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Figure 1: Left: Equal time comparison (40 min) and RMSE (insets) of bidirectional path tracing (BDPT), Practical Path Guiding (PPG)
with NEE, and our sampling technique, in a scene with 24.6k lights along a ring (red inset) and difficult visibility. Our technique guides the
last path segment to relevant light sources, with little overhead but significant improvements over PPG. Right: PPG approximates the total
incident radiance by subdividing the directional domain with a quadtree, using the quadtree entries to sample directions. We approximate
the direct incident radiance by subdividing a light BVH with a tree cut (bottom right, blue), using the node weights to sample emitters.

Abstract

Path guiding techniques reduce the variance in path tracing by reusing knowledge from previous samples to build adaptive
sampling distributions. The Practical Path Guiding (PPG) approach stores and iteratively refines an approximation of the
incident radiance field in a spatio-directional data structure that allows sampling the incident radiance. However, due to the
limited resolution in both spatial and directional dimensions, this discrete approximation is not able to accurately capture a
large number of very small lights. We present an emitter sampling technique to guide next event estimation (NEE) with a global
light tree and adaptive tree cuts that integrates into the PPG framework. In scenes with many lights our technique significantly
reduces the RMSE compared to PPG with uniform NEE, while adding close to no overhead in scenes with few light sources.
The results show that our technique can also aid the incident radiance learning of PPG in scenes with difficult visibility.

CCS Concepts
» Computing methodologies — Ray tracing;

1. Introduction

Modern scenes in photorealistic rendering often contain thousands
or even millions of light sources. The direct scattered radiance
Lo(x,m,) at a surface point x due to the direct illumination by
these light sources can be modeled as the sum over the surfaces S;
of the/ =1,...,N light sources:

N
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Next Event Estimation (NEE) approximates this equation numer-
ically with Monte Carlo integration by sampling a vertex y on a
light source from a probability density function (PDF) p(y):

Lo(x,0,) = Le(y = %) fr(y —>x70)o)G(y,x).

p(y)
The PDF p(y) is usually a product of a probability mass function
(PMF) P(1) for first sampling a light source /, and a PDF p; on that
light source for sampling the vertex itself.
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The variance of this estimate can be reduced if lights can be
sampled according to a PDF as proportional to the integrand as
possible. In scenes with only a handful of light sources, selecting
light sources proportional to their overall power usually works well.
However, the contribution of a light vertex y to a scene vertex x also
depends on the distance and orientation of the light and the surface,
the visibility between x and y, and the reflectance behaviour at x.
In scenes with thousands of light sources, this simple strategy often
results in stronger mismatches between the PDF and the integrand,
and thus exhibits higher variance. To improve this we need the PDF
to depend on x, M, or both.

Previous Work achieves this by considering distance and orien-
tation in a pre-build light hierarchy [EK18] that tailors the PDF
to the scene vertex x, or by using spatio-temporal reservoir sam-
pling [BWP*20] to reuse and share light samples between pixels.
Lightcuts [WFA*05] on the other hand approximate the cumulative
influence of less contributing lights by clustering lights in a tree
which lowers variance but introduces bias. Vevoda et al. [VKK18]
learn cluster selection probabilities using Bayesian regression at
run time for improved emitter sampling, but rely on light cluster-
ings that are constructed up front, based on conservative contribu-
tion estimates. Pantaleoni [Pan19] proposes adaptive, weighted cuts
through a light tree to approximate direct illumination and sample
light sources. Our technique reuses the idea of adaptive tree cuts
but differs in the way the cuts are refined and how lights are sam-
pled inside a selected light cluster. Aiming at realtime scenarios,
Pantaleoni [Pan19] splits and merges only two nodes of the adap-
tive cut in each refinement iteration while our technique, aimed at
offline rendering, generates a roughly equi-energy tree cut with a
configurable relative energy threshold in each iteration. The tech-
nique by Pantaleoni selects a light uniformly in a light cluster while
our technique takes global energy estimates into account.

Practical Path Guiding Guiding approaches learn the entire (di-
rect and indirect) incident radiance during rendering and use this
information to guide future paths in directions with high incident
energy. Practical Path Guiding (PPG) [MGN17, Miil9] stores a
discrete approximation of the incident radiance field in a 5D data
structure, where the leaf nodes of a 3D spatial binary tree store 2D
quadtrees subdividing the directional domain (Figure 1 top right).
This SD-tree is used to importance sample directions for path con-
struction. The approximation is iteratively improved during render-
ing, with twice as many samples in each iteration. During render-
ing, radiance estimates are splatted into the SD-tree at each path
vertex. After each iteration, the quadtrees are refined via a sim-
ple subdivision scheme: If the relative flux ®,/® collected by a
quadtree node exceeds a threshold p (default = 1%), the node is
subdivided.

This can improve variance over unguided NEE, but the finite res-
olution of the learned radiance field usually leaves some remain-
ing variance since not all directions near a high-contributing light
source actually hit the light source. To learn useful sampling distri-
butions for guiding, a sufficient number of paths with high contri-
bution needs to be generated by simple BSDF sampling or uniform
NEE, which can be a limiting factor in scenes with thousands of
very small, high-power light sources.
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Figure 2: Left: Global light tree with one leaf per emitter (or-
ange), and a weighted tree cut (blue). Right: In practice we store a
weighted sub-tree (red) from the root to the cut.

Contribution We learn a light selection PMF P(/|x) that depends
on where a point x is in the scene, and adapts to power, visibility,
orientation, and direction of the light source. We adapt this proba-
bility in the cells of a spatial subdivision hierarchy, in particular the
3D binary tree employed by PPG [MGN17].

Akin to Lightcuts we first build a binary tree over all light
sources. We represent the direct radiance in a spatial cell as a
weighted tree cut (Figure 2 left), with each weight corresponding
to the estimated contribution of lights in the cluster. During render-
ing we accumulate radiance estimates in the cut nodes, and use the
stored weights to importance sample nodes in the light tree to guide
NEE. The supplemental document gives a pseudocode overview of
our approach.

In scenes with many light sources our technique consistently im-
proves upon PPG while requiring at most a similar amount of addi-
tional storage, and has little to no memory and performance over-
head in scenes with only a handful of lights. The learned tree cut
depth automatically adapts to the direct radiance in the scene, and
the degree of its refinement can be controlled by a user parameter.

2. Guided Emitter Sampling with Adaptive Tree Cuts
2.1. Direct Radiance Representation

We approximate the incident direct light field discretized over in-
dividual light sources. Before rendering starts, we build a binary
light subdivision tree with one emitter per leaf, and store a tree
cut [VKK18, WFA*05] through the light tree in each cell of the 3D
spatial tree. A tree cut is a weighted set of nodes in the binary
light tree, where each path from the root to a leaf contains exactly
one node in the cut (Figure 2 left). Each cut partitions lights into
disjoint clusters, with each node in the cut representing a cluster
containing all lights in leaves below it. The weight of a node in
the cut approximates the relative total contribution of lights below
that node to the spatial cell. These weights guide the sampling of
lights or light clusters, similar to how PPG uses values in the direc-
tional quadtree to guide direction sampling (Figure 1 right). In or-
der to simplify the sampling and PDF evaluation routines, we store
a weighted light sub-tree from the root to the cut (Figure 2 right)
instead of only the cut nodes. We call this data structure Guiding
Light Tree (GLT).

2.2. Learning and Refinement

In order to refine a GLT over rendering iterations, we store two
cuts in each cell, using one for guiding and the other to accu-
mulate the contribution of new paths, and swap them after each
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refinement iteration. We initialize the GLT with the two children
of the light tree root node with equal weights, and start the first
rendering iteration with 1 sample per pixel. Whenever we con-
struct a complete path (xg, . ..,xz) with xy on a camera and x, on a
light during rendering, we accumulate the direct radiance estimate
Le(xp, = x1—1)G(x1,x—1)/p(x1) at xp—; inthe spatial cell con-
taining xz 1 in the tree cut node containing the light source from
xz. We apply spatial filtering similar to [Mii19] by jittering the
position xz 1 within a filter volume (proportional to the size of the
spatial cell that holds x; ) centered around x; _ before locating
the cut for depositing the radiance estimate.

After rendering each iteration we refine the tree cuts similar to
PPG’s quadtree approach. A node is subdivided if its relative col-
lected flux ®,/® is larger than a threshold &, and both children
receive half the original flux. We recursively apply the subdivision
until reaching the threshold or a leaf node of the light tree. While
the continuous directional domain can be subdivided indefinitely,
the discrete tree cut subdivision stops if a light cluster contains a
single light only, even if its relative flux exceeds the threshold ©.
Similarly, we recursively merge siblings with a total flux below the
threshold. This makes the memory footprint of the cuts depend not
only on the value of G, but also on the number of lights and illumi-
nation characteristics of a given scene. If a spatial cell is subdivided
by the PPG refinement we copy its cut to both children. After the
refinement we discard the current image and start a new iteration
with twice as many samples. In the end, we combine the results
from the final four iterations as in [MGN17, Mii19].

2.3. Sampling

For sampling at a given path vertex x (Supplemental Algorithm 3),
we traverse the spatial tree to find the tree cut approximating the
local direct illumination at x. Using a single random number, we
stochastically descend the GLT to select a light cluster with a prob-
ability proportional to its estimated contribution. From this light
cluster, we traverse the global light tree using an overall energy es-
timate (surface area - radiosity) until we reach an individual emitter.
The PMF P(l|x) of a light / is the product of all selection probabil-
ities on the path from the light tree’s root node to the light’s leaf
node. We replace PPG’s uniform NEE with our sampling strategy.
Since we allow the PMF of light clusters to be zero, our strategy
needs to be combined with at least one unbiased sampling strategy,
e.g. BSDF sampling.

Each light stores its location in the binary tree as a binary se-
quence in a 32-bit integer to accelerate locating the light source
in the light tree for PMF calculation and radiance depositing. This
introduces a memory overhead of 4 bytes per light source, but sig-
nificantly increases the performance of these operations.

3. Results

We integrated our sampling strategy into the PPG framework
[MGN17], replacing uniform NEE with our guided direct illu-
mination sampling (Source code: github.com/nessux/path-guiding-
many-lights). All images were rendered on an Intel® Core™ i7
12700K CPU with 32GB of DDR4 RAM.
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Figure 3: RMSE over time in the CITY (left) and TORUS LIGHT
(right) scene for different subdivision thresholds c. The plots show
the minimum RMSE of the current and all previous images, with the
current RMSE in lower opacity. Peaks/plateaus in the plots result
[from starting new rendering iterations. The filled circle represents
the combined final result. In both plots the final result of 6 = 0.01
is almost identical to 6 = 0.002. The legend also shows the memory
Jootprint of the adaptive tree cuts after the last rendering iteration.

3.1. Analysis

Subdivision threshold Figure 3 shows how the subdivision
threshold ¢ impacts convergence and memory footprint. Reducing
the threshold from 5% to 1% noticeably decreases variance, with no
further improvements from a reduction to 0.2%. As the subdivision
threshold controls the degree of refinement, the memory footprint
of the GLTs increases with smaller 6. At 1% the GLTs require sim-
ilar memory as PPG’s directional quadtrees with the recommended
parameters in both scenes. With lower thresholds the memory foot-
print keeps growing with no further variance reduction.

We thus recommend a default value of ¢ = 0.01. An increase
of the threshold can be considered to significantly reduce memory
usage while moderately increasing variance. Incidentally, Miiller et
al. [MGN17] also recommend a default value of p = 0.01 as the
threshold for subdividing their directional quadtrees. The threshold
barely affects the number of rendered samples per pixel in a given
time budget, as the light tree is traversed from the root node to
a leaf node for each sampled light either way. A deeper cut only
causes more child selection decisions to be based on learned cluster
contributions instead of overall energy estimates.

Light Tree We construct the global light tree as a BVH with one
leaf per emitter and tested three construction heuristics: a balanced
heuristic with equal weight for each emitter, the surface area heuris-
tic (SAH) proportional to the emitter surface area, and a surface
area radiance heuristic (SARH) proportional to the SAH multiplied
to the emitter’s radiosity. We used the SARH for all results in this
paper, as its RMSE and memory overhead were a few percent lower
than for the balanced or SAH tree, likely due to mostly flatter tree
cuts.

3.2. Comparison

In Figure 4 we show equal time comparisons of PPG with our
sampling strategy to standard path tracing with uniform NEE
(PT+NEE) or bidirectional path tracing (BDPT) depending on
which technique performed better in a given scene. We also com-
pare to PPG with uniform NEE or no NEE at all, depending on
which technique performed better.
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Reference

City (30 min)

Reference

Pool (10 min)

Reference

Torus Light

PT + NEE PPG + NEE PPG + Ours

PT + NEE PPG + NEE ™ PPG + Qurs ™

2500-spp
RMSE_ 0.085

1568 spp
RMSE 0.059

PPG (no NEE)

1574 spp
RMSE 0.026

PPG + Ours

3140 spp
RMSE 0.0068

8820 spp
RMSE 0.0087

3006 spp
RMSE 0.0042

Figure 4: Equal time comparisons, with the insets and RMSE rendered without directly visible lights to highlight direct/indirect illumination
noise. Our technique significantly reduces the error over basic PPG, and outperforms BDPT even without specular interactions.

The CITY scene contains a simple model of a city under a glass
dome with 283924 individual quad and spherical emitters. The
overhead of PPG visibly increases noise compared to PT with uni-
form NEE, especially regarding direct illumination. Our technique
reduces the RMSE over PPG with uniform NEE by a factor of 7.6.

The POOL scene contains 1700 small spherical lights near the
bottom of a pool with a bumpy, specular water surface. PPG with
our adaptive tree cuts performs better than PPG with uniform NEE
without introducing noticeable overhead, rendering the same num-
ber of samples in the given time budget.

The TORUS LIGHT scene features a mesh light with 24576 prim-
itives, but no SDS light transport. PPG without NEE uses its direc-
tional quadtrees to sample direct illumination, but cannot achieve
lower error than default BDPT. PPG with our sampling technique
performs better than BDPT while remaining unidirectional.

The OcCLUSION scene (Figure 1 left) combines the mesh light
from the TORUS LIGHT scene with highly occluded indirect illu-
mination: Light is reflected from a glossy surface to reach a diffuse
statue which is visible to the camera. The glossy surface is sur-
rounded by hundreds of small, dark objects occluding both the light
and the statue. PPG struggles to learn directional distributions at the
statue, resulting in visible noise and fireflies. BDPT also struggles
with the occluded indirect illumination but reaches a lower RMSE
than PPG. PPG combined with our sampling strategy achieves a
14.6 times lower RMSE than BDPT, indicating that guiding direct
illumination can also aid the learning of PPG’s directional distribu-
tions. Assuming a standard Monte Carlo convergence of O(1/v/N),
a 14.6 times lower RMSE represents a 213 times speedup.

In the SPACESHIP scene (no figure) by [MGN17] with only 5
emitters our technique performs similar to PPG: At a memory over-
head of 3.5MB, we achieve 2408spp and an RMSE of 0.0101 in 5
minutes, compared to PPG with 2632spp and an RMSE of 0.0106.

4. Conclusion

We presented an unbiased light selection strategy to guide direct
illumination that significantly decreased the variance of PPG in
scenes with a large number of light sources and difficult visibility.
Memory consumption is similar to PPG’s quadtrees and can be con-
trolled by a user parameter. A default value of ¢ = 0.01 performed
well in all our tests. Depending only on an iterative rendering pro-
cess and an existing spatial subdivision structure, our adaptive light
clustering could also be applied in rendering frameworks other
than PPG. Performance could be further improved by incorporating
results of previous work regarding the construction of light hierar-
chies [EK18] or optimal light selection probabilities [VKK18].
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