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A B S T R A C T   

In downstream processing, the intricate nature of the interactions between biomolecules and adsorbent materials 
presents a significant challenge in the prediction of their binding and elution behaviors. This complexity is 
further heightened in multi-modal chromatography (MMC), which employs two distinct binding mechanisms. To 
gain a deeper understanding of the involved interactions, simulating the adsorption of biomolecules on resin 
surfaces is a focal point of ongoing research. However, previous studies often simplified the adsorbent surface, 
modeling it as a flat or slightly curved plane without including a realistic backbone structure. Here, we introduce 
and validate two novel workflows aimed at predicting peptide binding behaviors in MMC, specifically targeting 
methacrylate-based resins. Our first achievement was the development of an all-atom model of a commercial 
MMC resin surface, incorporating its polymethacrylic backbone. Furthermore, we established and tested a 
workflow for rapid calculations of binding free energies (ΔG) with 10 linear peptides as target molecules. These 
ΔG calculations were effectively used to predict Langmuir constants, achieving a high coefficient of determi
nation (R2) of 0.96. In subsequent benchmarking tests, our model outperformed established, simpler resin surface 
models in terms of predictive capabilities.   

1. Introduction 

Liquid preparative chromatography is an indispensable tool in the 
biopharmaceutical industry for the purification and separation of com
plex mixtures [1–3]. The process relies on the differential interactions of 
compounds with a stationary phase and a mobile phase [4]. A notable 
advancement in stationary phases was the introduction of multi-modal 
chromatography (MMC), where resins facilitate a combination of 
distinct interaction types, such as electrostatic and hydrophobic in
teractions, between the ligands and the molecules being separated 
[5–7]. This approach is particularly effective for molecules that are 
challenging to separate using conventional chromatographic methods 
[8]. Despite the advantages of MMC, it further increases the already 
intricate nature of the adsorption mechanism [9]. Therefore, finding 
ideal binding and elution conditions, especially for biomolecules, re
mains a complex task during the initial process development [10]. This 
complexity is compounded by the limited availability and high cost of 
product samples in the early stages of drug development, which restricts 

extensive empirical screening [11]. 
To overcome these challenges, the last few decades have seen sig

nificant efforts in developing computational modeling methods. These 
methods aim to predict the interactions of biomolecules with chro
matographic media under various conditions. Their origins date back to 
the mid-20th century with the development of basic empirical models 
that laid the foundation for understanding the kinetics and thermody
namics of chromatographic processes [12–14]. These models evolved 
into more sophisticated approaches, such as mechanistic modeling, 
which provided a deeper understanding of chromatographic processes 
based on physical and chemical principles [15,16]. Since then research 
focused on the development of novel isotherms, like the SMA isotherm 
for ion exchange chromatography [17]. Also, considerable effort was 
made to describe the adsorption behavior for MMC by considering 
electrostatic or both, electrostatic and hydrophobic interaction in the 
isotherm equations [9,18,19]. 

Quantitative Structure-Property Relationships (QSPR) and Quanti
tative Structure-Activity Relationships (QSAR) are further modeling 
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approaches that originated in the late 1970s and early 1980s [20]. 
Initially based on simple correlations between molecular descriptors and 
chromatographic outcomes, these models have evolved to incorporate a 
wider range of descriptors and complex statistical methods, including 
machine learning [21,22]. Recent applications in multimodal chroma
tography have been particularly impactful, enabling the prediction of 
complex molecule behaviors, such as those of proteins, under various 
chromatographic conditions [23]. 

The early 2000s marked the introduction of molecular simulations in 
chromatography [24–28]. Advances in computational power and algo
rithms enabled more sophisticated and accurate simulations, providing 
detailed insights into molecular-level interactions within chromato
graphic systems [27]. These simulations have shown promising pre
dictive capabilities for the binding and elution behavior of peptides and 
proteins in ion exchange [10,24,27] and multimodal chromatography 
[26,28]. 

However, most utilized molecular modeling methods are still limited 
by the extensive computational effort required, rendering them 
impractical for high-throughput screenings. Another major challenge is 
the accurate modeling of the chromatography resins’ surface [25]. The 
complexity of resins, particularly their three-dimensional all-atom sur
face structure, is often simplified in models, by tethering the ligands to a 
planar surface. However, it is important to consider that, in reality, 
resins neither possess a planar surface nor a perfectly uniform ligand 
density, attributed to the nanoscale structure of the backbone. More
over, for polymer-based chromatography resins, like 
methacrylate-based resins, the backbone itself can exhibit hydrophobic 
characteristics, which can influence the overall molecular affinity to
wards target molecules [29]. 

Addressing these challenges, we showcase in this work two molec
ular modeling workflows for the prediction of Langmuir constants. First, 
we demonstrate a workflow that creates all-atom structures of 
methacrylate-based chromatography resin surfaces, incorporating the 
polymeric backbone structure. A subsequently presented workflow fa
cilitates rapid screenings for binding poses and energies between 
bespoke resin surface models and target molecules. In a final step, we 
benchmark the capability for Langmuir constant predictions of our all- 
atom model with established, more simplified models of the resin 
surface. 

2. Material and methods 

2.1. Selection of chromatography resin and target molecules 

In this study, the multimodal chromatography resin TOYOPEARL 
MX-Trp-650M, procured from Tosoh Bioscience, was selected for use in 
both the computational and experimental workflows. This resin is 
characterized by a hydroxylated polymethacrylic backbone and is 
functionalized with a tryptophan (Trp) ligand through its N-terminal 
amino group [30]. The combination of electrostatic and hydrophobic 
properties of the negatively charged carboxyl group and the indole ring, 
respectively, enables this ligand to form complex interactions with 
various target molecules. 

Linear peptides, acquired from Biomol GmbH were utilized as target 
molecules. Selection criteria included molecular weight, structural 
characteristics, and the net charge at pH 4, which aligns with the 
optimal pH for binding to the tryptophan ligand [30]. Especially the 
molecular size was a critical factor since it influences both the inherent 
flexibility of the peptides and consequently the computational simula
tion duration. The experimental detection of these peptides was con
ducted through UV absorption spectroscopy by selecting wavelengths 
that exhibited a maximal differential absorption relative to pure buffer 
solution. Table S1 (SI) enumerates all 10 peptides in addition to 
providing the specific wavelengths used for UV absorption measure
ments, molecular weights, and structural details. 

2.2. All-atom resolution model of methacrylate-based resin surfaces 

To construct an all-atom resolution model of the methacrylate-based 
resin, we developed a multiscale modeling approach which incorporates 
coarse-grained and atomistic molecular dynamics simulation protocols 
to build the polymer network structure of the resin. This model can then 
be leveraged in a subsequent workflow employing quantum mechanics 
(QM)-based methods to analyze the adsorption behavior of target mol
ecules on the resin. 

Fig. 1 provides a schematic comparison of the scale of our all-atom 
resin surface model relative to a chromatography column. As shown, 
the resin is depicted in our model as a cuboid section extracted from the 
inside of a particle pore. The y,x plane at the upper end in the z direction 
represents the interface between the stationary and mobile phase. The 
remaining surfaces, which are essentially the cut sides of the resin par
ticle, might include molecule fragments. 

To simulate the dynamic polymerization process, we established a 
simulation box containing all necessary components: a methacrylate- 
based monomer and crosslinker forming the polymer backbone, the 
ligand attached to the backbone, and a porogen to control the polymer 
density. To model a representative system of widely used components, 
the monomer chosen was 2,3-Dihydroxypropyl methacrylate (DHPMA), 
derived from the hydrophilization of Glycidylmethacrylate (GMA), and 
Ethylene glycol dimethylacrylate (EDGMA) was selected as the cross
linker. The ratio of monomer to crosslinker was set at 1:5, aligning with 
common practices in the field [29]. 

For the model’s dimensions, we opted for a larger size of 10/15/15 
nm (height/width/depth) than required for the adsorption simulations 
of peptides, to accurately capture the nanoscale structure of the surface. 
Due to this extended length scale, constructing an entire polymer 
network at an atomistic level was infeasible, especially when starting 
from the individual components of the selected 4-component system. To 
address this, we developed a multistage simulation protocol. The first 
step involved creating a coarse-grained (CG) representation to establish 
the reference topology and initial coordinates of the polymer network. 
This CG model was then converted into an atomistic representation, 
where structural relaxation yielded the final coordinates. 

In the first step, a CG model was generated using a reaction rate- 
based model [31], that replicates the dynamic process of polymeriza
tion. In this model, employing Kremer-Grest type parametrization, 
DHPMA dimers were considered as single beads and EDGMA was rep
resented by two beads. The Trp ligand, represented by a single bead, was 
integrated into the polymer network following the polymerization re
actions. The porogen was represented solely by its size. Each bead in the 
CG scheme corresponded to approximately 100 Da in molecular weight 
and was within a 1 × 1 × 1 nm length scale. For an accurate simulation 
of the interface between the mobile and stationary phase, the initial 
simulation box’s upper half in the z-direction was populated with 
porogen beads, designed not to diffuse into the lower half. The bottom 
half of the box was filled with a defined mixture of monomer, cross
linker, ligand, and additional porogen. Here, generic reaction rates were 
applied to radical-based activation, polymerization, crosslinking, and 
quenching reactions, as listed in Table S2 in the SI. 

The conversion in the second step involved replacing CG beads with 
individual DHPMA, EGDMA, and Trp molecules, optimized using Lig
ParGen [32]. The molecules were arranged to fit within a 1.1 × 1.1 × 1.1 
nm box to prevent overlapping atoms post-conversion. Intermolecular 
bonds, such as C-C and C-N, were incorporated after decapping 
hydrogen atoms from bond-formation sites, and charges were reset on 
either side of the new bond. During the relaxation phase, the expanded 
simulation box was isotropically compressed to recover its original di
mensions. An all-atom relaxation, following the OPLS-aa [33] parame
trization, was performed with incremental timesteps, initially resolving 
clashes with sub-femtosecond temporal resolutions and later using a 2 fs 
deltaT for faster collective movement of the polymer. This polymer 
network generation protocol was automated within the workflow engine 
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of Simstack [34], and both CG and all-atom molecular dynamics simu
lations were executed using LAMMPS [35]. For a comprehensive view of 
the subsequent simulation steps, the entire workflow is presented as 
’Workflow 1’ in the flowchart Fig. S1 of the SI. The automated workflow 
is available upon request from the authors. 

The structure generated from our workflow was imported into 
Maestro 13.7 (Schrödinger Release 2023-2) for further manual refine
ment. In this postprocessing stage, we removed smaller polymer mole
cules that were not integrated into the main polymer network and 
deprotonated the carboxyl groups. Subsequently, the structure was 
subjected to a second round of minimization using MacroModel. During 
this minimization, we immobilized the outermost residues on the cut 
edges of the particle to preserve the structural integrity. The refined 
structure obtained through this process served as the input for our 
workflows focused on determining the binding poses and energies of 
target molecules. 

To ensure mechanical stability, which requires a dense backbone 
structure in reality, we carefully adjusted the quantities of DHPMA and 
EDGMA molecules in our initial simulation box, maintaining a constant 
ratio. This adjustment was done empirically by gradually increasing the 
number of molecules until the model exhibited a dense, crosslinked 
polymeric network. Following this, we increased the Trp ligand con
centration to match the ideal ligand spacings of 5 to 15 Å, as commonly 
reported in literature for simpler models [27,28]. For the final config
uration of our model, the lower half in the z-direction of the initial 
binding box with dimensions of 10/15/15 nm (height/width/depth) 
was filled with a specific molecular composition: 690 DHPMA dimers, 
260 EDGMA crosslinkers, 690 Trp ligands, and 320 porogens. 

2.3. Modeling of binding poses and energies 

This section delineates the second pivotal workflow in our study, 
focusing on advanced computational methods to determine binding 
poses and energies between target molecules and our custom-developed 
all-atom models of methacrylate-based chromatography resin surfaces. 
Our approach utilizes computationally efficient methods, enabling fast 
screenings suitable for standard office computers. The entire multistep 
simulation was automated in KNIME Version 4.7.1 using the 
Schrödinger extensions from Release 2023-2. Essential inputs for this 
workflow are specific simulation parameters, a file containing all target 
molecule SMILES strings, and a docking grid of the resin model. The 
parameters for each simulation step are listed in Tables S2 and S3, with 
default settings applied where specific parameters are not mentioned. 
The docking grid was created using Maestro 13.6 (Schrödinger, Release 
2023-2) and positioned at the center of the adsorbent model’s surface 
with a midpoint box diameter of 40 Å in all directions. 

The workflow commences with the LigPrep node, utilized for 
calculating the 3D structures of the target molecules from their input 
SMILES strings and determining their protonation states. Following this, 
an initial binding pose screening was performed using the Glide docking 

node, which generated 100 potential binding poses [36]. Next, the 
target-molecule-adsorbent complex with the highest docking score was 
subjected to a structural minimization in the MacroModel node, utilizing 
implicit solvent modeling and the OPLS4 force field [37]. This step was 
crucial for simulating the polymer backbone’s flexibility during the 
adsorption process, an aspect not considered in the docking approach 
that treats the resin as rigid. For computational efficiency, atoms in the 
resin model located beyond 5 Å from the docking grid were fixed in 
place during this minimization stage. 

Subsequently, the pose was refined through MM-GBSA simulations 
[36]. To address the issue of potential false positive binding poses, we 
employed the semiempirical quantum mechanics method GFN2-xTB for 
single-point energy calculations afterward [38]. GFN2-xTB was chosen 
for its balance between computational efficiency and accuracy in 
modeling noncovalent interactions such as π- or van der Waals in
teractions [39], which are significant in our system [40]. To expedite 
potential energy calculations, resin atoms more than 15 Å from the 
target molecule were removed, and the truncated model was 
hydrogen-saturated at the cut sites. The binding free energy (ΔG) was 
then calculated using the free energies of the target molecule (Gtm), the 
resin model (Gads), and the complex of both (Gcom), defined as [41–43]: 

ΔG = Gcom − Gads − Gtm (1)  

If the resulting ΔG from the GFN2-xTB calculation was more than 30 % 
lower than the binding energy calculated by MM-GBSA, the pose was 
considered a false positive. This artificial stopping criterion served as a 
balance between achieving precise full minimization and managing the 
computational cost within the high-throughput workflow. In practice, 
by employing single-point energy calculations, we refined ΔG and 
effectively identified false positive poses that may arose from earlier 
force-field-based minimizations. 

Following the identification of a false positive pose, it was removed 
from consideration, and the binding pose with the next highest docking 
score was chosen for subsequent processing. This included another 
round of MacroModel minimization, followed by MM-GBSA and GFN2- 
xTB calculations. Once a suitable binding pose was determined, we 
eliminated any remaining docking poses that overlapped in volume with 
this pose. We then repeated the whole process three additional times. 
This methodical approach ensured that we obtained four distinct bind
ing poses for each target molecule, without any overlapping volume. To 
illustrate the sequence of simulation steps, the complete workflow is 
detailed as ’Workflow 2’ in the flowchart shown in Fig. S1 of the SI. The 
automated workflow is available upon request from the authors. 

2.4. Batch incubation chromatography experiments 

To validate our simulative findings, we conducted batch incubation 
chromatography experiments to determine the adsorption isotherms of 
all 10 peptides. These high-throughput experiments were carried out in 

Fig. 1. Scale of All-Atom Model Compared to Chromatography Column - This illustration provides a schematic comparison between the scale of all-atom models of 
resin surfaces in relation to the size of a chromatography column. 
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96-deepwell filter plates (Pall) using a fully automated robotic labora
tory system. This automation enhanced the reproducibility and preci
sion of our experiments while reducing manual labor. 

Initially, a precise volume of chromatography resin was loaded into 
the filter plates using a ResiQuot (MediaScout), guaranteeing a repre
sentative distribution of particle sizes. [44]. Each well received a 7.7 µL 
resin plaque. The adsorption isotherms were established from 10 con
centration points, derived by serially diluting a 5 g/L peptide solution in 
0.1 M acetate buffer at pH 4 across 10 even steps, with a final volume of 
300 µL per well. The plates were then agitated for 1 h at 1000 rpm using 
a shaker module (Heater Shaker Module, Opentrons). 

Post-incubation, the unbound peptide solution was removed using a 
96-well vacuum manifold (Perkin Elmer) connected to a vacuum pump 
(MD 4 VARIO select, Vacuubrand), and the filtrate was collected in a 96- 
deep well plate. Subsequently, 200 µL of this solution was transferred to 
a 96-well flat-bottom UV plate (Brand) for UV absorption measurements 
using a plate reader (Spark, Tecan). The specific UV wavelength for each 
peptide, as listed in Table S1, was used for detection. All pipetting tasks 
were automated using an OT-2 liquid handling station (Opentrons). The 
plate transfers between the devices were handled by a robotic arm (UR- 
5e, Universal Robot), and the entire laboratory setup was controlled via 
a central Python script interfacing with the application programming 
interfaces (APIs) of the lab components. 

2.5. Comparison with state-of-the-art models 

To evaluate the effectiveness of our approach, we conducted a 
comparative analysis between our all-atom resin surface model (AAM) 
and established, more simplified model approaches. Upon reviewing 
existing literature, we identified that the models used to represent resin 
surfaces generally fall into two distinct categories. The first category 
features models where ligands are fixed in space, creating a planar 
surface with uniform ligand orientation, resulting in highly symmetrical 
models [10,24,27,45–48]. In contrast, the second category involves li
gands attached to carbon chains or similar spacer molecules, which are 
then connected to either a planar or curved carbon surface [28,49–51]. 
This configuration allows for greater ligand mobility, leading to a more 
disordered surface appearance after energy minimization. Most studies 
suggest an optimal ligand spacing ranging from 5 to 15 Å [27,28], a 
parameter we also targeted in our all-atom model to replicate realistic 
ligand densities. 

We developed a model for each category using the building tool in 
Maestro 13.6 (Schrödinger Release 2023-2). Visual representations of 
the two generated models are provided in Fig. 2. In the first simplified 
model (SM1, shown in Fig. 2a), the ligands are uniformly oriented, each 
anchored in space by a single carbon atom. For the second simplified 
model (SM2, depicted in Fig. 2b), the ligands are attached to C12 carbon 
chains, which are then connected to a flat carbon surface. Before pro
ceeding to binding free energy calculations, all models were subjected to 
an energy minimization using the MacroModel module. During this 
process, the anchoring carbon atoms in SM1 and the carbon surface, 
connected to the C12 chains in SM2, were fixed in place to maintain 

structural stability. 
Following the minimization process, a docking grid featuring a 

midpoint box of 40 Å was centered within each model. To prevent target 
molecules from adsorbing to the carbon chains or areas beneath the 
model surface, these regions were designated as excluded volumes 
during grid generation. These grids then served as inputs for the work
flow outlined in Section 2.3, facilitating the calculation of binding free 
energies with target molecules. 

3. Results and discussion 

3.1. All-atom resolution model of methacrylate-based resin surfaces 

We successfully created an all-atom model for the TOYOPEARL MX- 
Trp-650M MMC resin surface, utilizing the workflow described in Sec
tion 2.2 and illustrated as ’Workflow 1’ in Fig. S1 of the SI. The resulting 
polymeric resin’s structure is depicted in Fig. 3, where the carbon atoms 
of the methacrylic backbone are colored blue, and the Trp ligand’s 
carbon atoms are green. The simulation effectively generated the 
interface between the stationary and mobile phase, visible at the top end 
in the z-direction in Fig. 3a and b. This interface highlights a highly non- 
uniform surface, characterized by polymeric chains that extend into the 
mobile phase and mesopores that penetrate the entire model, as seen 
from the top view in Fig. 3c. Our model resulted in an average ligand 
spacing of approximately 12 Å, fitting within the 5 to 15 Å range re
ported as optimal in the literature for simpler models. However, in 
contrast to the more planar surfaces of established models, our model 
exhibits significant variation in ligand positions along the z-direction. 

A notable innovation in our model is the inclusion of a methacrylic 
polymer backbone structure, a feature that, to our knowledge, has been 
implemented for the first time in the context of modeling chromatog
raphy resin surfaces. This addition provides a more complex and real
istic portrayal of resin surfaces, capturing their inherent irregularities in 
contrast to the traditionally flatter and more uniform surfaces depicted 
in existing models. The detailed representation of the polymer backbone 
within our all-atom model not only improves the visual and structural 
fidelity but could also deepen our understanding of how biomolecules 
interact with the resin surface on a molecular level. This advancement 
could significantly influence the development of next-generation chro
matography resins, enabling the design of materials with tailored sur
face properties and superior performance characteristics. 

3.2. Modeling of binding poses and binding energies 

To demonstrate a use case for our developed model, we successfully 
calculated the binding poses and energies for all peptides using the 
workflow outlined in Section 2.3 and illustrated as ’Workflow 2’ in 
Fig. S1 of the SI. We identified four distinct binding poses for each 
peptide within the docking grid. Notably, during the minimization step, 
significant conformational changes in the polymer were observed in 
response to peptide adsorption. 

Fig. 4 presents a binding pose of Octapeptide-2 interacting with the 

Fig. 2. Resin Models for Benchmarking - This figure displays two simplified models of the resin surface. SM1 (a) depicts ligands anchored in space, forming a planar 
surface, while SM2 (b) shows ligands attached to C12 carbon chains linked to a planar carbon surface. 
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AAM. Fig. 4a displays the pose following the docking simulation, where 
only one of the peptide’s four positively charged amine groups engages 
in π-cation interactions and forms salt bridges with a tryptophan ligand. 
However, after the minimization step, as depicted in Fig. 4b, two 
additional tryptophan ligands are drawn towards the peptide’s positive 
charge, resulting in a total of three tryptophan ligands forming π-cation 
interactions and salt bridges with the amine groups. 

Furthermore, it was observed that the peptide’s negatively charged 
carboxyl group, visible at the lower end in the figure, repels the ligands, 
causing them to move away from this group. Conversely, the polymer 
backbone moves closer to the carboxyl group post-minimization, form
ing hydrogen bonds and van der Waals interactions. This reorientation 
of the polymer backbone contributes to the stabilization of the binding 
pose. The mentioned conformational changes of the adsorbent are 
indicated with arrows in Fig. 4a. Green arrows show changes due to 
attracting forces while red arrows symbolize atomic movement caused 
by repelling forces. 

At the end of the workflow, ΔG was determined for each of the four 
poses of every peptide. Notably, the variation in ΔG among these poses 
for individual peptides was significant. For some peptides, the difference 
between the highest and lowest calculated ΔG of the four poses was as 
minimal as 5 kcal/mol, while for others, it reached as high as 20 kcal/ 
mol. This translated to percentile differences ranging from 10 % to 38 %, 
with an average variation of 27 % across the poses for each peptide. The 
average binding free energies of every peptide are depicted in Fig. 5b on 
the y-axis, with error bars representing the variation in these energies. 

This observed variation in binding energies could be attributed to 
two main factors. On the one hand, the variation could stem from false 
positive or false negative binding poses. On the other hand, the variation 
in binding energies might also reflect the actual diversity in binding 
scenarios. Differences in binding domains, due to the non-uniform 
structure of the polymer backbone could contribute to these variations. 

3.3. Model validation through Langmuir constant prediction 

To validate our computational model, we applied the Langmuir 
isotherm equation to the collected adsorption isotherm data using Ori
ginPro 2023. This model was chosen since the isotherms consistently 
displayed Langmuir-shaped adsorption behavior, with coefficients of 
determination for all fits being no lower than 0.94. From these fits, we 
derived the KL for each peptide. The adsorption isotherms and their 
corresponding Langmuir fits are included in Fig. S2 (SI). 

Fig. 5a presents the net charge of each peptide plotted against its 
corresponding KL. This analysis reveals that in multi-modal chroma
tography, where both electrostatic and hydrophobic interactions are 
involved, there is no straightforward correlation between the net charge 
and KL. Although peptides with a higher positive charge generally show 
higher KL values, consistent with the negatively charged ligand, there 
are exceptions. Notably, a peptide with a net charge of zero exhibits the 
second-highest KL. This deviation from a straightforward correlation 
underscores the complexity of interactions within multi-modal chro
matography. While electrostatic interactions are typically more domi
nant, localized clusters of positive charges on peptides with overall low 
net charges can still demonstrate a strong affinity to the resin. Addi
tionally, hydrophobic interactions, though secondary, can also 
contribute significantly to the overall binding affinity. Therefore, pre
dicting binding behaviors solely based on the molecular structures of the 
target molecule can prove to be difficult. To circumvent an exclusive 
reliance on experimental methods for determining KL, we focused on 
calculating ΔG. Following the theoretical framework established by 
Ghosal and Gupta, we explored the relationship between ΔG and KL, 
which they posited should be logarithmic, particularly when KL is 
expressed in molar units such as L/mol or L/mmol [52]. 

Fig. 5b showcases a plot comparing our calculated ΔG averaged over 
all four binding poses (ΔGav) against the experimentally determined KL 

Fig. 3. All-Atom Model of MMC Resin Surface - This figure presents the AAM of the MMC Resin TOYOPEARL MX-Trp-650M. Carbon atoms from the methacrylic 
backbone are shown in blue and those from the Trp ligands in green. The panels (a) and (b) display side views of the resin surface along the z,y-plane and z,x-plane, 
respectively. Panel (c) offers a top view at the surface, showcasing mesopores penetrating the model. 
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for each peptide. The error bars on the y-axis indicate the variability in 
ΔG across the four distinct binding poses calculated for each peptide. 
The data demonstrates a strong logarithmic correlation between KL and 
ΔGav, with no apparent outliers. To analyze the relationship we used a 
three-parameter logarithmic model, details of which can be found in the 
SI. Notably, peptides with very low KL values (less than 0.2 L/mmol) 
displayed corresponding ΔGav values ranging from -40 to -32 kcal/mol. 
This range appears to represent a threshold for adsorption, suggesting 
that peptides require a minimum ΔGav of about -40 kcal/mol to adsorb 
onto the resin effectively. 

Further, to assess the predictive strength of our workflow, we per
formed a 2-fold cross-validation using MatlabR2023a, employing a 

logarithmic model with three fitting parameters. This method was 
selected for its effectiveness in providing a comprehensive assessment of 
the model’s performance across two subsets of data. The results of this 
cross-validation are presented as black squares in Fig. 7. Here, the y-axis 
represents the KL as predicted by our workflow, and the x-axis displays 
the experimentally measured true KL. In a perfect model, all data points 
would align along the dotted line with a slope of 1. Our model achieved 
an R2 of 0.96 and a root mean square error (RMSE) of 0.38 L/mmol, 
demonstrating strong predictive capabilities for Langmuir constants. 

A notable strength of our model is its efficacy in predicting KL values 
across a wide range, which is crucial for accurately forecasting both 
binding and elution conditions. By effectively predicting these condi
tions, our model offers a valuable tool for in silico screening of resins. 
This approach could streamline the resin selection process, allowing 
researchers to identify those resins with the most suitable binding and 

Fig. 4. Binding Pose of Octapeptide-2 with the AAM - Panel (a) displays the 
initial binding pose following the docking simulation, with future conforma
tional changes indicated by arrows. Panel (b) shows the pose after minimiza
tion, emphasizing the reorientation of the polymer. The color-coded dotted 
lines represent different interaction types: pink for salt bridges, yellow for 
hydrogen bonds, green for π-cation, and blue for π-π interactions. 

Fig. 5. Exploring the Correlation of KL with Net Charges and Calculated 
Binding Free Energies - Panel (a) displays the relationship between each pep
tide’s net charge at pH 4, determined using LigPrep (Schrödinger Release 2023- 
2), and its KL, revealing no direct correlation. Panel (b) presents the relationship 
between KL and ΔGav, with a logarithmic relationship illustrated by the dotted 
line, established using three fitting parameters in OriginPro 2023. 
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elution characteristics for specific target molecules, thereby eliminating 
the need for extensive wet lab experimentation. 

Additionally, we observed that for our peptides, the initial slope of 
the graph plotting the achieved loadings versus the corresponding 
equilibrium concentrations also exhibited a strong logarithmic correla
tion with the calculated ΔGav values, achieving an R2 of 0.88. This 
finding may prove valuable for analyzing systems for which the binding 
behavior strongly deviates from Langmuir adsorption behavior. 

In conclusion, we aim to elucidate the limitations inherent in our 
modeling approach, specifically addressing why it does not extend to 
predicting the second parameter of the Langmuir isotherm, the 
maximum loading capacity (qmax). The distinction in our model’s ability 
to predict KL rather than qmax arises primarily from the nature of the 
parameters themselves and the data required to estimate them. The 
Langmuir constant reflects the affinity or strength of the interaction 
between the peptide and the resin [52]. This parameter can be directly 
derived from the binding free energy, which is computable from our 
molecular simulations. The relationship provides a clear thermody
namic pathway to estimate KL based on the energetic landscape of the 
binding interactions. In contrast, qmax depends not only on the molecular 
interactions but also on the physical and morphological characteristics 
of the resin, such as surface area, pore size, and pore distribution, as well 
as the potential multilayer effects of target molecules. These factors 
affect how many molecules can physically and effectively bind to the 
resin at saturation. Since these are not parameters readily derived from 
our computational model, which is focused on energy calculations, they 
are not within the scope of the model’s current capabilities. 

Nonetheless, predicting KL allows us to determine the affinity be
tween peptides and chromatographic resins, which is essential for effi
cient separation processes. This capability enables the preliminary 
selection of the most appropriate resins, significantly reducing the need 

for extensive empirical testing. Moreover, since the affinity towards 
potential target molecules is essential for chromatography resins. Our 
approach could also be used for a rational design approach of chroma
tography resins, leading to custom-developed resins for difficult sepa
ration tasks. By providing a reliable computational approach to estimate 
KL, our model serves as a valuable tool for guiding experimental setup, 
enhancing the predictability of peptide-resin interactions, and facili
tating the development of more effective chromatographic systems. 
These benefits are particularly important in pharmaceutical and 
biochemical industries, where rapid and efficient process development 
can lead to substantial advancements and cost savings. 

3.4. Comparison with state-of-the-art models 

In this analysis, we aimed to compare the simulation results of our 
all-atom model with two simplified resin surface models, as shown in 
Fig. 2. We handed the docking grids of all three models as input to the 
workflow described in Chapter 2.3 to compute the binding energies with 
our target molecules. This demonstrated the versatility of our developed 
workflow by confirming its compatibility with various adsorbent 
models. 

To elucidate the differences between the simplified models and our 
AAM, we analyzed the binding of Hexapeptide-9, which, despite having 
a net charge of zero, exhibits the second-highest measured KL. Fig. 6a 
and b showcase the binding pose of Hexapeptide-9 with SM2 and the 
AAM, respectively. In these figures, the peptide residues are color-coded 
to indicate their contribution to the overall binding energy, with the 
spectrum ranging from red to green. Redder hues signify repulsion from 
the adsorbent model, while greener hues indicate stronger attraction. 
Fig. 6c presents an analysis of the binding energies, breaking down the 
contributions of Coulomb and van der Waals (vdW) interactions, along 

Fig. 6. Binding Energy Analysis of Hexapeptide-9 - Panel (a) and Panel (b) display the binding poses of Hexapeptide-9 with SM2 and the AAM, respectively, with 
peptide residues color-coded based on their contribution to ΔG. Panel (c) compares the ΔG of Hexapeptide-9 with the SM1 (blue), SM2 (red), and AAM (black), 
detailing the contributions of Coulomb, and vdW interactions, as well as hydrogen bonds, averaged over all calculated poses. 
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with hydrogen bonds, averaged across all four poses calculated for 
Hexapeptide-9. A notable observation is the heightened Coulomb in
teractions in the simplified models compared to the AAM. In SM1 and 
SM2, the presence of Hexapeptide-9′s negatively charged carboxyl group 
leads to overall positive Coulomb interactions due to repulsion. In 
contrast, the AAM demonstrates slightly negative overall Coulomb in
teractions due to attraction with the positively charged amine group. 
This difference could stem from the distinct ligand orientations and 
flexibilities in each model. Despite similar ligand densities, the way li
gands are exposed and oriented in SM1 and SM2 facilitates more 
effective electrostatic interactions with charged groups. This contrasts 
with the AAM, where the ligands’ orientation and flexibility are 
modulated by the surrounding polymer backbone. The flexibility of the 
backbone also allows the ligands to move away from negative patches, 
towards positive charges as shown in Fig. 4. This trend was not isolated 
to a single peptide but was observed across various peptides, indicating a 
systematic difference in how the electrostatic interactions are influenced 
by the presence of the polymer backbone. 

Furthermore, the polymeric backbone in the all-atom model played a 
significant role in binding energy, contributing notably through vdW 
interactions. Therefore, the AAM registered the highest overall binding 
energy, while SM1 and SM2 exhibited considerably lower values. 
Consequently, for peptides with a more positive charge, the opposite 
trend was observed, with SM1 and SM2 often showing higher binding 
energies than the AAM, since the exposed ligands allow stronger elec
trostatic attraction. 

3.5. Benchmarking the workflows 

In this final analysis, we begin by benchmarking the predictive 
capability for Langmuir constants of our AAM against the two simplified 
resin surface models, as part of evaluating the workflows developed in 
this study. This assessment involved performing a cross-validation for 
each model, as described in Chapter 3.3 for the AAM. 

Fig. 7a displays the validation plot for all three models. A key 
observation was that both simplified models, SM1 and SM2, each have 
significant outliers. Specifically, for SM1, Acetyl Tetrapeptide-3 is an 
outlier, and for SM2, it is Octapeptide-1, with net charges of 1 and 3, 
respectively. In both cases, the predicted KL values are markedly higher 
than the experimentally determined KL. For a more detailed examina
tion of the lower KL values, Fig. 7b offers a zoomed-in view of Fig. 7a. 
This closer look reveals that the data points from SM 1 and SM 2 
consistently deviate further from the dotted line, which represents ideal 
predictions, in comparison to those from the AAM. Interestingly, SM1 
and SM2 tend to overpredict KL for peptides with more positive charges 
and underpredict for those with neutral or negative charges. This trend 
correlates with the findings from the previous chapter, where the 
simplified models showed elevated ΔG for positively charged and lower 
ΔG for more negatively charged peptides compared to the AAM. Addi
tionally, it was noted that SM1 and SM2 demonstrate greater prediction 
accuracy for lower KL values compared to higher KL values. This char
acteristic renders them more suitable for predicting elution conditions 
rather than binding conditions in chromatographic applications. 

To quantitatively assess the predictive capabilities of the models, 
Fig. 8 includes three bars on the right side, each representing the RMSE 
for the all-atom model and the two simplified models. Here, SM1 dem
onstrates the lowest precision in predictions with an RMSE of 5.49 L/ 
mmol, while SM2 exhibits a notable improvement in predictive accu
racy. This increase in accuracy is likely due to the enhanced ligand 
flexibility in SM2, leading to a more heterogeneous surface configura
tion, a feature that distinctly sets it apart from SM1. The AAM surpasses 
both simplified models, achieving the lowest RMSE. This enhanced ac
curacy could be attributed to the more realistic representation of the 
resin surface, achieved by incorporating the polymer backbone into the 
model. 

In our second benchmarking analysis, we compared our workflow for 

calculating ΔGav with an established method that solely integrates Glide 
docking and consecutive MM-GBSA calculations for determining peptide 
binding energies [36]. Fig. 8 presents this comparison, where the left 
side bars indicate the RMSE for KL predictions using the established 
workflow. A notable observation from this comparison is that all models 
exhibit higher RMSE values when analyzed with this conventional 
method compared to our newly developed workflow. SM 1 showed the 
highest RMSE in both workflows, indicating its highly structured design 
might fail to mimic the real resin surface’s complexity accurately. 
Furthermore, both SM2 and AAM models exhibited RMSEs above 4 
L/mmol with the conventional method, which is significantly higher 
than the average KL of 1.3 L/mmol observed across the peptides, indi
cating an inadequacy in providing accurate predictions. This un
derscores how the effectiveness of a model can significantly vary 
depending on the computational method used. 

A key advantage of our workflow is its ability to account for the 
flexibility of the resin’s polymer backbone. This was achieved through a 

Fig. 7. Validation Plots for Model Comparisons - Panel (a) displays the cross- 
validation results for the AAM (black squares) and the two simplified models 
of the resin surface, SM 1 (red circles) and SM 2 (blue triangles), showing 
predicted KL values against experimentally determined KL. Panel (b) offers a 
zoomed-in view of the same plot. 
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minimization step, which allows the resin surface to adapt upon peptide 
adoption. With this approach, the computational demand was main
tained comparatively low, especially when contrasted with time- 
resolved molecular dynamics simulations. Additionally, our workflow 
incorporates electronic structure effects by utilizing a semiempirical QM 
method. These enhancements are likely key contributors to the superior 
performance of the AAM, as it surpasses SM2 in accuracy only when 
these aspects are considered. These benchmarking exercises demon
strate the importance of selecting appropriate computational methods 
that align with the specific characteristics and complexities of the 
models being used, especially in applications involving intricate mo
lecular interactions such as in chromatography. 

4. Conclusion and further directions 

In this study we successfully introduced and validated two innova
tive workflows designed for predicting peptide binding behaviors in 
multimodal chromatography, focusing on methacrylate-based resins. 
Utilizing the first workflow, we were able to generate a detailed all-atom 
model of an MMC resin surface, incorporating the polymethacrylic 
backbone. With 15 nm in diameter, the model can be utilized to calcu
late interactions with a wide range of biomolecules. 

To showcase the innovative capabilities of our model, we developed 
and deployed a unique workflow tailored specifically for rapid binding 
free energy calculations with linear peptides. This novel workflow le
verages computationally efficient techniques that facilitate swift and 
precise predictions of experimental KL values, making it highly suitable 
for use on standard office computers. Employing this advanced work
flow, our custom-developed all-atom model markedly surpasses the 
performance of traditional, simplified models, consistently delivering 
enhanced predictive accuracy. This progression represents a significant 
advancement in the application of computational modeling to under
stand and predict chromatographic behaviors, offering a powerful tool 
for the rapid evaluation and optimization of chromatographic systems. 

Looking ahead, our research will delve into exploring how the 
composition of resin building blocks influences simulation outcomes. 
This will include a focus on variables such as ligand density, the degree 
of crosslinking, and the integration of spacer molecules. Additionally, it 
is important to note that the Glide docking step is currently limited to 

handling molecules with no more than 500 atoms or 100 rotatable 
bonds. Consequently, this restriction confines the current scope of the 
workflow primarily to smaller biomolecules, such as linear peptides, 
while larger biomolecules like proteins fall outside its capabilities. 
Therefore, our future work will aim to expand the workflow to accom
modate proteins of varying sizes, thereby enhancing its applicability and 
relevance in the broader field of chromatographic research. 
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