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A B S T R A C T

This work deals with optimal control problems for constrained mechanical systems whose
motion is governed by differential algebraic equations (DAEs). Both index-3 DAEs and stabilized
index-2 DAEs are considered. Two alternative formulations of the optimal control problem are
compared to each other. It is shown that symmetries of the optimal control problem lead to the
conservation of generalized momentum maps. These generalized momentum maps are related
to quadratic invariants of the optimal control problem. A direct discretization approach is newly
proposed which is (i) capable to conserve the quadratic invariants, and (ii) equivalent to the
indirect approach to the optimal control problem. Numerical examples are presented to access
the properties of the newly developed schemes.

1. Introduction

The present work deals with the optimal control of constrained mechanical systems, whose motion is described by differential–
algebraic equations (DAEs). In particular, we focus on mechanical systems subject to scleronomic holonomic constraints. The
constraints give rise to redundant coordinates and facilitate the singularity-free description of arbitrarily complex discrete mechanical
systems. We concentrate on optimal control problems in which the DAEs play the role of the state equations. This treatment ensures
that the mechanical system stays on the correct configuration manifold and thus prevents the numerical drift-off phenomenon. We
refer to [1] for a recent account of alternative approaches to the optimal control of constrained mechanical systems.

It is well-known that the motion of holonomically constrained mechanical systems is governed by DAEs with differentiation
index three [2,3]. In the context of optimal control problems these DAEs play the role of the state equations. Numerical methods for
the optimal control of DAEs are much less mature than those for ODEs [4]. This is particularly true for the index-3 DAEs associated
with constrained mechanical systems. Even if the often applied GGL (Gear–Gupta–Leimkuhler [5]) type index reduction is applied,
one still has to deal with stabilized index-2 DAEs.

While the modeling of mechanical systems in general requires the imposition of constraints, in some occasions minimal (or
local) coordinates might be used. Then the state equations assume the form of ODEs and well-established numerical methods can
be applied to solve related optimal control problems, see, for example, [6,7]. Similar observations apply if projection methods are
used to eliminate the constraints from the underlying DAEs prior to optimization, see [8–10].

While the Pontryagin maximum principle for the optimal control of ODEs goes back to 1956 [11], a maximum principle for
the optimal control of DAEs with index up to three was only published in 2002 [12]. As mentioned in [12], there is common
belief that one can apply the standard maximum principle to DAEs as well. The standard procedure relies on the direct use of the
holonomic constraints in the optimal control formulation and is used quite often in the field of computational mechanics, see, for
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example, [13–15]. The same observation applies to adjoint methods for dynamic optimization problems [16–18]. In contrast to
that, the approach complying with the maximum principle [12] has been rarely applied [19,20]. This is particularly true for the
high-index DAEs associated with mechanical systems.

Interestingly, to the best of our knowledge, a comparison of the two alternative approaches (common procedure versus maximum
rinciple [12]) to the optimal control of constrained mechanical systems has not been undertaken so far. It is one main goal of this
ork to fill this gap.

A second main goal of this work is to develop structure-preserving numerical methods for the optimal control of constrained
mechanical systems. In the optimal control of ODEs, the conservation of quadratic invariants plays a crucial role, as has been
shown by Sanz-Serna [21]. Accordingly, besides the preservation of quadratic invariants, discretization and optimization commute
if symplectic (partitioned) Runge–Kutta integration is applied (see also [7,22–24]). Put in other words, if symplectic (partitioned)
Runge–Kutta methods are used for the discretization, the direct and indirect approach to the numerical solution of optimal control
problems are equivalent. The preservation of quadratic invariants can be linked to Noether’s theorem for optimal control [25,26]. In
particular, in the optimal control of mechanical systems, generalized momentum maps are conserved if the optimal control problem
has symmetry. A corresponding structure-preserving direct method, which is capable to conserve generalized momentum maps of
he underlying optimal control problem has been proposed in [27].

In this work we aim to extend the above-mentioned results for the optimal control of ODEs to the realm of constrained mechanical
systems whose motion is governed by stabilized index-2 and index-3 DAEs. We show that there exist generalized momentum maps
which are (at most quadratic) invariants of the optimal control problem, provided that specific symmetry conditions are fulfilled
(see also [28] for a preliminary work). Based on this observation, we aim at structure-preserving numerical methods

• that are capable to preserve generalized momentum maps associated with symmetries of the underlying optimal control
problem.

• for which the direct and the indirect approach commute.

These goals shall be addressed in the light of the two alternative optimal control formulations at hand (according to either the
common approach or the maximum principle [12]).

The rest of this work is organized as follows. In Section 2, we summarize the equations of motion pertaining to constrained
mechanical systems described in terms of redundant coordinates. In addition to the index-3 DAEs we also deal with a GGL type
tabilized index-2 variant of the DAEs. The two alternative approaches to the formulation of the optimal control problem are

addressed in Section 3. The conservation properties of the optimal control problem are investigated in Section 4. Structure-preserving
approaches to the discretization of the optimal control problem are developed in Section 5. The numerical results presented in
ection 6 give rise to the reconciliation of the two alternative optimal control formulations in Section 7. Eventually, conclusions are

drawn in Section 8.

2. The state equations for constrained mechanical systems

In the present work we deal with mechanical systems subject to holonomic constraints. Let  be a smooth manifold of dimension
𝑛 and 𝐪 ∈  the representation of the local coordinates on . Due to the presence of constraints the coordinates are redundant.

onsequently, the configuration space of the mechanical system is defined by

 ∶= {𝐪 ∈  ∣ 𝐠𝑞(𝐪) = 𝟎} (1)

The constraint function 𝐠𝑞(𝐪) ∶  → R𝑚 defines 𝑚 independent constraints so that the constraint Jacobian 𝐷𝐠𝑞(𝐪) has full rank.
orrespondingly, the mechanical system has 𝑛dof = 𝑛 − 𝑚 degrees of freedom. Differentiating the constraints with respect to time

yields the consistency condition 𝑑𝐠𝑞(𝐪)∕𝑑 𝑡 = 𝐷𝐠𝑞(𝐪)𝐪̇ = 𝟎, where 𝐪̇ ∈ 𝑞 denotes the velocity vector. Introducing the conjugate
momentum 𝐩 = 𝐌𝐪̇, the constraints on velocity level can be rewritten as

𝐠𝑣(𝐪,𝐩) = 𝐷𝐠𝑞(𝐪)𝐌−1𝐩 = 𝟎 (2)

Here, 𝐌 ∈ R𝑛×𝑛 is the symmetric, positive definite mass matrix which is assumed to be constant for simplicity. For later use we
introduce matrix

𝐀(𝐪) = 𝐷𝐠𝑞(𝐪)𝐌−1𝐷𝐠𝑞(𝐪)𝑇 (3)

which is symmetric and non-singular due to the full-rank of the constraint Jacobian 𝐷𝐠𝑞(𝐪) and the positive definiteness of mass
atrix 𝐌. The phase space corresponding to the configuration manifold (1) can be introduced as

 ∗ ∶= {(𝐪,𝐩) ∈  ∗ ∣ 𝐠𝑞(𝐪) = 𝟎, 𝐠𝑣(𝐪,𝐩) = 𝟎} (4)

Accordingly, the phase space  ∗ has dimension 2𝑛dof . Note that the constraints on velocity level (2) are also referred to as hidden
onstraints.

2.1. The state equations as index-3 DAEs

To describe the motion of the mechanical system we introduce the augmented mechanical Hamiltonian

𝐻𝑀
3 (𝐪,𝐩, 𝐲𝑞) = 𝑇 (𝐪,𝐩) + 𝑉 (𝐪) + 𝐲𝑇𝑞 𝐠

𝑞(𝐪) (5)
2 
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where 𝑇 ∶  ∗ → R is the kinetic energy defined by

𝑇 (𝐪,𝐩) = 1
2
𝐩𝑇𝐌−1𝐩 (6)

𝑉 ∶  → R is the potential energy and 𝐲𝑞 ∈ R𝑚 are Lagrangian multipliers associated with the constraints. The motion of the
constrained Hamiltonian system is governed by the differential–algebraic equations (DAEs)

𝐪̇ = ∇𝐩𝐻𝑀
3 (𝐪,𝐩, 𝐲𝑞) = 𝐌−1𝐩 (7a)

𝐩̇ = −∇𝐪𝐻𝑀
3 (𝐪,𝐩, 𝐲𝑞) = −∇𝑉 (𝐪) −𝐷𝐠𝑞(𝐪)𝑇 𝐲𝑞 (7b)

𝟎 = ∇𝐲𝑞𝐻
𝑀
3 (𝐪,𝐩, 𝐲𝑞) = 𝐠𝑞(𝐪) (7c)

It is well-known that the DAEs (7) have differentiation index three [2]. This can be easily seen by differentiating the configuration
onstraints a second time with respect to time, leading to

𝑑
𝑑 𝑡𝐠

𝑣(𝐪,𝐩) = 𝜕𝐪𝐠𝑣(𝐪,𝐩)𝐪̇ + 𝜕𝐩𝐠𝑣(𝐪,𝐩)𝐩̇ = 𝟎

Substituting (7a) and (7b) into the last equation yields

𝐀(𝐪)𝐲𝑞 = 𝐛(𝐪,𝐩) (8)

where

𝐛(𝐪,𝐩) = 𝜕𝐪𝐠𝑣(𝐪,𝐩)𝐌−1𝐩 − 𝜕𝐩𝐠𝑣(𝐪,𝐩)∇𝑉 (𝐪) (9)

and matrix 𝐀(𝐪) has been introduced in (3). Since matrix 𝐀(𝐪) is non-singular, multiplier 𝐲𝑞 can be expressed as

𝐲𝑞(𝐪,𝐩) = 𝐀−1(𝐪)𝐛(𝐪,𝐩) (10)

A third time differentiation yields a differential equation for 𝐲𝑞 . This confirms that the DAEs (7) have index three.

2.2. The state equations as stabilized index-2 DAEs

Alternatively to the index-3 DAEs (7) the equations of motion can be written as stabilized index-2 DAEs relying on the augmented
mechanical Hamiltonian

𝐻𝑀
2 (𝐪,𝐩, 𝐲𝑞 , 𝐲𝑣) = 𝑇 (𝐩) + 𝑉 (𝐪) + 𝐲𝑇𝑞 𝐠

𝑞(𝐪) + 𝐲𝑇𝑣 𝐠
𝑣(𝐪,𝐩) (11)

where 𝐲𝑣 ∈ R𝑚 are additional Lagrangian multipliers associated with the constraints (2) on velocity level. Now, instead of (7), we
get

𝐪̇ = ∇𝐩𝐻𝑀
2 (𝐪,𝐩, 𝐲𝑞 , 𝐲𝑣) = 𝐌−1𝐩 + 𝜕𝐩𝐠𝑣(𝐪,𝐩)𝑇 𝐲𝑣 (12a)

𝐩̇ = −∇𝐪𝐻𝑀
2 (𝐪,𝐩, 𝐲𝑞 , 𝐲𝑣) = −∇𝑉 (𝐪) −𝐷𝐠𝑞(𝐪)𝑇 𝐲𝑞 − 𝜕𝐪𝐠𝑣(𝐪,𝐩)𝑇 𝐲𝑣 (12b)

𝟎 = ∇𝐲𝑞𝐻
𝑀
2 (𝐪,𝐩, 𝐲𝑞 , 𝐲𝑣) = 𝐠𝑞(𝐪) (12c)

𝟎 = ∇𝐲𝑣𝐻
𝑀
2 (𝐪,𝐩, 𝐲𝑞 , 𝐲𝑣) = 𝐠𝑣(𝐪,𝐩) (12d)

The above DAEs yield an index reduction in the spirit of the often used GGL stabilization [5]. In particular, the DAEs (12) have
ifferentiation index two [29,30]. This can be easily seen by differentiating the algebraic constraints in (12) with respect to time.
his yields the consistency condition

𝑑
𝑑 𝑡

[

𝐠𝑞(𝐪)
𝐠𝑣(𝐪,𝐩)

]

=
[

𝐷𝐠𝑞(𝐪) 𝟎
𝜕𝐪𝐠𝑣(𝐪,𝐩) 𝜕𝐩𝐠𝑣(𝐪,𝐩)

] [
𝐪̇
𝐩̇

]

= 𝟎 (13)

Now, the differential part of the DAEs (12) can be substituted into the last equation. To this end, we write (12a) and (12b) in the
form

[

𝐪̇
𝐩̇

]

=
[

𝐌−1𝐩
−∇𝑉 (𝐪)

]

−
[

𝟎 −𝜕𝐩𝐠𝑣(𝐪,𝐩)𝑇
𝐷𝐠𝑞(𝐪)𝑇 𝜕𝐪𝐠𝑣(𝐪,𝐩)𝑇

] [
𝐲𝑞
𝐲𝑣

]

(14)

Inserting the last equation into (13), a straightforward calculation yields
[

𝟎 −𝐀(𝐪)
𝐀(𝐪) 𝐂(𝐪,𝐩)

] [
𝐲𝑞
𝐲𝑣

]

=
[

𝐠𝑣(𝐪,𝐩)
𝐛(𝐪,𝐩)

]

(15)

where the skew-symmetric matrix 𝐂 is given by

𝐂(𝐪,𝐩) = 𝜕𝐩𝐠𝑣𝜕𝐪𝐠𝑣
𝑇
− 𝜕𝐪𝐠𝑣𝜕𝐩𝐠𝑣

𝑇 (16)

To obtain (15), 𝜕𝐩𝐠𝑣 = 𝐷𝐠𝑞𝐌−1 has been used together with matrix 𝐀 and vector 𝐛, which have been introduced in (3) and (9),
respectively. Now, the first line of (15) yields 𝐲𝑣 = 𝟎, due to (12d) and the non-singularity of matrix 𝐀. Moreover, the second line of
(15) yields result (8). To summarize, in the continuous setting the DAEs (12) imply that 𝐲𝑣 = 𝟎, and the DAEs (12) reduce to those
n (7). However, in the discrete setting, the additional multipliers 𝐲𝑣 serve the purpose to enforce the constraints (12d) on velocity

level.
3 
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Table 1
Index-3 state DAEs.

2.3. The controlled hamiltonian state equations

The two alternative versions of the state equations outlined above can be written in a unified way by introducing the augmented
mechanical Hamiltonian

𝐻𝑀
𝑖 (𝐪,𝐩, 𝐲𝑖) = 𝑇 (𝐩) + 𝑉 (𝐪) + 𝐲𝑇𝑖 𝐠𝑖(𝐪,𝐩) (17)

Here, index 𝑖 labels the respective Hamiltonians (5) and (11) and consequently hints at the index of the resulting DAEs. Accordingly,
ne may choose either 𝑖 = 3 or 𝑖 = 2. For the case 𝑖 = 3 the Lagrange multipliers and constraint functions are

𝐲3 = 𝐲𝑞 𝐠3(𝐪,𝐩) = 𝐠𝑞(𝐪) (18)

whereas for the case 𝑖 = 2,

𝐲2 =
[

𝐲𝑞
𝐲𝑣

]

𝐠2(𝐪,𝐩) =
[

𝐠𝑞(𝐪)
𝐠𝑣(𝐪,𝐩)

]

(19)

As outlined above, the corresponding DAEs have either index 𝑖 = 3 or 𝑖 = 2. Taking into account the additional influence of actuating
forces on the system, the controlled Hamiltonian state equations are given by

𝐪̇ = ∇𝐩𝐻𝑀
𝑖 (𝐪,𝐩, 𝐲𝑖) (20a)

𝐩̇ = −∇𝐪𝐻𝑀
𝑖 (𝐪,𝐩, 𝐲𝑖) + 𝐁(𝐪)𝐮 (20b)

𝟎 = ∇𝐲𝑖𝐻
𝑀
𝑖 (𝐪,𝐩, 𝐲𝑖) (20c)

where 𝐮 ∈  ⊆ R𝑛 are the control inputs and 𝐁 is the control distribution matrix. The controlled state Eqs. (20) can be written in
the more compact from

𝐪̇ = 𝐟𝐪𝑖 (𝐪,𝐩, 𝐲𝑖) (21a)

𝐩̇ = 𝐟𝐩𝑖 (𝐪,𝐩, 𝐲𝑖,𝐮) (21b)

𝟎 = 𝐠𝑖(𝐪,𝐩) (21c)

for 𝑖 ∈ {2, 3}. Eventually, introducing the phase space vector 𝐱 = (𝐪,𝐩), the state Eqs. (21) can be rewritten as

𝐱̇ = 𝐟𝑖(𝐱, 𝐲𝑖,𝐮) (22a)

𝟎 = 𝐠𝑖(𝐱) (22b)

for 𝑖 ∈ {2, 3}. Since 𝐱 ∈  ∗ ≡  represents the state of the mechanical system in phase space  , 𝐱 ∈  is also called state
vector in the sequel. For later reference, Tables 1 and 2 provide a summary of the present DAEs governing the motion of controlled
mechanical systems subject to holonomic constraints. These DAEs play the role of state equations in the optimal control problem
dealt with in the sequel.

For later use, we eventually provide the formulas for the Lagrange multipliers in terms of the states and the controls, i.e. 𝐲𝑖 =
𝐲𝑖(𝐱,𝐮) (𝑖 ∈ {2, 3}). In particular, for 𝑖 = 3, repeating the calculation that led to (8), we obtain
𝐀(𝐪)𝐲3 = 𝐛(𝐪,𝐩) +𝐷𝐠𝑞(𝐪)𝐌−1𝐁(𝐪)𝐮 (23)

4 
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Table 2
Stabilized index-2 state DAEs.

Consequently, multiplier 𝐲3 can be expressed as 𝐲3 = 𝐲3(𝐱,𝐮). Similarly, including the presence of controls in (15) yields
[

𝟎 −𝐀(𝐪)
𝐀(𝐪) 𝐂(𝐪,𝐩)

]

𝐲2 =
[

𝐠𝑣(𝐪,𝐩)
𝐛(𝐪,𝐩)

]

+
[

𝟎
𝐷𝐠𝑞(𝐪)𝐌−1𝐁(𝐪)𝐮

]

(24)

Thus, multiplier 𝐲2 can be expressed as 𝐲2 = 𝐲2(𝐱,𝐮).

3. The optimal control problem

Next we address the optimal control problem for constrained mechanical systems. In particular, we seek to minimize the cost
unctional [𝐱, 𝐲𝑖,𝐮] subject to the state DAEs (22) during the fixed time interval [𝑡0, 𝑡𝑓 ]. We assume that the states at the boundaries

are prescribed. That is, 𝐱(𝑡0) = 𝐱̄0 and 𝐱(𝑡𝑓 ) = 𝐱̄𝑓 , where 𝐱̄0, 𝐱̄𝑓 ∈  ∗ are given. The optimal control problem can be stated as follows.
Minimize

[𝐱, 𝐲𝑖,𝐮] = ∫

𝑡𝑓

𝑡0
𝐶(𝐱, 𝐲𝑖,𝐮) d𝑡 (25a)

subject to
𝐱̇ = 𝐟𝑖(𝐱, 𝐲𝑖,𝐮) (25b)

𝟎 = 𝐠𝑖(𝐱) (25c)

𝐱(𝑡0) = 𝐱̄0 (25d)

𝐱(𝑡𝑓 ) = 𝐱̄𝑓 (25e)

In (25a), 𝐶 is the prescribed cost density function. In the present work we put the focus on unbounded controls 𝐮 ∈  ⊆ R𝑛. As
efore, index 𝑖 ∈ {2, 3} serves the purpose to distinguish the two alternative state equations introduced in the last section.

3.1. Optimality conditions according to the maximum principle

A maximum principle for optimal control problems, in which the state equations are given by nonlinear index-3 and index-2
DAEs has been devised in [12], see also [4]. Accordingly, the necessary optimality conditions can be formulated in terms of an
optimal control Hamiltonian given by

𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) = 𝝀𝑇 𝐟𝑖(𝐱, 𝐲𝑖,𝐮) + 𝜼𝑇𝑖 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) − 𝐶(𝐱, 𝐲𝑖,𝐮) (26)

Here, 𝝀 and 𝜼𝑖 (𝑖 ∈ {2, 3}) are adjoint variables of appropriate dimensions. If the underlying state DAEs have index 𝑖 = 3, function
3 in Hamiltonian (26) is given by

𝐠̃3(𝐱, 𝐲3,𝐮) = 𝐷𝐠𝑣(𝐱)𝐟3(𝐱, 𝐲3,𝐮) (27a)

= 𝜕𝐪𝐠𝑣(𝐪,𝐩)𝐟
𝐪
3 (𝐪,𝐩) + 𝜕𝐩𝐠𝑣(𝐪,𝐩)𝐟

𝐩
3 (𝐪,𝐩, 𝐲3,𝐮) (27b)

Correspondingly, in Hamiltonian (26), the algebraic adjoint variables 𝜼3 ∈ R𝑚.
If the underlying state DAEs have index 𝑖 = 2, function 𝐠̃2 in Hamiltonian (26) is given by

𝐠̃ (𝐱, 𝐲 ,𝐮) = 𝐷𝐠 (𝐱)𝐟 (𝐱, 𝐲 ,𝐮) (28a)
2 2 2 2 2

5 
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=
[

𝐷𝐠𝑞(𝐪) 𝟎
𝜕𝐪𝐠𝑣(𝐪,𝐩) 𝜕𝐩𝐠𝑣(𝐪,𝐩)

] [
𝐟𝐪2 (𝐪,𝐩, 𝐲2)
𝐟𝐩2 (𝐪,𝐩, 𝐲2,𝐮)

]

(28b)

Correspondingly, in Hamiltonian (26), the algebraic adjoint variables 𝜼2 ∈ R2𝑚. The necessary conditions of optimality consist of
he state equations in (25), along with the optimality condition

𝟎 = ∇𝐮𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) (29a)

and the adjoint DAEs

𝝀̇ = −∇𝐱𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) (29b)

𝟎 = ∇𝐲𝑖𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) (29c)

3.2. Optimality conditions according to the common approach

As observed in [12], it is common belief that the standard maximum principle for ODEs can be applied to optimal control
problems subject to state DAEs. As outlined in Section 1, this observation still persists in the literature on computational mechanics.
The common approach is based on the introduction of a Hamiltonian of the form

𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) = 𝝀𝑇 𝐟𝑖(𝐱, 𝐲𝑖,𝐮) + 𝜼𝑇𝑖 𝐠𝑖(𝐱) − 𝐶(𝐱, 𝐲𝑖,𝐮) (30)

In contrast to Hamiltonian (26), the constraint functions 𝐠𝑖 are directly used in (30) instead of 𝐠̃𝑖 in (26). Of course, this difference
ffects the form of the optimality conditions which still result from (29) by replacing 𝑖 with 𝑖. Apart from that, there is another

crucial difference: Similar to the standard maximum principle for ODEs, the state equations in (25) can be derived from the
amiltonian (30) according to

𝐱̇ = ∇𝝀𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) (31a)

𝟎 = ∇𝜼𝑖𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) (31b)

Correspondingly, the optimality conditions now have an underlying variational structure in the sense that they can be derived from
an augmented cost functional given by

 𝑖 = ∫

𝑡𝑓

𝑡0
𝐶(𝐱, 𝐲𝑖,𝐮) + 𝝀𝑇

(

𝐱̇ − 𝐟𝑖(𝐱, 𝐲𝑖,𝐮)
)

− 𝜼𝑇𝑖 𝐠𝑖(𝐱) d𝑡 (32)

Employing Hamiltonian (30), the augmented cost functional  𝑖 can be recast in the form

 𝑖 = ∫

𝑡𝑓

𝑡0
𝝀𝑇 𝐱̇ −𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) d𝑡 (33)

It can be easily verified that imposing stationary of the augmented cost functional  𝑖 yields as Euler–Lagrange equations the
necessary conditions of optimality (29) along with the state DAEs (31).

Remark 1. While the optimal control formulation according to the common approach has an underlying variational structure that
hinges on the existence of the augmented cost functional  𝑖, this is not the case for the formulation based on the maximum principle
ealt with in Section 3.1. In particular, employing Hamiltonian (26) instead of (30) yields the functional

𝑖 = ∫

𝑡𝑓

𝑡0
𝝀𝑇 𝐱̇ −𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) d𝑡 (34)

whose Euler–Lagrange equation

𝟎 = ∇𝜼𝑖𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) ≠ 𝐠𝑖(𝐱) (35)

does not yield the constraints (25c) of the underlying state DAEs. This structural discrepancy of the formulation based on the
aximum principle impairs the design of numerical methods based on the direct approach [20]. In essence, the direct approach

‘first discretize then optimize’ relies on the discretization of variational functionals such as (33) and (34). We shall dwell further on
his point in Section 5.

3.3. The adjoint DAEs and the index of the adjoint variables

In this section we focus on the adjoint DAEs and the index of the adjoint variables, depending on whether the adjoint DAEs
manate from the maximum principle or the common approach. For simplicity of exposition, we assume that the density cost

function is given by 𝐶 = 𝐶(𝐮) = 1
2𝐮

𝑇𝐄𝐮, where matrix 𝐄 is assumed to be positive definite.

3.3.1. Adjoint DAEs according to the maximum principle
As mentioned in Section 3.1, the entire system of DAEs to be considered is comprised of the state equations in (25), optimality

condition (29a) and adjoint Eqs. (29b) and (29c).
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We provide the adjoint DAEs emanating from (29b) and (29c) in more detail by employing Hamiltonian (26). Moreover, we show
that the adjoint equations form DAEs of index 1 for the adjoint variables, independent from index 𝑖 ∈ {2, 3} of the underlying state
DAEs. If we partition the differential adjoint variables 𝝀 =

(

𝝀𝐪,𝝀𝐩
)

in analogy to the state variables 𝐱 = (𝐪,𝐩), for 𝑖 = 3, Hamiltonian
(26) can be written as

3 = 𝝀𝑇𝐪 𝐟
𝐪
3 + 𝝀𝑇𝐩 𝐟

𝐩
3 + 𝜼𝑇3 𝐠̃3 − 𝐶 (36)

Now, the differential part (29b) of the adjoint DAEs yields

𝝀̇𝐪 = −𝜕𝐪𝐟𝐩
𝑇

3 𝝀𝐩 − 𝜕𝐪𝐠̃𝑇3 𝜼3 (37a)

𝝀̇𝐩 = −𝜕𝐩𝐟𝐪
𝑇

3 𝝀𝐪 − 𝜕𝐩𝐠̃𝑇3 𝜼3 (37b)

while the algebraic part (29c) leads to
𝟎 = 𝜕𝐲3 𝐟

𝐩𝑇
3 𝝀𝐩 + 𝜕𝐲3 𝐠̃

𝑇
3 𝜼3

or

𝟎 = 𝐷𝐠𝑞(𝐪)𝝀𝐩 − 𝐀(𝐪)𝜼3

where matrix 𝐀(𝐪) has been introduced in (3). Accordingly,

𝜼3 = 𝐀−1𝐷𝐠𝑞(𝐪)𝝀𝐩 (38)

such that algebraic adjoint variable 𝜼3 can be expressed as 𝜼3 = 𝜼3(𝐪,𝝀𝐩), which implies that the adjoint equations form DAEs of
ndex 1 for the adjoint variables. For completeness, optimality condition (29a) gives rise to the relationship

𝟎 = 𝜕𝐮3 = 𝝀𝑇𝐩 𝜕𝐮𝐟
𝐩
3 + 𝜼𝑇3 𝜕𝐮𝐠̃3 − 𝜕𝐮𝐶

leading to
𝐄𝐮 = 𝐁𝑇

(

𝝀𝐩 +𝐌−1𝐷𝐠𝑞𝑇 𝜼3
)

(39)

Similarly, for 𝑖 = 2, adjoint Eq. (29c) gives rise to
𝟎 = 𝜕𝐲22 = 𝝀𝑇 𝜕𝐲2 𝐟2 + 𝜼𝑇2 𝜕𝐲2 𝐠̃2

Now, a straightforward calculation yields
[

𝟎 𝐀
−𝐀 𝐂𝑇

]

𝜼2 = −
[

𝟎 𝐷𝐠𝑞
−𝜕𝐩𝐠𝑣 𝜕𝐪𝐠𝑣

]

𝝀 (40)

where matrices 𝐀 and 𝐂 have been introduced in (3) and (16), respectively. Accordingly, since matrix 𝐀 is non-singular, algebraic
djoint variable 𝜼2 can be expressed as 𝜼2 = 𝜼2(𝐱,𝝀), which implies that the adjoint equations form DAEs of index 1 for the adjoint
ariables. For completeness, optimality condition (29a) gives rise to the relationship

𝟎 = 𝜕𝐮2 = 𝝀𝑇 𝜕𝐮𝐟2 + 𝜼𝑇2 𝜕𝐮𝐠̃2 − 𝜕𝐮𝐶

leading to
𝐄𝐮 = 𝐁𝑇

(

𝝀𝐩 +𝐌−1𝐷𝐠𝑞𝑇 𝜼𝐚2
)

(41)

where the algebraic adjoint variables have been partitioned according to 𝜼2 =
(

𝜼𝐯2, 𝜼
𝐚
2
)

.

3.3.2. Adjoint DAEs according to the common approach
According to Section 3.2, the entire system of DAEs to be considered is comprised of the state equations in (25), optimality

condition (29a) and adjoint Eqs. (29b) and (29c), where now Hamiltonian (30) has to be applied.
We consider the adjoint DAEs emanating from (29b) and (29c) by using Hamiltonian 𝑖 defined in (30). In particular, we show

that the adjoint equations form DAEs of index 𝑖 ∈ {2, 3} for the adjoint variables.
Starting with 𝑖 = 3, Hamiltonian (30) reads

3 = 𝝀𝑇𝐪 𝐟
𝐪
3 + 𝝀𝑇𝐩 𝐟

𝐩
3 + 𝜼𝑇3 𝐠3 − 𝐶 (42)

Now, the differential part (29b) of the adjoint DAEs yields

𝝀̇𝐪 = −𝜕𝐪𝐟𝐩
𝑇

3 𝝀𝐩 −𝐷𝐠𝑞𝑇 𝜼3 (43a)

𝝀̇𝐩 = −𝜕𝐩𝐟𝐪
𝑇

3 𝝀𝐪 (43b)

Optimality condition (29a) gives rise to the relationship

𝟎 = 𝜕𝐮3 = 𝝀𝑇𝐩 𝜕𝐮𝐟
𝐩
3 − 𝜕𝐮𝐶

leading to
𝑇
𝐄𝐮 = 𝐁 𝝀𝐩 (44)
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Accordingly, since 𝐄 is invertible, the control vector 𝐮 can be expressed in terms of the adjoint variables 𝝀𝐩. Algebraic part (29c)
of the adjoint DAEs leads to

𝟎 = 𝜕𝐲3 𝐟
𝐩𝑇
3 𝝀𝐩 = −𝐷𝐠𝑞𝝀𝐩

Differentiating the last equation with respect to time yields

𝟎 = 𝑑
𝑑 𝑡 (𝐷𝐠𝑞)𝝀𝐩 +𝐷𝐠𝑞 𝝀̇𝐩

Inserting (43b) into the last equation gives

𝟎 = 𝑑
𝑑 𝑡 (𝐷𝐠𝑞)𝝀𝐩 −𝐷𝐠𝑞𝐌−1𝝀𝐪

A second time differentiation of the last equation yields, after a straightforward calculation which takes into account (43),

𝐀𝜼3 = 𝐡(𝐱, 𝐲3,𝐮,𝝀) (45)

where matrix 𝐀 has been introduced in (3) and function 𝐡 collects the remaining terms. Taking into account (23) and (44), the last
equation implies that algebraic adjoint variables 𝜼3 can be expressed as 𝜼3 = 𝜼3(𝐱,𝝀). Accordingly, the adjoint equations form DAEs
of index 3 for the adjoint variables, which equals the index of the underlying state DAEs.

For 𝑖 = 2, the differential part (29b) of the adjoint DAEs yields

𝝀̇ = −𝜕𝐱𝐟𝑇2 𝝀 − 𝜕𝐱𝐠𝑇2 𝜼2 (46)

while the optimality condition (29a) gives rise to the relationship

𝟎 = 𝜕𝐮2 = 𝝀𝑇𝐩 𝜕𝐮𝐟
𝐩
2 − 𝜕𝐮𝐶

which again yields

𝐄𝐮 = 𝐁𝑇 𝝀𝐩 (47)

Algebraic part (29c) of the adjoint DAEs gives rise to

𝟎 = 𝜕𝐲22 = 𝝀𝑇 𝜕𝐲2 𝐟2 = 𝝀𝑇
[

𝟎 −𝜕𝐩𝐠𝑣
𝑇

𝐷𝐠𝑞𝑇 𝜕𝐪𝐠𝑣
𝑇

]

Differentiating the last equation with respect to time, and inserting (46), a straightforward calculation yields
[

𝟎 𝐀
−𝐀 𝐂𝑇

]

𝜼2 = 𝐡̂(𝐱, 𝐲2,𝐮,𝝀) (48)

where remaining terms have been collected in function 𝐡̂. Moreover, matrices 𝐀 and 𝐂 have been introduced in (3) and (16),
respectively. The last equation together with (24) and (47) imply that the algebraic adjoint variables 𝜼2 can be expressed as
𝜼2 = 𝜼2(𝐱,𝝀). Thus one may conclude that the adjoint equations form DAEs of index 2 for the adjoint variables, which equals
he index of the underlying state DAEs.

4. Conservation properties of the optimal control problem

4.1. Conservation of generalized momentum maps

If the state equations of an optimal control problem assume the form of ODEs, it has been shown in [27] that symmetries of
he underlying uncontrolled mechanical system are inherited by the optimal control problem, provided that the cost function also
espects the symmetries. Symmetries of the optimal control problem give rise to the conservation of generalized momentum maps,

which is in line with Noether’s theorem [25,26]. Analogous observations hold for the optimal control of constrained mechanical
ystems whose motion is governed by DAEs. This will be shown in the sequel. Our presentation covers the two alternative optimal

control formulations dealt with in the last section comprised of state DAEs with index 𝑖 ∈ {2, 3}, and thus generalizes our previous
ork [28] that has been confined to the maximum principle and 𝑖 = 2.

Consider the action of a Lie group 𝐺 on phase space  given by the smooth mapping 𝛷 ∶ 𝐺× →  such that 𝛷𝑔(𝐱) = 𝛷(𝑔 , 𝐱), for
𝑔 ∈ 𝐺. Accordingly, 𝛷𝑔 ∶  →  for every 𝑔 ∈ 𝐺. In particular, we consider the one-parameter subgroup {𝑔𝑠 = exp(𝑠𝝃) ∶ 𝑠 ∈ R} ⊆ 𝐺,
where 𝝃 is a vector in the Lie algebra g of 𝐺. Note that 𝛷(𝑔0, 𝐱) = 𝐱. We further define the infinitesimal generator associated to 𝝃 ∈ g

at 𝐱 ∈  by

𝝃 (𝐱) = d
d𝑠

|

|

|

|𝑠=0
𝛷𝑔𝑠 (𝐱) (49)

Proposition 1. Provided that the following symmetry conditions
𝐟𝑖(𝛷𝑔𝑠 (𝐱), 𝐲𝑠𝑖 ,𝐮

𝑠) = 𝐷 𝛷𝑔𝑠 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮) (50a)

𝐠 (𝛷 (𝐱)) = 𝐠 (𝐱) (50b)
𝑖 𝑔𝑠 𝑖
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𝐶(𝛷𝑔𝑠 (𝐱), 𝐲𝑠𝑖 ,𝐮
𝑠) = 𝐶(𝐱, 𝐲𝑖,𝐮) (50c)

are satisfied for some 𝐮𝑠 and 𝐲𝑠𝑖 satisfying 𝐮
0 = 𝐮 and 𝐲0𝑖 = 𝐲𝑖, generalized momentum maps of the form

𝐽𝜉 (𝐱,𝝀) = 𝝀𝑇 𝝃 (𝐱) (51)

are conserved along solutions of the optimal control problem. This holds for 𝑖 ∈ {2, 3} and the two alternative optimal control formulations
reated above.

The proof of Proposition 1 is contained in the next two sections.

4.1.1. Optimal control formulation based on the maximum principle
We start with the formulation of the optimal control problem according to the maximum principle dealt with in Section 3.1. We

first show that symmetry conditions (50a) and (50b) imply that

𝐠̃𝑖(𝛷𝑔𝑠 (𝐱), 𝐲𝑠𝑖 ,𝐮
𝑠) = 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) (52)

for 𝑖 ∈ {2, 3}. To see this, consider the derivative of (50b) with respect to time leading to
𝑑
𝑑 𝑡𝐠𝑖(𝛷𝑔𝑠 (𝐱)) = 𝐷𝐠𝑖(𝛷𝑔𝑠 (𝐱))

𝑑
𝑑 𝑡𝛷𝑔𝑠 (𝐱) = 𝐷𝐠𝑖(𝛷𝑔𝑠 (𝐱))𝐷 𝛷𝑔𝑠 (𝐱)𝐱̇ = 𝐷𝐠𝑖(𝐱)𝐱̇

Note that the right-hand side of the last equation corresponds to the time derivative of the right-hand side of (50b). Inserting the
state Eq. (22a) in the above equation yields

𝐷𝐠𝑖(𝛷𝑔𝑠 (𝐱))𝐷 𝛷𝑔𝑠 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮) = 𝐷𝐠𝑖(𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

Making use of symmetry condition (50a) on the left-hand side of the last equation gives

𝐷𝐠𝑖(𝛷𝑔𝑠 (𝐱))𝐟𝑖(𝛷𝑔𝑠 (𝐱), 𝐲𝑠𝑖 ,𝐮
𝑠) = 𝐷𝐠𝑖(𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

For 𝑖 = 2, the last equation directly proofs (52), since 𝐠̃2 is defined by 𝐠̃2(𝐱, 𝐲2,𝐮) = 𝐷𝐠2(𝐱)𝐟2(𝐱, 𝐲2,𝐮), see (28). For 𝑖 = 3,
the last equation implies 𝐠𝑣(𝛷𝑔𝑠 (𝐱)) = 𝐠𝑣(𝐱), since the velocity-level constraint function introduced in (2) can be written as
𝑣(𝐱) = 𝐷𝐠3(𝐱)𝐟3(𝐱, 𝐲3,𝐮). Now, since 𝐠̃3(𝐱, 𝐲3,𝐮) = 𝐷𝐠𝑣(𝐱)𝐟3(𝐱, 𝐲3,𝐮), c.f. (27), the above procedure can be repeated by replacing
𝑖 with 𝐠𝑣, which proofs (52) for 𝑖 = 3.

Strictly speaking, the proof of Proposition 1 only requires the infinitesimal versions of the symmetry conditions (50a), (52) and
50c). Starting with (50a), we get

d
d𝑠

|

|

|

|𝑠=0
𝐟𝑖(𝛷𝑔𝑠 (𝐱), 𝐲𝑠𝑖 ,𝐮

𝑠) = d
d𝑠

|

|

|

|𝑠=0
𝐷 𝛷𝑔𝑠 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

Now, a straightforward calculation based on the last equation yields
𝜕𝐱𝐟𝑖(𝐱, 𝐲𝑖,𝐮)𝝃 (𝐱) + 𝜕𝐲𝑖 𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

d
d𝑠
|

|

|𝑠=0
𝐲𝑠𝑖

+ 𝜕𝐮𝐟𝑖(𝐱, 𝐲𝑖,𝐮)
d
d𝑠
|

|

|𝑠=0
𝐮𝑠 = 𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

(53)

Here, use has been made of (49) and, on the right-hand side, the equality of mixed partials. Similarly, (52) and (50c) yield

𝜕𝐱𝐶(𝐱, 𝐲𝑖,𝐮)𝝃 (𝐱) + 𝜕𝐲𝑖𝐶(𝐱, 𝐲𝑖,𝐮)
d
d𝑠

|

|

|

|𝑠=0
𝐲𝑠𝑖 + 𝜕𝐮𝐶(𝐱, 𝐲𝑖,𝐮)

d
d𝑠

|

|

|

|𝑠=0
𝐮𝑠 = 𝟎 (54a)

𝜕𝐱 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮)𝝃 (𝐱) + 𝜕𝐲𝑖 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮)
d
d𝑠

|

|

|

|𝑠=0
𝐲𝑠𝑖 + 𝜕𝐮𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮)

d
d𝑠

|

|

|

|𝑠=0
𝐮𝑠 = 𝟎 (54b)

Making use of the Hamiltonian (26), the optimality conditions (29) can be written in the form

𝟎 = 𝝀𝑇 𝜕𝐮𝐟𝑖(𝐱, 𝐲𝑖,𝐮) + 𝜼𝑇𝑖 𝜕𝐮𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐮𝐶(𝐱, 𝐲𝑖,𝐮) (55a)

𝝀̇𝑇 = −𝝀𝑇 𝜕𝐱𝐟𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜼𝑇𝑖 𝜕𝐱 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) + 𝜕𝐱𝐶(𝐱, 𝐲𝑖,𝐮) (55b)

𝟎 = 𝝀𝑇 𝜕𝐲𝑖 𝐟𝑖(𝐱, 𝐲𝑖,𝐮) + 𝜼𝑇𝑖 𝜕𝐲𝑖 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐲𝑖𝐶(𝐱, 𝐲𝑖,𝐮) (55c)

Multiplying (53) from the left by 𝝀𝑇 leads to
𝝀𝑇 𝜕𝐱𝐟𝑖(𝐱, 𝐲𝑖,𝐮)𝝃 (𝐱) + 𝝀𝑇 𝜕𝐲𝑖 𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

d
d𝑠
|

|

|𝑠=0
𝐲𝑠𝑖

+ 𝝀𝑇 𝜕𝐮𝐟𝑖(𝐱, 𝐲𝑖,𝐮)
d
d𝑠
|

|

|𝑠=0
𝐮𝑠 = 𝝀𝑇𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

Substituting from (55a), (55b) and (55c) into the last equation yields
𝝀𝑇𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮) = −

(

𝜼𝑇𝑖 𝜕𝐱 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐱𝐶(𝐱, 𝐲𝑖,𝐮) + 𝝀̇𝑇
)

𝝃 (𝐱)

−
(

𝜼𝑇𝑖 𝜕𝐲𝑖 𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐲𝑖𝐶(𝐱, 𝐲𝑖,𝐮)
)

d
d𝑠
|

|

|𝑠=0
𝐲𝑠𝑖

−
(

𝜼𝑇𝑖 𝜕𝐮𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐮𝐶(𝐱, 𝐲𝑖,𝐮)
) d

d𝑠
|

|

|𝑠=0
𝐮𝑠

Taking into account (54a) and (54b), the last equation can be recast in the form
𝑇
𝟎 = 𝝀̇ 𝝃 (𝐱) + 𝝀𝑇𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)
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Inserting the state Eq. (22a) in the above equation yields

𝟎 = 𝝀̇𝑇 𝝃 (𝐱) + 𝝀𝑇𝐷𝝃 (𝐱)𝐱̇ = 𝑑
𝑑 𝑡

(

𝝀𝑇 𝝃 (𝐱)
)

(56)

which confirms that quantity (51) is indeed conserved along optimal trajectories.

4.1.2. Optimal control formulation according to the common approach
We next consider the optimal control formulation dealt with in Section 3.2. To this end, we directly start from the infinitesimal

ersions of the symmetry conditions (50), which are again given by (53) and (54a), together with the infinitesimal version of (50b)
given by

D𝐠𝑖(𝐱)𝝃 (𝐱) = 𝟎 (57)

Employing the Hamiltonian (30) in the optimality conditions (29) yields

𝟎 = 𝝀𝑇 𝜕𝐮𝐟𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐮𝐶(𝐱, 𝐲𝑖,𝐮) (58a)

𝝀̇𝑇 = −𝝀𝑇 𝜕𝐱𝐟𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜼𝑇𝑖 𝐷𝐠𝑖(𝐱) + 𝜕𝐱𝐶(𝐱, 𝐲𝑖,𝐮) (58b)

𝟎 = 𝝀𝑇 𝜕𝐲𝑖 𝐟𝑖(𝐱, 𝐲𝑖,𝐮) − 𝜕𝐲𝑖𝐶(𝐱, 𝐲𝑖,𝐮) (58c)

Multiplying (53) from the left by 𝝀𝑇 leads to
𝝀𝑇 𝜕𝐱𝐟𝑖(𝐱, 𝐲𝑖,𝐮)𝝃 (𝐱) + 𝝀𝑇 𝜕𝐲𝑖 𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

d
d𝑠
|

|

|𝑠=0
𝐲𝑠𝑖

+ 𝝀𝑇 𝜕𝐮𝐟𝑖(𝐱, 𝐲𝑖,𝐮)
d
d𝑠
|

|

|𝑠=0
𝐮𝑠 = 𝝀𝑇𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

Substituting from (58a), (58b) and (58c) into the last equation yields

𝝀𝑇𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮) =
(

𝜕𝐱𝐶(𝐱, 𝐲𝑖,𝐮) − 𝜼𝑇𝑖 𝐷𝐠𝑖(𝐱) − 𝝀̇𝑇
)

𝝃 (𝐱)

+ 𝜕𝐲𝑖𝐶(𝐱, 𝐲𝑖,𝐮)
d
d𝑠
|

|

|𝑠=0
𝐲𝑠𝑖

+ 𝜕𝐮𝐶(𝐱, 𝐲𝑖,𝐮)
d
d𝑠
|

|

|𝑠=0
𝐮𝑠

Substituting (57) and (54a) into the last equation yields

𝟎 = 𝝀̇𝑇 𝝃 (𝐱) + 𝝀𝑇𝐷𝝃 (𝐱)𝐟𝑖(𝐱, 𝐲𝑖,𝐮)

from which again follows result (56).

4.2. Conservation of optimal control Hamiltonians

Next, we verify that both optimal control formulations considered in this work conserve the optimal control Hamiltonian.

4.2.1. Optimal control formulation based on the maximum principle
The optimal control Hamiltonian (26) is a conserved quantity of the optimal control formulation based on the maximum principle

(Section 3.1). To see this, differentiate (26) with respect to time to obtain
𝑑
𝑑 𝑡𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) = 𝜕𝐱𝑖𝐱̇ + 𝜕𝐲𝑖𝑖𝐲̇𝑖 + 𝜕𝐮𝑖𝐮̇ + 𝜕𝝀𝑖𝝀̇ + 𝜕𝜼𝑖𝑖𝜼̇𝑖

= 𝜕𝐱𝑖∇𝝀𝑖 + 𝜕𝝀𝑖
(

−∇𝐱𝑖
)

+ 𝐠̃𝑇𝑖 𝜼̇𝑖
= 𝐠̃𝑇𝑖 𝜼̇𝑖

where the optimality conditions (29) have been used. Now, for 𝑖 = 2, expression (28) leads to
𝐠̃2 = 𝐷𝐠2(𝐱)𝐟2 = 𝐷𝐠2(𝐱)𝐱̇ = 𝑑

𝑑 𝑡𝐠2(𝐱) = 𝟎

which follows from the fulfillment of the constraints 𝐠2(𝐱) = 𝟎. Similarly, for 𝑖 = 3, relation (27) yields

𝐠̃3 = 𝐷𝐠𝑣(𝐱)𝐟3 = 𝐷𝐠𝑣(𝐱)𝐱̇ = 𝑑
𝑑 𝑡𝐠

𝑣(𝐱) = 𝑑2

𝑑 𝑡2 𝐠
𝑞(𝐪) = 𝟎

which follows from the fulfillment of the constraints 𝐠𝑞(𝐪) = 𝟎. Thus, we obtain the result
𝑑
𝑑 𝑡𝑖 = 0

so that  is conserved along optimal trajectories for 𝑖 ∈ {2, 3}.
𝑖

10 
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4.2.2. Optimal control formulation according to the common approach
We now turn to the Hamiltonian (30) associated with the common approach (Section 3.2). Differentiating (30) with respect to

time yields
𝑑
𝑑 𝑡𝑖(𝐱, 𝐲𝑖,𝐮,𝝀, 𝜼𝑖) = 𝜕𝐱𝑖𝐱̇ + 𝜕𝐲𝑖𝑖𝐲̇𝑖 + 𝜕𝐮𝑖𝐮̇ + 𝜕𝝀𝑖𝝀̇ + 𝜕𝜼𝑖𝑖𝜼̇𝑖

= 𝜕𝐱𝑖∇𝝀𝑖 + 𝜕𝝀𝑖

(

−∇𝐱𝑖

)

= 𝟎

Here, use has been made of the optimality conditions (29) and (31) (in terms of 𝑖). Accordingly, 𝑖 is a conserved quantity of the
ptimal control problem for 𝑖 ∈ {2, 3}.

5. Structure-preserving discretization

In this section we devise a direct discretization approach that yields structure-preserving discrete conditions of optimality. In
particular, the resulting schemes inherit the conservation of generalized momentum maps from the underlying continuous optimal
control problem with symmetry. Our approach can be viewed as generalization of the direct method [27], that is confined to state
quations in ODE form.

We start with generic functions 𝐟𝑑 (𝐱, 𝐲,𝐮), 𝐠𝑑 (𝐱, 𝐲,𝐮), and 𝐶𝑑 (𝐱, 𝐲,𝐮), which in the sequel shall be adopted to specific forms of,
respectively, the state equations, the constraint functions and the density cost function. Let the time interval of interest, 𝐼 ∈ [𝑡0, 𝑡𝑓 ],
be split in 𝑁 non-overlapping subintervals 𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1] = [𝑛ℎ, (𝑛+ 1)ℎ] (𝑛 = 0, 1,… , 𝑁 − 1) of length ℎ = 𝑡𝑓−𝑡0

𝑁 . The discrete value of
a function 𝐟 ∶ 𝐼 → R𝑑 at time 𝑡𝑛 is denoted by 𝐟𝑛. To approximate augmented cost functionals such as (32), we introduce a discrete
ugmented cost function of the form

𝑆𝑑 =
𝑁−1
∑

𝑛=0

[

𝝀𝑇𝑛+1
(

𝐱𝑛+1 − 𝐱𝑛 − 𝐟𝑑
(

(1 − 𝛼)𝐱𝑛 + 𝛼𝐚𝑛, 𝐲𝑛+1,𝐮𝑛+1
))

+𝜶𝑇
𝑛
(

𝐚𝑛 − 𝐱𝑛 − 𝐟𝑑
(

(1 − 𝛼)𝐱𝑛 + 𝛼𝐚𝑛, 𝐲𝑛+1,𝐮𝑛+1
))

−𝜼𝑇𝑛+1𝐠𝑑
(

(1 − 𝛼)𝐱𝑛 + 𝛼𝐚𝑛, 𝐲𝑛+1,𝐮𝑛+1
)

+𝐶𝑑
(

(1 − 𝛼)𝐱𝑛 + 𝛼𝐚𝑛, 𝐲𝑛+1,𝐮𝑛+1
)

]

+𝝀𝑇0 (𝐱0 − 𝐱̄0) + 𝜸𝑇 𝐠𝑓 (𝐱𝑁 )

(59)

where 𝛼 ∈ [0, 1]. Note that 𝑆𝑑 depends on the discrete state variables 𝐱𝑛 (𝑛 = 0,… , 𝑁), auxiliary state variables 𝐚𝑛 (𝑛 = 0,… , 𝑁 − 1),
discrete mechanical multipliers 𝐲𝑛 (𝑛 = 1,… , 𝑁), discrete controls 𝐮𝑛 (𝑛 = 1,… , 𝑁), and discrete Lagrange multipliers 𝝀𝑛 (𝑛 =
0,… , 𝑁), 𝜶𝑛, (𝑛 = 0,… , 𝑁 − 1), 𝜼𝑛 (𝑛 = 1,… , 𝑁), and 𝜸 ∈ 𝐑2𝑛dof . The multipliers 𝜸 are used to enforce the final state constraints

𝐠𝑓 (𝐱𝑁 ) = 𝟎 (60)

Imposing the stationary conditions on 𝑆𝑑 yields the discrete Euler–Lagrange equations. In particular, stationary with respect to
the Lagrange multipliers 𝝀𝑛 and 𝜶𝑛 yields

𝐚𝑛 = 𝐱𝑛+1
together with the discretized differential part of the state DAEs

𝐱𝑛+1 − 𝐱𝑛 = 𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1) (61)

where

𝐱𝑛+𝛼 = (1 − 𝛼)𝐱𝑛 + 𝛼𝐱𝑛+1 (62)

Variation with respect to 𝐱𝑛 and 𝐚𝑛 yields

𝜶𝑛 = −𝛼(𝝀𝑛+1 − 𝝀𝑛) (63)

together with
𝝀𝑛+1 − 𝝀𝑛 = − 𝜕𝐱𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇 𝝀𝑛+(1−𝛼)

− 𝜕𝐱𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇 𝜼𝑛+1
+ 𝜕𝐱𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇

(64)

where

𝝀𝑛+(1−𝛼) = 𝛼𝝀𝑛 + (1 − 𝛼)𝝀𝑛+1 (65)

Note that (64) represents the discrete version of the differential part of the adjoint DAEs. The discrete counterpart of the algebraic
art of the adjoint DAEs results from the stationary condition of 𝑆𝑑 with respect to 𝐲𝑛 leading to

𝟎 =𝜕𝐲𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇 𝝀𝑛+(1−𝛼)
𝜕𝐲𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇 𝜼𝑛+1

𝑇

(66)

− 𝜕𝐲𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
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Similarly, stationary with respect to 𝐮𝑛 yields the discrete optimality conditions
𝟎 =𝜕𝐮𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇 𝝀𝑛+(1−𝛼)

𝜕𝐮𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇 𝜼𝑛+1
− 𝜕𝐮𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝑇

(67)

Eventually, stationary with respect to the multipliers 𝜼𝑛 gives

𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1) = 𝟎 (68)

The above discrete conditions of optimality can be written in compact form by introducing the discrete optimal control Hamiltonian

𝑑 (𝐱, 𝐲,𝐮,𝝀, 𝜼) = 𝝀𝑇 𝐟𝑑 (𝐱, 𝐲,𝐮) + 𝜼𝑇 𝐠𝑑 (𝐱, 𝐲,𝐮) − 𝐶𝑑 (𝐱, 𝐲,𝐮) (69)

to obtain

𝐱𝑛+1 − 𝐱𝑛 = ∇𝝀𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑛+1) (70a)

𝟎 = ∇𝜼𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑛+1) (70b)

𝝀𝑛+1 − 𝝀𝑛 = −∇𝐱𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑛+1) (70c)

𝟎 = ∇𝐲𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑛+1) (70d)

𝟎 = ∇𝐮𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑛+1) (70e)

for 𝛼 ∈ (0, 1] and 𝑛 = 0,… , 𝑁 − 1. Furthermore, we get the boundary and transversality conditions

𝟎 = 𝐱0 − 𝐱̄0 (71a)

𝟎 = 𝐠𝑓 (𝐱𝑁 ) (71b)

𝟎 = 𝝀𝑁 +𝐷𝐠𝑓 (𝐱𝑁 )𝑇 𝜸 (71c)

Note that the specific form (60) of the final state constraints accounts for the fact that the constraints are enforced in each time step
through (70b) including the final one at 𝑛 = 𝑁 − 1.

5.1. Direct method based on the common approach

The direct discretization approach developed above can be directly applied to the optimal control formulation based on the
common approach (Section 3.2). To this end, we choose

𝐟𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐟𝑖(𝐱, 𝐲𝑖,𝐮) (72a)

𝐠𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐠𝑖(𝐱) (72b)

𝐶𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐶(𝐱, 𝐲𝑖,𝐮) (72c)

This choice implies that the discrete Hamiltonian (69), 𝑑 = ℎ𝑖 (𝑖 ∈ {2, 3}), where Hamiltonian 𝑖 has been introduced in (30).
Correspondingly, the discrete conditions of optimality in (70) can now be recast in the form

𝐱𝑛+1 − 𝐱𝑛 = ℎ∇𝝀𝑖(𝐱𝑛+𝛼 , 𝐲𝑛+1, 𝐲𝑖𝑛+1 ,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (73a)

𝟎 = ∇𝜼𝑖𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (73b)

𝝀𝑛+1 − 𝝀𝑛 = −ℎ∇𝐱𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (73c)

𝟎 = ∇𝐲𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (73d)

𝟎 = ∇𝐮𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (73e)

Note that (73b) yields 𝐠𝑖(𝐱𝑛+𝛼) = 𝟎. Obviously, the above scheme can also be obtained by directly discretizing the continuous
ptimality conditions dealt with in Section 3.2. Accordingly, the direct and the indirect approach commute.

5.2. Numerical methods based on the maximum principle

As has been outlined in Remark 1, the structural discrepancy of the optimal control formulation based on the maximum principle
impairs the design of direct methods. In what follows, we first propose an indirect method which relies on a slight modification of
the above-developed direct method. We then show that, under certain conditions, the direct approach can be maintained by making
light adjustments to the above-developed direct method.
12 
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5.2.1. Indirect method
To take into account the structural discrepancy of the optimal control formulation based on the maximum principle, we propose

an indirect method which can be obtained by modifying the above-developed direct method. Accordingly, we choose

𝐟𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐟𝑖(𝐱, 𝐲𝑖,𝐮) (74a)

𝐠𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐠̃𝑖(𝐱, 𝐲𝑖,𝐮) (74b)

𝐶𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐶(𝐱, 𝐲𝑖,𝐮) (74c)

and define

𝐱𝑛+1 − 𝐱𝑛 = ℎ𝐟𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 , 𝜼𝑖𝑛+1 ) (75a)

𝟎 = 𝐠𝑖(𝐱𝑛+1) (75b)

𝝀𝑛+1 − 𝝀𝑛 = −ℎ∇𝐱𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (75c)

𝟎 = ∇𝐲𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (75d)

𝟎 = ∇𝐮(𝐱𝑛+𝛼 , 𝐲𝑛+1, 𝐲𝑖𝑛+1 ,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 ) (75e)

Note that the choice (74) renders the discrete Hamiltonian (69) to be equal to 𝑑 = ℎ𝑖, where Hamiltonian 𝑖 has been introduced
in (26). Furthermore, concerning the algebraic constraints in (75b),

𝐠𝑖(𝐱𝑛+1) ≠ ∇𝜼𝑖𝑖(𝐱𝑛+𝛼 , 𝐲𝑖𝑛+1 ,𝐮𝑛+1,𝝀𝑛+(1−𝛼), 𝜼𝑖𝑛+1 )

which is in line with the structural discrepancy outlined in Remark 1. Moreover, (75b) ensures that the mechanical constraints are
satisfied at the discrete time nodes, independent of the choice for 𝛼 ∈ [0, 1].

Scheme (75) can be obtained by directly discretizing the continuous state equations in (25), along with the conditions of
ptimality (29), and thus follows from the indirect approach characterized by ‘‘first optimize then discretize’’.

5.2.2. Direct method due to Martens & Gerdts [20]
Despite the structural discrepancy outlined in Remark 1, it is possible to apply the direct approach developed above in a consistent

way to the optimal control formulation based on the maximum principle. For 𝑖 = 2 and 𝛼 = 1 this was shown recently in [20]. The
main idea is to write 𝐠̃2(𝐱, 𝐲2,𝐮), introduced in (28), as 𝐠̃2 = 𝑑𝐠2(𝐱)∕𝑑 𝑡 and apply the difference quotient to obtain the discrete version

𝐠̃𝑑 = 1
ℎ
(

𝐠2(𝐱𝑛+1) − 𝐠2(𝐱𝑛)
)

(76)

Now, choosing again 𝐟𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐟𝑖(𝐱, 𝐲𝑖,𝐮), together with 𝑖 = 2 and 𝛼 = 1, the discrete state Eq. (61) can be written in the form

𝐱𝑛 = 𝐱𝑛+1 − ℎ𝐟2(𝐱𝑛+1, 𝐲2𝑛+1 ,𝐮𝑛+1)

Inserting the last equation into (76) yields

𝐠̃(1)𝑑 (𝐱𝑛+1, 𝐲2𝑛+1 ,𝐮𝑛+1) =
1
ℎ

(

𝐠2(𝐱𝑛+1) + 𝐠2
(

𝐱𝑛+1 − ℎ𝐟2(𝐱𝑛+1, 𝐲2𝑛+1 ,𝐮𝑛+1)
)

)

(77)

Formula (77) represents a viable discretization of 𝐠̃2(𝐱, 𝐲2,𝐮). To summarize, we choose

𝐟𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐟2(𝐱, 𝐲2,𝐮) (78a)

𝐠𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐠̃(1)𝑑 (𝐱, 𝐲2,𝐮) (78b)

𝐶𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐶(𝐱, 𝐲2,𝐮) (78c)

in the discrete Hamiltonian (69). The resulting discrete conditions of optimality assume the form (70) with 𝛼 = 1. In particular,
70b) yields 𝐠𝑑 (𝐱𝑛+1, 𝐲2𝑛+1 ,𝐮𝑛+1) = 𝟎, which implies 𝐠2(𝐱𝑛+1) = 𝟎, provided that 𝐠2(𝐱𝑛) = 𝟎 is satisfied.

5.2.3. Direct method based on the discrete derivative
While the direct method in Section 5.2.2 is based on 𝛼 = 1, and thus confined to first-order accuracy, we next propose an

alternative procedure which again fits into the framework of the direct approach developed above and allows for second-order
accuracy. As in Section 5.2.2, we confine our attention to 𝑖 = 2. Our approach is based on the notion of discrete derivative [31]. In
particular, the directionality property of the discrete derivative implies

𝐠2(𝐱𝑛+1) − 𝐠2(𝐱𝑛) = D𝐠2(𝐱𝑛, 𝐱𝑛+1)(𝐱𝑛+1 − 𝐱𝑛) (79)

where D𝐠2(𝐱𝑛, 𝐱𝑛+1) stands for the discrete derivative of 𝐠2(𝐱). If the constraints 𝐠2(𝐱) are at most quadratic functions, the discrete
derivative coincides with the derivative evaluated in the mid-point, i.e. D𝐠2(𝐱𝑛, 𝐱𝑛+1) = 𝐷𝐠2(𝐱𝑛+ 1

2
). This suggests to focus on 𝛼 = 1∕2.

Inserting (79) into (76) and choosing 𝐟𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐟2(𝐱, 𝐲2,𝐮), we obtain

𝐠̃(2)𝑑 (𝐱𝑛+ 1
2
, 𝐲2𝑛+1 ,𝐮𝑛+1) =

1
ℎ
𝐷𝐠2(𝐱𝑛+ 1

2
)𝐟2(𝐱𝑛+ 1

2
, 𝐲2𝑛+1 ,𝐮𝑛+1) (80)

To summarize, we choose
13 



S. Schneider and P. Betsch

(

e

m
s
d
s

a

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117443 
𝐟𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐟2(𝐱, 𝐲2,𝐮) (81a)

𝐠𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐠̃(2)𝑑 (𝐱, 𝐲2,𝐮) (81b)

𝐶𝑑 (𝐱, 𝐲,𝐮) = ℎ𝐶(𝐱, 𝐲2,𝐮) (81c)

in the discrete Hamiltonian (69). The resulting discrete conditions of optimality assume the form (70) with 𝛼 = 1∕2. In particular,
70b) yields 𝐠𝑑 (𝐱𝑛+1, 𝐲2𝑛+1 ,𝐮𝑛+1) = 𝟎, which again implies 𝐠2(𝐱𝑛+1) = 𝟎, provided that 𝐠2(𝐱𝑛) = 𝟎 is satisfied.

5.3. Discrete preservation of generalized momentum maps

We show that all of the schemes presented above are capable to conserve generalized momentum maps of the form (51). To this
nd, we assume that symmetry conditions (53), (54a) and (54a) hold and lead to the discrete counterparts

𝜕𝐱𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼) + 𝜕𝐲𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐲𝑠𝑛+1 (82)

+ 𝜕𝐮𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐮𝑠𝑛+1 = 𝐷𝝃 (𝐱𝑛+𝛼)𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)

𝜕𝐱𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼) + 𝜕𝐲𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐲𝑠𝑛+1

+ 𝜕𝐮𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐮𝑠𝑛+1 = 𝟎 (83)

𝜕𝐱𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼) + 𝜕𝐲𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐲𝑠𝑛+1

+ 𝜕𝐮𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐮𝑠𝑛+1 = 𝟎 (84)

It can be shown by a straightforward calculation that the following identity holds:
𝐽𝜉𝑛+1 − 𝐽𝜉𝑛 = 𝝀𝑇𝑛+1𝝃 (𝐱𝑛+1) − 𝝀𝑇𝑛 𝝃 (𝐱𝑛)

=
(

𝝀𝑇𝑛+1 − 𝝀𝑇𝑛
)

𝝃 (𝐱𝑛+𝛼) + 𝝀𝑇𝑛+(1−𝛼)𝝃 (𝐱𝑛+1 − 𝐱𝑛)

Here, it has been taken into account that 𝝃 (𝐱) is at most linear in 𝐱. Substituting (64) into the last equation yields
𝐽𝜉𝑛+1 − 𝐽𝜉𝑛 = − 𝝀𝑇𝑛+(1−𝛼)𝜕𝐱𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼)

− 𝜼𝑇𝑛+1𝜕𝐱𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼)
+ 𝜕𝐱𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼)
+ 𝝀𝑇𝑛+(1−𝛼)𝝃 (𝐱𝑛+1 − 𝐱𝑛)

Making use of (84), (82) together with (61), the last equation can be recast in the form

𝐽𝜉𝑛+1 − 𝐽𝜉𝑛 =
(

𝝀𝑇𝑛+(1−𝛼)𝜕𝐲𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1) + 𝜼𝑇𝑛+1𝜕𝐲𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
) d

d𝑠
|

|

|

|𝑠=0
𝐲𝑠𝑛+1

+
(

𝝀𝑇𝑛+(1−𝛼)𝜕𝐮𝐟𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1) + 𝜼𝑇𝑛+1𝜕𝐮𝐠𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
) d

d𝑠
|

|

|

|𝑠=0
𝐮𝑠𝑛+1

+ 𝜕𝐱𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼)

Substituting from (66) and (67) into the last equation yields

𝐽𝜉𝑛+1 − 𝐽𝜉𝑛 =𝜕𝐲𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)
d
d𝑠

|

|

|

|𝑠=0
𝐲𝑠𝑛+1 + 𝜕𝐮𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)

d
d𝑠

|

|

|

|𝑠=0
𝐮𝑠𝑛+1

+ 𝜕𝐱𝐶𝑑 (𝐱𝑛+𝛼 , 𝐲𝑛+1,𝐮𝑛+1)𝝃 (𝐱𝑛+𝛼)

Inserting (83) into the last equation yields the result

𝐽𝜉𝑛+1 − 𝐽𝜉𝑛 = 0 (85)

Accordingly, generalized momentum maps of the form (51) are conserved in the discrete setting.

6. Numerical investigations

The main purpose of this section is to compare the numerical performance of the alternative numerical schemes developed in
this work in the context of representative optimal control problems. The first numerical example deals with a three-dimensional

athematical pendulum formulated in terms of redundant coordinates. This prototypical example of a constrained mechanical
ystem is well-suited to highlight important details distinguishing the alternative schemes under consideration. The second example
eals with a closed-loop multibody system which can be modeled as mechanical system subject to holonomic constraints in a
traightforward manner.

Our investigations cover the following five alternative schemes: The direct method applied in the framework of the common
pproach for 𝑖 = 2 and 𝑖 = 3 (Section 5.1), the indirect method applied in the framework of the maximum principle for 𝑖 = 3
14 
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Table 3
Labeling of the 5 alternative schemes used in the numerical investigations.

Fig. 1. The mathematical pendulum.

(Section 5.2.1), and the direct method [20] which overcomes the structural discrepancy as outlined in Section 5.2.2 for 𝑖 = 2. We
focus on first-order methods (𝛼 = 1) to provide equal conditions for the comparison of these schemes. In addition to that, we apply
the direct method based on the discrete derivative (Section 5.2.3, 𝑖 = 2, 𝛼 = 1

2 ), which also overcomes the structural discrepancy
and yields second-order accuracy. The five alternative schemes under investigation are summarized in Table 3. The labeling of the
schemes refers to the underlying Hamiltonian. That is, 𝑖 in (30), for the common approach, and 𝑖 in (26), for the maximum
principle. Specifically, we consider

3 = 𝝀
𝑇
3𝐪
𝐟𝐪3 + 𝝀

𝑇
3𝐩
𝐟𝐩3 + 𝜼𝑇3 𝐠3 − 𝐶 (86a)

2 = 𝝀
𝑇
2𝐪
𝐟𝐪2 + 𝝀

𝑇
2𝐩
𝐟𝐩2 + 𝜼𝑇2 𝐠2 − 𝐶 (86b)

3 = 𝝀𝑇3𝐪 𝐟
𝐪
3 + 𝝀𝑇3𝐩 𝐟

𝐩
3 + 𝜼𝑇3 𝐠̃3 − 𝐶 (86c)

2 = 𝝀𝑇2𝐪 𝐟
𝐪
2 + 𝝀𝑇2𝐩 𝐟

𝐩
2 + 𝜼𝑇2 𝐠̃2 − 𝐶 (86d)

For the purposes of this section we have enriched the notation of the adjoint variables to distinguish between the results of the
alternative formulations under investigation.

Note that all of the schemes under consideration satisfy the constraints either on position level (for 𝑖 = 3) or on both position
and velocity level (for 𝑖 = 2) at discrete time points 𝑡𝑛 (𝑛 = 1,… , 𝑁). In the numerical examples we focus on density cost functions
of the form

𝐶(𝐮) = 1
2
𝐮𝑇 𝐮 (87)

All of the discrete conditions of optimality (𝑛 = 1,… , 𝑁) are solved as a monolithic algebraic system by applying Newton’s method.
Alternatively, a staggered solution scheme could be applied. We refer to [18] for a comparison of these two alternative solution
procedures.
15 
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6.1. The mathematical pendulum

The first example deals with the three dimensional mathematical pendulum of length 𝑙0 depicted in Fig. 1. Here, 𝐪 ∈ R3 is the
position vector of the mass point 𝑚 and 𝐩 ∈ R3 is the conjugate momentum vector. There is one holonomic constraint which enforces
he constant length of the pendulum:

𝑔𝑞(𝐪) = 1
2
(

𝐪𝑇 𝐪 − 𝑙20
)

(88)

The corresponding constraint on velocity level (2) is given by

𝑔𝑣(𝐪,𝐩) = 1
𝑚
𝐪𝑇 𝐩 (89)

where 𝑚 is the mass of the pendulum.
The motion of the pendulum takes place in the gravitational field, where 𝑔 is the gravitational acceleration. Correspondingly,

the potential energy is given by

𝑉 (𝐪) = 𝑚𝑔𝐪𝑇 𝐞3 (90)

We next address the state DAEs summarized in Tables 1 and 2, respectively. Accordingly, the index-3 state DAEs (𝑖 = 3) hinge on
the function

𝐟3 =
[

𝐟𝐪3
𝐟𝐩3

]

=

[ 1
𝑚𝐩

−𝑚𝑔𝐞3 − 𝑦𝑞𝐪 + 𝐮

]

(91)

while the stabilized index-2 DAEs (𝑖 = 2) are based on

𝐟2 =
[

𝐟𝐪2
𝐟𝐩2

]

=

[ 1
𝑚𝐩 + 𝑦𝑣

𝑚 𝐪

−𝑚𝑔𝐞3 − 𝑦𝑞𝐪 − 𝑦𝑣
𝑚 𝐩 + 𝐮

]

(92)

6.1.1. Continuous conditions of optimality resulting from the common approach
For 𝑖 = 3, the common approach is based on the Hamiltonian

3 = 𝝀
𝑇
3𝐪
𝐟𝐪3 + 𝝀

𝑇
3𝐩
𝐟𝐩3 + 𝜂3𝑔

𝑞 − 𝐶 (93)

where 𝐟𝐪3 and 𝐟𝐩3 are given by (91). Now, the adjoint DAEs read (cf. Section 3.3.2)

𝝀̇3𝐪 = 𝑦𝑞𝝀3𝐩 − 𝜂3𝐪 (94a)

𝝀̇3𝐩 = − 1
𝑚
𝝀3𝐪 (94b)

0 = 𝐪𝑇 𝝀3𝐩 (94c)

together with the optimality condition

𝐮 = 𝝀3𝐩 (95)

Note that (95) together with (94c) imply that 𝐪𝑇 𝐮 = 0, so that the optimal control force is confined to the tangent plane 𝑞, where
configuration space  has been introduced in (1). Furthermore, formula (45) for the adjoint variable 𝜂3 yields

𝜂3 =
1
𝑙20

( 2
𝑚
𝝀
𝑇
3𝐪
𝐩 + 𝑚𝑔𝝀

𝑇
3𝐩
𝐞3 − 𝝀

𝑇
3𝐩
𝐮
)

(96)

For 𝑖 = 2, the underlying Hamiltonian reads

2 = 𝝀
𝑇
2𝐪
𝐟𝐪2 + 𝝀

𝑇
2𝐩
𝐟𝐩2 + 𝜂𝑞2𝑔

𝑞 + 𝜂𝑣2𝑔
𝑣 − 𝐶 (97)

where 𝐟𝐪2 and 𝐟𝐩2 are given by (92), and the constraint functions 𝑔𝑞 and 𝑔𝑣 assume the form in (88) and (89), respectively. The adjoint
DAEs now follow as (cf. Section 3.3.2)

𝝀̇2𝐪 = 𝑦𝑞𝝀2𝐩 − 𝜂𝑞2𝐪 −
𝜂𝑣2
𝑚
𝐩 (98a)

𝝀̇2𝐩 = − 1
𝑚
𝝀2𝐪 −

𝜂𝑣2
𝑚
𝐪 (98b)

𝟎 = 𝐪𝑇 𝝀2𝐩 (98c)

𝟎 = 𝐪𝑇 𝝀2𝐪 − 𝐩𝑇 𝝀2𝐩 (98d)

along with the optimality condition
𝐮 = 𝝀2𝐩 (99)
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It can again be observed that the optimal control force is restricted to the tangent plane 𝑞. Following the procedure that led to
(48), one obtains explicit formulas for the algebraic adjoint variables

𝜂𝑞2 =
1
𝑙20

( 2
𝑚
𝝀
𝑇
2𝐪
𝐩 + 𝑚𝑔𝝀

𝑇
2𝐩
𝐞3 − 𝝀

𝑇
2𝐩
𝐮
)

(100a)

𝜂𝑣2 = 0 (100b)

6.1.2. Continuous conditions of optimality resulting from the maximum principle
For 𝑖 = 3, the maximum principle is based on the Hamiltonian

3 = 𝝀𝑇3𝐪 𝐟
𝐪
3 + 𝝀𝑇3𝐩 𝐟

𝐩
3 + 𝜂3𝑔̃3 − 𝐶 (101)

where 𝐟𝐪3 and 𝐟𝐩3 are given by (91), and 𝑔̃3 follows from definition (27) and thus assumes the form

𝑔̃3 =
1
𝑚2

𝐩𝑇 𝐩 + 1
𝑚
𝐪𝑇

(

−𝑚𝑔𝐞3 − 𝑦𝑞𝐪 + 𝐮
)

The adjoint DAEs can now be calculated in a straightforward way and yield (cf. Section 3.3.1)

𝝀̇3𝐪 = 𝑦𝑞𝝀3𝐩 +
𝜂3
𝑚

(

𝑚𝑔𝐞3 + 2𝑦𝑞𝐪 − 𝐮
)

(102a)

𝝀̇3𝐩 = − 1
𝑚
𝝀3𝐪 −

2𝜂3
𝑚2

𝐩 (102b)

0 = 𝐪𝑇 𝝀3𝐩 +
𝑙20
𝑚
𝜂3 (102c)

together with the optimality condition

𝐮 = 𝝀3𝐩 +
𝜂3
𝑚
𝐪 (103)

From (102c) follows

𝜂3 = −𝑚
𝑙20
𝐪𝑇 𝝀3𝐩 (104)

which is the pendulum-specific version of (38). Inserting the last equation into (103) leads to the relationship

𝐮 =

(

𝐈 − 1
𝑙20
𝐪𝐪𝑇

)

𝝀3𝐩 (105)

Accordingly, the optimal control vector 𝐮 equals the orthogonal projection of the adjoint variable 𝝀3𝐩 onto the tangent plane 𝑞,
hich again implies 𝐪𝑇 𝐮 = 0.

For 𝑖 = 2, the underlying Hamiltonian is given by

2 = 𝝀𝑇2𝐪 𝐟
𝐪
2 + 𝝀𝑇2𝐩 𝐟

𝐩
2 + 𝜂𝑣2 𝑔̃

𝑣
2 + 𝜂𝑎2 𝑔̃

𝑎
2 − 𝐶 (106)

where 𝐟𝐪2 and 𝐟𝐩2 are given by (92). Moreover, 𝑔̃𝑣2 and 𝑔̃𝑎2 are the component expressions of (28), leading to
𝑔̃𝑣2 = 𝐪𝑇

( 1
𝑚
𝐩 +

𝑦𝑣
𝑚
𝐪
)

(107a)

𝑔̃𝑎2 = 1
𝑚2

𝐩𝑇 𝐩 + 1
𝑚
𝐪𝑇

(

−𝑚𝑔𝐞3 − 𝑦𝑞𝐪 + 𝐮
)

(107b)

The adjoint DAEs can now be obtained as (cf. Section 3.3.1)

𝝀̇2𝐪 = 𝑦𝑞𝝀2𝐩 −
𝜂𝑣2
𝑚
𝐩 +

𝜂𝑎2
𝑚

(

𝑚𝑔𝐞3 + 2𝑦𝑞𝐪 − 𝐮
)

(108a)

𝝀̇2𝐩 = − 1
𝑚
𝝀2𝐪 −

𝜂𝑣2
𝑚
𝐪 −

2𝜂𝑎2
𝑚2

𝐩 (108b)

0 = 𝐪𝑇 𝝀2𝐩 +
𝑙20
𝑚
𝜂𝑎2 (108c)

0 = 𝐪𝑇 𝝀2𝐪 − 𝐩𝑇 𝝀2𝐩 + 𝑙20𝜂
𝑣
2 (108d)

together with the optimality condition

𝐮 = 𝝀2𝐩 +
𝜂𝑎2
𝑚
𝐪 (109)

From (108c) and (108d) one obtains

𝜂𝑣2 = 1
2

(

𝐩𝑇 𝝀2𝐩 − 𝐪𝑇 𝝀2𝐪
)

(110a)

𝑙0
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Table 4
Pendulum: data used in the numerical example.
𝑚 1 Mass of the particle

𝑔 9.81 Gravitational acceleration
𝑙0 5 Length of the pendulum
𝒒̄0 (5, 0, 0) Initial position
𝒑̄0 (0, 10, 0) Initial momentum
𝒒̄𝑁 (0, 0,−5) Final position
𝒑̄𝑁 (0, 0, 0) Final momentum
𝑇 1 Final time
𝑁 100 Number of time steps

𝜂𝑎2 = −𝑚
𝑙20
𝐪𝑇 𝝀2𝐩 (110b)

which corresponds to the pendulum-specific version of (40). Inserting the last equation into (109) yields

𝐮 =

(

𝐈 − 1
𝑙20
𝐪𝐪𝑇

)

𝝀2𝐩 (111)

Accordingly, the optimal control vector 𝐮 equals the orthogonal projection of the adjoint variable 𝝀2𝐩 onto the tangent plane 𝑞,
hich again implies 𝐪𝑇 𝐮 = 0.

6.1.3. Symmetry and generalized momentum maps
It can be observed from (90) that the potential energy is invariant with respect to rotations of the pendulum about the 𝐞3-

axis. That is, 𝑉 (𝐪) = 𝑉 (𝐑𝑠𝐪), where 𝐑𝑠 ∈ 𝑆 𝑂(3) represents rotations about the 𝐞3-axis. Correspondingly, 𝐺 = 𝑆 𝑂(3) is the special
orthogonal group in R3, and rotation matrix 𝐑𝑠 ∈ 𝑆 𝑂(3) can be expressed as 𝐑𝑠 = exp(𝑠𝐞̂3), where 𝐞̂3 ∈ g ≡ 𝑠𝑜(3) is a skew-symmetric
matrix with associated axial vector 𝐞3 satisfying 𝐞̂3𝐚 = 𝐞3 × 𝐚 for any vector 𝐚 ∈ R3. The group action considered in Proposition 1
corresponds to the cotangent lifted action of 𝑆 𝑂(3) on phase space  given by

𝛷𝐑𝑠 (𝐱) =
[

𝐑𝑠𝐪
𝐑𝑠−𝑇 𝐩

]

=
[

𝐑𝑠𝐪
𝐑𝑠𝐩

]

The last equation implies

𝐷 𝛷𝐑𝑠 (𝐱) =
[

𝐑𝑠 𝟎
𝟎 𝐑𝑠

]

It can now be easily verified that all of the symmetry conditions (50) in Proposition 1 are satisfied by choosing 𝐮𝑠 = 𝐑𝑠𝐮 and
𝑠
𝑖 = 𝐲𝑖. Accordingly, the symmetry of the underlying uncontrolled mechanical system is inherited by the optimal control problem.
alculating the infinitesimal generator (49) yields

𝝃 (𝐱) = d
d𝑠

|

|

|

|𝑠=0
𝛷𝑔𝑠 (𝐱) =

[

𝐞3 × 𝐪
𝐞3 × 𝐩

]

so that the generalized momentum map (51) assumes the form

𝐽𝐞3 (𝐱,𝝀) = 𝐞3 ⋅
(

𝐪 × 𝝀𝐪 + 𝐩 × 𝝀𝐩
)

We call the quadratic function

𝐉(𝐱,𝝀) = 𝐪 × 𝝀𝐪 + 𝐩 × 𝝀𝐩 (112)

the generalized angular momentum. According to Proposition 1, the 3-component of 𝐉 is a conserved quantity of the optimal control
problem.

6.1.4. Numerical results
The goal of the optimal control problem under investigation is to determine the maneuver from the prescribed initial state (𝐪̄0, 𝐩̄0)

to the prescribed final state (𝐪̄𝑁 , 𝐩̄𝑁 ) within the prescribed time interval 𝐼 ∈ [0, 𝑇 ]. As defined in (87), the maneuver is to be carried
ut with a minimal control effort. The data used in the numerical example is summarized in Table 4. Consistent initial values for
he Lagrange multiplier 𝑦𝑞 can be obtained from (8), leading to the formula

𝑦𝑞 =
1
𝑙20

( 1
𝑚
𝐩𝑇 𝐩 − 𝑚𝑔𝐪𝑇 𝐞3

)

All of the numerical schemes under investigation essentially yield the same results for the mechanical quantities. This can be
seen from Figs. 2 and 3, where the results for the coordinates, the momenta, the controls and the Lagrange multiplier 𝑦𝑞 are shown.

The fulfillment of the mechanical constraints on position level, velocity level and acceleration level is depicted in Fig. 4. As
xpected, all schemes satisfy the constraints on position level up to numerical round-off, while the constraints on velocity level are
18 
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Fig. 2. Evolution of the coordinates 𝐪 and the momenta 𝐩 over time. The assignment of the various solutions for 𝐪 =
(

𝑞1 , 𝑞2 , 𝑞3)𝑇 and 𝐩 =
(

𝑝1 , 𝑝2 , 𝑝3)𝑇 can be
obtained from the boundary conditions in Table 4.

Fig. 3. Evolution of the controls 𝐮 with initial values 𝐮(𝑡0) = (0,−20,−33)𝑇 and Lagrange multiplier 𝐲𝑞 over time.

Fig. 4. Fulfillment of the constraints on position level 𝐠𝑞 , on velocity level 𝐠𝑣 and on acceleration level 𝐠𝑎.

only met by the schemes based on the stabilized index-2 state DAEs (the schemes labeled with 2, 2, and DD
2 ). The motion of

he pendulum is visualized in Fig. 5 by means of some snapshots in time.

The time-evolution of the differential adjoint variables 𝝀2 and 𝝀2 is shown in Fig. 6, while the evolution of 𝝀3 and 𝝀3 is depicted
in Fig. 7. The time-evolution of the algebraic adjoint variables 𝜼2, 𝜼2, 𝜂3, and 𝜂3 is shown in Fig. 8.

The numerical results for the time-evolution of the optimal control Hamiltonians are depicted in Fig. 9. Although none of the
chemes under investigation is capable to exactly conserve the Hamiltonian of the optimal control problem, the newly proposed

scheme labeled with DD
2 already achieves almost conserving results. If the time steps are refined, all of the schemes at hand

converge to the same constant value of the optimal control Hamiltonian.
19 
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Fig. 5. Snapshots of the optimal motion at 𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The trajectory of the mass point is shown with red lines, while the control vector 𝐮 is
indicated with blue arrows.

Fig. 6. Evolution of the adjoint variables 𝝀2 = (𝝀2𝐪 ,𝝀2𝐩 ) and 𝝀2 = (𝝀2𝐪 ,𝝀2𝐩 ). To identify the corresponding solutions of 𝝀2, the points
(

𝝀2𝐪

(

𝑡𝑓
)

,𝝀2𝐪

(

𝑡𝑓
)

)

are about

(−31,−73, 0) and the points
(

𝝀2𝐩

(

𝑡𝑓
)

,𝝀2𝐩

(

𝑡𝑓
)

)

are about (35, 31, 0).

Fig. 7. Evolution of the adjoint variables 𝝀3 = (𝝀3𝐪 ,𝝀3𝐩 ) and 𝝀3 = (𝝀3𝐪 ,𝝀3𝐩 ).
20 
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Fig. 8. Evolution of the adjoint variables 𝜼2 = (𝜂𝑣2 , 𝜂𝑎2 ), 𝜼2 = (𝜂𝑞2 , 𝜂𝑣2), 𝜂3, and 𝜂3.

Fig. 9. Evolution of the optimal control Hamiltonian (left), and incremental change of the optimal control Hamiltonian (right).

Fig. 10. Evolution of the components of the generalized angular momentum 𝐉 = 𝐪 × 𝝀𝐪 + 𝐩 × 𝝀𝐩 over time (left). To 𝐉 =
(

𝐽1 , 𝐽2 , 𝐽3) corresponding solutions can
by identified by the initial point 𝐉

(

𝑡0
)

, which is about 𝐉
(

𝑡0
)

= (−333, 290, 0). The 3-component 𝐽3 = 𝐞𝑇3 𝐉 is a conserved quantity of the present optimal control
problem. This is corroborated by the incremental changes of 𝐽3 (right).

The results for the generalized angular momentum 𝐉 = 𝐪 × 𝝀𝐪 + 𝐩 × 𝝀𝐩 are depicted in Fig. 10. As shown in Section 6.1.3,
the 3-component of 𝐉 is a conserved quantity. As expected (cf. Section 5.3), all of the schemes under investigation are capable to
conserve 𝐽3 = 𝐞𝑇3 𝐉.

Eventually, the convergence behavior of the different schemes at hand is compared in Fig. 11. To this end, the relative error in
he state variables and the controls is calculated via

𝜀𝐱 =
‖𝐱(𝑡 = 0.5) − 𝐱r ef (𝑡 = 0.5)‖𝐿2

‖𝐱r ef (𝑡 = 0.5)‖𝐿2

; 𝜀𝐮 =
‖𝐮(𝑡 = 0.5) − 𝐮r ef (𝑡 = 0.5)‖𝐿2

‖𝐮r ef (𝑡 = 0.5)‖𝐿2

(113)

where the reference solution was calculated with scheme DD
2 and 𝑁 = 100.000 time intervals. As expected, the schemes based on

𝛼 = 1 yield first-order accuracy in the state variables, while DD
2 yields second-order accuracy. Analogous convergence results are

btained for the differential adjoint variables. The observed equal order of convergence of the state and adjoint variables complies
with theoretical results for the application of symplectic integrators to the optimal control of ODEs, see [7] and the references
21 
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Fig. 11. Convergence behavior of the alternative schemes.

Fig. 12. Sketch of the four linked masses.

therein. All schemes are first-order accurate in the controls. Similar results hold for other variables whose discretization relies on
constant values per time step, such as the mechanical Lagrange multipliers and the algebraic adjoint variables.

6.2. Four linked masses

This example deals with 4 mass points 𝑚𝑘 (𝑘 = 1,… , 4), which are linked to each other by massless rigid bars as depicted in
Fig. 12. A preliminary version of this example has been dealt with in [32]. Redundant coordinates offer a versatile and general
approach to model this type of closed kinematic chain. In particular, the configuration vector of the closed-loop system at hand is
given by

𝐪 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐪1
𝐪2
𝐪3
𝐪4

⎤

⎥

⎥

⎥

⎥

⎦

(114)

where 𝐪𝑘 ∈ R3 is the position vector of particle 𝑚𝑘 with respect to a Cartesian inertial frame.
The mass point system is subject to four holonomic constraints of the form

𝑔𝑞𝑘(𝐪) =
1
2
(

𝛥𝐪𝑇𝑘 𝛥𝐪𝑘 − 𝑙20
)

= 0 (115)

(𝑘 = 1,… , 4), where 𝛥𝐪1 = 𝐪2 −𝐪1, 𝛥𝐪2 = 𝐪3 −𝐪2, 𝛥𝐪3 = 𝐪4 −𝐪3, and 𝛥𝐪4 = 𝐪1 −𝐪4. Note that 𝑔𝑞4 (𝐪) = 0 can be viewed as loop-closure
condition. The conjugate linear momentum is given by 𝐩 = 𝐌𝐪̇, where the 12 × 12 mass matrix 𝐌 is diagonal such that 𝐩 = 𝑚 𝐪̇ .
𝑘 𝑘 𝑘
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The four constraints on velocity level assume the form (2), where the components are given by 𝑔𝑣𝑘 = 𝐷 𝑔𝑞𝑘(𝐪)𝐌−1𝐩 = 𝟎 (𝑘 = 1,… , 4).
ravity is acting on the system leading to the potential energy

𝑉 (𝐪) =
4
∑

𝑘=1
𝑉𝑘(𝐪𝑘) where 𝑉𝑘(𝐪𝑘) = 𝑚𝑘𝑔𝐪𝑇𝑘 𝐞3 (116)

In addition to that, four control forces 𝐮𝑘 ∈ R3 (𝑘 = 1,… , 4) are acting on the corresponding mass points 𝑚𝑘.

6.2.1. Symmetry and generalized momentum maps
Rotational symmetry. Similarly to the last example, the uncontrolled mass point system has rotational symmetry about the 𝐞3 axis.
The rotational symmetry is characterized by 𝑉𝑘(𝐑𝑠𝐪𝑘) = 𝑉𝑘(𝐪𝑘), where rotation matrix 𝐑𝑠 ∈ 𝑆 𝑂(3) can again be written in the form
𝐑𝑠 = exp(𝑠𝐞̂3). The group action considered in Proposition 1 can be characterized by

𝛷𝐑𝑠 (𝐱𝑘) =
[

𝐑𝑠 𝟎
𝟎 𝐑𝑠

]

𝐱𝑘

where 𝐱𝑘 = (𝐪𝑘,𝐩𝑘) (𝑘 = 1,… , 4). It is now straightforward to verify that all of the symmetry conditions (50) in Proposition 1 are
satisfied by choosing 𝐮𝑠𝑘 = 𝐑𝑠𝐮𝑘 and 𝐲𝑠𝑖𝑘 = 𝐲𝑖𝑘 , where 𝐲𝑖𝑘 denotes the Lagrange multiplier associated with constraint function 𝐠𝑖𝑘 for
𝑘 = 1,… , 4 and 𝑖 ∈ {2, 3}. The infinitesimal generator (49) can be characterized by

𝝃 (𝐱𝑘) = d
d𝑠

|

|

|

|𝑠=0
𝛷𝐑𝑠 (𝐱𝑘) =

[

𝐞̂3 𝟎
𝟎 𝐞̂3

]

𝐱𝑘

so that the generalized momentum map (51) can be written in the form

𝐽3(𝐱,𝝀) =
4
∑

𝑘=1
𝝀𝑘𝑇 𝝃 (𝐱𝑘)

=
4
∑

𝑘=1

(

𝝀𝑘𝑇𝐪 𝐞̂3𝐪𝑘 + 𝝀𝑘𝑇𝐩 𝐞̂3𝐩𝑘
)

= 𝐞𝑇3
4
∑

𝑘=1

(

𝐪𝑘 × 𝝀𝑘𝐪 + 𝐩𝑘 × 𝝀𝑘𝐩
)

where the adjoint variables associated with mass point 𝑚𝑘 have been partitioned according to 𝝀𝑘 = (𝝀𝑘𝐪,𝝀𝑘𝐩). Accordingly, the
3-component of the generalized angular momentum

𝐉 =
4
∑

𝑘=1

(

𝐪𝑘 × 𝝀𝑘𝐪 + 𝐩𝑘 × 𝝀𝑘𝐩
)

(117)

is a conserved quantity of the optimal control problem.
Translational symmetry. The optimal control problem of the mass point system at hand has also translational symmetry that can be
characterized by 𝐪𝑠𝑘 = 𝐪𝑘 + 𝑠𝝃, for any 𝝃 ∈ R3. The corresponding cotangent lifted action of the additive group R3 on phase space 
can now be characterized by

𝛷𝝃𝑠 (𝐱𝑘) =
[

𝐪𝑘 + 𝑠𝝃
𝐩𝑘

]

so that infinitesimal generator (49) gives rise to
𝝃 (𝐱𝑘) = d

d𝑠
|

|

|

|𝑠=0
𝛷𝝃𝑠 (𝐱𝑘) =

[

𝝃
𝟎

]

It can be easily verified that all of the symmetry conditions (50) in Proposition 1 are satisfied by choosing 𝐮𝑠𝑘 = 𝐮𝑘 and 𝐲𝑠𝑖𝑘 = 𝐲𝑖𝑘 .
The generalized momentum map (51) yields

𝐿𝝃 (𝐱,𝝀) =
4
∑

𝑘=1
𝝀𝑘𝑇 𝝃 (𝐱𝑘) =

4
∑

𝑘=1
𝝀𝑘𝑇𝐪 𝝃 = 𝝃𝑇

4
∑

𝑘=1
𝝀𝑘𝐪

Accordingly, all of the three components of the generalized linear momentum

𝐋 =
4
∑

𝑘=1
𝝀𝑘𝐪 (118)

are conserved along solutions of the optimal control problem.

6.2.2. Numerical results
The boundary conditions (𝐪0,𝐩0) and (𝐪𝑁 ,𝐩𝑁 ), the time interval 𝐼 ∈ [0, 𝑇 ], and the number of time steps 𝑁 that have been used

in the numerical example can be found in Table 5. Accordingly, while the initial configuration of the 4-mass system lies in the x–y
lane, a rotational and translational motion is required to reach the final configuration of the system, which lies in the y–z plane.

As in the last example, all of the numerical schemes under investigation essentially yield the same results concerning the
mechanical quantities. For example, the results for the position vectors 𝐪𝑘 and linear momentum vectors 𝐩𝑘 are depicted in Figs. 13
and 14, respectively.
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Table 5
Four linked masses: data used in the numerical example.
𝑚 [1; 1; 1; 1] Masses
𝑔 9.81 Grav. acceleration

𝑙0 1 Length of the bars
[

𝒒̄1
0; 𝒒̄

2
0; 𝒒̄

3
0; 𝒒̄

4
0

]

[(− 1
2
,− 1

2
, 0) ; ( 1

2
,− 1

2
, 0) ; ( 1

2
, 1
2
, 0) ; (− 1

2
, 1
2
, 0)] Initial positions

[

𝒑̄1
0; 𝒑̄

2
0; 𝒑̄

3
0 ∶ 𝒑̄4

0

]

[(0, 0, 0) ; (0, 0, 0) ; (0, 0, 0) ; (0, 0, 0)] Initial momenta
[

𝒒̄1
𝑁 ; 𝒒̄2

𝑁 ; 𝒒̄3
𝑁 ; 𝒒̄4

𝑁

]

[( 1
2
,− 1

2
, 1) ; ( 1

2
, 1
2
, 1) ; ( 1

2
, 1
2
, 2) ; ( 1

2
,− 1

2
, 2)] Final positions

[

𝒑̄1
𝑁 ; 𝒑̄2

𝑁 ; 𝒑̄3
𝑁 ; 𝒑̄4

𝑁

]

[(0, 0, 0) ; (0, 0, 0) ; (0, 0, 0) ; (0, 0, 0)] Final momenta

𝑇 1 Final time

𝑁 100 Number of time steps

Fig. 13. Evolution of the coordinates of the four mass points over time.

Fig. 14. Evolution of the linear momenta of the four mass points over time.

Moreover, the results for the four control vectors 𝐮𝑘 are shown in Fig. 15.

Interestingly, the numerical results for the time-evolution of the Lagrange multipliers 𝑦𝑘𝑞 coincide for 𝑘 = 1,… , 4 (Fig. 16). This
means that the constraint forces in the four bars are equal to each other over the course of the simulation. The motion is illustrated

ith a number of snapshots of the system over time in Fig. 18.
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Fig. 15. Evolution of the controls over time. In order to identify the solutions of 𝐮𝑖 (𝑡), the initial values of the various results are about 𝐮1(𝑡0) = (3,−5, 14)𝑇 ,
𝐮2(𝑡0) = (3, 5, 14)𝑇 , 𝐮3(𝑡0) = (3, 5, 23)𝑇 and 𝐮4(𝑡0) = (3,−5, 23)𝑇 .

Fig. 16. Results for the Lagrange multipliers 𝑦𝑘𝑞 (left) and algebraic adjoint variables (𝜼𝑎2 , 𝜼3) (right).

Fig. 17. Results for the algebraic adjoint variables (𝜼𝑣2 , 𝜼
𝑣
2) and (𝜼𝑞2 , 𝜼3).

The time-evolution of the differential adjoint variables 𝝀𝑘𝐩 and 𝝀𝑘𝐪 is depicted in Figs. 19 and 20, respectively. The time-evolution
of the algebraic adjoint variables 𝜼2, 𝜼2, 𝜂3, and 𝜂3 is shown in Figs. 16 and 17.

The numerical results for the optimal control Hamiltonians are shown in Fig. 21. As in the last example, the scheme labeled
with DD

2 yields already much better results than the other ones. If the time steps are refined, all of the schemes at hand converge
o the same constant value of the optimal control Hamiltonian.
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Fig. 18. Four linked masses: snapshots of the optimal motion at 𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The trajectory of the mass points is shown with red lines, while
the control vectors 𝐮𝑘 are indicated with blue arrows.

Fig. 19. Evolution of the adjoint variables 𝝀𝑘
𝐩 over time. In order to identify the solutions of 𝝀𝑘

𝐩 (𝑡), the final values of the various results are about
𝝀1
𝐩(𝑡𝑓 ) = (−8,−5, 1)𝑇 , 𝝀2

𝐩(𝑡𝑓 ) = (2,−5, 1)𝑇 , 𝝀3
𝐩(𝑡𝑓 ) = (2, 5, 1)𝑇 and 𝝀4

𝐩(𝑡𝑓 ) = (−8, 5, 1)𝑇 .

As expected (cf. Section 6.2.1), all of the schemes at hand conserve the 3-component of the generalized angular momentum 𝐉
up to numerical round-off (Figs. 21 and 22). The numerical results reveal that also 𝐽1 = 𝐞𝑇1 𝐉 is a conserved quantity. Note that this
is not a general result but due to the specific data chosen for this example. Similarly, as has been shown in Section 6.2.1, the three
components of the generalized linear momentum (118) are conserved (Figs. 23 and 24).

Eventually, the convergence behavior of the schemes at hand is shown in Fig. 25. Similarly to the last example, the reference
solution was calculated with scheme DD

2 and 𝑁 = 20 000 time intervals. The results shown in Fig. 25 confirm those obtained for
the last example (cf. Fig. 11).
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Fig. 20. Evolution of the adjoint variables 𝝀𝑘
𝐪 over time. In order to identify the solutions of 𝝀𝑘

𝐪 (𝑡), the final values of the various results are about
𝝀1
𝐪(𝑡𝑓 ) = (15, 9, 18)𝑇 , 𝝀2

𝐪(𝑡𝑓 ) = (−3,−9, 18)𝑇 , 𝝀3
𝐪(𝑡𝑓 ) = (−3, 9, 18)𝑇 and 𝝀4

𝐪(𝑡𝑓 ) = (15,−9, 18)𝑇 .

Fig. 21. Evolution of the optimal control Hamiltonian over time (left), and components 𝐽𝑖 of the generalized angular momentum (117) (right).

Fig. 22. Incremental change of the conserved generalized angular momenta 𝐽3 and 𝐽1.

7. Reconciliation of the two alternative optimal control formulations

Our numerical results provide strong evidence that the two alternative approaches to the formulation of the optimal control
problem are essentially equivalent. In particular, the numerical results for the control inputs and the state variables turn out to be
practically indistinguishable. On the other hand, while the results for the mechanical quantities coincide, the adjoint variables often
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Fig. 23. Components 𝐿𝑖 of the generalized linear momentum (118) and incremental change of 𝐿3.

Fig. 24. Incremental change of components 𝐿1 and 𝐿2 of the generalized linear momentum (118).

Fig. 25. Convergence behavior of the alternative schemes.

differ quite markedly. In this section we further elaborate on the link between the two alternative formulations. Due to numerical
evidence we assume that the mechanical quantities (𝐱, 𝐲𝑖,𝐮) coincide in the sequel.

7.1. Stabilized index-2 state DAEs

Taking into account definition (28) of the constraints 𝐠̃2 implies that 𝐠̃2 =
𝑑
𝑑 𝑡 𝐠2(𝐱). Thus, we get the relation

𝜼𝑇2 𝐠̃2 =
𝑑
𝑑 𝑡

(

𝜼𝑇2 𝐠2(𝐱)
)

− 𝜼̇𝑇2 𝐠2(𝐱)

Making use of the last equation, we may write
[ 𝑇 ]𝑡𝑓
2[𝐱, 𝐲2,𝐮,𝝀, 𝜼2] + 𝜼2 𝐠2(𝐱) 𝑡0

= 2[𝐱, 𝐲2,𝐮,𝝀, 𝜼2] (119)
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where 𝜼2 = −𝜼̇2, and the augmented cost functionals 2 and 2 have been introduced in (33) and (34), respectively. Note that, since
the constraints are satisfied at the end-points, i.e. 𝐠2(𝐱0) = 𝐠2(𝐱𝑓 ) = 𝟎, (119) implies that 2 = 2. Relation (119) complies with the
equality

𝝀𝑇 𝐱̇ −2(𝐱, 𝐲2,𝐮,𝝀, 𝜼2) + 𝑑
𝑑 𝑡

(

𝜼𝑇2 𝐠2(𝐱)
)

= 𝝀
𝑇
𝐱̇ −2(𝐱, 𝐲2,𝐮,𝝀, 𝜼2)

or

𝐱̇𝑇
(

𝝀 − 𝝀 +𝐷𝐠2(𝐱)𝑇 𝜼2
)

+ 𝜼̇𝑇2 𝐠2(𝐱) −
(

2 −2

)

= 𝟎

Since the last equation is required to hold for all choices of 𝐱̇ and 𝜼̇2, we obtain

𝝀 = 𝝀 +𝐷𝐠2(𝐱)𝑇 𝜼2 (120)

together with 𝐠2(𝐱) = 𝟎 and 2 = 2. Accordingly, the transformation of the adjoint system is governed by (120) and 𝜼2 = −𝜼̇2. The
transformation formulas for the adjoint variables can be written in the more detailed form

𝝀𝐪 = 𝝀𝐪 +𝐷𝐠𝑞𝑇 𝜼𝑣2 + 𝜕𝐪𝐠𝑣
𝑇 𝜼𝑎2 (121a)

𝝀𝐩 = 𝝀𝐩 + 𝜕𝐩𝐠𝑣
𝑇 𝜼𝑎2 (121b)

together with

𝜼𝑞2 = −𝜼̇𝑣2 (122a)

𝜼𝑣2 = −𝜼̇𝑎2 (122b)

7.1.1. Mathematical pendulum
The transformation formulas (121) and (122) can be easily applied to the example of the pendulum dealt with in Section 6.1.

Accordingly, substitution from (110) into (121) yields

𝝀2𝐪 =

(

𝐈 − 1
𝑙20
𝐪𝐪𝑇

)

𝝀2𝐪 +
1
𝑙20

(

𝐪𝐩𝑇 − 𝐩𝐪𝑇
)

𝝀2𝐩 (123a)

𝝀2𝐩 =

(

𝐈 − 1
𝑙20
𝐪𝐪𝑇

)

𝝀2𝐩 (123b)

These formulas can be used to transform the results for (𝝀2𝐪 ,𝝀2𝐩 ) to those for (𝝀2𝐪 ,𝝀2𝐩 ) (cf. Fig. 6). Because of the numerical
result 𝜂𝑎2 = 0 (see Fig. 8), formula (110b) implies that 𝐪𝑇 𝝀2𝐩 = 0. Accordingly, 𝝀2𝐩 lies already in the tangent plane 𝑞, so that
transformation formula (123b) yields 𝝀2𝐩 = 𝝀2𝐩 , which is in line with the results shown in Fig. 6. Moreover, the validity of (122)
can be easily checked by employing (100) and (110). In particular, the numerical result 𝜂𝑎2 = 0 (see Fig. 8) implies that 𝜂̇𝑎2 = 0, so
hat (122b) yields 𝜂𝑣2 = 0, which coincides the numerical result depicted in Fig. 8.

7.2. Index-3 state DAEs

Definition (27) of 𝐠̃3 implies that 𝐠̃3 =
𝑑
𝑑 𝑡 𝐠𝑣(𝐱) =

𝑑2

𝑑 𝑡2 𝐠𝑞(𝐪). Therefore, the relationship

𝜼𝑇3 𝐠̃3 =
𝑑
𝑑 𝑡

(

𝜼𝑇3 𝐠
𝑣(𝐱)

)

− 𝑑
𝑑 𝑡

(

𝜼̇𝑇3 𝐠
𝑞(𝐪)

)

+ 𝜼̈𝑇3 𝐠
𝑞(𝐪)

holds. Making use of the last equation, we may write

3[𝐱, 𝐲3,𝐮,𝝀, 𝜼3] +
[

𝜼𝑇3 𝐠
𝑣(𝐱) − 𝜼̇𝑇3 𝐠

𝑞(𝐪)
]𝑡𝑓
𝑡0

= 3[𝐱, 𝐲3,𝐮,𝝀, 𝜼3] (124)

where 𝜼3 = 𝜼̈3, and the augmented cost functionals 3 and 3 have been introduced in (33) and (34), respectively. Note that, since
the constraints are satisfied at the end-points, i.e. 𝐠𝑞(𝐪0) = 𝐠𝑞(𝐪𝑓 ) = 𝟎, and 𝐠𝑣(𝐱0) = 𝐠𝑣(𝐱𝑓 ) = 𝟎, (124) implies that 3 = 3. Relation
(124) complies with the equality

𝝀𝑇 𝐱̇ −3(𝐱, 𝐲3,𝐮,𝝀, 𝜼3) + 𝑑
𝑑 𝑡

(

𝜼𝑇3 𝐠
𝑣(𝐱) − 𝜼̇𝑇3 𝐠

𝑞(𝐪)
)

= 𝝀
𝑇
𝐱̇ −3(𝐱, 𝐲3,𝐮,𝝀, 𝜼3)

or

𝐱̇𝑇
(

𝝀 − 𝝀 +𝐷𝐠𝑣(𝐱)𝑇 𝜼3
)

+ 𝜼̈𝑇3 𝐠
𝑞 −

(

3 −3

)

= 𝟎

Since the last equation is required to hold for all choices of 𝐱̇ and 𝜼̈3, we obtain

𝝀 = 𝝀 +𝐷𝐠𝑣(𝐱)𝑇 𝜼3 (125)

together with 𝐠𝑞 = 𝟎 and 3 = 3. Accordingly, the transformation of the adjoint system is governed by (125) and 𝜼3 = 𝜼̈3. The
transformation formula (125) can be written in more detail as

𝝀 = 𝝀 + 𝜕 𝐠𝑣𝑇 𝜼 (126a)
𝐪 𝐪 𝐪 3
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𝝀𝐩 = 𝝀𝐩 + 𝜕𝐩𝐠𝑣
𝑇 𝜼3 (126b)

together with 𝜼3 = 𝜼̈3.

7.2.1. Mathematical pendulum
The transformation of the adjoint system can again be illustrated with the example of the pendulum dealt with in Section 6.1.

Accordingly, inserting (104) into (126) yields

𝝀3𝐪 = 𝝀3𝐪 −
1
𝑙20
𝐩𝐪𝑇 𝝀3𝐩 (127a)

𝝀3𝐩 =

(

𝐈 − 1
𝑙20
𝐪𝐪𝑇

)

𝝀3𝐩 (127b)

These formulas can be used to transform the results for (𝝀3𝐪 ,𝝀3𝐩 ) to those for (𝝀3𝐪 ,𝝀3𝐩 ) (cf. Fig. 7).

8. Conclusion

We have made a comparison of two alternative avenues to the formulation of the optimal control of constrained mechanical
ystems, whose motion is governed by either index-3 or stabilized index-2 DAEs. In addition to that, we have developed structure-
reserving numerical methods which are capable to preserve generalized momentum maps associated with symmetries of the

underlying optimal control problem. Of paramount importance for mechanical systems are rotational symmetries which lead to
the conservation of generalized angular momentum maps. These generalized angular momentum maps are quadratic invariants
of the optimal control problem. Our newly devised direct discretization approach (i) yields conservation of the aforementioned
quadratic invariants, and (ii) is equivalent to the indirect discretization approach.

The main difference between the two alternative formulations of the optimal control problem lies in the way, in which the
holonomic constraints enter the optimal control Hamiltonian. While the common approach makes direct use of the constraints, the
maximum principle relies on the acceleration level constraints if the state DAEs have index 3, and both acceleration and velocity
level constraints if the state DAEs have index 2. This difference essentially affects the form of the adjoint system and the optimality
ondition. In particular, we have seen that the adjoint equations associated with the maximum principle form DAEs of index 1

for the adjoint variables, independent of the index of the underlying state DAEs (𝑖 = 3 or 𝑖 = 2). In contrast to that, the common
pproach yields adjoint equations which form DAEs whose index for the adjoint variables is equal to that of the underlying state
AEs.

Our numerical investigations have shown that the two alternative optimal control formulations at hand yield optimal trajectories
which are practically equivalent to each other. We further uncovered transformation formulas for the adjoint variables of the two
alternative formulations (Section 7).

The newly devised direct discretization approach can be applied in a straightforward way when using the common approach.
In essence, the proposed method is limited to first order accuracy since the fulfillment of the constraints requires 𝛼 = 1. Despite
he structural discrepancy of the maximum principle (Remark 1) it is possible to apply the direct discretization approach in accord

with the maximum principle (Section 5.2.2). This method, however, is confined to stabilized index-2 state DAEs (𝑖 = 2) and first-
rder accuracy (𝛼 = 1). In addition to that, we newly proposed (Section 5.2.3) an alternative procedure to overcome the structural

discrepancy, and which also conforms with the maximum principle. This method is based on the use of the notion of ‘‘discrete
erivative’’ and is again confined to stabilized index-2 state DAEs (𝑖 = 2) but facilitates second-order accuracy (𝛼 = 1

2 ). The improved
accuracy of this scheme (labeled DD

2 ) also results in a significantly improved approximation of the optimal control Hamiltonian,
which is another conserved quantity of the optimal control problem1.

The development of higher-order schemes would be a worthwhile goal for future work. While the focus of the present work lies
on minimal control effort problems, the inclusion of alternative cost functions would also be of interest. In particular, the explicit
presence of the constraint forces in the state DAEs facilitates their inclusion in the cost function. Although the use of redundant
coordinates often yields constant mass matrices, the extension of our work to non-constant mass matrices should be a straightforward
exercise. Similarly, the inclusion of dissipative phenomena and rheonomic constraints would be worth further investigation. In
particular, it should be clarified how these additional features affect the symmetry of the optimal control problem.
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