃(0) =
p(0) = p0 and an appropriate history function Φ̃ defined on [−2τ, 0]. To obtain
consistency in u, namely ũ(0) = u(0) = u0, we assume that Φ̃ ∈ C∞([−2τ, 0],Q)

satisfies

p0 = 2Δτ p̃(0) − Δ2τ p̃(0) = 2 Φ̃(−τ) − Φ̃(−2τ). (3.3)

Remark 3.1 (approximations of higher order) For general k ≥ 1, one possibility is to
replace the derivatives Δτ p̄( j) in (3.1) by approximations of order τ k− j . This then
guarantees that the resulting expression is an approximation of the Taylor expansion∑k−1

j=0
τ j

j ! Δτ p̄( j) of order k. Note, however, that this leads to a growing number of
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delays. For k = 3 this yields three delays, whereas k = 4 already needs five delays.
The resulting scheme for k = 3 is presented in Sect. 5.3.

Remark 3.2 (parabolic equation with multiple delays) Considering the operator for-
mulation of (3.2) and eliminating the variable ũ by the first equation, we get

C ˙̃p + B p̃ + DA −1D∗(2Δτ
˙̃p − Δ2τ ˙̃p) = g − DA −1 ḟ . (3.4)

Note that this is a parabolic equation (of neutral type) with two delays. Hence, we
consider here multiple delays rather than higher derivatives.

Motivated by the approximation properties of the Taylor expansion approach, the
following theorem shows that the solutions to (2.2) and (3.2) only differ by a term of
order two.

Theorem 3.1 Assume sufficiently smooth right-hand sides f and g and a history func-
tion Φ̃ satisfying (3.3). Then, the solutions to (2.2) and (3.2) are equal up to a term of
order τ 2, i.e., for almost all t ∈ [0, T ] we have

‖ p̃(t) − p(t)‖2Q + ‖ũ(t) − u(t)‖2V � t τ 4.

Here, the hidden constant depends on higher derivatives of the history function Φ̃ as
well as of p̃.

Proof We define ep := p̃ − p and eu := ũ − u. Due to the assumptions on the history
function, we conclude that ep(0) = 0 and eu(0) = 0. Considering the difference
of (3.2a) and (2.2a), we obtain

a(eu, v) − d(v, ep) = −d(v, p̃ − 2Δτ p̃ + Δ2τ p̃) ≤ τ 2 Cd ‖v‖V ‖ ¨̃p‖L∞(−2τ,T ;HQ ),

where L∞(−2τ, T ;HQ )denotes theBochner space on the time interval (−2τ, T )with
values in HQ . In the same manner, we obtain by the derivatives of (3.2a) and (2.2a)
that

a(ėu, v) − d(v, ėp) ≤ τ 2 Cd ‖v‖V ‖ p̃(3)‖L∞(−2τ,T ;HQ ).

Now we can proceed as in the proof of Proposition A. 1, i.e., we consider the test
function v = ėu in combination with the difference of (3.2b) and (2.2b). ��
Remark 3.3 The hidden constant in Theorem 3.1may become arbitrarily large depend-
ing on the ellipticity and continuity constants. This is discussed in more detail in
Sect. 3.5.

System (3.2) yields a good starting point for the construction of higher-order dis-
cretization schemes. This is subject of the following subsection.
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3.4 Semi-explicit integration scheme

In order to obtain a semi-explicit time-stepping scheme, we now apply the BDF-2
scheme to (3.2). To shorten notation, we introduce

BDF2u
n+2 := 3un+2 − 4un+1 + un = 2Dun+2 + D2un+2.

By Lemma 3.1, we know that 1
2τ BDF2u(t) = u̇(t) + O(τ 2). Since the first equation

does not contain any derivatives, the temporal discretization is simply given by a
function evaluation at time tn+2 (as for the implicit Euler scheme). This discretization
yields the semi-explicit scheme

a(un+2, v) − d
(
v, 2pn+1 − pn

) = 〈 f n+2, v〉, (3.5a)
1
2τ d

(
BDF2u

n+2, q
) + 1

2τ c
(
BDF2 p

n+2, q
) + b(pn+2, q) = 〈gn+2, q〉 (3.5b)

for test functions v ∈ V and q ∈ Q. Note that this is a 2-step scheme, calling for
initial data p0 = p(0) and p1. In place of the history function, we set p−2, p−1 ∈ Q
such that

p0 = 2 p−1 − p−2, p1 = 2 p0 − p−1. (3.6)

Note that this is well-posed, since p0 and p1 are given. The first condition corresponds
to (3.3) and gives the consistency condition for u0. The second equation ensures that
p1 and u1 are consistent. To be precise, this means that the resulting values u0, u1 ∈ V
satisfy

a(u0, v) − d
(
v, p0

) = 〈 f 0, v〉, a(u1, v) − d
(
v, p1

) = 〈 f 1, v〉 (3.7)

for all v ∈ V .
The proposed scheme (3.5) is indeed semi-explicit, since the first equation

defines un+2 purely by already computed values, i.e., without the knowledge of pn+2.
Inserting this value in the second equation, we then obtain the approximation pn+2.

Remark 3.4 Scheme (3.5) may also be regarded as an implicit–explicit (α, β, γ )-BDF
method; see [1, 2, 15, 18]. The particular scheme fits to the characteristic polynomials

α(ζ ) = 3
2ζ

2 − 2ζ + 1
2 , β(ζ ) = ζ 2, γ (ζ ) = 2ζ − 1,

where α is used for the discretization of the derivatives, γ for the extrapolated value
(which is p in the first equation), and β for the remaining terms.

In operator form, scheme (3.5) reads

A un+2 − D∗(2pn+1 − pn
) = f n+2,

D
(
3un+2 − 4un+1 + un

) + C
(
3pn+2 − 4pn+1 + pn

) + 2τB pn+2 = 2τgn+2.
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Using once more the invertibility of the operatorA , we can eliminate the u-variables
in the second equation, leading to

C
(
3pn+2 − 4pn+1 + pn

) + 2τB pn+2

+DA −1D∗(6pn+1 − 11pn + 6pn−1 − pn−2)

= 2τgn+2 − DA −1(3 f n+2 − 4 f n+1 + f n
)
. (3.8)

We would like to emphasize that this equals the BDF-2 discretization of the delay
equation (3.4). This fact will be used in the following convergence result.

Theorem 3.2 (Second-order convergence of the semi-explicit scheme) Assume suffi-
ciently smooth right-hand sides f and g. Moreover, let the operators satisfy the weak
coupling condition

ω := α2M

μ + λ
≤ 1

5
. (3.9)

Then the semi-explicit scheme (3.5) converges with order two. More precisely, given
p0 = p(0) and p1 as a second-order approximation of p(τ ), we can define consistent
u0 and u1 in the sense of (3.7) such that

‖u(tn) − un‖2V + ‖p(tn) − pn‖2HQ
+ τ

n∑
j=1

‖p(t j ) − p j‖2Q � tnτ 4

for all n ≥ 0.

Proof Given p0 and p1, we define p−2 and p−1 satisfying (3.6) such that u0, u1 are
consistent. Moreover, let Φ̃ be a history function with Φ̃(−2τ) = p−2 and Φ̃(−τ) =
p−1 such that (3.3) is satisfied. We can now apply Theorem 3.1 and conclude that the
exact solution and the solution of the delay system (3.2) only differ by a term of order
two. Hence, it is sufficient to compare the discrete solution given by (3.5) with ( p̃, ũ).

We have seen that the presented semi-explicit scheme corresponds to the BDF-
2 method applied to the delay equation (3.4). Since the operator C only contains a
multiplicative factor, we may consider a simple rescaling leading to the question of
the convergence of the BDF-2 scheme applied to the delay system

˙̃p + B̃ p̃ + C̃
(
2Δτ

˙̃p − Δ2τ ˙̃p) = r :=C−1g − C−1DA −1 ḟ (3.10)

with B̃ :=C−1B : V → V ∗ and C̃ :=C−1DA −1D∗ : HQ → H ∗
Q
. Note that

these two operators are symmetric, elliptic, and continuous in the respective spaces.
Moreover, the continuity constant of C̃ equalsω and is bounded by 1/5 by assumption.
This condition makes Theorem 4.1 of the following section applicable, providing an
estimate of the form

‖ p̃(tn) − pn‖2HQ
+ τ

n∑
j=1

‖ p̃(t j ) − p j‖2Q � tn τ 4+tn Erhs + Einit

123



20 Page 12 of 27 BIT Numerical Mathematics (2024) 64 :20

for n ≥ 2. The right-hand side error Erhs appears because the approximation of the
right-hand side in (3.10) involves a BDF-2 approximation of the term ḟ rather than
the nodal evaluation; see (3.8). However, due to Lemma 3.1, Erhs is of order O(τ 4).
Further, with the assumption on p1, we have

Einit = ‖ p̃(τ ) − p1‖2 + τ ‖ p̃(τ ) − p1‖2
b̃

� τ 4.

Hence, the above estimate holds for all n ≥ 0 and leads to an overall error of order
two. Moreover, considering the difference of equations (3.2a) and (3.5a), we get by
the ellipticity of the bilinear form a that

‖ũ(tn+2) − un+2‖V � 2 ‖ p̃(tn+1) − pn+1‖HQ
+ ‖ p̃(tn) − pn‖HQ

for n ≥ 0. Finally, due to the consistency conditions for u0 and u1, we further
get u(0) = ũ(0) = u0 and

‖u(τ ) − u1‖V � ‖p(τ ) − p1‖HQ
.

The combination of the previous estimates completes the proof. ��

Remark 3.5 (Initial data) In practice, appropriate initial conditions can be realized as
follows: given p0, one first computes u0 consistent to (2.2a). Then, p1 and u1 can
be obtained by a single step of the implicit Euler discretization applied to (2.2). This
then guarantees consistency as well as the needed accuracy for p1. This follows, for
instance, from the proof of [17, Thm. 3.1], where a slight adaptation shows the second-
order rate in time for the first time step. This particularly includes the setting with a
spatial discretization as well.

Before we discuss the convergence of the semi-explicit scheme, we focus on the weak
coupling condition (3.9) and its meaning in terms of delay equations.

3.5 Weak coupling condition and asymptotic stability of the delay system

First, let us emphasize that there are several poroelasticity problems reported in the
literature that satisfy the weak coupling condition (3.9), or almost satisfy the weak
coupling condition; see Table 1. The latter will be relevant as well as the following
discussion demonstrates.

To see that the weak coupling condition is not a mere technical assumption, we
analyze the asymptotic stability of the related delay systemconstructed inSect. 3.3with
multiple delays. To simplify the presentation, we consider here the finite-dimensional
case after a semi-discretization in space (cf.Sect. 2.2), and study the neutral delay
differential equation corresponding to (3.4), i.e., we study the neutral delay equation

˙̃ph + M−1
c DK−1

a DT
(
2Δτ

˙̃ph − Δ2τ ˙̃ph
)

+ M−1
c Kb p̃h = g̃h . (3.11)
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A necessary condition (cf. [20, Thm. 3.20]) for the delay-independent asymptotic
stability of the unforced (i.e., g̃h = 0) delay equation (3.11) is that the spectral radius
of the matrix

N2: =
[−2M−1

c DK−1
a DT M−1

c DK−1
a DT

I 0

]

is strictly less than one, i.e., ρ(N2) < 1. Hereby, I denotes the identity matrix of
suitable dimension. We thus have to compute the eigenvalues of N2. Since Mc is sym-
metric and positive definite, the (principle) square root M1/2

c exists and is symmetric
and positive definite. Thus, thematrixM−1/2

c DK−1
a DT M−1/2

c is symmetric and hence
diagonalizable, i.e., there exists a diagonal matrix Λ and an orthogonal matrixU such
that

UM−1/2
c DK−1

a DT M−1/2
c U−1 = Λ.

Define Ξ : = diag(UM1/2
c ,UM1/2

c ). Then,

ΞN2Ξ
−1 =

[−2Λ Λ

I 0

]
.

For any eigenvalue λΛ of Λ, it thus suffices to compute the spectral radius of the
matrix

[−2λΛ λΛ

1 0

]
,

which is given by λΛ +
√

λ2Λ + λΛ. Since this is a monotone expression, we conclude

ρ(N2) = ρ(M−1
c DK−1

a DT ) +
√

ρ(M−1
c DK−1

a DT )2 + ρ(M−1
c DK−1

a DT ),

and thus ρ(N2) < 1 if and only if ρ(M−1
c DK−1

a DT ) < 1
3 . Consequently, we can-

not expect the delay equation to be a reasonable approximation of the non-delay
equation if ρ(M−1

c DK−1
a DT ) > 1

3 . In fact, in the scalar case, it is easy to see that
ρ(M−1

c DK−1
a DT ) < 1

3 is also a sufficient condition for delay-independent asymptotic
stability. Using

α2M

μ + λ
≤ ρ(M−1

c DK−1
a DT ) < 1

3 ,

we observe that a weak coupling condition as in (3.9) is not only a technical require-
ment, but indeed necessary for convergence.We discuss the details in the error analysis
in the next section.
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4 Convergence analysis

In this section, we prove the convergence of the BDF-2 method applied to the delay
operator equation

ż + B̃z + C̃
(
2Δτ ż − Δ2τ ż

) = r . (4.1)

Here, B̃ : Q → Q∗ is an operatorwith the sameproperties asB in the previous section
and C̃ : HQ → H ∗

Q
is an operator with the same properties as C with continuity

constant ω. Similar as in Sect. 3.3, we assume, besides the initial condition z(0) = z0,
a given history function Φ ∈ C∞([−2τ, 0],Q) with Φ(0) = z0. Moreover, the right-
hand side r : [0, T ] → Q∗ is sufficiently smooth.

For the error analysis, we first present the following lemma. Note that the equality
presented therein is closely connected to the G-stability of BDF-2; see [21, Ch. V.6].

Lemma 4.1 For a symmetric and positive bilinear form a it holds that

2 a(zn+2,BDF2z
n+2) = BDF2 ‖zn+2‖2a + 2 ‖Dzn+2‖2a − 2 ‖Dzn+1‖2a + ‖D2zn+2‖2a

with ‖ · ‖a := √
a( ·, · ).

Proof Using multiple applications of the formula

2 a(x, x − y) = ‖x‖2a − ‖y‖2a + ‖x − y‖2a, (4.2)

we get

2 a(zn+2, 3zn+2 − 4zn+1 + zn)

= 2 a(zn+2, 3Dzn+2 − Dzn+1)

= 4 a(zn+2, Dzn+2) + 2 a(zn+2, Dzn+2 − Dzn+1)

= 4 a(zn+2, Dzn+2) + 2 a(Dzn+2, Dzn+2 − Dzn+1)

− 2 a(zn+1, Dzn+1) − 2 a(zn+1, zn+1 − zn+2)

= 3 ‖zn+2‖2a − 4 ‖zn+1‖2a + ‖zn‖2a + 2 ‖Dzn+2‖2a
− 2 ‖Dzn+1‖2a + ‖Dzn+2 − Dzn+1‖2a,

which completes the proof. ��
After this preparation, we are now able to formulate the main convergence theorem.

Theorem 4.1 (Convergence of BDF-2 for the delay equation (4.1)) Let B̃ : Q → Q∗
and C̃ : HQ → H ∗

Q
be symmetric, elliptic, and continuous in the respective spaces.

Moreover, let ω denote the continuity constant of C̃ satisfying ω ≤ 1/5. Then, the
BDF-2 scheme applied to (4.1), i.e., the scheme

BDF2 z
n+2 + 2τ B̃zn+2 + 2 C̃ BDF2 z

n+1 − C̃ BDF2 z
n = 2τ r̃ n+2
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yields an approximation of second order, provided that r̃ n+2 is a second-order approx-
imation of r(tn+2). To be precise, assuming a sufficiently smooth right-hand side r , a
step size τ ≤ 1, and initial data z0 = z(0), z−1 = Φ(−τ), z−2 = Φ(−2τ), we get

‖z(tn) − zn‖2HQ
+ τ

n∑
j=2

‖z(t j ) − z j‖2Q � tnτ 4+tn Erhs + Einit

for n ≥ 2, where Einit := ‖z(τ ) − z1‖2HQ
+ τ ‖z(τ ) − z1‖2Q contains the initial error

and Erhs := max j=2,...,n ‖r(t j ) − r̃ j‖2HQ
the right-hand side error.

Proof Inserting the exact solution of (4.1) within the numerical scheme, we obtain the
defect equation

1
2τ BDF2z(t

n+2) + B̃z(tn+2) + 1
τ
C̃

(
BDF2z(t

n+1)
) − 1

2τ C̃
(
BDF2z(t

n)
)

= 1
2τ BDF2z(t

n+2) − ż(tn+2) + 1
τ
C̃

(
BDF2z(t

n+1)
)

− 2 C̃ ż(tn+1) − 1
2τ C̃

(
BDF2z(t

n)
) + C̃ ż(tn) + r(tn+2)

=: dn+2 + r(tn+2)

with dn+2 = O(τ 2) by Lemma 3.1. With en := z(tn) − zn , we get

BDF2e
n+2 + 2τ B̃en+2 + 2 C̃ BDF2e

n+1 − C̃ BDF2e
n = 2τ d̃n+2 (4.3)

with d̃n+2 = dn+2 + r(tn+2)− r̃ n+2. Note that, due to the assumptions on the history
function and the initial data, we have e−2 = e−1 = e0 = 0. In the following, we write
‖•‖b̃ for the norm induced by the operator B̃, which is equivalent to theQ-norm, and
‖ • ‖c̃ for the norm induced by C̃ . Note that the latter is equivalent to the HQ -norm
with ‖ • ‖2c̃ ≤ ω ‖ • ‖2, where we use the short notation ‖ • ‖ := ‖ • ‖HQ

.
Step 1: In the first step, we derive an auxiliary estimate for differences of en . If we

multiply (4.3) by 2 and apply Den+2, we get

2 〈BDF2en+2, Den+2〉︸ ︷︷ ︸
=: T1

+ 4τ 〈B̃en+2, Den+2〉︸ ︷︷ ︸
=: T2

+ 4 〈C̃ BDF2e
n+1, Den+2〉︸ ︷︷ ︸

=: T3
− 2 〈C̃ BDF2e

n, Den+2〉︸ ︷︷ ︸
=: T4

= 4τ 〈d̃n+2, Den+2〉.(4.4)

Reformulating the terms T1 and T2 using (4.2) yields

T1 = 4 ‖Den+2‖2 + 2 〈D2en+2, Den+2〉 = 5 ‖Den+2‖2 − ‖Den+1‖2 + ‖D2en+2‖2

and

T2 = 2τ
(‖en+2‖2

b̃
− ‖en+1‖2

b̃
+ ‖Den+2‖2

b̃

)
.
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With Den+2 = Den+1 + D2en+2, we have

T3 = 8 〈C̃ Den+1, Den+2〉 + 4 〈C̃ D2en+1, Den+2〉
= 8 〈C̃ Den+1, Den+1 + D2en+2〉 + 4 〈C̃ D2en+1, Den+1 + D2en+2〉
= 8 ‖Den+1‖2c̃ + 2 ‖Den+1‖2c̃ − 2 ‖Den‖2c̃ + 2 ‖D2en+1‖2c̃

+ 8 〈C̃ Den+1, D2en+2〉 + 4 〈C̃ D2en+1, D2en+2〉

and

T4 ≤ 4 ‖Den‖c̃‖Den+2‖c̃ + 2 ‖D2en‖c̃‖Den+2‖c̃.

The above computations inserted in (4.4) yield

4 ‖Den+2‖2 + ‖D2en+2‖2 + 2τ ‖Den+2‖2
b̃

+ 8 ‖Den+1‖2c̃ + 2 ‖D2en+1‖2c̃
+ ‖Den+2‖2 − ‖Den+1‖2 + 2τ ‖en+2‖2

b̃
− 2τ ‖en+1‖2

b̃
+ 2 ‖Den+1‖2c̃ − 2 ‖Den‖2c̃

≤ 4τ 〈d̃n+2, Den+2〉 + 8 ‖Den+1‖c̃‖D2en+2‖c̃ + 4 ‖D2en+1‖c̃‖D2en+2‖c̃
+ 4 ‖Den‖c̃‖Den+2‖c̃ + 2 ‖D2en‖c̃‖Den+2‖c̃

≤ 4τ ‖d̃n+2‖2 + τ ‖Den+2‖2 + 4δ ‖Den+1‖2c̃ + 4
δ
ω ‖D2en+2‖2 + 2γ ‖D2en+1‖2c̃

+ 2
γ
ω ‖D2en+2‖2 + 2

α
‖Den‖2c̃ + 2αω ‖Den+2‖2 + 1

β
‖D2en‖2c̃ + βω ‖Den+2‖2,

where we use the weighted Young inequality four times with positive constants
α, β, γ, δ. Rearranging terms leads to

(4 − τ − 2αω − βω) ‖Den+2‖2 + (1 − 2
γ
ω − 4

δ
ω) ‖D2en+2‖2 + 2τ ‖Den+2‖2

b̃

+(10 − 4δ) ‖Den+1‖2c̃ − (2 + 2
α
) ‖Den‖2c̃

+(2 − 2γ ) ‖D2en+1‖2c̃ − 1
β

‖D2en+1‖2c̃
+‖Den+2‖2 − ‖Den+1‖2 + 2τ ‖en+2‖2

b̃
− 2τ ‖en+1‖2

b̃

≤ 4τ ‖d̃n+2‖2. (4.5)

We now set α = 7/8, β = 11/2, γ = 10/11, and δ = 10/7. This leads to

(4 − τ − 29
4 ω) ‖Den+2‖2 + (1 − 5ω) ‖D2en+2‖2 + 2τ ‖Den+2‖2

b̃

+ 30
7 ‖Den+1‖2c̃ − 30

7 ‖Den‖2c̃ + 2
11 ‖D2en+1‖2c̃ − 2

11 ‖D2en+1‖2c̃
+ ‖Den+2‖2 − ‖Den+1‖2 + 2τ ‖en+2‖2

b̃
− 2τ ‖en+1‖2

b̃

≤ 4τ ‖d̃n+2‖2.
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Assuming ω ≤ 1/5 and τ ≤ 1, we therefore get

‖Den+2‖2 + 2τ ‖Den+2‖2
b̃

+ ‖Den+2‖2 − ‖Den+1‖2 + 2τ ‖en+2‖2
b̃

− 2τ ‖en+1‖2
b̃

+ 30
7 ‖Den+1‖2c̃ − 30

7 ‖Den‖2c̃ + 2
11 ‖D2en+1‖2c̃ − 2

11‖D2en‖2c̃
≤ C τ 5+C τ‖r(tn+2) − r̃ n+2‖2.

At this point, we would like to mention that the choice of α, β, γ , and δ may
be further optimized (depending on the restriction on τ ) to obtain a slightly relaxed
condition on ω; see Remark 4.1 below. Building the sum over n, we get with e−2 =
e−1 = e0 = 0 and Erhs = max j=2,...,n ‖r(t j ) − r̃ j‖2 that

n∑
j=2

‖De j‖2 + 2τ
n∑
j=2

‖De j‖2
b̃

+ ‖Den‖2 + 2τ ‖en‖2
b̃

+ 30
7 ‖Den−1‖2c̃ + 2

11 ‖D2en−1‖2c̃

≤ Ctnτ 4+CtnErhs + ‖De1‖2 + 2τ ‖e1‖2
b̃

+ 30
7 ‖De0‖2c̃ + 2

11 ‖D2e0‖2c̃
≤ Ctnτ 4+CtnErhs + 2 ‖e1‖2 + 2τ ‖e1‖2

b̃
.

In particular, we obtain with Einit introduced in the statement of the theorem that∑n
j=2 ‖De j‖2 ≤ C (tnτ 4+tn Erhs + Einit).
Step 2: For the desired estimate of the error itself, we go back to (4.3), multiply

the equation by 2, and apply en+2. This leads to

2 〈BDF2en+2, en+2〉︸ ︷︷ ︸
=: T1

+ 4τ 〈B̃en+2, en+2〉︸ ︷︷ ︸
=: T2

+ 4 〈C̃ BDF2e
n+1, en+2〉︸ ︷︷ ︸

=: T3
− 2 〈C̃ BDF2e

n, en+2〉︸ ︷︷ ︸
=: T4

= 4τ 〈d̃n+2, en+2〉. (4.6)

With Lemma 4.1, we can rewrite T1 as

T1 = BDF2‖en+2‖2 + 2 ‖Den+2‖2 − 2 ‖Den+1‖2 + ‖D2en+2‖2.

For the second term, we directly get T2 = 4τ ‖en+2‖2
b̃
. The third term is simplified

using en+2 = en+1 + Den+2 and once more Lemma 4.1, leading to

T3 = 4 〈C̃ BDF2e
n+1, en+1〉 + 4 〈C̃ (2D + D2)en+1, Den+2〉

= 2BDF2‖en+1‖2c̃ + 4 ‖Den+1‖2c̃ − 4 ‖Den‖2c̃ + 2 ‖D2en+1‖2c̃
+ 8 〈C̃ Den+1, Den+2〉 + 4 〈C̃ D2en+1, Den+2〉.

Finally, using en+2 = Den+2 + Den+1 + en and Lemma 4.1, the last term can be
written as

T4 = BDF2‖en‖2c̃ + 2 ‖Den‖2c̃ − 2 ‖Den−1‖2c̃ + ‖D2en‖2c̃
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+ 2 〈C̃ BDF2e
n, Den+2 + Den+1〉.

Using the above expressions, equation (4.6) yields

BDF2‖en+2‖2 + 2 ‖Den+2‖2 − 2 ‖Den+1‖2 + ‖D2en+2‖2 + 4τ ‖en+2‖2
b̃

+ 2BDF2‖en+1‖2c̃ + 4 ‖Den+1‖2c̃ − 4 ‖Den‖2c̃ + 2 ‖D2en+1‖2c̃
− BDF2‖en‖2c̃ − 2 ‖Den‖2c̃ + 2 ‖Den−1‖2c̃ − ‖D2en‖2c̃

≤ 4τ ‖d̃n+2‖ ‖en+2‖ + 8 ‖Den+1‖c̃‖Den+2‖c̃ + 4 ‖D2en+1‖c̃‖Den+2‖c̃
+ 2 ‖2Den + D2en‖c̃‖Den+2 + Den+1‖c̃

≤ Cτ ‖d̃n+2‖2 + 2τ ‖en+2‖2
b̃

+ 4 ‖Den+1‖2c̃ + 2 ‖D2en+1‖2c̃ + 6 ‖Den+2‖2c̃
+ 8 ‖Den‖2c̃ + 2 ‖D2en‖2c̃ + 2 ‖Den+2‖2c̃ + 2 ‖Den+1‖2c̃

for some constant C that depends on the ellipticity constant of B̃. With

2 BDF2‖en+1‖2c̃ − BDF2‖en‖2c̃ = 6 ‖en+1‖2c̃ − 11 ‖en‖2c̃ + 6 ‖en−1‖2c̃ − ‖en−2‖2c̃,

we get

BDF2‖en+2‖2 + ‖D2en+2‖2 + ‖D2en+1‖2c̃ + 2τ ‖en+2‖2
b̃

+ 2 ‖Den+2‖2 − 2 ‖Den+1‖2 + ‖D2en+1‖2c̃ − ‖D2en‖2c̃ + 4 ‖Den+1‖2c̃
− 6 ‖Den‖2c̃ + 2 ‖Den−1‖2c̃ + 6 ‖en+1‖2c̃ − 11 ‖en‖2c̃ + 6 ‖en−1‖2c̃ − ‖en−2‖2c̃

≤ Cτ ‖d̃n+2‖2 + 8 ‖Den‖2c̃ + 6 ‖Den+1‖2c̃ + 8 ‖Den+2‖2c̃
+ 2 ‖D2en‖2c̃ + 2 ‖D2en+1‖2c̃

≤ Cτ ‖d̃n+2‖2 + 4 ‖Den−1‖2c̃ + 16 ‖Den‖2c̃ + 10 ‖Den+1‖2c̃ + 8 ‖Den+2‖2c̃ .

Dropping the terms ‖D2en+2‖2 and ‖D2en+1‖2c̃ on the left-hand side, summing up,
and using e−2 = e−1 = e0 = 0 and ω ≤ 1/5, we obtain

3 ‖en‖2 − ‖en−1‖2 + 2 ‖Den‖2 + ‖D2en−1‖2c̃ + 4 ‖Den−1‖2c̃ − 2 ‖Den−2‖2c̃
+ 6 ‖en−1‖2c̃ − 5 ‖en−2‖2c̃ + ‖en−3‖2c̃ + 2τ

n∑
j=2

‖e j‖2
b̃

≤ Cτ

n∑
j=2

‖d̃ j‖2 +
n∑
j=2

(
4 ‖De j−3‖2c̃ + 16 ‖De j−2‖2c̃ + 10 ‖De j−1‖2c̃ + 8 ‖De j‖2c̃

)

+ 3 ‖e1‖2 − ‖e0‖2 + 2 ‖De1‖2 + ‖D2e0‖2c̃ + 4 ‖De0‖2c̃ − 2 ‖De−1‖2c̃
+ 6 ‖e0‖2 − 5 ‖e−1‖2 + ‖e−2‖2

≤ Cτ

n∑
j=2

‖d̃ j‖2 + 38ω
n∑
j=2

‖De j‖2 + 3 ‖e1‖2 + 8 ‖De1‖2
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≤ Cτ

n∑
j=2

‖d̃ j‖2 + 8
n∑
j=2

‖De j‖2 + 11 ‖e1‖2.

Recalling d̃ j = O(τ 2) + Erhs and applying the estimate obtained in Step 1 of this
proof, namely

∑n
j=2 ‖De j‖2 ≤ C (tnτ 4+tn Erhs + Einit), we obtain

3 ‖en‖2 − ‖en−1‖2 + 2 ‖Den‖2 + ‖D2en−1‖2c̃ + 4 ‖Den−1‖2c̃ − 2 ‖Den−2‖2c̃
+ 6 ‖en−1‖2c̃ − 5 ‖en−2‖2c̃ + ‖en−3‖2c̃ + 2τ

n∑
j=2

‖e j‖2
b̃

≤ C̃ (tnτ 4+tn Erhs + Einit).

Dropping the terms ‖Den‖2, ‖D2en−1‖2c̃ , and ‖en−3‖2c̃ on the left-hand side, we obtain

3 ‖en‖2 + 4 ‖Den−1‖2c̃ + 6 ‖en−1‖2c̃ + 2τ
n∑
j=2

‖e j‖2
b̃

≤ ‖en−1‖2 + 2 ‖Den−2‖2c̃ + 5 ‖en−2‖2c̃ + C̃ (tnτ 4 + Einit)

≤ 5

6

(
3 ‖en−1‖2 + 4 ‖Den−2‖2c̃ + 6 ‖en−2‖2c̃ + 2τ

n−1∑
j=2

‖e j‖2
b̃

)

+ C̃ (tnτ 4+tn Erhs + Einit) (4.7)

for all n ≥ 2. Using the estimate in (4.7) multiple times, we get with
∑∞

j=0

( 5
6

) j = 6
that

3 ‖en‖2 + 4 ‖Den−1‖2c̃ + 6 ‖en−1‖2c̃ + 2τ
n∑
j=2

‖e j‖2
b̃

≤ 3 ‖e1‖2 + 6 C̃ (tnτ 4+tn Erhs + Einit).

Since the first term on the right-hand side can be once again bounded in terms of Einit ,
this is the assertion. ��
Remark 4.1 The choice of the parameters α, β, γ , and δ in (4.5) can be further
improved, leading to a relaxed condition on ω. To balance the respective terms, we
require that 5 − 2δ = 1 + 1/α, 2 − 2γ = 1/β, as well as

4 − τ − 2αω − βω > 0, 1 − 2/γω − 4/δω ≥ 0

for reasonably small values of τ . This restricts possible choices, such that the condi-
tion on ω can only be slightly improved. Nearly optimal values can be obtained by
the solution of a constrained optimization problem. As an example, under the (more

123



BIT Numerical Mathematics (2024) 64 :20 Page 21 of 27 20

restrictive) assumption that τ ≤ 1/4, the choice α = 15/4 and β = 15/2 (and thus
γ = 14/15, δ = 28/15) leads to the improved condition ω ≤ 7/30.

5 Numerical experiments

This section is devoted to the numerical illustration of the convergence result presented
in Theorem 3.2 and the necessity of a weak coupling condition. Moreover, we present
a semi-explicit method of order three based on the above construction.

5.1 Poroelastic example

In the first experiment, we investigate the convergence rates of the semi-explicit
second-order scheme (3.5) and compare the results with an implicit second-order
scheme based on a BDF-2 discretization. Note that the fully implicit scheme does not
require any type of coupling condition,which canbe seenby resolving the elliptic equa-
tion and applying standard results such as [29, Thm. 10.1] to the resulting parabolic
equation. We choose Ω = (0, 1)2, T = 1, and consider the poroelastic parameters of
Charcoal granite in combination with water (see Table 1 or [16, Tab. 4]), i.e., we set

λ = 2.23 · 1010, μ = 1.9 · 1010, α = 0.27, M = 8.5 · 1010, κ/ν = 1.0 · 10−19.

Further, the right-hand sides are given by

f ≡ [ 1 2 ]T , g(t, x) = 30 sin(2π t x1 + 4π t)

and the initial condition reads p0(x) = 50 x1(1 − x1)x2(1 − x2). Accordingly, u0 is
defined through the consistency condition (2.2a), and p1, u1 by an implicit Euler step
as described in Remark 3.5. Note that with the above parameters, it holds that

ω = α2M/(μ + λ) ≈ 0.15 < 1/5

such that the coupling condition in Theorem 3.2 is just fulfilled.
The computations are based on a finite element implementation in FEniCS, leading

to a system as described shortly in Sect. 2.2. We now investigate the convergence
behavior of the semi-explicit scheme (3.5) and compare it with a second-order implicit
BDF discretization. For the computation of a reference solution, we choose an implicit
midpoint scheme with step size τref = 2−11 and a spatial mesh width href = 2−7.
Since we are mainly interested in the temporal discretization errors, we compute
the second-order schemes for step sizes τ ∈ {2−2, . . . , 2−9} with the fixed spatial
parameter h = 2−7.

The results are presented in Fig. 1. Therein, we use the notation p(T ) to refer to
the reference solution and pNh to refer to the discrete solution at time T = Nτ (and
accordingly for u). We observe second-order convergence for both the implicit and the
semi-explicit scheme. The implicit method, however, achieves slightly better results
compared to the semi-explicit one. For comparison, we also included the semi-explicit
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Fig. 1 Relative errors in p (left, measured in the b-norm) and u (right, measured in the a-norm) for the
poroelastic example in Sect. 5.1 at the final time T for fixed h = 2−7 and varying τ

scheme of first order; see (2.3). The main advantage of the semi-explicit scheme lies in
the fact that the two poroelastic equations can be solved sequentially, which results in a
computational speedup. Moreover, standard preconditioners for elliptic and parabolic
systems can be used. Note, however, that the semi-explicit method is only stable if an
appropriate coupling condition is fulfilled as indicated in Theorem 3.2. This is further
investigated in the following subsection.

5.2 Sharpness of the weak coupling condition

We now present a numerical example to investigate the requirement of the weak
coupling condition in Theorem 3.2. To this end, we consider the following toy problem
of the form (2.2) with V = HV = R

3,Q = HQ = R
1 and bilinear forms

a(u, v) = vT Au, d(v, p) = √
ω pT Dv, c(p, q) = qTCp, b(p, q) = qT Bp

with matrices

A: = 1

2 − √
2

⎡
⎣

2 −1 0
−1 2 −1
0 −1 2

⎤
⎦ , D: = [ 2

3
1
3

2
3

]
, C : = 1, B: = 1.

The prefactor of A is chosen in such away that ca , which equals the smallest eigenvalue
of A, is exactly 1. Moreover, we have cc = 1 and for the continuity constant of d we
get Cd = √

ω. Therefore, we consider as coupling parameter ω = C2
d/(cacc).

We test our semi-explicit scheme (3.5) with different step sizes τ and different
coupling coefficients ω. The relative errors compared to a fine discretization with
an implicit midpoint rule with step size τref = 2−14 are computed at the final time
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Fig. 2 Relative errors of the second-order semi-explicit method at the final time point T = 1/2 for different
coupling parameters ω and different time step sizes τ

T = 1/2. For the forcing functions, we choose

f ≡ [ 1 1 1 ]T and g(t) = sin(t).

The corresponding results are presented in Fig. 2. While the sufficient condition from
Theorem 3.2 reads ω ≤ 1/5 and the delay approach from Sect. 3.5 demands ω <

1/3, we observe that the critical value for stability is roughly 0.38 and therefore
slightly relaxed compared to the theoretical considerations. The experiment shows that
a coupling condition as in Theorem 3.2 is indeed necessary and – up to a moderate
scaling factor – rather sharp.

5.3 Semi-explicit scheme of order 3

As an outlook, we go beyond the presented theory and motivate a possible extension
to a semi-explicit third-order scheme. This is done by using the BDF-3 scheme for
the delay system in (3.1), see the discussion in Remark 3.1. For k = 3, we have p ≈
3pτ − 3p2τ + p3τ , which yields the semi-explicit 3-step scheme

A un+3 − D∗(3pn+2 − 3pn+1 + pn
) = f n+3,

D 11un+3−18un+2+9un+1−2un
6τ + C 11pn+3−18pn+2+9pn+1−2pn

6τ + B pn+3 = gn+3.

To illustrate the behavior in terms of the convergence rate and the weak coupling
condition, we consider again the setting presented in Sect. 5.2. The corresponding
results are shown in Fig. 3. Note that the error decreases roughly by a factor 8 when
halving the step size τ , which indicates a third-order convergence rate. As before, we
observe that a suitably small coupling of the two equations is necessary in order to
ensure stability. The numerically observed critical point for stability is roughly ω ≤
1/6 and hence smaller than in the second-order case of Fig. 2. This indicates that
the required coupling condition depends on the order k of the corresponding scheme.

123



20 Page 24 of 27 BIT Numerical Mathematics (2024) 64 :20

Fig. 3 Relative errors of the third-order semi-explicit method at the final time point T = 1/2 for different
coupling parameters ω and different time step sizes τ

Performing a similar analysis of the corresponding delay equation as in Sect. 3.5 yields
that delay-independent asymptotic stability is (numerically) guaranteed for ω < 1/7.

6 Conclusions

Within this paper, we have constructed a semi-explicit second-order time-integration
scheme for linear poroelasticity that decouples the problem and hence is suitable
in a co-design paradigm where specialized legacy codes for the elliptic and parabolic
equation can be used. Themethod is constructed by first perturbing the elastic equation
with time delays and then applying BDF-2 to this delay equation. The delay times
equal multiples of the time step size. We have proven convergence of this scheme
under a suitable weak coupling condition. This coupling condition is, as in the first-
order case [5], explicitly quantified via an asymptotic stability analysis of the delay
equation. While our work focuses on the second-order scheme, we have demonstrated
in a numerical example that the same idea can also be used to construct a third-order
scheme, which however requires a more restrictive weak coupling condition as well
as an alternative convergence proof.
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A Appendix

Proposition A. 1 Assume sufficiently smooth right-hand sides f and g and a history
function Φ̄ ∈ C∞([−τ, 0],Q) satisfying

Φ̄(−τ) = Φ̄(0) = p0, Φ̄( j)(−τ) = 0 for j = 1, . . . , k − 1 (A.1)

such that the solution (ū, p̄) of the delay system (3.1) satisfies p̄ ∈ Wk+1,∞(HQ).
Then, the solutions to (2.2) and (3.1) are equal up to a term of order τ k , i.e., for almost
all t ∈ [0, T ] we have

‖ p̄(t) − p(t)‖2Q + ‖ū(t) − u(t)‖2V � t τ 2k
[
‖Φ̄‖2Wk+1,∞(−τ,0;HQ)

+ ‖ p̄‖2Wk+1,∞(HQ)

]
.

Proof We define ep := p̄ − p and eu := ū − u. The conditions on the derivatives of Φ̄

in (A.1) ensure the consistency of the initial data, i.e., ū(0) = u(0) = u0. Hence, we
have ep(0) = 0 and eu(0) = 0. By a Taylor expansion, we know that

p̄(t) =
k−1∑
j=0

τ j

j ! p̄( j)(t − τ) +
t∫

t−τ

p̄(k)(ξ)
(t−ξ)k−1

(k−1)! dξ,

˙̄p(t) =
k−1∑
j=0

τ j

j ! p̄( j+1)(t − τ) +
t∫

t−τ

p̄(k+1)(ξ)
(t−ξ)k−1

(k−1)! dξ .

With this, the errors satisfy the system

a(eu, v) − d(v, ep) = −
∫ t

t−τ

(t−ξ)k−1

(k−1)! d(v, p̄(k)(ξ)) dξ, (A.2a)

d(ėu, q) + c(ėp, q) + b(ep, q) = 0 (A.2b)

for all test functions v ∈ V , q ∈ Q. Moreover, considering the derivatives of (2.2a)
and (3.1a), we obtain

a(ėu, v) − d(v, ėp) = −
∫ t

t−τ

(t−ξ)k−1

(k−1)! d(v, p̄(k+1)(ξ)) dξ . (A.3)

The sum of (A.3) with test function v = ėu and (A.2b) with test function q = ėp,
bounding the integral, and an application of Young’s inequality yield

‖ėu‖2a + ‖ėp‖2c + 1
2

d
dt ‖ep‖2b = −

∫ t

t−τ

(t−ξ)k−1

(k−1)! d(ėu, p̄
(k+1)(ξ)) dξ

≤ τ k

(k−1)! Cd ‖ėu‖V ‖ p̄(k+1)‖L∞(t−τ,t;HQ )

≤ 1
2 ‖ėu‖2a + C τ 2k ‖ p̄(k+1)‖2L∞(t−τ,t;HQ )
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with the constantC = C2
d

2ca((k−1)!)2 . Note that we use the notion ‖•‖a , ‖•‖b, and ‖•‖c
for the norms induced by the bilinear forms a, b, and c, respectively. Hence, we can
eliminate ‖ėu‖2a on the right-hand side. By the ellipticity of the bilinear forms and an
integration over [0, t] we conclude that

∫ t

0
‖ėu(s)‖2V ds + ‖ep(t)‖2Q � τ 2k t ‖ p̄(k+1)‖2L∞(−τ,t;HQ). (A.4)

Note that we use here the convention that p̄ equals the history function Φ̄ on [−τ, 0].
In the same way, the sum of (A.2a) with test function v = ėu and (A.2b) with test
function q = ep yields the estimate

1
2

d
dt ‖eu‖2a + 1

2
d
dt ‖ep‖2c + ‖ep‖2b

= −
∫ t

t−τ

(t−ξ)(k−1)
(k−1)! d(ėu, p̄

(k)(ξ)) dξ � ‖ėu‖2V + τ 2k ‖ p̄(k)‖2L∞(t−τ,t;HQ ).

Integration over [0, t] and the application of estimate (A.4) finally gives

‖eu(t)‖2V � t τ 2k ‖ p̄(k+1)‖2L∞(−τ,t;HQ),

which completes the proof. ��
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