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A B S T R A C T

The empirical success of Generative Adversarial Networks (GANs) caused an increasing interest in theoretical
research. The statistical literature is mainly focused on Wasserstein GANs and generalizations thereof, which
especially allow for good dimension reduction properties. Statistical results for Vanilla GANs, the original
optimization problem, are still rather limited and require assumptions such as smooth activation functions
and equal dimensions of the latent space and the ambient space. To bridge this gap, we draw a connection
from Vanilla GANs to the Wasserstein distance. By doing so, existing results for Wasserstein GANs can be
extended to Vanilla GANs. In particular, we obtain an oracle inequality for Vanilla GANs in Wasserstein
distance. The assumptions of this oracle inequality are designed to be satisfied by network architectures
commonly used in practice, such as feedforward ReLU networks. By providing a quantitative result for the
approximation of a Lipschitz function by a feedforward ReLU network with bounded Hölder norm, we conclude
a rate of convergence for Vanilla GANs as well as Wasserstein GANs as estimators of the unknown probability
distribution.
1. Introduction

Generative Adversarial Networks (GANs) have attracted much atten-
tion since their introduction by Goodfellow et al. (2014), initially due to
impressive results in the creation of photorealistic images. Meanwhile,
the areas of application have expanded far beyond this, and GANs
serve as a prototypical example of the rapidly evolving research area
of generative models.

The Vanilla GAN as constructed by Goodfellow et al. (2014) relies
on the minimax game

inf
𝐺∈

sup
𝐷∈

E
[

log𝐷(𝑋) + log
(

1 −𝐷(𝐺(𝑍))
)]

, (1)

to learn an unknown distribution P∗ of the random variable 𝑋. The
generator 𝐺 chosen from a set , applied to the latent random variable
𝑍 aims to mimic the distribution of 𝑋 as closely as possible. The
discriminator 𝐷, chosen from a set , has to distinguish between real
and fake samples.

The optimization problem in (1) is motivated by the Jensen–
Shannon divergence, see Goodfellow et al. (2014, Theorem 1). Gener-
alizations of the underlying distance have led to various extensions of
the original GAN, such as 𝑓 -GANs (Nowozin, Cseke, & Tomioka, 2016).
More famously, Wasserstein GANs (Arjovsky, Chintala, & Bottou, 2017),
characterized by

inf
𝐺∈

sup
𝑊 ∈Lip(1)

E
[

𝑊 (𝑋) −𝑊 (𝐺(𝑍))
]

, (2)
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are obtained by replacing the Jensen–Shannon divergence by the Kan-
torovich dual of the Wasserstein distance (see Section 2). Here, Lip(1)
denotes the set of all Lipschitz continuous functions with a Lipschitz
constant bounded by one. This approach can be generalized using
Integral Probability Metrics (IPMs, Mueller, 1997). For the application
to GANs, see for example Liang (2021).

The analysis of Wasserstein GANs can exploit the existing theory
on the Wasserstein distance. The latter has a long record of research,
particularly in the context of optimal transport (Villani, 2008) but
also in machine learning, see Torres, Pereira, and Amini (2021) for
an overview. In contrast, Vanilla GANs and the Jensen–Shannon diver-
gence have been studied less extensively, and fundamental questions
have not been settled. In particular, all statistical results for Vanilla
GANs require the same dimension of the latent space and the target
space which is in stark contrast to common practice. The Jensen–
Shannon divergence between singular measures is by definition maxi-
mal. Therefore, we cannot expect proofs of convergence in a dimension
reduction setting. In practice, however, Vanilla GANs have worked
in a wide range settings. Another algorithmic drawback of Vanilla
GANs highlighted by Arjovsky and Bottou (2017) is that an arbitrarily
large discriminator class prevents the generator from learning. Thus,
using neural networks as a discriminator class must be advantageous
compared to the set of all measurable functions. This empirical fact
is supported by the numerical results by Farnia and Tse (2018) who
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impose a Lipschitz constraint on the discriminator class. In this work,
we broaden the theoretical boundaries of Vanilla GANs to cope with
the empirical evidence. To this end, we replace the Jensen–Shannon
framework with a Wasserstein perspective.

A wide range of methods exists for measuring distances between
probability measures with varying properties. In view of the manifold
hypothesis for high-dimensional data, it is crucial that the selected
metric can discriminate between different singular measures. This is not
the case for the Total Variation distance, the Jensen–Shannon distance,
or even stronger metrics where singular distributions always attain the
maximal value of the distance. Conversely, it is advantageous to select
a strong metric, as this yields immediate bounds in weaker metrics.
In view of this tension we will analyze Vanilla GANs with respect
to the Wasserstein-1 distance which is often used in the statistical as
well as the machine learning literature. A comprehensive overview of
the advantages of the Wasserstein-1 distance over other measures that
metrize weak convergence, we direct the reader to Villani (2008, p.
98 f.). For an overview of distances between probability measures, we
refer the reader to Gibbs and Su (2002, Figure 1).

Our contribution. Our work aims to bridge the gap in theoretical
analysis between Vanilla GANs and Wasserstein GANs while addressing
the theoretical limitations of the former ones. By imposing a Lipschitz
condition on the discriminator class in (1), we recover Wasserstein
GAN-like behavior. As a main result, we can derive an oracle inequality
for the Wasserstein distance between the true data generating distri-
bution and its Vanilla GAN estimate. In particular, this allows us to
transfer key features, such as dimension reduction, known from the
statistical analysis of Wasserstein GANs. We show that the statistical
error of the modified Vanilla GAN depends only on the dimension of
the latent space, independent of the potentially much larger dimension
of the feature space  . Thus Vanilla GANs can avoid the curse of
dimensionality. Such properties are well known from practice, but
cannot be verified by the classical Jensen–Shannon analysis. On the
other hand the derived rate of convergence for the Vanilla GAN is
slower than for Wasserstein GANs which is in line with the empirical
advantage of Wasserstein GANs.

We then consider the most relevant case where the classes  and 
are parameterized by neural networks. Using our previous results, we
derive an oracle inequality that depends on the network approximation
errors for the best possible generator and the optimal Lipschitz dis-
criminator. To bound the approximation error of the discriminator, we
replace the Lipschitz constraint on the networks with a less restrictive
Hölder constraint. Building on Gühring, Kutyniok, and Petersen (2020),
we prove a novel quantitative approximation theorem for Lipschitz
functions using ReLU neural networks with bounded Hölder norm. As
a result we obtain the rate of convergence 𝑛−𝛼∕2𝑑∗ , 𝛼 ∈ (0, 1), with
latent space dimension 𝑑∗ ≥ 2 for sufficiently large classes of networks.
Additionally, our approximation theorem allows for an explicit bound
on the discriminator approximation error for Wasserstein-type GANs,
which achieve the rate 𝑛−𝛼∕𝑑∗ , 𝛼 ∈ (0, 1).

We use a simple illustrative example to assess the practical impli-
cations of our theoretical results. This example allows us to quantify
the rate depending on the number of observations, the dimension
reduction property, and the stabilizing effect of a Lipschitz-constrained
discriminator class.

Related work. The existence and uniqueness of the optimal generator
for Vanilla GANs is shown by Biau, Cadre, Sangnier, and Tanielian
(2020) under the condition that the class  is convex and compact.
They also study the asymptotic properties of Vanilla GANs. Puchkin,
Samsonov, Belomestny, Moulines, and Naumov (2024) have shown a
non-asymptotic rate of convergence in the Jensen–Shannon divergence
for Vanilla GANs with neural networks under the assumption that the
density of P∗ exists and that the generator functions are continuously

differentiable.

2 
In practice, however, the Rectifier Linear Unit activation function
(ReLU activation function) is commonly used (Aggarwal, 2018, p.13).
The resulting neural network generates continuous piecewise linear
functions. Therefore, the convergence rate of Puchkin et al. (2024)
combined with Belomestny, Naumov, Puchkin, and Samsonov (2023)
is not applicable to this class of functions.

The statistical analysis of Wasserstein GANs is much better under-
stood. Biau, Sangnier, and Tanielian (2021) have studied optimization
and asymptotic properties. Liang (2021) has shown error decomposi-
tions with respect to the Kullback–Leibler divergence, the Hellinger dis-
tance and the Wasserstein distance. The case where the unknown distri-
bution lies on a low-dimensional manifold is considered in Schreuder,
Brunel, and Dalalyan (2021) as well as Tang and Yang (2023). The
latter also derive minmax rates in a more general setting using the
Hölder metric. Assuming that the density function of P∗ exists, Liang
2017) has shown a rate of convergence in Wasserstein distance with
eLU activation function with a factor growing exponentially in the
epth of the network. Theoretical results including sampling the latent
istribution in addition to dimension reduction have been derived
y Huang et al. (2022), who have also shown a rate of convergence
n a slightly more general setting (using the Hölder metric) using ReLU
etworks whose Lipschitz constant grows exponentially in the depth.
rate of convergence using the total variation metric and leaky ReLU

etworks has been shown in Liang (2021).
Convergence rates with respect to the Wasserstein distance have

een studied by Chen, Liao, Zha, and Zhao (2020) and Chae (2022).
p to a logarithmic factor, optimal rates in the Hölder metric were
btained by Stéphanovitch, Aamari, and Levrard (2023) using smooth
etworks. In a similar setting, Chakraborty and Bartlett (2024) dis-
ussed several methods for dimension reduction. Recently, Suh and
heng (2024) have reviewed the theoretical advances in Wasserstein
ANs.

Ensuring Lipschitz continuity of the discriminator class is the es-
ential property of Wasserstein GANs. Lipschitz-constrained neural
etworks and their empirical success are subject of ongoing research
(Khromov & Singh, 2024), in context of GANs see Than and Vu
2021)). Implementations of the Lipschitz constrained discriminator
ave
volved from weight clipping (Arjovsky et al., 2017) to penalizing the
bjective function (Asokan & Seelamantula, 2023; Gulrajani, Ahmed,
rjovsky, Dumoulin, & Courville, 2017; Miyato, Kataoka, Koyama,

Yoshida, 2018; Petzka, Fischer, & Lukovnikov, 2018; Wei, Liu,
ang, & Gong, 2018; Zhou et al., 2019), which heuristically leads to

etworks with bounded Lipschitz constants. Farnia and Tse (2018) use
n objective function that combines Wasserstein and Vanilla GANs.

utline. In Section 2 we introduce the Vanilla GAN distance, which
haracterizes the optimization problem (1). In Section 3, we investigate
he relation between the Vanilla GAN distance and the Wasserstein
istance. We show that the distances are compatible to each other while
ot being equivalent. Using this relation, we derive an oracle inequality
or the Vanilla GAN in Section 4, where  is a nonempty compact set
nd  is a set of Lipschitz functions. We show that Vanilla GANs can
void the curse of dimensionality. In Section 5 we consider the situation
here  and  consist of neural networks. Here we relax the Lipschitz

condition to a 𝛼-Hölder condition and prove a quantitative result for
the approximation of a Lipschitz function by a feedforward ReLU
network with bounded Hölder norm. We then prove a convergence
rate for the Vanilla GAN with network generator and discriminator. In
Section 6 we obtain a convergence rate for Wasserstein-type GANs with
network generator and discriminator using our approximation result.
This enables us to compare Vanilla GANs directly to Wasserstein GANs.
In Section 7 we illustrate our theoretical results in a numerical example

based on synthetic data. All proofs are deferred to the Appendix.
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2. The Vanilla GAN distance

Let us first fix some notation. We equip R𝑑 with the 𝓁𝑝-norm |𝑥|𝑝,
≤ 𝑝 ≤ ∞, denote the number of nonzero entries of a 𝑘 × 𝑙 matrix 𝐴,
here 𝑘, 𝑙 ∈ N, by |𝐴|𝓁0 ∶= |{(𝑖, 𝑗)∶𝐴𝑖𝑗 ≠ 0}|, and define the ceiling of
∈ R as ⌈𝑥⌉ ∶= min{𝑘 ∈ Z ∣ 𝑘 ≥ 𝑥}. For ease of notation we abbreviate

or 𝑥 ∈ (0,∞)

𝑥]1;1∕2 ∶= max{𝑥,
√

𝑥}. (3)

For 𝛺 ⊂ R𝑑 and 𝑓 ∶𝛺 → R we define ‖𝑓‖∞,𝛺 ∶= ess sup{|𝑓 (𝑥)| ∶
∈ 𝛺}. We denote the set of bounded Lipschitz functions by

ip(𝐿,𝐵,𝛺) ∶=
{

𝑓 ∶𝛺 → R |

|

|

‖𝑓‖∞,𝛺 ≤ 𝐵,
|𝑓 (𝑥) − 𝑓 (𝑦)|

|𝑥 − 𝑦|𝑝
≤ 𝐿, 𝑥, 𝑦 ∈ 𝛺

}

.

he set of unbounded Lipschitz functions is abbreviated by Lip(𝐿,𝛺) ∶=
ip(𝐿,∞, 𝛺). By Rademacher’s theorem, a Lipschitz function is differ-
ntiable almost everywhere. For 𝛼 ∈ (0, 1] we define the 𝛼-Hölder norm
y

𝑓‖𝛼 (𝛺) ∶= max
{

‖𝑓‖∞, ess sup
𝑥,𝑦∈𝛺

|𝑓 (𝑥) − 𝑓 (𝑦)|
|𝑥 − 𝑦|𝛼𝑝

}

(4)

nd the 𝛼-Hölder ball of functions with Hölder constant less or equal
han 𝛤 > 0 as
𝛼(𝛤 ,𝛺) ∶=

{

𝑓 ∶𝛺 → R |

|

|

‖𝑓‖𝛼 (𝛺) < 𝛤
}

. (5)

In particular, Lip(𝐿,𝐵,𝛺) ⊆ 𝛼(max(𝐿, 2𝐵), 𝛺) for any 𝛼 ∈ (0, 1). We
omit the domain 𝛺 in our notation if 𝛺 = (0, 1)𝑑 .

We observe i.i.d. samples 𝑋1,… , 𝑋𝑛 ∼ P∗ with values in  ∶= (0, 1)𝑑 .
On another space  ∶= (0, 1)𝑑∗ , called the latent space, we choose a
latent distribution U. Unless otherwise specified, 𝑋 ∼ P∗ and 𝑍 ∼ U.
We further assume that P∗ and U have finite first moments. Throughout,
the generator class  is a nonempty set of measurable functions from 
to  . For 𝐺 ∈  the distribution of the random variable 𝐺(𝑍) is denoted
by P𝐺(𝑍).

Typically the discriminator class consists of functions mapping to
R concatenated to a sigmoid function that maps into (0, 1) to account
for the classification task. This is especially the case for standard
classification networks. The most common sigmoid function used for
this purpose is the logistic function 𝑥 ↦ (1 + 𝑒−𝑥)−1, which we fix
throughout. Together with a shift by log 4, we can rewrite the Vanilla
GAN optimization problem (1) as

inf
𝐺∈

𝖵 (P∗,P𝐺(𝑍)) (6)

in terms of the Vanilla GAN distance between probability measures P
and Q on 

𝖵 (P,Q) ∶= sup
𝑊 ∈

E 𝑋∼P
𝑌∼Q

[

− log
( 1 + 𝑒−𝑊 (𝑋)

2

)

− log
( 1 + 𝑒𝑊 (𝑌 )

2

)]

, (7)

where  is a set of measurable functions 𝑊 ∶ → R. As long as 0 ∈  ,
e have that 𝖵 ≥ 0.

To choose the generator �̂�𝑛 as the empirical risk minimizer, the
nknown distribution P∗ in (6) must be replaced by the empirical
istribution P𝑛 based on the observations 𝑋1,… , 𝑋𝑛. In practice, the
xpectation with respect to 𝑍 ∼ U is replaced by an empirical mean too,
hich we omit for the sake of simplicity. Along Huang et al. (2022),

he next and all subsequent results easily extend to the corresponding
etting.

The following error bound in terms of the Vanilla GAN distance
rovides an error decomposition for the empirical risk minimizer of the
anilla GAN.

emma 2.1. Assume that  is chosen such that a minimum exists. Let 
e symmetric, that is, 𝑊 ∈  implies −𝑊 ∈  . For

̂𝑛 ∈ argmin 𝖵 (P𝑛,P𝐺(𝑍)) (8)

𝐺∈

3 
e have that

 (P∗,P�̂�𝑛(𝑍)) ≤ min
𝐺∈

𝖵 (P∗,P𝐺(𝑍))+2 sup
𝑊 ∈Lip(1)◦

1
𝑛

𝑛
∑

𝑖=1

(

𝑊 (𝑋𝑖)−E[𝑊 (𝑋)]
)

. (9)

The first term in (9) is the error due to the approximation capabili-
ties of the class . The second term refers to the stochastic error due to
the amount of training data. As  is symmetric, the stochastic error
is non-negative. Both error terms depend on the discriminator class
 . Large discriminator classes lead to finer discrimination between
different probability distributions and thus to a larger approximation
error term. Similarly, the stochastic error term will increase with the
size of  . The cost of small classes  is a less informative loss function
on the left side of (9).

If  is the set of all measurable functions, the analysis by Good-
ellow et al. (2014, Theorem 1) shows that the Vanilla GAN distance
s equivalent to the Jensen–Shannon distance. Arjovsky and Bottou
2017) have elaborated on the theoretical and practical disadvantages
f this case. Similar to the Total Variation distance or the Hellinger
istance, the Jensen–Shannon divergence is not compatible with high-
imensional settings because it cannot distinguish between different
ingular measures. Therefore, we need a weaker distance and thus
estrict  .

The key insight of Wasserstein GANs (2) is that this particular draw-
ack of the Jensen–Shannon distance can be solved by the Wasserstein
istance. The latter is a metric on the space of probability distribu-
ions with finite first moment and meterizes weak convergence in this
pace (Villani, 2008, Theorem 6.9). Let P and Q be two probability

distributions on the same measurable space (𝛺,), the Wasserstein-1
distance is defined as

𝖶1(P,Q) ∶= sup
𝑊 ∈Lip(1)
𝑊 (0)=0

E 𝑋∼P
𝑌∼Q

[𝑊 (𝑋)−𝑊 (𝑌 )] = sup
𝑊 ∈Lip(1)

E 𝑋∼P
𝑌∼Q

[𝑊 (𝑋)−𝑊 (𝑌 )]. (10)

Bounds for weaker metrics, such as the Kolmogorov or Levy metric,
can be easily derived from the bounds in the Wasserstein metric under
weak conditions, see e.g. Gibbs and Su (2002).

Therefore, we choose  = Lip(𝐿) for some 𝐿 ≥ 1 in Lemma 2.1. In
this case the following result shows that the existence of an empirical
risk minimizer is guaranteed as soon as  is compact.

Lemma 2.2. Assume  is compact with respect to the supremum norm. The
map 𝑇 ∶  → R≥0,
𝑇 (𝐺) ∶= 𝑉Lip(𝐿)(P𝑛,P𝐺(𝑧)) is continuous and argmin


𝑉Lip(𝐿)(P∗,P𝐺(𝑧)) is

nonempty.

Hence, we throughout assume the following:

Assumption 1.  is compact with respect to the supremum norm.

In the context of neural networks the compactness assumption is
satisfied for all practically relevant implementations. Furthermore, it
should be noted that the aforementioned assumption is only required
for the use of the minimizing argument.

3. From Vanilla to Wasserstein and back

Our subsequent analysis builds on the following equivalence result
between the Vanilla GAN distance and the Wasserstein distance with
an additional 𝐿2-penalty term on the discriminator.

Theorem 3.1. For 𝐿 > 2 and 𝐵 > 0 we have for probability measures P
and Q on 

sup
𝑊 ∈Lip(1,𝐵′)

𝑊 (⋅)>− log(2−2∕𝐿)

{

E 𝑋∼P
𝑌∼Q

[𝑊 (𝑋) −𝑊 (𝑌 )] −
𝐿(𝐿 − 1)

2
E𝑋∼Q[𝑊 (𝑋)2]

}

≤ 𝖵Lip(𝐿,𝐵)(P,Q) ≤ sup
𝑊 ∈Lip(𝐿,𝐵)

{

E 𝑋∼P
𝑌∼Q

[𝑊 (𝑋) −𝑊 (𝑌 )]

𝑊 (⋅)>− log(2)
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− 𝑒𝐵

(2𝑒𝐵 − 1)2
E𝑋∼Q[𝑊 (𝑋)2]

}

,

where 𝐵′ = log((1 + 𝑒𝐵)∕2).

Theorem 3.1 reveals that the Vanilla GAN distance is indeed com-
patible with the Wasserstein distance and will allow us to prove rates
of convergence of the Vanilla GAN with respect to the Wasserstein
distance. In doing so, we need to investigate the consequences of
the penalty term. An upper bound without the penalty term and
independent of 𝐵 can be shown as in the proof of Theorem 3.2. For
the lower bound, a similar improvement cannot be expected in general
as indicated in Example 3.3. However, the restriction to Lip(1, 𝐵′) has
far less severe consequences than the corresponding restriction in the
upper bound.

We can deduce from Theorem 3.1 that the Vanilla GAN distance
is bounded from above and below by the Wasserstein distance or the
squared Wasserstein distance, respectively.

Theorem 3.2. Let 𝐿 > 2 and 𝐵 ∈ [1,∞]. For probability measures P and
Q on  we have

min
(

𝑐1𝖶1(P,Q), 𝑐2𝖶1(P,Q)2
)

≤ 𝖵Lip(𝐿,𝐵)(P,Q) ≤ 𝐿𝖶1(P,Q),

where 𝑐1 =
1
2
log(2−2∕𝐿)

𝑑1∕𝑝
and 𝑐2 =

1
2𝑑2∕𝑝

1
𝐿(𝐿−1) , setting 1∕𝑝 = 0 if 𝑝 = ∞.

The assumption 𝐿 > 2 is not very restrictive. In practically relevant
cases, such as neural network discriminators, the Lipschitz constant
is typically quite large. A higher Lipschitz constraint on the discrim-
inator will subsequently result in a less stringent constraint on the
neural network. However, an arbitrarily large Lipschitz constant is also
undesirable, as the upper bound grows linearly in 𝐿.

More importantly, we observe a gap between 𝖶1(P,Q)2 in the lower
bound and 𝖶1(P,Q) in upper bound when 𝖶1(P,Q) < 1 which is a con-
sequence of the penalty term in Theorem 3.1. The following example
indicates that this loss is unavoidable, by restricting the discriminator
class to a subset of Lip(𝐿).

Example 3.3. For 𝜀, 𝛾 > 0, 𝛾 + 𝜀 < 1 let P = 1
2 (𝛿𝛾 + 𝛿𝛾+𝜀) and

= 1
2 (𝛿0 + 𝛿𝜀). The Wasserstein distance is then given by

𝖶1(P,Q) = 𝛾.

We consider the Vanilla GAN distance using 𝐿-Lipschitz affine linear
functions as discriminator, 𝖵𝑎⋅+𝑏(P,Q), with 𝑎, 𝑏 ∈ R and |𝑎| ≤ 𝐿. Note
that the class of affine linear functions can be represented by one layer
neural networks (for a definition see Section 5). The optimal 𝑏 can
be calculated explicitly, the optimal 𝑎 can be determined numerically.
Using the optimal slope 𝑎 and 𝑏 we obtain for 𝛾 < 𝜀, 𝜀 = 1

4 and 𝑎 > 16

𝖶1(P,Q)2

2
≤ 𝖵𝑎⋅+𝑏(P,Q) ≤ 𝑎 ⋅𝖶1(P,Q)2.

If 𝛾 ≥ 𝜀, then the optimal 𝑎 is 𝑎 = 𝐿 and

log(2) ⋅𝖶1(P,Q) ≤ 𝖵𝑎⋅+𝑏(P,Q) ≤ 𝑎 ⋅𝖶1(P,Q).

See Appendix A.7 for more details on these calculations.

Wasserstein GANs, where the generator is chosen as the empir-
ical risk minimizer of the Wasserstein distance (10), achieve opti-
mal convergence rates (up to logarithmic factors) with respect to the
Wasserstein distance as proved by Stéphanovitch et al. (2023), see
also Section 6. In view of Theorem 3.2 we cannot hope that Vanilla
GANs achieve the same rate even if we use a Lipschitz discriminator
class. This is in line with the better performance of Wasserstein GANs
in practice. However, Theorem 3.2 allows us to study the behavior
of Vanilla GANs in settings where the dimension of the latent space
is smaller than the dimension of the sample space, a setting that is
excluded in all previous works on convergence rates for Vanilla GANs.
 t

4 
4. Oracle inequality for Vanilla GANs in Wasserstein distance

Our aim is to bound the Wasserstein distance between the unknown
distribution P∗ and the generated distribution P�̂�𝑛(𝑍) using the em-
pirical risk minimizer �̂�𝑛 of the Vanilla GAN. The following oracle
inequality shows that imposing a Lipschitz constraint on the discrimi-
nator class does circumvent the theoretical limitations of Vanilla GANs
which is caused by the Jensen–Shannon distance. Recall notation (3).

Theorem 4.1. Let 𝐿 > 2 and 𝐵 ∈ [1,∞]. For the empirical risk minimizer
�̂�𝑛 from (8) with  = Lip(𝐿,𝐵) we have

𝖶1(P∗,P�̂�𝑛(𝑍)) ≤ 𝑐
[

inf
𝐺∈

𝖶1(P∗,P𝐺(𝑍))
]1;1∕2 + (1 + 𝑐)[𝖶1(P𝑛,P∗)]1;1∕2, (11)

for some constant 𝑐 > 0 depending on 𝑑, 𝑝 and 𝐿.

Note that the discriminator class Lip(𝐿,𝐵) admits no finite dimen-
ional parameterization and is therefore not feasible in practice. We will
eturn to this issue in Section 5. The terms in (11) can be interpreted
nalogously to the interpretation of the bound in Lemma 2.1, but
ere we have an oracle inequality with respect to the Wasserstein
istance. The first term is the approximation error. It is large when
is not flexible enough to provide a good approximation of P∗ by
𝐺(𝑍) for some 𝐺 ∈ . The second term refers to the stochastic error.
ith a growing number of observations the empirical measure P𝑛

onverges to P∗ in Wasserstein distance, see Dudley (1969), and thus
he stochastic error converges to zero. Together with the bounds on
1(P𝑛,P∗) by Schreuder (2020) we conclude the following:

orollary 4.2. Let 𝐿 > 2, 𝐵 ∈ [1,∞]. The empirical risk minimizer �̂�𝑛
rom (8) with  = Lip(𝐿,𝐵) satisfies for some constant 𝑐 > 0 depending
n 𝑑, 𝑝 and 𝐿 that

[𝖶1(P∗,P�̂�𝑛(𝑍))] ≤ inf
𝐺∗ ∶→

{

𝑐[𝖶1(P∗,P𝐺∗(𝑍))]1;1∕2 + 𝑐[ inf
𝐺∈

‖𝐺 − 𝐺∗
‖∞]1;1∕2

}

+ 𝑐

⎧

⎪

⎨

⎪

⎩

𝑛−1∕2𝑑 , 𝑑 > 2,

𝑛−1∕4(log 𝑛)1∕2, 𝑑 = 2,

𝑛−1∕4, 𝑑 = 1,

here the infimum is taken over all Borel measurable functions 𝐺∗ ∶ →  .

If there is some 𝐺∗ such that P∗ = P𝐺∗(𝑍), which is commonly
ssumed in the GAN literature, see e.g. Stéphanovitch et al. (2023),
he first term vanishes and the approximation error is bounded by
nf𝐺∈[‖𝐺 − 𝐺∗

‖

1;1∕2
∞ ]. In the bound of the stochastic error we ob-

erve the curse of dimensionality: For large dimensions 𝑑 the rate of
onvergence 𝑛−1∕2𝑑 deteriorates.

To allow for a dimension reduction setting, we adopt the miss-
pecified setting from Vardanyan, Minasyan, Hunanyan, Galstyan, and
alalyan (2023, Theorem 1). In this scenario we can conclude statistical
uarantees for Vanilla GANs that are comparable to the results obtained
or Wasserstein GANs by Schreuder et al. (2021, Theorem 2). In view
f Theorem 3.1 we expect a slower rate of convergence compared to
asserstein GANs.

heorem 4.3. Let 𝐿 > 2, 𝐵 ∈ [1,∞] and 𝑀 > 0. The empirical risk
inimizer �̂�𝑛 from (8) with  = Lip(𝐿,𝐵) satisfies

[𝖶1(P∗,P�̂�𝑛(𝑍))] ≤ inf
𝐺∗∈Lip(𝑀,)

{

𝑐[𝖶1(P∗,P𝐺∗(𝑍))]1;1∕2 + 𝑐[ inf
𝐺∈

‖𝐺 − 𝐺∗
‖∞]1;1∕2

}

+ 𝑐

⎧

⎪

⎨

⎪

⎩

𝑛−1∕2𝑑∗ , 𝑑∗ > 2,

𝑛−1∕4(log 𝑛)1∕2, 𝑑∗ = 2,

𝑛−1∕4, 𝑑∗ = 1,

or some constant 𝑐 depending 𝑑∗, 𝑑, 𝑝, 𝐿 and 𝑀 .

The Wasserstein distance 𝖶1(P𝐺
∗(𝑍),P∗) now includes an error due

o the dimension reduction while the stochastic error is determined by
he potentially much smaller dimension 𝑑∗ < 𝑑 of the latent space.
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Compared to Corollary 4.2, the only price for this improvement is the
additional Lipschitz restriction on 𝐺∗. We observe a trade-off in the
hoice of 𝑑∗, since large latent dimensions reduce the approximation
rror for P∗, but increase the stochastic error term. Additionally, there

is a trade-off in 𝑀 . A larger constant 𝑀 results in a smaller value of
𝑊1(P∗,P𝐺∗(𝑍)), but increases the constant 𝑐. If the unknown distribution
∗ is supported on a lower dimensional subspace and there exists a
∗ ∈ Lip(𝑀,) such that P𝐺∗(𝑍) = P∗, then the rate of convergence is

olely determined by the dimension 𝑑∗ of . This is true for the smallest
ossible 𝑑∗ for which a perfect 𝐺∗ exists, as well as any 𝑑∗∗ larger than
∗.

In many applications, the smallest possible 𝑑∗ is unknown. Theo-
em 4.3 covers both over- and underestimation of the true dimension
f the lower dimensional subspace. If the choice of 𝑑∗ is too small, then
1(P∗,P𝐺∗(𝑍)) might not converge to 0, but the stochastic error still

onverges with the smaller rate 𝑑∗. If 𝑑∗ is selected to be larger than
he dimension of the lower dimensional subspace, then there could be
𝐺∗ ∈ Lip(𝑀,) such that 𝖶1(P∗,P𝐺∗(𝑍)) = 0, but the stochastic rates

onverges only with rate 𝑑∗. In the special case that a function 𝐺∗ ∈
Lip(𝑀,) exists such that 𝖶1(P∗,P𝐺∗(𝑍)) = 0 the rate 𝑛−1∕2𝑑∗ is slower
o the rate 𝑛−1∕𝑑∗ obtained for the Wasserstein GAN by Schreuder et al.
2021). This is in line with Theorem 3.2 and Example 3.3.

However, Theorem 4.3 reveals why Vanilla GANs do perform well
n high dimensions in the setting of an unknown distribution on a
ower dimensional manifold. This phenomenon could not be explained
n previous work on Vanilla GANs. Puchkin et al. (2024) and Biau et al.
2020) both obtain rates in the Jensen–Shannon distance.

. Vanilla GANs with network discriminator

In practice, both  and  are sets of neural networks. Our conditions
n the generator class  are compactness and good approximation
roperties of some 𝐺∗ which is chosen such that P𝐺∗(𝑍) mimics P∗. Since

neural networks have a finite number of weights, and the absolute value
of those weights is typically bounded, the compactness assumption is
usually satisfied and neural networks enjoy excellent approximation
properties, cf. DeVore, Hanin, and Petrova (2021).

The situation is more challenging for the discriminator class. So
far,  was chosen as the set of Lipschitz functions concatenated to
the logistic function. The Lipschitz property is crucial for proof of
Theorem 4.1 and thus for all subsequent results.

Controlling the Lipschitz constant while preserving the approxima-
tion properties is an area of ongoing research and is far from trivial.
Without further restrictions on the class of feedforward networks, the
Lipschitz constant would be a term that depends exponentially on the
size of the network, see Liang (2017, Theorem 3.2). Bounding the
Lipschitz constant of a neural network is a problem that arises naturally
in the implementation of Wasserstein GANs. Arjovsky et al. (2017) use
weight clipping to ensure Lipschitz continuity. Later, other approaches
such as gradient penalization (see Gulrajani et al. (2017), which was
further developed by Wei et al. (2018), Zhou et al. (2019)), Lipschitz
penalization (Petzka et al., 2018), or spectral penalization (Miyato
et al., 2018) were introduced and have achieved improved performance
in practice.

To extend the theory from the previous section to neural network
discriminator classes, we first generalize Theorem 4.1 from  =
Lip(𝐿,𝐵) to subsets  ⊆ Lip(𝐿,𝐵). As a result there is an additional
approximation error term that accounts for the smaller discriminator
class.

Theorem 5.1. Let 𝐿 > 2, 𝐵 ∈ [1,∞]. The empirical risk minimizer �̂�𝑛
from (8) with  ⊆ Lip(𝐿,𝐵) satisfies

𝖶1(P∗,P�̂�𝑛(𝑍)) ≤ 𝑐
[

inf
𝐺∈

𝖶1(P∗,P𝐺(𝑍))
]1;1∕2 + 𝑐

[

inf
𝑊 ′∈

sup
𝑊 ∈Lip(𝐿,𝐵)

‖𝑊 −𝑊 ′
‖∞

]1;1∕2

+ 𝑐
[

𝖶1(P𝑛,P∗)
]1;1∕2,
 t

5 
for some constant 𝑐 > 0 depending on 𝑑, 𝑝 and 𝐿.

The approximation error of the discriminator depends on the supre-
mum norm bound 𝐵 of the functions in  . While the statement remains
true for 𝐵 = ∞, when approximating the set Lip(𝐿,𝐵), this bound will
be essential. To apply this result, we must ensure that the Lipschitz
constant of a set of neural networks  is uniformly bounded by
some constant 𝐿. Adding penalties to the objective function of the
optimization problem does not guarantee a fixed bound on the Lipschitz
constant. Approaches such as bounds on the spectral or row-sum norm
of matrices in feedforward neural networks ensure a bound on the
Lipschitz constant, but lead to a loss of expressiveness when considering
ReLU networks, even in very simple cases such as the absolute value,
see Huster, Chiang, and Chadha (2019) and Anil, Lucas, and Grosse
(2019). On the other hand, Eckstein (2020) has shown that one-layer
𝐿 Lipschitz networks are dense (with respect to the uniform norm) in
the set of all 𝐿 Lipschitz functions on bounded domains. While this
implies that the discriminant approximation error converges to zero for
growing network architectures, the density statement does not lead to
a rate of convergence that depends on the size of the network.

Anil et al. (2019), motivated by Chernodub and Nowicki (2016),
have introduced an adapted activation function, Group Sort, which
leads to significantly improved approximation properties of the result-
ing networks. They show that networks using the Group Sort activation
function are dense in the set of Lipschitz functions, but there is no
quantitative approximation result. A discussion of the use of Group Sort
in the context of Wasserstein GANs can be found in Biau et al. (2021).

To overcome this problem, we would like to approximate not only
the optimal discriminating Lipschitz function from the Wasserstein op-
timization problem in the uniform norm, but also its (weak) derivative.
This would allow us to keep the Lipschitz norm of the approximat-
ing neural network bounded. For networks with regular activation
functions (Belomestny et al., 2023) have studied the simultaneous
approximation of smooth functions and their derivatives. Gühring et al.
(2020) have focused on ReLU networks and have derived quantitative
approximation bounds in higher order Hölder and Sobolev spaces.
As an intrinsic insight from approximation theory, the regularity of
the function being approximated must exceed the regularity order of
the norm used to derive approximation bounds. Therefore, we cannot
expect to obtain quantitative approximation results for ReLU networks
in Lipschitz norm without assuming the continuous differentiability of
the approximated function.

Unfortunately, the maximizing function of the Wasserstein opti-
mization problem is in general just Lipschitz continuous. Since we
cannot increase the regularity of the target function, we instead relax
the Lipschitz assumption of the discriminator in Theorem 5.2 to 𝛼-
Hölder continuity for 𝛼 ∈ (0, 1). This generalization in the context of
Wasserstein GANs has recently been discussed by Stéphanovitch et al.
(2023). Recall the definition of the Hölder ball from (5).

Theorem 5.2. Let 𝐿 > 2, 𝐵 ∈ [1,∞), 𝛤 > max(𝐿, 2𝐵) and 𝑀 > 0. The
empirical risk minimizer �̂�𝑛 from (8) with  ⊆ 𝛼(𝛤 ) satisfies

E[𝖶1(P∗,P�̂�𝑛(𝑍))] ≤ inf
𝐺∗∈Lip(𝑀,)

{

𝑐
[

inf
𝐺∈

‖𝐺∗ − 𝐺‖𝛼∞
]1;1∕2 + 𝑐

[

𝖶1(P∗,P𝐺∗(𝑍))𝛼
]1;1∕2

}

+ 𝑐
[

inf
𝑊 ∈

sup
𝑊 ∗∈Lip(𝐿,𝐵)

‖𝑊 −𝑊 ∗
‖∞

]1;1∕2

+ 𝑐

⎧

⎪

⎨

⎪

⎩

𝑛−𝛼∕2𝑑∗ , 2𝛼 < 𝑑∗,

𝑛−1∕4(log 𝑛)1∕2, 2𝛼 = 𝑑∗,

𝑛−1∕4, 2𝛼 > 𝑑∗,

or some constant 𝑐 depending on 𝑑∗, 𝑑, 𝑝, 𝐿,𝑀 and 𝛤 .

The lower bound on the Hölder constant of the discriminator class
is not overly restrictive when employing neural networks for this

unction class. Since 𝑐 is increasing in 𝛤 , it is advantageous to control

he value of 𝛤 .
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It remains to show that there are ReLU networks that satisfy the
assumptions of Theorem 5.2. To this end, we build on and extend the
approximation results by Gühring et al. (2020).

To fix the notation we give a general definition of feedforward
neural networks. Let 𝑑,𝐾,𝑁1,… , 𝑁𝐾 ∈ N. A function 𝛷∶R𝑑 → R is
a neural network with 𝐾 layers and 𝑁1 +⋯ +𝑁𝐾 neurons if it results
for an argument 𝑥 ∈ R𝑑 from the following scheme:

𝑥0 ∶= 𝑥,

𝑥𝑘 ∶= 𝜎
(

𝐴𝑘𝑥𝑘−1 + 𝑏𝑘
)

, for 𝑘 = 1,… , 𝐾 − 1,

𝛷(𝑥) = 𝑥𝐾 ∶= 𝐴𝐾𝑥𝐾−1 + 𝑏𝐾 ,

(12)

where for 𝑘 ∈ {1,… , 𝐾}, 𝐴𝑘 ∈ R𝑁𝑘×𝑁𝑘−1 and 𝑏𝑘 ∈ R𝑁𝑘 . 𝜎 ∶R → R
is an element-wise applied arbitrary activation function. The number
of nonzero weights of all 𝐴𝑘, 𝑏𝑘 is given by ∑𝐾

𝑗=1

(

|𝐴𝑗 |𝓁0 + |𝑏𝑗 |𝓁0
)

. We
focus on the ReLU activation function 𝜎(𝑥) = max(0, 𝑥).

Theorem 5.3. Let 𝐿,𝐵 > 0, and 0 < 𝛼 < 1. Then there are constants
𝐶 ′, 𝐶 ′′, 𝐶 ′′′ > 0 depending on 𝑑, 𝐿, 𝛼 and 𝐵 with the following properties:
For any 𝜀 ∈ (0, 1∕2) and any 𝑓 ∈ Lip(𝐿,𝐵), there is a ReLU neural network
𝛷𝜀 with no more than ⌈𝐶 ′ log2(𝜀

− 1
1−𝛼 )⌉ layers, ⌈𝐶 ′′𝜀−

𝑑
1−𝛼 log22(𝜀

− 1
1−𝛼 )⌉

onzero weights and ⌈𝐶 ′′′𝜀−
𝑑

1−𝛼 (log22(𝜀
− 1

1−𝛼 ) ∨ log2(𝜀
− 1

1−𝛼 ))⌉ neurons such
hat

𝛷𝜀 − 𝑓
‖

‖

‖∞
≤ 𝜀 and 𝛷𝜀 ∈ 𝛼(max(𝐿, 2𝐵) + 𝜀

)

.

Since there are many different reasons why controlling the Hölder
onstant of neural networks is interesting (with stability probably being
he most prominent one), Theorem 5.3 is of interest on its own. Com-
ining Theorems 5.2 and 5.3 with a standard approximation result for
he generator approximation error, such as Yarotsky (2017, Theorem
), leads to a rate of convergence. The networks in  approximating
he function 𝐺∗ ∈ Lip(𝑀,) are only required to be measurable without
ny additional smoothness assumption.

orollary 5.4. For 0 < 𝛼 < 1, 𝛤 > 5, 𝑀 > 0, 𝑑∗ > 2𝛼 and 𝑛 > 2
2𝑑∗
𝛼

choose  as the set of ReLU networks with at most ⌈𝑐 ⋅ log(𝑛)⌉ layers,
⌈𝑐 ⋅𝑛 log(𝑛)⌉ nonzero weights and ⌈𝑐 ⋅𝑛 log(𝑛)⌉ neurons and  ′ as the set of
ReLU networks with at most ⌈𝑐 ⋅ log(𝑛)⌉ layers, ⌈𝑐 ⋅ 𝑛

𝛼
2(1−𝛼) log2(𝑛)⌉ nonzero

weights and ⌈𝑐 ⋅ 𝑛
𝛼

2(1−𝛼) log2(𝑛)⌉ neurons, where 𝑐 is a constant depending
on 𝑑, 𝑑∗, 𝛤 ,𝑀 and 𝛼. Then the empirical risk minimizer �̂�𝑛 from (8) with
 =  ′ ∩𝛼(𝛤 ) satisfies

E
[

W1

(

P∗,P�̂�𝑛(𝑍)
)]

≤ 𝑐 ⋅ 𝑛−𝛼∕2𝑑
∗
+ 𝑐

[

inf
𝐺∗∈Lip(𝑀,)

𝖶1(P∗,P𝐺∗(𝑍))𝛼
]1;1∕2.

From Theorem 5.3 we know that the set  ′ ∩ 𝛼(𝛤 ) of ReLU
networks of finite width and depth is nonempty. In practice, this cor-
responds to a discriminator network with a controlled Hölder constant.
On a bounded domain, any Lipschitz function is a Hölder function.
Corollary 5.4 shows that Vanilla GANs with a Hölder regular discrim-
inator class are theoretically advantageous. The Hölder parameter 𝛼
can be chosen arbitrarily close to one. On the one hand this reveals
why a Lipschitz regularization as implemented for Wasserstein GANs
also improves the Vanilla GAN. An empirical confirmation can be found
in Zhou et al. (2019) and Section 7. On the other hand the corollary
then requires more neurons in the discriminator than in the generator
class which coincides with common practice.

The width of the generator networks in Corollary 5.4 can be im-
proved by replacing 𝐺∗ ∈ Lip(𝑀,) by with 𝐺∗ ∈ C𝑛−1(), 𝑛 ∈ N,
whose (𝑛 − 1)-th derivative is Lipschitz continuous with Lipschitz con-
stant 𝑀 . Once more, this results in a trade-off, as

[

𝖶1(P∗,P𝐺∗(𝑍))𝛼
]1;1∕2

ncreases when 𝐺∗ is selected from a smaller set of functions.

. Wasserstein GAN

The same analysis can be applied to Wasserstein-type GANs. The

onstrained on the Hölder constant can be weakened, as we do not need

6 
heorem 3.2. Note that this does not impact the rate, but the constant.
efine the Wasserstein-type distance with discriminator class  as

 (P,Q) = sup
𝑊 ∈

E 𝑋∼P
𝑌∼Q

[𝑊 (𝑋) −𝑊 (𝑌 )].

he following theorem shows that by using Hölder continuous ReLU
etworks as the discriminator class, Wasserstein-type GANs can avoid
he curse of dimensionality. Furthermore, this avoids the difficulties
rising from the Lipschitz assumption of the neural network, as pointed
ut by Huang et al. (2022).

heorem 6.1. For 0 < 𝛼 < 1, 𝛤 > 1,𝑀 > 0 and 𝑑 > 2𝛼 and 𝑛 > 2
𝑑
𝛼

choose  as the set of ReLU networks with at most ⌈𝑐 ⋅ log(𝑛)⌉ layers,
⌈𝑐 ⋅𝑛 log(𝑛)⌉ nonzero weights and ⌈𝑐 ⋅𝑛 log(𝑛)⌉ neurons and  ′ as the set of
ReLU networks with at most ⌈𝑐 ⋅ log(𝑛)⌉ layers, ⌈𝑐 ⋅ 𝑛

𝛼
(1−𝛼) log2(𝑛)⌉ nonzero

eights and ⌈𝑐 ⋅ 𝑛
𝛼

(1−𝛼) log2(𝑛)⌉ neurons, where 𝑐 is a constant depending on
𝑑, 𝑑∗, 𝛤 ,𝑀 and 𝛼. The empirical risk minimizer with  =  ′ ∩𝛼(𝛤 )

�̂�𝑛 ∈ argmin
𝐺∈

𝖶 (P𝑛,P𝐺(𝑍))

satisfies

E[𝖶1(P∗,P�̂�𝑛(𝑍))] ≤ 𝑐 ⋅ 𝑛−
𝛼
𝑑∗ + inf

𝐺∗∈Lip(𝑀,)
𝖶1(P∗,P𝐺∗(𝑍)).

Compared to Corollary 5.4 the rate improves to 𝑛−𝛼∕𝑑∗ for any 𝛼 < 1.
The number of observations necessary for the theorem to hold, the size
of the discriminator network and the lower bound for 𝛤 decrease. Note
that 𝛤 does not effect the rate, but the constants. In case there exists
a 𝐺∗ such that 𝖶1(P∗,P𝐺∗(𝑍)) = 0, this upper bound coincides with the
lower bound in Tang and Yang (2023, Theorem 1) up to an arbitrary
small polynomial factor.

Our rate does not depend exponentially on the number of layers
like the results of Liang (2017), Huang et al. (2022) and we use non-
smooth simple ReLU networks compared to smooth ReQU networks
in Stéphanovitch et al. (2023) or group sort networks in Biau et al.
(2021).

7. Numerical illustration

The results in Sections 5 and 6 were obtained under the assumption
that the discriminator class consists of Lipschitz networks. In the con-
text of image generation, these findings align with the results of Zhou
et al. (2019), Miyato et al. (2018), Kodali, Abernethy, Hays, and Kira
(2017), and Fedus et al. (2017). Furthermore, Fedus et al. (2017)
demonstrated in a two-dimensional experiment that a Vanilla GAN with
a gradient penalty (and, consequently, a lower Lipschitz constant) can
be effective in scenarios where the measures P∗ and P�̂�(𝑍) are singular.

This section presents a transparent and accessible example that
onfirms our theoretical findings and especially demonstrates how
mposing a Lipschitz constant on the discriminator stabilizes the Vanilla
AN. Additionally, it demonstrates the capacity of the Vanilla GAN

o detect a lower dimensional manifold. In order to monitor rates
f convergence, it is necessary to at least approximately evaluate
1(P∗,P�̂�𝑛(𝑍)). Therefore, we study the numerical performance of the
anilla GAN in a simulation setting, where the true data distribution is
nown by construction.

In this work, the Wasserstein distance is employed as the metric
or measuring the rate of convergence. In practice, the Wasserstein
istance is only computable in the one-dimensional case. To investigate
ultivariate distributions, we approximated the Wasserstein distance

y averaging the Wasserstein distance on the marginals.
In order to model the distribution P∗ of a lower dimensional mani-

old, we employed a one-dimensional uniform distribution on the graph
f the function 𝑥 ↦ sin(4𝜋𝑥) on the diagonal of the two-dimensional
nit cube, resulting in a three-dimensional distribution. For the latent
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Fig. 1. Training of Vanilla GAN with weight clip using 100 observations (first row) or 1000 observations (second row). Red dots show 1000 generated samples, green dots show
the observations used for the training. The blue line is the one-dimensional manifold.
distribution, we used the one-dimensional normal distribution. Conse-
quently, the dimensions of the lower dimensional manifold and the
latent space are identical.

For the discriminator, we used a neural network with four layers
of width 128 concatenated to a sigmoid function. For the generator,
we used a neural network with three layers of width 64. In order to
preserve as much alignment as possible with the theoretical result, we
used plain ReLU activations. Each training consisted of 30000 training
iterations. We used the Adam optimizer (Kingma & Ba, 2014) with
parameters 𝛽1 = 0.9 and 𝛽2 = 0.999, and a learning rate of 𝛾 = 0.0005.
When the number of observations exceeded 512, we used minibatches
of that size in each iteration. We updated generator and discriminator
alternating.

Three snapshots of the training of the Vanilla GAN for samples sizes
𝑛 = 100 and 𝑛 = 1000 are given in Fig. 1, respectively. The difference
between Figs. 1(c) and 1(f) is solely due to the number of observations.
The observations in Figs. 1(a) to 1(c) cover the manifold to a lesser
extent than the observations in Figs. 1(d) to 1(f). This corresponds to a
larger stochastic error.

To maintain the Lipschitz constant within a controllable range, we
implemented the simple weight clipping mechanism of Arjovsky et al.
(2017), limiting each weight to a value of 0.5. It is important to note
that the network used in the unclipped case is also Lipschitz continuous,
however, we do not have control over this Lipschitz constant. Given the
width and depth parameters used in this study, it is evident that the
Lipschitz constant of the clipped network remains relatively high and
is considerably distinct from the theoretical value typically employed
in Wasserstein GANs. However, a smaller Lipschitz constant requires
an adjustment to the learning rate. Otherwise the weights are likely to
remain at their maximum absolute value. This affects the experiment
in several other ways. To ensure a fair and accurate comparison be-
tween the clipped and unclipped scenarios, we kept the learning rate
consistent.
7 
The results are summarized in Fig. 2. As predicted by our theory,
the averaged marginal Wasserstein distance between the generated dis-
tribution and the true data distribution decays approximately as 𝑛−1∕2
for 𝑛 ∈ {10, 100, 1000}. While we see a clear improvement with 10,000
observations, the additional gain is limited by the optimization error,
since the manifold is already densely covered for 1000 observations.

It is apparent that controlling the Lipschitz constant overall stabi-
lizes the training process, resulting in less variability in the results.
In certain cases, the GAN without weight clipping can achieve the
same level of effectiveness. This does not negate the outcome. Since
the discriminator without clipped weights is still Lipschitz continuous
(with a large Lipschitz constant), the theoretical limitations of Vanilla
GANs without restricted discriminator classes do not directly translate
to practice. This, combined with the finite nature of the implementa-
tions, ultimately resulted in the empirical success of these models. The
variability between different simulation runs is described by the first to
the third quartile in Fig. 2 which again confirms a more stable behavior
of the clipped algorithm.

Fig. 3 demonstrates the high degree of precision with which the
generated samples concentrate on the low-dimensional support of the
true data distribution. Our experiments show that this concentration
holds true across all sample sizes and can be observed in both the
clipped and unclipped case. However, a high concentration does not
necessarily indicate that the generated distribution is an accurate im-
itation of the unknown distribution with respect to the Wasserstein
distance. Consequently, Fig. 3 is only informative in conjunction with
Fig. 2.

Additionally, we investigated the use of a space U of the same
dimension as the ambient space. Our observations indicated that the
Vanilla GAN is still capable of identifying the lower dimensional sub-

space with reasonable efficacy.
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Fig. 2. Marginal 𝖶1 distance depending on number of observations. Thick line shows the average over 50 independent runs, ribbons show the first to third quartile.
Fig. 3. Percentage of generated samples with euclidean distance to manifold greater than 𝜀 using 1000 observations and a discriminator with 0.5 clip. Transparent lines show the
individual runs, thick line shows the average over 50 runs.
t
d
d
s
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8. Discussion and limitations

Our analysis demonstrates that GANs originally built on too sensi-
tive distribution distances, such as the Jensen–Shannon distance, can
be improved by a Lipschitz constraint in the discriminator class. This
insight might also be applicable to other GANs, e.g. 𝑓 -GANs of Nowozin
et al. (2016), which rely on a divergence that cannot discriminate
between different singular distributions and thus is not suitable for a
dimension reduction setting. Overall, we conclude that the choice of
the discriminator class is much more important for the data generation
capabilities than the choice of the loss function, which is typically
dictated by some distance. Moreover, our analysis of the discrimina-
tor approximation error is not limited to Vanilla GANs, but is also
applicable to optimal transport based GANs as demonstrated for the
Wasserstein GAN.

There are several potential avenues for further development of the
results presented in this paper. In particular, these include the above-
mentioned potential implications for other types of GANs. While our
analysis was limited to feedforward ReLU networks, one advancement
in neural network research is the use of more sophisticated network
architectures whose statistical analysis is not yet settled. In the context
 a

8 
of Wasserstein GANs, see for example Radford, Metz, and Chintala
(2015).

Furthermore, the inclusion of a bound on the Lipschitz constant
(and not only the Hölder constant) would enable a direct application
of Theorem 5.1, thereby eliminating the need to include the parameter
𝛼 and thus improving the rates. Additionally, it would be interesting,
whether there are conditions that allow for a faster rate of conver-
gence for the Vanilla GAN in some cases (excluding scenarios as in
Example 3.3).

The experiments also demonstrated that the GAN is capable of
detecting data from a lower dimensional manifold if the latent space
is of the same dimension as the ambient space. The proof of The-
orem 4.3 is contingent upon the dimension of the latent space. If
the dimension of the latent space is chosen to be too small, then
inf𝐺∗∈Lip(𝑀,) 𝖶1(P∗,P𝐺∗(𝑍)) will be large. If the dimension of the la-
ent space is chosen too large, inf𝐺∗∈Lip(𝑀,) 𝖶1(P∗,P𝐺∗(𝑍)) does not
eteriorate, but the corresponding rate depends on the higher latent
imension. Therefore rates that are adaptive to the unknown intrin-
ic dimension, potentially benefiting from results like Berenfeld and
offmann (2021), would be interesting.

Bounds in other distances suitable for dimension reduction are
lso of high interest. For example, the Wasserstein-2 metric is slightly
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stronger than the Wasserstein-1 metric (in the sense that 𝖶1 ≤ 𝖶2,
ee Villani (2008, Remark 6.6)). Our proofs rely on the duality of the
asserstein-1 distance, hence they cannot be translated directly to the
asserstein-2 distance.
Finally, the objective of this study was to examine statistical per-

pectives, and thus, the optimization problem was not addressed. In the
roofs, we employ the global minimizer and maximizer. Since we face a
on-convex optimization problem, gradient based methods may suffer
rom a considerable optimization error, especially for high-dimensional
arameter spaces. Incorporating this optimization error would be more
onsistent with real-world scenarios.
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ppendix

.1. Proof for Section 2

roof of Lemma 2.1. Let 𝑋 ∼ P∗, �̂� ∼ P𝑛 and 𝑍 ∼ U. The symmetry of
and the Lipschitz continuity of 𝑥 ↦ log(1 + 𝑒−𝑥) yields for any 𝐺 ∈ 

 (P∗,P�̂�𝑛 (𝑍))

= sup
𝑊 ∈

E
[

− log
( 1 + 𝑒−𝑊 (𝑋)

2

)

+ log
( 1 + 𝑒−𝑊 (�̂�)

2

)

− log
( 1 + 𝑒−𝑊 (�̂�)

2

)

− log
( 1 + 𝑒𝑊 (�̂�𝑛(𝑍))

2

) ]

≤ sup
𝑊 ∈

E
[

− log(1 + 𝑒−𝑊 (𝑋)) + log(1 + 𝑒−𝑊 (�̂�))
]

+ 𝖵 (P𝑛,P�̂�𝑛(𝑍))

≤ sup
𝑊 ∈

E
[

− log(1 + 𝑒−𝑊 (𝑋)) + log(1 + 𝑒−𝑊 (�̂�))
]

+ 𝖵 (P𝑛,P𝐺(𝑍))

= sup
𝑊 ∈

E[− log(1 + 𝑒−𝑊 (𝑋)) + log(1 + 𝑒−𝑊 (�̂�))]

+ sup
𝑊 ∈

E[− log(1 + 𝑒−𝑊 (�̂�)) + log(1 + 𝑒−𝑊 (𝑋))] + 𝖵 (P∗,P𝐺(𝑍))

≤ 2 sup
𝑊 ∈Lip(1)◦

E[𝑊 (𝑋) −𝑊 (�̂�)] + 𝖵 (P∗,P𝐺(𝑍)).

The bound for �̂�𝑛 from (8) follows since 𝐺 ∈  was arbitrary. □

Proof of Lemma 2.2. Let (𝐺𝑛)𝑛∈N ∈  be a sequence that converges to
𝐺 ∈ . If 𝖵Lip(𝐿)(P∗,P𝐺(𝑍)) ≥ 𝖵Lip(𝐿)(P∗,P𝐺𝑛(𝑍)), then

𝖵Lip(𝐿)(P∗,P𝐺(𝑍)) − 𝖵Lip(𝐿)(P∗,P𝐺𝑛(𝑍))

≤ sup
𝑊 ∈Lip(𝐿)

E
[

log
( 1 + 𝑒−𝑊 (𝐺𝑛(𝑍))

2

)

− log
( 1 + 𝑒−𝑊 (𝐺(𝑍))

2

)]

≤ sup
𝑊 ∈Lip(𝐿)

E
[

𝑊 (𝐺𝑛(𝑍)) −𝑊 (𝐺(𝑍))
]

≤ 𝐿‖𝐺𝑛 − 𝐺‖∞.

The case 𝖵Lip(𝐿)(P∗,P𝐺(𝑍)) < 𝖵Lip(𝐿)(P∗,P𝐺𝑛(𝑍)) can be bounded analo-
gously. Therefore, 𝑇 is continuous and there is at least one minimizer
if  is compact. □
 d

9 
A.2. Proofs for Section 3

Before we prove the main results from Section 3 we require an
auxiliary lemma:

Lemma A.1. For 𝑋 ∼ P and 𝑌 ∼ Q and an arbitrary set of measurable
functions  we have that

𝖵 (P,Q) ≤ sup
𝑊 ∈

E[− log
(

1 + 𝑒−𝑊 (𝑋)) + log
(

1 + 𝑒−𝑊 (𝑌 ))].

Proof. Since

log(1 + 𝑒𝑥) + log(1 + 𝑒−𝑥) ≥ log(4) for all 𝑥 ∈ R,

we can bound

sup
𝑊 ∈

E
[

− log
(

1 + 𝑒−𝑊 (𝑋)) − log
(

1 + 𝑒𝑊 (𝑌 ))
]

= sup
𝑊 ∈

E[ − log
(

1 + 𝑒−𝑊 (𝑋)) + log
(

1 + 𝑒−𝑊 (𝑌 ))

− log
(

1 + 𝑒−𝑊 (𝑌 )) − log
(

1 + 𝑒𝑊 (𝑌 ))]
≤ sup
𝑊 ∈

E[− log
(

1 + 𝑒−𝑊 (𝑋)) + log
(

1 + 𝑒−𝑊 (𝑌 ))]

− inf
𝑊 ∈

E[log
(

1 + 𝑒−𝑊 (𝑌 )) + log
(

1 + 𝑒𝑊 (𝑌 ))]

≤ sup
𝑊 ∈

E[− log
(

1 + 𝑒−𝑊 (𝑋)) + log
(

1 + 𝑒−𝑊 (𝑌 ))] − log(4). □

Proof of Theorem 3.1. Defining

𝜓 ∶R → R, 𝜓(𝑥) ∶= − log
(1 + 𝑒−𝑥

2

)

,

we can rewrite

𝖵Lip(𝐿,𝐵)(P,Q) = sup
𝑊 ∈Lip(𝐿,𝐵)

E[𝜓(𝑊 (𝑋)) + 𝜓(−𝑊 (𝑌 ))].

The function 𝑓 ∶ [− log(2 − 2∕𝐿),∞) → R, 𝑓 (𝑥) = log(2𝑒𝑥 − 1) is bijec-
tive and Lipschitz continuous with Lipschitz constant 𝐿 and satisfies
𝜓(−𝑓 (𝑥)) = 𝑥 for all 𝑥 ≥ − log(2 − 2∕𝐿). Therefore, we obtain a lower
bound

𝖵Lip(𝐿,𝐵)(P,Q) ≥ sup
𝑊 ∈Lip(1,log((1+𝑒𝐵 )∕2))
𝑊 (⋅)≥− log(2−2∕𝐿)

E[𝜓(𝑓 (𝑊 (𝑋))) + 𝜓(−𝑓 (𝑊 (𝑌 )))]

= sup
𝑊 ∈Lip(1,𝐵′)

𝑊 (⋅)≥− log(2−2∕𝐿)

E[𝜓(𝑓 (𝑊 (𝑋))) −𝑊 (𝑌 )].

ince 𝑓−1 ∈ Lip(1,R), we can estimate 𝖵Lip(𝐿,𝐵) from above by

Lip(𝐿,𝐵)(P,Q) = sup
𝑊 ∈Lip(𝐿,𝐵)

E[𝜓(𝑓 (𝑓−1(𝑊 (𝑋)))) + 𝜓(−𝑓 (𝑓−1(𝑊 (𝑌 ))))]

≤ sup
𝑊 ∈Lip(𝐿,𝐵)
𝑊 (⋅)>− log(2)

E[𝜓(𝑓 (𝑊 (𝑋))) + 𝜓(−𝑓 (𝑊 (𝑌 )))]

= sup
𝑊 ∈Lip(𝐿,𝐵)
𝑊 (⋅)>− log(2)

E[𝜓(𝑓 (𝑊 (𝑋))) −𝑊 (𝑌 )].

Taylor approximation at zero of the function 𝜓◦𝑓 (𝑥) = log(2 − 𝑒−𝑥)
ields that for every 𝑥 ∈ (− log(2),∞) there exists a 𝜉 between 𝑥 and 0
uch that

◦𝑓 (𝑥) = 𝑥 − 𝑒𝜉

(2𝑒𝜉 − 1)2
𝑥2.

For the lower bound, we thus conclude

𝖵Lip(𝐿,𝐵)(P,Q) ≥ sup
𝑊 ∈Lip(1,𝐵′)

𝑊 (⋅)≥− log(2−2∕𝐿)

E[𝑊 (𝑋) −𝑊 (𝑌 )] −
𝐿(𝐿 − 1)

2
E[𝑊 (𝑋)2].

For the upper bound, we get

𝖵Lip(𝐿,𝐵)(P,Q) ≤ sup
𝑊 ∈Lip(𝐿,𝐵)
𝑊 (⋅)>− log(2)

E[𝑊 (𝑋) −𝑊 (𝑌 )] − 𝑒𝐵

(2𝑒𝐵 − 1)2
E[𝑊 (𝑋)2]. □

Note that, using the function 𝑔∶ (−∞, log(2 − 2∕𝐿)) → R, 𝑔(𝑥) =
log(2𝑒−𝑥 −1), we obtain lower and upper bounds with a penalty term
epending on E[𝑊 (𝑌 )2] instead of E[𝑊 (𝑋)2].
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Proof of Theorem 3.2. We prove the lower bound first. Theorem 3.1
yields

𝖵Lip(𝐿,𝐵)(P,Q) ≥ sup
𝑊 ∈Lip(1,𝐵′ )

𝑊 (⋅)>− log(2−2∕𝐿)

E[𝑊 (𝑋) −𝑊 (𝑌 )] −
𝐿(𝐿 − 1)

2
E[𝑊 (𝑋)2]

≥ sup
𝑊 ∈Lip(1,log(2−2∕𝐿))

E[𝑊 (𝑋) −𝑊 (𝑌 )] −
𝐿(𝐿 − 1)

2
E[𝑊 (𝑋)2].

et 𝑊 ∗ ∈ argmax
𝑊 ∈Lip(1,log(2−2∕𝐿))

E[𝑊 (𝑋) − 𝑊 (𝑌 )]. This element exists

y Villani (2008, Theorem 5.10 (iii)). Then 𝛿𝑊 ∗ ∈ Lip(1, log(2 − 2∕𝐿))
or all 𝛿 ∈ (0, 1] and we can conclude

sup
∈Lip(1,log(2−2∕𝐿))

E[𝑊 (𝑋) −𝑊 (𝑌 )] −
𝐿(𝐿 − 1)

2
E[𝑊 (𝑋)2]

≥ sup
𝛿∈(0,1]

{

E[𝛿𝑊 ∗(𝑋) − 𝛿𝑊 ∗(𝑌 )] −
𝐿(𝐿 − 1)

2
E[(𝛿𝑊 ∗(𝑋))2]

}

= sup
𝛿∈(0,1]

{

𝛿E[𝑊 ∗(𝑋) −𝑊 ∗(𝑌 )] − 𝛿2
𝐿(𝐿 − 1)

2
E[(𝑊 ∗(𝑋))2]

}

,

hich is independent from 𝐵. In case 𝛥 ∶= E[𝑊 ∗(𝑋) − 𝑊 ∗(𝑌 )] <
(𝐿 − 1)E[𝑊 ∗(𝑋)2] we have for 𝛿 = 𝛥

E[𝑊 ∗(𝑋)2]𝐿(𝐿−1) ∈ (0, 1)

sup
𝑊 ∈Lip(1,log(2−2∕𝐿))

E[𝑊 (𝑋) −𝑊 (𝑌 )] −
𝐿(𝐿 − 1)

2
E[𝑊 (𝑋)2]

≥ 𝛥2

E[𝑊 ∗(𝑋)2]𝐿(𝐿 − 1)
− 𝛥2

2E[𝑊 ∗(𝑋)2]𝐿(𝐿 − 1)

= 𝛥2

2E[𝑊 ∗(𝑋)2]𝐿(𝐿 − 1)

≥ 𝛥2

2 log(2 − 2∕𝐿)2𝐿(𝐿 − 1)
,

where we used |𝑊 ∗(𝑥)| ≤ log(2 − 2∕𝐿) in the last step. In case 𝛥 ≥
𝐿(𝐿 − 1)E[𝑊 ∗(𝑋)2] we obtain

E[𝑊 ∗(𝑋) −𝑊 ∗(𝑌 )] −
𝐿(𝐿 − 1)

2
E[𝑊 ∗(𝑋)2] ≥ 1

2
E[𝑊 ∗(𝑋) −𝑊 ∗(𝑌 )].

Using the boundedness of [0, 1]𝑑 , we get

𝛥 = sup
𝑊 ∈Lip(1,log(2−2∕𝐿))

E[𝑊 (𝑋) −𝑊 (𝑌 )]

≥ sup
𝑊 ∈Lip(log(2−2∕𝐿)𝑑−1∕𝑝 ,∞)

E[𝑊 (𝑋) −𝑊 (𝑌 )]

=
log(2 − 2∕𝐿)

𝑑1∕𝑝
𝖶1(P,Q).

ence we can conclude the claimed lower bound for

1 =
1
2
log(2 − 2∕𝐿)

𝑑1∕𝑝
, 𝑐2 =

1
2𝑑2∕𝑝𝐿(𝐿 − 1)

.

For the upper bound we use Lemma A.1 with  = Lip(𝐿). Since for
𝑊 ∈ Lip(𝐿) the function − log

(

1 + 𝑒−𝑊 (⋅)) ∈ Lip(𝐿) we conclude

𝖵Lip(𝐿,𝐵)(P,Q) ≤ sup
𝑊 ∈Lip(𝐿)

E[𝜓(𝑊 (𝑋)) + 𝜓(𝑊 (𝑌 ))]

≤ sup
𝑊 ∈Lip(𝐿)

E[− log
(

1 + 𝑒−𝑊 (𝑋)) + log
(

1 + 𝑒−𝑊 (𝑌 ))]

≤ sup
𝑊 ∈Lip(𝐿)

E[𝑊 (𝑋) −𝑊 (𝑌 )]

= 𝐿 sup
𝑊 ∈Lip(1)

E[𝑊 (𝑋) −𝑊 (𝑌 )]. □

A.3. Proofs for Section 4

Proof of Theorem 4.1. Using Theorem 3.2 and the triangle inequality
for the Wasserstein distance, we deduce for every 𝐺 ∈  and 𝑐 =
max(𝑐−11 , 𝑐−1∕22 ) that

𝖶1(P∗,P�̂�𝑛(𝑍)) ≤ 𝖶1(P∗,P𝑛) +𝖶1(P𝑛,P�̂�𝑛(𝑍))

≤ 𝖶1(P∗,P𝑛) + 𝑐
[

𝖵Lip(𝐿,𝐵)(P𝑛,P�̂�𝑛(𝑍))
]1;1∕2

≤ 𝖶1(P∗,P𝑛) + 𝑐
[

𝖵Lip(𝐿,𝐵)(P𝑛,P𝐺(𝑍))
]1;1∕2

∗ [ 𝐺(𝑍) ]1;1∕2
≤ 𝖶1(P ,P𝑛) + 𝑐𝐿 𝖶1(P𝑛,P )

10 
≤ (1 + 𝑐𝐿)
[

𝖶1(P∗,P𝑛)
]1;1∕2 + 𝑐𝐿

[

𝖶1(P∗,P𝐺(𝑍))
]1;1∕2.

As 𝐺 ∈  was arbitrary, we can choose the infimum over . □

Proof of Corollary 4.2. For every measurable 𝐺∗ ∶ →  and any
𝐺 ∈  we have

𝖶1(P∗,P�̂�𝑛(𝑍)) ≤ 𝖶1(P∗,P𝐺∗(𝑍)) +𝖶1(P𝐺
∗(𝑍),P𝐺(𝑍))

= 𝖶1(P∗,P𝐺∗(𝑍)) + sup
𝑊 ∈Lip(1)

E[𝑊 (𝐺∗(𝑍)) −𝑊 (𝐺(𝑍))]

≤ 𝖶1(P∗,P𝐺∗(𝑍)) + E[|𝐺∗(𝑍) − 𝐺(𝑍)|𝑝]

≤ 𝖶1(P∗,P𝐺∗(𝑍)) + ‖𝐺∗ − 𝐺‖∞.

Since 𝐺∗ was arbitrary Theorem 4.1 yields for some constant 𝑐

E[𝖶1(P∗,P𝐺(𝑍))] ≤𝑐 ⋅ E[max(
√

𝖶1(P𝑛,P∗),𝖶1(P𝑛,P∗))]

+ 𝑐 ⋅ inf
𝐺∗ ∶→

{

[𝖶1(P∗,P𝐺∗(𝑍))]1;1∕2 + [inf
𝐺∈

‖𝐺 − 𝐺∗
‖

1;1∕2
∞ ]

}

Here the infimum can be used as we can increase the constant 𝑐
multiplied to both terms by an arbitrary small 𝜀 > 0 to account for
the possibly infinitesimal smaller value. Using Jensen’s inequality, we
can bound the stochastic error term by

E[max(
√

𝖶1(P𝑛,P∗),𝖶1(P𝑛,P∗))] ≤ E[
√

𝖶1(P𝑛,P∗)] + E[𝖶1(P𝑛,P∗)]

≤
√

E[𝖶1(P𝑛,P∗)] + E[𝖶1(P𝑛,P∗)].

rom Schreuder (2020, Theorem 4) we know

[𝖶1(P∗,P𝑛)] ≤ 𝑐′
⎧

⎪

⎨

⎪

⎩

𝑛−1∕𝑑 , 𝑑 > 2
𝑛−1∕2 log(𝑛), 𝑑 = 2
𝑛−1∕2, 𝑑 = 1.

here 𝑐 depends only on 𝑑. Since (log 𝑛)∕
√

𝑛 ≤ 1, we conclude

√

E[𝖶1(P𝑛,P∗)] + E[𝖶1(P𝑛,P∗)] ≤ 2𝑐′
⎧

⎪

⎨

⎪

⎩

𝑛−1∕2𝑑 , 𝑑 > 2
𝑛−1∕4(log 𝑛)1∕2, 𝑑 = 2
𝑛−1∕4, 𝑑 = 1. □

roof of Theorem 4.3. With the same reasoning as in the proof of
orollary 4.2, there exists some 𝑐 such that for any measurable 𝐺∗ ∶ →
and any 𝐺 ∈ 

[𝖶1(P∗,P𝐺(𝑍))] ≤ 𝑐
(
√

E[𝖶1(P𝑛,P∗)] + E[𝖶1(P𝑛,P∗)]

+ [𝖶1(P∗,P𝐺∗(𝑍))]1;1∕2 + [ inf
𝐺∈

‖𝐺∗ − 𝐺‖∞]1,1∕2
)

y the triangle inequality

1(P𝑛,P∗) ≤ 𝖶1(P𝑛,P𝐺
∗(𝑍)) +𝖶1(P𝐺

∗(𝑍),P∗).

et 𝑍𝑖 ∼ U be i.i.d. random variables and denote the corresponding
mpirical measure by U𝑛. For 𝐺∗ ∈ Lip(𝑀,) we can then bound the
irst term by

1(P𝑛,P𝐺
∗(𝑍)) = sup

𝑊 ∈Lip(1)

1
𝑛

𝑛
∑

𝑖=1
𝑊 (𝑋𝑖) − E[𝑊 ◦𝐺∗(𝑍)]

≤ sup
𝑊 ∈Lip(1)

1
𝑛

𝑛
∑

𝑖=1
|𝑊 (𝑋𝑖) −𝑊 ◦𝐺∗(𝑍𝑖)|

+ sup
𝑊 ∈Lip(1)

1
𝑛

𝑛
∑

𝑖=1
𝑊 ◦𝐺∗(𝑍𝑖) − E[𝑊 ◦𝐺∗(𝑍)]

≤ 1
𝑛

𝑛
∑

𝑖=1
|𝑋𝑖 − 𝐺∗(𝑍𝑖)|𝑝 + sup

𝑓∈Lip(𝑀)

1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑍𝑖) − E[𝑓 (𝑍)]

(13)

= 1
𝑛

𝑛
∑

𝑖=1
|𝑋𝑖 − 𝐺∗(𝑍𝑖)|𝑝 +𝑀 ⋅𝖶1(U𝑛,U)

Hence,

E
[

𝖶1(P𝑛,P𝐺
∗(𝑍))

]

≤ 1
𝑛
∑

E[|𝑋𝑖 − 𝐺∗(𝑍𝑖)|𝑝] +𝑀 ⋅ E[𝑊1(U𝑛,U)].
𝑛 𝑖=1
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Note that E[|𝑋𝑖 − 𝐺∗(𝑍𝑖)|𝑝] = 𝖶1(P𝐺
∗(𝑍),P∗) by the duality formula of

𝖶1 used in this work, see Villani (2008, Definition 6.2 and Remark
6.5). For E[𝑊1(U𝑛,U)], we can exploit the convergence rate for the em-
pirical distribution as in Corollary 4.2, but now in the 𝑑∗-dimensional
latent space . Therefore, there exists a 𝑐′ such that
√

E[𝖶1(P𝑛,P∗)] + E[𝖶1(P𝑛,P∗)] ≤ 𝑐′[𝖶1(P𝐺
∗(𝑍),P∗)]1;1∕2

+ 𝑐′
⎧

⎪

⎨

⎪

⎩

𝑛−1∕2𝑑∗ , 𝑑∗ > 2
𝑛−1∕4(log 𝑛)1∕2, 𝑑∗ = 2
𝑛−1∕4, 𝑑∗ = 1. □

A.4. Proofs of Theorems 5.1 and 5.2

Proof of Theorem 5.1. First, we verify that for any two nonempty sets
1 and 2 we have

𝖵1
(P,Q) ≤ 𝖵2

(P,Q) + 2 inf
𝑊 ∈2

sup
𝑊 ∗∈1

‖𝑊 −𝑊 ∗
‖∞. (14)

Indeed, the difference 𝖵1
(P,Q) − 𝖵2

(P,Q) is bounded by

inf
𝑊 ∈2

sup
𝑊 ∗∈1

{

E
[

− log
( 1 + 𝑒−𝑊 ∗(𝑋)

2

)

− log
( 1 + 𝑒𝑊 ∗(𝑌 )

2

)]

− E
[

− log
( 1 + 𝑒−𝑊 (𝑋)

2

)

− log
( 1 + 𝑒𝑊 (𝑌 )

2

)]}

≤ inf
𝑊 ∈2

sup
𝑊 ∗∈1

{

E
[

|

|

|

− log
( 1 + 𝑒−𝑊 ∗(𝑋)

2

)

+ log
( 1 + 𝑒−𝑊 (𝑋)

2

)

|

|

|

]

+ E
[

|

|

|

− log
( 1 + 𝑒𝑊 ∗(𝑌 )

2

)

+ log
( 1 + 𝑒𝑊 (𝑌 )

2

)

|

|

|

]}

≤ inf
𝑊 ∈2

sup
𝑊 ∗∈1

{

E[|𝑊 ∗(𝑋) −𝑊 (𝑋)|] + E[|𝑊 ∗(𝑌 ) −𝑊 (𝑌 )|]
}

≤ 2 inf
𝑊 ∈2

sup
𝑊 ∗∈1

‖𝑊 ∗ −𝑊 ‖∞,

due to Lipschitz continuity of 𝑥 ↦ − log((1 + 𝑒𝑥)∕2).
From (14) we deduce for  ⊂ Lip(𝐿,𝐵)

𝖵Lip(𝐿,𝐵)(P,Q) ≤ 𝖵 (P,Q) + 2 inf
𝑊 ′∈

sup
𝑊 ∈Lip(𝐿,𝐵)

‖𝑊 −𝑊 ′
‖∞.

We abbreviate 𝛥 ∶= inf𝑊 ′∈ sup𝑊 ∈Lip(𝐿,𝐵) ‖𝑊 − 𝑊 ′
‖∞. Now we

can proceed as in Theorem 4.1. In particular, it is sufficient to bound
𝖶1(P𝑛,P�̂�𝑛(𝑍)). Due to Theorem 3.2 there is some constant 𝑐 > 0 such
that for every 𝐺 ∈ 

𝖶1(P𝑛,P�̂�𝑛(𝑍)) ≤ 𝑐[𝖵Lip(𝐿,𝐵)(P𝑛,P�̂�𝑛(𝑍))]1;1∕2

≤ 𝑐[𝖵 (P𝑛,P�̂�𝑛(𝑍)) + 2𝛥 ]1;1∕2

≤ 𝑐[𝖵 (P𝑛,P�̂�𝑛(𝑍))]1;1∕2 + 2𝑐[𝛥 ]1;1∕2

≤ 𝑐[𝖵 (P𝑛,P𝐺(𝑍))]1;1∕2 + 2𝑐[𝛥 ]1;1∕2

Because 𝖵 (P𝑛,P𝐺(𝑍)) ≤ 𝖵Lip(𝐿,𝐵)(P𝑛,P𝐺(𝑍)) due to  ⊂ Lip(𝐿,𝐵), the
rest of the proof is identical to the proof of Theorem 4.1. □

Proof of Theorem 5.2. Since 𝖶1(P𝑛,P∗) can be estimated as in Theo-
rem 4.3, we only need to bound 𝖶1(P𝑛,P�̂�𝑛(𝑍)). For 𝛤 > max(𝐿, 2𝐵), we
have Lip(𝐿,𝐵) ⊂ 𝛼(𝛤 ), 𝛼 ∈ (0, 1), and the assumptions of Theorem 3.2
are satisfied. Therefore for every 𝛼 ∈ (0, 1)

𝖶1(P𝑛,P�̂�𝑛(𝑍)) ≤ 𝑐
[

𝖵Lip(𝐿,𝐵)(P𝑛,P�̂�𝑛(𝑍))
]1;1∕2 ≤ 𝑐

[

𝖵𝛼 (𝛤 )(P𝑛,P�̂�𝑛(𝑍))
]1;1∕2.

Now, (14) yields

𝖵𝛼 (𝛤 )(P𝑛,P�̂�𝑛 (𝑍)) ≤ 𝖵 (P𝑛,P�̂�𝑛 (𝑍))+2𝛥 for 𝛥 ∶= inf
𝑊 ∈

sup
𝑊 ∗∈𝛼 (𝛤 )

‖𝑊 ∗−𝑊 ‖∞.

Using that �̂�𝑛 is the empirical risk minimizer and  ⊆ 𝛼(𝛤 ), we thus
have

𝖶1(P𝑛,P�̂�𝑛(𝑍)) ≤ 𝑐
[

𝖵 (P𝑛,P�̂�𝑛(𝑍))
]1;1∕2 + 𝑐[𝛥 ]1;1∕2

≤ 𝑐
[

𝖵 (P𝑛,P𝐺(𝑍))
]1;1∕2 + 𝑐[𝛥 ]1;1∕2

[ 𝐺(𝑍) ]1;1∕2 1;1∕2
≤ 𝑐 𝖵𝛼 (𝛤 )(P𝑛,P ) + 𝑐[𝛥 ]

11 
To bound the first term, we apply Lemma A.1 and {− log(1 + 𝑒−𝑊 (⋅)) ∣
𝑊 ∈ 𝛼(𝛤 )} ⊂ 𝛼(𝛤 ) to obtain

𝖵𝛼 (𝛤 )(P𝑛,P𝐺(𝑍)) ≤ sup
𝑊 ∈𝛼 (𝛤 )

E�̂�∼P𝑛 [− log
(

1 + 𝑒−𝑊 (�̂�)
)

+ log
(

1 + 𝑒−𝑊 (𝐺(𝑍))
)

]

≤ sup
𝑊 ∈𝛼 (𝛤 )

E �̂�∼P𝑛 [𝑊 (�̂�) −𝑊 (𝐺(𝑍))] (15)

≤ sup
𝑊 ∈𝛼 (𝛤 )

E�̂�∼P𝑛 [𝑊 (�̂�) −𝑊 (𝑋)] + sup
𝑊 ∈𝛼 (𝛤 )

E[𝑊 (𝑋) −𝑊 (𝐺(𝑍))].

For the second term we have by Hölder continuity, Jensens inequality
and the duality formula of 𝖶1 as used in the proof of Theorem 4.3 that

sup
𝑊 ∈𝛼 (𝛤 )

E[𝑊 (𝑋) −𝑊 (𝐺(𝑍))] ≤ sup
𝑊 ∈𝛼 (𝛤 )

E[|𝑊 (𝑋) −𝑊 (𝐺∗(𝑍))|]

+ sup
𝑊 ∈𝛼 (𝛤 )

E[|𝑊 (𝐺∗(𝑍)) −𝑊 (𝐺(𝑍))|]

≤ 𝛤E[|𝑋 − 𝐺∗(𝑍)|𝛼𝑝 ] + 𝛤‖𝐺
∗ − 𝐺‖𝛼∞

≤ 𝛤𝖶1(P∗,P𝐺∗(𝑍))𝛼 + 𝛤‖𝐺∗ − 𝐺‖𝛼∞.

Hence, we have for any 𝐺 ∈  and any measurable 𝐺∗ ∶ →  for
some constant 𝑐 > 0

𝖶1(P𝑛,P�̂�𝑛(𝑍)) ≤ 𝑐
[

sup
𝑊 ∈𝛼 (𝛤 )

E�̂�∼P𝑛 [𝑊 (�̂�) −𝑊 (𝑋)]
]1;1∕2

+𝑐
[

𝖶1(P∗ ,P𝐺
∗(𝑍))𝛼+‖𝐺∗−𝐺‖𝛼∞

]1;1∕2
+𝑐[𝛥 ]1;1∕2 .

For the remaining stochastic error term, we first note that

sup
𝑊 ∈𝛼 (𝛤 )

E�̂�∼P𝑛 [𝑊 (�̂�) −𝑊 (𝑋)] ≤ sup
𝑊 ∈𝛼 (𝛤 )

E𝑋𝑛∼P𝑛 [𝑊 (𝑋𝑛) −𝑊 (𝐺∗(𝑍))]

+ sup
𝑊 ∈𝛼 (𝛤 )

E[𝑊 (𝐺∗(𝑍)) −𝑊 (𝑋)]

≤ sup
𝑊 ∈𝛼 (𝛤 )

E𝑋𝑛∼P𝑛 [𝑊 (𝑋𝑛) −𝑊 (𝐺∗(𝑍))]

+ 𝛤𝖶1(P∗,P𝐺∗(𝑍))𝛼

and as in (13) together with Schreuder (2020, Theorem 4) we obtain

E
[

sup
𝑊 ∈𝛼 (𝛤 )

E𝑋𝑛∼P𝑛 [𝑊 (𝑋𝑛) −𝑊 (𝐺∗(𝑍))]
]

≤ E
[

sup
𝑊 ∈𝛼 (𝛤 )

|𝑋 − 𝐺∗(𝑍)|𝛼𝑝
]

+ E
[

sup
𝑓∈𝛼 (𝑀 ⋅𝛤 )

1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑍𝑖) − E[𝑓 (𝑍)]

]

≤ 𝑐𝖶1(P∗,P𝐺∗ (𝑍))𝛼 + 𝑐

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛−𝛼∕𝑑∗ , 2𝛼 < 𝑑∗,

𝑛−1∕2 ln(𝑛), 2𝛼 = 𝑑∗,

𝑛−1∕2, 2𝛼 > 𝑑∗.

For the expectation of the first term we use Jensen’s inequality

E[|𝑋𝑖 − 𝐺∗(𝑍𝑖)|
𝛼
𝑝 ] ≤ E[|𝑋𝑖 − 𝐺∗(𝑍𝑖)|𝑝]

𝛼 = 𝖶1(P∗,P𝐺∗(𝑍))𝛼 . □

A.5. Proof of Theorem 5.3

To prove Theorem 5.3 some additional notation is required. The set
of locally integrable functions is given by

𝐿1
loc(𝛺) ∶= {𝑓 ∶𝛺 → R||

|∫𝐾
|𝑓 (𝑥)| d𝑥 <∞, for all compact 𝐾 ⊂ 𝛺◦}.

A function 𝑓 ∈ 𝐿1
loc(𝛺) has a weak derivative, 𝐷𝛼

𝑤𝑓 , provided there
exists a function 𝑔 ∈ 𝐿1

loc(𝛺) such that

∫𝛺
𝑔(𝑥)𝜙(𝑥)𝑑𝑥 = (−1)|𝛼| ∫𝛺

𝑓 (𝑥)𝜙(𝛼)(𝑥)𝑑𝑥 for all 𝜙 ∈ 𝐶∞(𝛺) with compact support.

If such a 𝑔 exists, we define 𝐷𝛼
𝑤𝑓 ∶= 𝑔. For 𝑓 ∈ 𝐿1

loc(𝛺) and 𝑘 ∈ N0 the
Sobolev norm is

‖𝑓‖𝑊 𝑘,∞(𝛺) ∶= max
|𝛼|≤𝑘

‖

‖

𝐷𝛼
𝑤𝑓‖‖∞,𝛺 .

The Sobolev space 𝑊 𝑘,∞(𝛺) ∶= {𝑓 ∈ 𝐿1
loc(𝛺) ∶ ‖𝑓‖𝑊 𝑘

𝑝 (𝛺) < ∞}
is a Banach space (Brenner & Scott, 2008, Theorem 1.3.2). For 𝑓 ∈
𝑊 𝑘,∞(𝛺), define the Sobolev semi norm by

|𝑓 |𝑊 𝑘,∞(𝛺) ∶= max ‖𝐷𝛼 𝑓‖ .

|𝛼|=𝑘 ‖ 𝑤 ‖∞,𝛺
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Note that Lip(𝐿,𝐵,𝛺) ⊂ 𝑊 1,∞(𝛺), since ‖𝑓‖𝑊 1,∞ ≤ max(𝐿,𝐵) for any
∈ Lip(𝐿,𝐵,𝛺). For two normed spaces (𝐴, ‖ ⋅‖𝐴), (𝐵, ‖ ⋅‖𝐵) we denote

the operator norm of a linear operator 𝑇 ∶𝐴 → 𝐵 by

‖𝑇 ‖ ∶= sup
{

‖𝑇𝑥‖𝐵 ∣ 𝑥 ∈ 𝐴, ‖𝑥‖𝐴 ≤ 1
}

.

Theorem 5.3 is very close to by Gühring et al. (2020, Theorem 4.1),
hich however applies only to functions 𝑓 which are at least twice

weakly) differentiable. Our proof can thus build on numerous auxiliary
esults and arguments from Gühring et al. (2020). We basically keep the
roof structure of Gühring et al. (2020) which in turn relies on Yarotsky
2017).

Let 𝑑,𝑁 ∈ N. For 𝑚 ∈ {0,… , 𝑁}𝑑 , define the functions 𝜙𝑚 ∶R𝑑 → R,

𝜙𝑚(𝑥) =
𝑑
∏

𝓁=1
𝜓
(

3𝑁
(

𝑥𝓁 −
𝑚𝓁

𝑁

))

, where 𝜓(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, |𝑥| < 1,
0, |𝑥| > 2,
2 − |𝑥|, 1 ≤ |𝑥| ≤ 2

By definition, we have ‖𝜙𝑚‖∞ = 1 for all 𝑚 and

supp𝜙𝑚 ⊂
{

𝑥 ∶
|

|

|

|

𝑥𝑘 −
𝑚𝑘
𝑁

|

|

|

|

< 1
𝑁

∀𝑘
}

=∶ 𝐵 1
𝑁 ,|⋅|∞

( 𝑚
𝑁

). (16)

Gühring et al. (2020, Lemma C.3 (iv)) have verified that ‖𝜙𝑚‖𝑊 1,∞(R𝑑 ) ≤
𝑁 for some constant 𝑐 > 0.

A direct consequence of Lemma 2.11, Lemma C.3, Lemma C.5 and
emma C.6 by Gühring et al. (2020) is the following approximation
esult for the localizing functions 𝜙𝑚 via ReLU networks:

emma A.2. For any 𝜀 ∈ (0, 1∕2) and any 𝑚 ∈ {0,… , 𝑁}𝑑 there is
network 𝛹𝜀 with ReLU activation function, not more than 𝐶1 log2(𝜀−1)
ayers and no more than 𝐶2(𝑁+1)𝑑 log22(𝜀

−1) nonzero weights and no more
han neurons 𝐶3(𝑁 + 1)𝑑 (log22(𝜀

−1) ∨ log2(𝜀−1)) such that for 𝑘 ∈ {0, 1}

‖𝛹𝜀 − 𝜙𝑚‖𝑊 𝑘,∞ ≤ 𝑐𝑁𝑘𝜀,

where 𝐶1, 𝐶2, 𝐶3 and 𝑐 are constants independent of 𝑚 and 𝜀. Additionally,

𝜙𝑚(𝑥) = 0 ⟹ 𝛹𝜀(𝑥) = 0,

and therefore supp𝛹𝜀 ⊂ 𝐵 1
𝑁 ,|⋅|∞

( 𝑚𝑁 ).

Next we approximate a bounded Lipschitz function using linear
combinations of the set {𝜙𝑚 ∶ 𝑚 ∈ {1,… , 𝑁}𝑑}. The approximation
error will be measured in the Hölder norm from (4).

Lemma A.3. Let 0 < 𝛼 < 1. There exists a constant 𝐶1 > 0 such that for
any 𝑓 ∈ 𝑊 1,∞((0, 1)𝑑 ) there are constants 𝑐𝑓,𝑚 for 𝑚 ∈ {0,… , 𝑁}𝑑 such
that
‖

‖

‖

𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚𝜙𝑚

‖

‖

‖𝛼
≤ 𝐶1

( 1
𝑁

)1−𝛼
‖𝑓‖𝑊 1,∞ .

The coefficients satisfy for a 𝐶2 > 0

|𝑐𝑓,𝑚| ≤ 𝐶2‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 ),

where 𝛺𝑚,𝑁 ∶= 𝐵 1
𝑁 ,|⋅|∞

( 𝑚𝑁 ) and 𝑓 ∈ 𝑊 1,∞(R) is an extension of 𝑓 .

Proof. Let 𝐸 ∶𝑊 1,∞((0, 1)𝑑 ) → 𝑊 1,∞(R) be the continuous linear
xtension operator from Stein (1970, Theorem 5) and set 𝑓 ∶= 𝐸𝑓 .

As 𝐸 is continuous there exists a 𝐶𝐸 > 0 such that

‖𝑓‖𝑊 1,∞(R𝑑 ) ≤ 𝐶𝐸‖𝑓‖𝑊 1,∞ .

tep 1 (Choice of 𝑐𝑓,𝑚): For each 𝑚 ∈ {0,… , 𝑁}𝑑 we define

𝑓,𝑚 = ∫𝐵𝑚,𝑁
𝑓 (𝑦)𝜌(𝑦) d𝑦 for 𝐵𝑚,𝑁 ∶= 𝐵 3

4𝑁 ,∣⋅∣

( 𝑚
𝑁

)

and an arbitrary cut-off function 𝜌 supported in 𝐵𝑚,𝑁 , i.e.
𝜌 ∈ 𝐶∞

𝑐 (R𝑑 ) with 𝜌(𝑥) ≥ 0 for all 𝑥 ∈ R𝑑 , supp 𝜌 = 𝐵𝑚,𝑁 and
𝜌(𝑥)𝑑𝑥 = 1.
R𝑛
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Then

|𝑐𝑚,𝑓 | =
|

|

|∫𝐵𝑚,𝑁
𝑓 (𝑦)𝜌(𝑦) d𝑦||

|

≤ ‖𝑓‖∞,𝛺𝑚,𝑁 ∫𝐵𝑚,𝑁
𝜌(𝑦) d𝑦

= ‖𝑓‖∞,𝛺𝑚,𝑁 ≤ 𝐶𝐸‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 ).

Step 2 (Local estimates in ‖ ⋅ ‖𝑊 𝑘,𝑝 ): The coefficients 𝑐𝑚,𝑓 are the
averaged Taylor polynomials in the sense of Brenner and Scott (2008,
Definition 4.1.3) of order 1 averaged over 𝐵𝑚,𝑁 . As Gühring et al.
(2020, Proof of Lemma C.4, Step 2) showed, the conditions of the
Bramble-Hilbert-Lemma (Brenner & Scott, 2008, Theorem 4.3.8) are
satisfied. Hence for 𝑘 ∈ {0, 1}

|𝑓 − 𝑐𝑚,𝑓 |𝑊 𝑘,∞(𝛺𝑚,𝑁 ) ≤ 𝐶1

( 2
√

𝑑
𝑁

)1−𝑘
|𝑓 |𝑊 1,∞(𝛺𝑚;𝑛) ≤ 𝐶2

( 1
𝑁

)1−𝑘
‖𝑓‖𝑊 1,∞(𝛺𝑚;𝑛).

Now using 𝜙𝑚 as defined above, we get

‖

‖

‖

‖

𝜙𝑚
(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖

‖∞,𝛺𝑚,𝑁

≤ ‖

‖

𝜙𝑚‖‖∞,𝛺𝑚,𝑁
⋅ ‖‖
‖

𝑓 − 𝑐𝑓,𝑚
‖

‖

‖∞,𝛺𝑚,𝑁
≤ 𝐶2

1
𝑁

‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 )

(17)

Due to the product inequality for weak derivatives (Gühring et al.,
2020, Lemma B.6) there is a constant 𝐶 ′ > 0 such that the supremum
norm of the weak derivative is bounded by
|

|

|

|

𝜙𝑚
(

𝑓 − 𝑐𝑓,𝑚
)

|

|

|

|𝑊 1,∞(𝛺𝑚,𝑁 )
≤𝐶 ′

|𝜙𝑚|𝑊 1,∞(𝛺𝑚,𝑁 ) ⋅
‖

‖

‖

𝑓 − 𝑐𝑓,𝑚
‖

‖

‖∞,𝛺𝑚,𝑁

+ 𝐶 ′
‖

‖

𝜙𝑚‖‖∞,𝛺𝑚,𝑁 ⋅ |𝑓 − 𝑐𝑓,𝑚|𝑊 1,∞(𝛺𝑚,𝑁 )

≤𝐶 ′ ⋅ 𝑐𝑁 ⋅ 𝐶2
1
𝑁

‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 ) + 𝐶 ′ ⋅ 𝐶3‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 )

=𝐶4‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 ). (18)

ombining (17) and (18) we get

𝜙𝑚
(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖

‖𝑊 1,∞(𝛺𝑚,𝑁 )
≤ 𝐶5‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 ).

tep 3 (Global estimate in ‖ ⋅ ‖𝑊 𝑘,𝑝 ): As ∑

𝑚∈{0,…,𝑁}𝑑 𝜙𝑚 = 1, we have
hat

̃(𝑥) =
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚(𝑥)𝑓 (𝑥), for a.e. 𝑥 ∈ (0, 1)𝑑 .

s 𝑓 ||
|(0,1)𝑑

= 𝑓 we have for 𝑘 ∈ {0, 1}

𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚

‖

‖

‖𝑊 𝑘,∞((0,1)𝑑 )
= ‖

‖

‖

𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚

‖

‖

‖𝑊 𝑘,∞((0,1)𝑑 )

= ‖

‖

‖

∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚

(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖𝑊 𝑘,∞((0,1)𝑑 )

≤ sup
�̃�∈{0,…,𝑁}𝑑

‖

‖

‖

∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚

(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖𝑊 𝑘,∞(𝛺�̃�,𝑁 )

(19)

here the last step follows from (0, 1)𝑑 ⊂
⋃

�̃�∈{0,…,𝑁}𝑑 𝛺�̃�,𝑁 . Now we
btain for each �̃� ∈ {0,… , 𝑁}𝑑 using (16), (17) and (18)

∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚

(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖𝑊 𝑘,∞(𝛺�̃�,𝑁 )
≤ sup

𝑚∈{0,…,𝑁}𝑑
|𝑚−�̃�|∞≤1

‖

‖

‖

𝜙𝑚
(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖𝑊 𝑘,∞(𝛺�̃�,𝑁 )

≤ sup
𝑚∈{0,…,𝑁}𝑑
|𝑚−�̃�|∞≤1

‖

‖

‖

𝜙𝑚
(

𝑓 − 𝑐𝑓,𝑚
)

‖

‖

‖𝑊 𝑘,∞(𝛺𝑚,𝑁 )

≤ 𝐶6

( 1
𝑁

)1−𝑘
sup

𝑚∈{0,…,𝑁}𝑑 ,
|𝑚−�̃�|∞≤1

‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 ).

Plugging this into (19), we obtain for 𝑘 ∈ {0, 1}

‖

‖

‖

𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚

‖

‖

‖𝑊 𝑘,∞ ((0,1)𝑑 )
≤ 𝐶6

( 1
𝑁

)(1−𝑘)
sup

�̃�∈{0,…,𝑁}𝑑

(

sup
𝑚∈{0,…,𝑁}𝑑 ,
|𝑚−�̃�|∞≤1

‖𝑓‖𝑊 1,∞ (𝛺𝑚,𝑁 )

)

≤ 𝐶7

( 1
𝑁

)(1−𝑘)
sup

�̃�∈{0,…,𝑁}𝑑
‖𝑓‖𝑊 1,∞ (𝛺�̃�,𝑁 )

≤ 𝐶8

( 1
𝑁

)(1−𝑘)
‖𝑓‖𝑊 1,∞ (R𝑑 )

≤ 𝐶
( 1 )(1−𝑘)

‖𝑓‖ . (20)
9 𝑁 𝑊 1,∞ ((0,1)𝑑 )
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Step 4 (Interpolation): Define the linear operators 𝑇0 ∶𝑊 1,∞((0, 1)𝑑 ) →
𝐿∞((0, 1)𝑑 ), 𝑇𝛼 ∶𝑊 1,∞((0, 1)𝑑 ) → 𝛼((0, 1)𝑑 ) and 𝑇1 ∶𝑊 1,∞((0, 1)𝑑 ) →
𝑊 1,∞((0, 1)𝑑 ) via

𝑇𝑘(𝑓 ) = 𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚, 𝑘 ∈ {0, 𝛼, 1}

Note that the linearity follows from the definition of the constants 𝑐𝑓,𝑚.
Using Lunardi (2018, Theorem 1.6), for the nontrivial interpolation
couple see Lunardi (2018, p.11 f.), leads to

‖𝑇𝛼‖ ≤ ‖𝑇0‖
1−𝛼

‖𝑇1‖
𝛼 .

Note that ‖ ⋅ ‖𝛼 is equivalent to ‖ ⋅ ‖𝑊 𝑠,∞(𝛺) in Gühring et al. (2020).
Using (20) we conclude

‖

‖

‖

𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚

‖

‖

‖𝛼
≤ 𝐶10

( 1
𝑁

)1−𝛼
‖𝑓‖𝑊 1,∞ . □

Now we want to approximate the function ∑

𝑚∈{0,…,𝑁}𝑑 𝑐𝑓,𝑚𝜙𝑚 in
ölder norm using a ReLU network.

emma A.4. For any 𝜀 ∈ (0, 1∕2) there is a neural network 𝛷𝜀 with ReLU
ctivation function such that for (𝑐𝑓,𝑚)𝑚 from Lemma A.3, there is a constant
𝐶 > 0 such that
‖

‖

‖

∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚 −𝛷𝜀

‖

‖

‖𝛼
≤ 𝐶‖𝑓‖𝑊 1,∞𝑁𝛼𝜀,

the number of layers is at most ⌈𝐶1 log2(𝜀−1)⌉, the number of nonzero
weights is at most ⌈𝐶2(𝑁 + 1)𝑑 log22(𝜀

−1)⌉ and the number of neurons is
at most ⌈𝐶3(𝑁 + 1)𝑑 (log22(𝜀

−1) ∨ log2(𝜀−1))⌉, with 𝐶1, 𝐶2 and 𝐶3 from
Lemma A.2.

Proof. From Lemma A.2 we know that there are neural networks
𝛹𝜀,𝑚 with at most ⌈𝐶1 log2(𝜀−1)⌉ layers, ⌈𝐶2(𝑁 + 1)𝑑 log22(𝜀

−1)⌉ nonzero
weights and ⌈𝐶3(𝑁+1)𝑑 (log22(𝜀

−1)∨log2(𝜀−1))⌉ neurons that approximate
𝜙𝑚 such that for 𝑘 ∈ {0, 1}

‖

‖

𝜙𝑚 − 𝛹𝜀,𝑚‖‖𝑊 𝑘,∞ ≤ 𝑐′𝑁𝑘𝜀.

Now we parallelize these networks and multiply with the coefficients
𝑐𝑓,𝑚 afterwards. Hereby, we construct a network 𝛷𝜀 with 1 + ⌈𝐶1 log2
(𝜀−1)⌉ layers, 𝑁𝑑 + ⌈𝐶2(𝑁 + 1)𝑑 log22(𝜀

−1)⌉ nonzero weights and 1 +
⌈𝐶3(𝑁 + 1)𝑑 (log22(𝜀

−1) ∨ log2(𝜀−1))⌉ neurons such that

𝛷𝜀 =
∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚𝛹𝜀,𝑚. (21)

For each 𝑚 ∈ {0,… , 𝑁}𝑑 denote 𝛺𝑚,𝑁 = 𝐵 1
𝑁 ,|⋅|∞

( 𝑚𝑁 ) as above. For
𝑘 ∈ {0, 1} we get
‖

‖

‖

𝛷𝜀 −
∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚𝜙𝑚

‖

‖

‖𝑊 𝑘,∞((0,1)𝑑 )
= ‖

‖

‖

∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚(𝛹𝜀,𝑚 − 𝜙𝑚)

‖

‖

‖𝑊 𝑘,∞((0,1)𝑑 )

≤ sup
�̃�∈{0,…,𝑁}𝑑

‖

‖

‖

∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚(𝛹𝜀,𝑚 − 𝜙𝑚)

‖

‖

‖𝑊 𝑘,∞(𝛺�̃�,𝑁∩(0,1)𝑑 )

≤ 3𝑑 sup
�̃�∈{0,…,𝑁}𝑑

sup
𝑚∈{0,…,𝑁}𝑑

‖

‖

‖

𝑐𝑓,𝑚(𝛹𝜀,𝑚 − 𝜙𝑚)
‖

‖

‖𝑊 𝑘,∞(𝛺�̃�,𝑁∩(0,1)𝑑 )

≤ 3𝑑 sup
�̃�∈{0,…,𝑁}𝑑

sup
𝑚∈{0,…,𝑁}𝑑

|𝑐𝑓,𝑚|
‖

‖

‖

(𝛹𝜀,𝑚 − 𝜙𝑚)
‖

‖

‖𝑊 𝑘,∞(𝛺�̃�,𝑁∩(0,1)𝑑 )

≤ 3𝑑 sup
�̃�∈{0,…,𝑁}𝑑

sup
𝑚∈{0,…,𝑁}𝑑

‖𝑓‖𝑊 1,∞(𝛺𝑚,𝑁 )‖𝛹𝜀,𝑚 − 𝜙𝑚‖𝑊 𝑘,∞(𝛺�̃�,𝑁∩(0,1)𝑑 )

≤ 𝐶𝑁𝑘𝜀‖𝑓‖𝑊 1,∞ .

he second to last inequality follows from the fact that on 𝛺�̃�,𝑁 is
ithin the support of 𝜙𝑚 only for |𝑚 − �̃�|∞ ≤ 1. The last inequal-

ty follows from (21) and the continuity of the extension operator,
ee Stein (1970, Theorem 5). As in Step 4 of Lemma A.3, we conclude
sing Lunardi (2018, Theorem 1.6)

𝛷𝜀 −
∑

𝑚∈{0,…,𝑁}𝑑
𝜙𝑚𝑐𝑓,𝑚

‖

‖

‖𝛼
≤ 𝐶𝑁𝛼𝜀‖𝑓‖𝑊 1,∞ . □

Now we are ready to proof Theorem 5.3.
 d
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roof of Theorem 5.3. Combining Lemmas A.3 and A.4 with ‖𝑓‖𝑊 1,∞

𝐵 yields for a constant 𝐶 > 0 for any �̃� ∈ (0, 1∕2) that

𝑓 −𝛷�̃�‖𝛼 ≤ ‖

‖

‖

𝑓 −
∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚𝜙𝑚

‖

‖

‖𝛼
+ ‖

‖

‖

∑

𝑚∈{0,…,𝑁}𝑑
𝑐𝑓,𝑚𝜙𝑚 −𝛷�̃�

‖

‖

‖𝛼

≤ 𝐶𝐵
(( 1

𝑁

)1−𝛼
+𝑁𝛼 �̃�

)

, (22)

where �̃� determines the approximation accuracy in Lemma A.4. For

𝑁 ∶=
⌈

( 𝜀
2𝐶𝐵

)−1∕(1−𝛼)
⌉

,

we get for the first term in (22)
( 1
𝑁

)1−𝛼
≤ 𝜀

2𝐶𝐵
.

Choosing

̃ = 𝜀
2𝐶𝐵

(( 𝜀
2𝐶𝐵

)− 1
1−𝛼 + 1

)−𝛼
(23)

leads to

‖𝑓 −𝛷�̃�‖𝛼 ≤ 𝜀.

From Lemma A.2 we know that there is a ReLU network with no more
than 1 + ⌈𝐶1 log2(�̃�−1)⌉ layers, 𝑁𝑑 + ⌈𝐶2(𝑁 + 1)𝑑 log22(�̃�

−1)⌉ nonzero
eights and 1 + ⌈𝐶3(𝑁 + 1)𝑑 (log22(�̃�

−1) ∨ log2(�̃�−1))⌉ neurons with the
equired properties. Inserting (23) and assuming 𝐶𝐵 > 1

2 yields

log2(�̃�−1) ≤ log2
( 2𝐶𝐵

𝜀
2𝛼
( 𝜀
2𝐶𝐵

)− 𝛼
1−𝛼

)

≤ 𝐶 ′ log2(𝜀
− 1

1−𝛼 ).

Thus there are 𝐶 ′, 𝐶 ′′ and 𝐶 ′′′ such that the ReLU network has no more
than 1+⌈𝐶 ′ log2(𝜀

− 1
1−𝛼 )⌉ layers, ⌈𝐶 ′′𝜀−

𝑑
1−𝛼 log22(𝜀

− 1
1−𝛼 )⌉ nonzero weights

and 1 + ⌈𝐶 ′′′𝜀−
𝑑

1−𝛼 (log22(𝜀
− 1

1−𝛼 ) ∨ log2(𝜀
− 1

1−𝛼 ))⌉ neurons.
Since 𝑓 ∈ Lip(𝐿,𝐵) ⊆ 𝛼(𝛤 ) for 𝛤 = max(𝐿, 2𝐵), we conclude

𝛷�̃�‖𝛼 ≤ ‖𝑓‖𝛼 + ‖𝛷�̃� − 𝑓‖𝛼 ≤ 𝛤 + 𝜀.

orollary 5.4 is a straightforward combination of Theorems 5.2 and
.3. □

.6. Proof of Theorem 6.1

roof of Theorem 6.1. First we note that for 𝛤 > 1, there is an 𝐿 > 0,
such that there is a 𝐵 > 0 with 2𝐵 < 𝛤 − 1 and with �̂� ∼ P∗

sup
∈Lip(𝐿)

E[𝑊 (�̂�) −𝑊 (�̂�𝑛(𝑍))] = sup
𝑊 ∈Lip(𝐿,2𝐵)

E[𝑊 (�̂�) −𝑊 (�̂�𝑛(𝑍))].

his 𝐿 > 0 exists as [0, 1]𝑑 is bounded and adding a constant to any
unction 𝑊 ∈ Lip(𝐿) will not change the value of E[𝑊 (�̂�)−𝑊 (�̂�𝑛(𝑍))].

Then we get for every 𝐺 ∈  with the same reasoning as in the proof
f Theorem 5.1

1(P∗,P�̂�𝑛 (𝑍)) ≤ 𝖶1(P∗,P𝑛) +𝖶1(P𝑛,P�̂�𝑛 (𝑍))

= 𝖶1(P∗,P𝑛) +
1
𝐿
𝖶𝐿(P𝑛,P�̂�𝑛 (𝑍))

≤ 𝖶1(P∗,P𝑛) +
1
𝐿
𝖶 (P𝑛,P�̂�𝑛(𝑍)) + 2

𝐿
inf
𝑊 ∈

sup
𝑊 ′∈Lip(𝐿,2𝐵)

‖𝑊 −𝑊 ′
‖∞

≤ 𝖶1(P∗,P𝑛) +
1
𝐿
𝖶 (P𝑛,P𝐺(𝑍)) + 2

𝐿
inf
𝑊 ∈

sup
𝑊 ′∈Lip(𝐿,2𝐵)

‖𝑊 −𝑊 ′
‖∞

≤ 𝖶1(P∗,P𝑛) +
1
𝐿
𝖶𝛼 (P𝑛,P𝐺(𝑍)) + 2

𝐿
inf
𝑊 ∈

sup
𝑊 ′∈Lip(𝐿,2𝐵)

‖𝑊 −𝑊 ′
‖∞

The bound on 𝖶𝛼 (P𝑛,P𝐺(𝑍)) depending on the intrinsic dimension
∗ was already derived in Theorem 5.2 (starting with Eq. (15)). The
ound on 𝖶1(P∗,P𝑛) depending on the intrinsic dimension 𝑑∗ was
lready derived in Corollary 4.2. □

.7. Calculations for Example 3.3

For the Wasserstein distance we get 𝖶1(P,Q) = 𝛾. The Vanilla GAN
istance using all Lipschitz 𝐿 affine functions as discriminator yields in
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this example 𝖵𝑎⋅+𝑏(P,Q) = max 𝑎,𝑏∈R,
|𝑎|≤𝐿

𝑓 (𝑎, 𝑏) for

𝑓 (𝑎, 𝑏) ∶= 1
2
(

− log
(

1+𝑒−𝑎𝛾−𝑏
)

−log
(

1+𝑒−𝑎(𝛾+𝜀)−𝑏
)

−log
(

1+𝑒𝑏
)

−log
(

1+𝑒𝑎𝜀+𝑏
))

+log(4).

Standard calculus yields for fixed 𝑎 the unique maximizer 𝑏∗ = − 𝑎(𝜀+𝛾)
2

nd

(𝑎, 𝑏∗) = − log
(

1 + 𝑒−
𝑎(𝜀+𝛾)

2
)

− log
(

1 + 𝑒
𝑎(𝜀−𝛾)

2
)

+ log(4).

ince
𝜕
𝜕𝑎
𝑓 (𝑎, 𝑏∗) =

𝜀 + 𝛾

2(𝑒
𝑎(𝛾+𝜀)

2 + 1)
−

𝜀 − 𝛾

2(𝑒−
𝑎(𝜀−𝛾)

2 + 1)
,

for 𝜀 ≤ 𝛾, the maximizing 𝑎 is maximal 𝑎∗ = 𝐿. This coincides with
the intuitive choice: as the support of P𝑋 and the support of P𝑌 can be
separated by a single point on R, we expect the optimal discriminator
to be affine linear. Standard calculus yields the linear upper and lower
bound for 𝜀 = 1

4 .
For 𝜀 > 𝛾, the unrestricted maximizing 𝑎∗ solves the equation

(𝜀 − 𝛾)𝑒
𝑎∗(𝜀+𝛾)

2 − (𝜀 + 𝛾)𝑒−
𝑎∗(𝜀−𝛾)

2 = 2𝛾.

hile there is no closed form solution, a numerical approximation (for
= 1

4 ) yields for 𝛾 < 𝜀 and 𝐿 > 16 such that 𝑎∗ is feasible

𝖶1(P𝑋 ,P𝑌 )2

2
≤ 𝖵𝑎⋅+𝑏(P𝑋 ,P𝑌 ) ≤ 𝑎 ⋅𝖶1(P𝑋 ,P𝑌 )2.
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