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Abstract

Printed electronics is a novel technology to fabricate electronic devices based

on additive manufacturing. Comparing to traditional photolithography-based

silicon technologies, printed electronics is not intended to surpass silicon-based

electronics in terms of computational power or integration density in very-

large-scale integrated circuit. Instead, it aims to complement silicon electron-

ics in edge scenarios, such as smart packaging in fast-moving consumer goods

or smart bandages in advanced medical applications. In these domains, the

requirement on computational intensity and complexity are typically moder-

ate, however, there is a critical demand on mechanical flexibility, non-toxicity,

bio-degradability, high customizability, and ultra-low fabrication cost. These

features can hardly be matched by silicon-based electronics due to the sub-

tractive manufacturing process. In contrast, printed electronics can provide

these unique features because of its additive manufacturing nature and abun-

dant functional materials, and thus, becomes a prominent facilitator of those

next-generation electronics.

In the realm of printed devices, printed analog neuromorphic circuits has

drawn increasing interest. These circuits not only inherit the benefits of printed

electronics but also leverage the advancement of neuromorphic computing.

Neuromorphic computing refers to brain-inspired computing paradigms, that

has been proven to have powerful and bespoke computational functionalities

through a series of elemental operations, namely weighted-sums and nonlinear

activations. Therefore, printed analog neuromorphic circuits only consist of

the interconnection of a series of streamlined circuit primitives, making their

design and optimization highly accessible. Additionally, the analog approach

allows processing signals directly in the analog domain, evading complicated

devices for analog-digital conversion and thus facilitating the compactness and

lightweight of the circuits. All these unique features enable printed analog
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neuromorphic circuits with a broad and promising outlook.

However, existing studies on printed analog neuromorphic circuits stay pri-

marily in the conceptual stage. They have outlined the principle of printed

circuits to emulate neuromorphic computing, yet several practical factors have

not been included. This dissertation explores a series of practical issues for

printed analog neuromorphic circuits: (i) Regarding the modeling and train-
ing framework, this work summarizes two effective modeling approaches that

allow precise modeling of electronic systems, namely physics-informed mod-

eling and approximation-based modeling. For training, an existing machine

learning-based training approach is improved through heuristics to include

non-differentiable physical and technical constraints into the training process.

Moreover, an evolutionary training approach is proposed to enable the opti-

mization of the circuit architecture alongside its parameters. (ii) For improv-

ing the circuit reliability, the impact of device aging is examined and a tar-

geted aging-aware training strategy is proposed to improve the circuit robust-

ness against aging. Similarly, this thesis models and analyzes the collaborative

influence of three primary factors affecting circuit reliability. Furthermore,

circuit architecture search is employed to enable even higher circuit robust-

ness against variations. Lastly, the impact of catastrophic faults in the printed

neuromorphic circuit is also studied. (iii) In terms of practicality, by lever-

aging the advantage of additive manufacturing of printed electronics, a split

manufacturing method is proposed to significantly reduce the fabrication costs

of the printed neuromorphic circuits. Moreover, the power consumption of

the printed neuromorphic circuits is enhanced through the proposed power-

aware training, enabling the Pareto-optimal circuit performance within a pre-

scribed power budget. Besides, improvement in circuit compactness is sug-

gested through an area-aware training, which reduces the footprint of printed

neuromorphic circuits and thus expands their application in area-scarce scenar-

ios. (iv) Finally, the computing paradigm of existing printed neuromorphic

circuits is extended by introducing circuit components with time dependencies

such as printed capacitors. With these components, novel computing func-

tionalities such as recurrent or spiking neural network can be implemented by

printed electronics, adapting printed neuromorphic circuits to scenarios where
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temporal data processing are envisioned.

In sum, this dissertation conducts a comprehensive investigation of printed

analog neuromorphic circuits. It significantly accelerates the transition of these

technologies from laboratory-based study to real-world deployments and there-

fore facilitates the electronification and intellecturalization within edge com-

puting scenarios in the context of the Internet of Things.

V





Zusammenfassung

Gedruckte Elektronik erweist sich als eine innovative Technologie zur Her-

stellung elektronischer Geräte, die auf den Prinzipien der additiven Fertigung

basiert. Im Gegensatz zu den traditionellen, auf Photolithographie basierenden

Siliziumtechnologien, zielt die gedruckte Elektronik nicht darauf ab, die siliz-

iumbasierte Elektronik in Bezug auf Rechenleistung oder Integrationsdichte in

sehr großen integrierten Schaltkreisen zu übertreffen. Stattdessen ist es ihr Ziel,

die Siliziumelektronik in speziellen Anwendungsfällen zu ergänzen, wie etwa

bei Smartverpackung in schnelllebige Konsumgüter oder bei Smartverbänden

in fortschrittliche medizinische Anwendungen. In diesen Bereichen sind die

Anforderungen an die Rechenintensität und Komplexität typischerweise mod-

erat, jedoch besteht eine kritische Nachfrage nach mechanischer Flexibilität,

Nicht-Toxizität, biologischer Abbaubarkeit, hoher Anpassungsfähigkeit und

extrem niedrigen Herstellungskosten. Diese Merkmale können von der siliz-

iumbasierten Elektronik aufgrund des subtraktiven Fertigungsprozesses kaum

erreicht werden. Im Gegensatz dazu wird die gedruckte Elektronik zu einem

herausragenden Förderer dieser nächsten Generation von Elektronik, begün-

stigt durch ihre additive Fertigungsnatur und die Verfügbarkeit zahlreicher funk-

tionaler Materialien.

Im Bereich der gedruckten Geräte hat die gedruckte analoge neuromorphe

Schaltung zunehmend Interesse geweckt. Diese Schaltungen erben nicht nur

die Vorteile der gedruckten Elektronik, sondern nutzen auch den Fortschritt

des neuromorphen Computings. Neuromorphes Computing bezieht sich auf

ein vom Gehirn inspiriertes Rechenparadigma, das durch eine Reihe von el-

ementaren Operationen, nämlich gewichtete Summen und nichtlineare Ak-

tivierungen, leistungsfähige und maßgeschneiderte Rechenfunktionen bewiesen

hat. Daher bestehen gedruckte analoge neuromorphe Schaltungen nur aus der

Verbindung mehreren einfachen Schaltkreisprimitiven, was ihr Design und ihre
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Optimierung hochgradig zugänglich macht. Zusätzlich ermöglicht der analoge

Ansatz die direkte Verarbeitung von Signalen im analogen Bereich, vermeidet

komplizierte Geräte für die Analog-Digital-Umwandlung und fördert somit die

Kompaktheit und Leichtigkeit der Schaltungen. All diese einzigartigen Merk-

male verleihen gedruckten analogen neuromorphen Schaltungen einen breiten

und vielversprechenden Ausblick.

Jedoch befinden sich bestehende Studien zu gedruckten analogen neuro-

morphen Schaltungen hauptsächlich in der konzeptionellen Phase. Diese Stu-

dien haben das Prinzip der gedruckten Schaltungen zur Nachahmung des neu-

romorphen Computings umrissen, doch wurden mehrere praktische Faktoren

nicht einbezogen. Diese Dissertation erforscht eine Reihe praktischer Prob-

leme für gedruckte analoge neuromorphe Schaltungen: (i) In Hinsicht auf

Modellierungs- und Trainingsrahmens fasst diese Arbeit zwei effektive Mod-

ellierungsansätze zusammen, die eine präzise Modellierung elektronischer Sys-

teme ermöglichen, nämlich physikbasierte Modellierung und approximations-

basierte Modellierung. Für Training wird ein bestehender, auf maschinellem

Lernen basierender Trainingsansatz durch Heuristiken verbessert, um nicht-

differenzierbare physische und technische Einschränkungen in den Trainings-

prozess einzubeziehen. Zudem wird ein evolutionärer Ansatz vorgeschlagen,

der die Optimierung der Schaltungsarchitektur neben ihren Parametern erlaubt.

(ii) Zur Verbesserung der Zuverlässigkeit der Schaltung wird die Auswirkung

der Alterung von Bauteilen untersucht und eine gezielte altersbewusste Train-

ingsstrategie vorgeschlagen, um die Robustheit der Schaltung gegen Alterung

zu erhöhen. Außerdem modelliert und analysiert diese Dissertation den gemein-

samen Einfluss von drei Hauptfaktoren, die die Zuverlässigkeit der Schaltung

beeinflussen. Darüber hinaus wird eine Schaltungsarchitektursuche eingesetzt,

um eine noch höhere Schaltungsrobustheit gegenüber Variationen anzubieten.

Schließlich wird auch die Auswirkung katastrophaler Fehler in der gedruck-

ten neuromorphen Schaltung untersucht. (iii) In Bezug auf die Praktika-
bilität wird durch Nutzung des Vorteils der additiven Fertigung gedruckter

Elektronik eine geteilte Fertigungsmethode vorgeschlagen, um die Herstel-

lungskosten der gedruckten neuromorphen Schaltungen erheblich zu senken.

Zudem wird der Energieverbrauch der gedruckten neuromorphen Schaltun-
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gen durch das vorgeschlagene energiebewusste Training optimiert, was eine

Pareto-optimale Schaltungsleistung innerhalb eines vorgeschriebenen Energie-

Budgets ermöglicht. Darüber hinaus wird eine Verbesserung der Schaltungs-

kompaktheit durch ein flächenbewusstes Training vorgeschlagen, welches die

Größe der gedruckten neuromorphen Schaltungen verringert und somit ihre

Anwendung in flächenknappen Szenarien erweitert. (iv) Zuletzt fokusiert diese

Arbeit auf das Rechenparadigma bestehender gedruckter neuromorpher Schal-

tungen. Durch die elektronische Komponenten mit Zeitabhängigkeiten, wie

trainierbare Kondensatoren, können gedruckte Elektronik neuartige Rechen-

funktionalitäten wie rekurrente neuronale Netzwerke und Spiking neuronale

Netzwerke implementieren, wodurch gedruckte analoge neuromorphe Schal-

tungen an Szenarien angepasst werden, in denen die Verarbeitung zeitliche

Daten vorgesehen ist.

Zusammenfassend führt diese Dissertation eine umfassende Untersuchung

gedruckter analoger neuromorpher Schaltungen durch. Sie beschleunigt erhe-

blich den Übergang dieser Technologien von laborbasierten Studien zu realen

Anwendungen und erleichtert somit die Elektronifizierung und Intellektual-

isierung in Edge-Computing-Szenarien im Kontext des Internets der Dinge.
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1 Introduction

As the Internet of Things (IoT) [11] continues evolving, the progression of

informatization and electronification becomes ubiquitous in daily life, includ-

ing the most edge scenarios. For instance, smart packaging [1] and smart la-

bels [3] enable life-long quality monitoring of fast-moving consumer goods

like meat [15] and dairy products [16]. In medical cares, smart bandages [12]

and smart clothes [13] provide unobtrusive and continuous health monitoring.

Additionally, smart household items, such as smart cups [2] and tableware [17],

fosters the adoption of regular and healthy lifestyle habits. Within these emerg-

ing edge products, there is only a moderate acceptance for the expense of ex-

tra electronics, necessitating an extremely low-cost device production. Since

these edge devices frequently serve as personal belongings, a highly flexible

manufacturing process is required to support bespoke fabrication of personal-

ized electronics. Also, some of the devices need to be featured with softness,

stretchability, porosity, non-toxicity, and bio-compatibility for safety and com-

fort reasons. Moreover, given that some of them are envisioned to be dispos-

able, bio-degradability is expected for environmental sustainability.

In this regard, traditional lithography-based silicon integrated circuits [6]

face challenges in addressing these requirements. Either the high costs asso-

ciated with their manufacturing infrastructure, or the complexity of their sub-

tractive manufacturing processes, or the limitations imposed by their mate-

rial choices, render silicon-based technology less ideal for the production of

those emerging edge electronics. As an alternative, printed electronics (PE) [5]

emerges as one of the most promising enabler of those next-generation elec-

tronics. Characterized by the additive manufacturing approach, PE produces

circuits by depositing functional inks directly onto the substrates. Thus, PE

allows for significant low fabrication costs compared to silicon-based subtrac-

tive technologies. In addition, PE supports a wide range of functional material
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choices, including those, that are flexible [4], stretchable [10], porous [8], bio-

compatible [7] and bio-degradable [9]. All these unique advantages render

PE a pivotal role in the development of the next-generation electronic devices.

To equip printed devices with necessary computational functionalities, printed

analog neuromorphic circuits (pNCs) emerge as a focal area of interest [14]. By

connecting multiple simple-structured circuit primitives, i.e., resistor crossbars

and inverter-based nonlinear circuits, pNCs are adept at emulating the neuro-

morphic computing paradigms, particularly, multilayer perceptrons (MLPs).

This streamlined yet effective circuit schema not only enables high compu-

tational capabilities but also facilitates the design and optimization processes

associated with these circuits.

Unfortunately, additive manufacturing also introduces several drawbacks

to PE. Firstly, the high printing variation may perturb printed components

from their designed values and thus reduce the circuit reliability. Moreover,

PE has large feature sizes (in scope of µm) and therefore allows only low de-

vice counts. Although a significant number of transistors needed for analog-

digital-converters (ADCs) can be saved by processing signals directly in the

analog domain, it renders the pNCs more sensitive to printing variations. Sec-

ondly, many practical issues for pNCs have not been studied. For instance,

circuits should exhibit extremely low manufacturing costs (in smart packag-

ing), ultra-low power consumption (for disposable electronics), and a smaller

footprint in area-limited applications, such as smart bandages. Additionally, as

the components in existing pNCs possess no time-dependency, they are inca-

pable of storing historical input information and processing temporal signals,

which significantly narrows the application scope of the pNCs.

To address these issues, this work begins with modeling approaches, with

which we can establish the corresponding optimization models for the afore-

mentioned challenges. Based on these models, targeted training methods are

then developed to effectively mitigate those problems. Experiment results have

proven that this workflow can effectively address the problems and bring the

deployment of pNCs in target scenarios one step closer to reality.
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1.1 Objective and Contribution

The objective of this dissertation is to implement a comprehensive advance-

ment to pNCs, spanning from the circuit design through to the practical issues.

The contributions of this work are categorized into the following aspects.

Modeling and Training of Printed Neuromorphic Circuits

To enable the training of circuit parameters, i.e., component values, within a

pNC for a specific target task, it is essential to establish a model that describes

the behavior of the pNC. This work summarizes a physics-informed modeling
approach and an approximation-based modeling approach. Both can accu-

rately describe the behavior of the circuit primitives. Moreover, due to several

technical limitations, constraints exist also in the modeling stage. For instance,

the printing process usually imposes a certain printable range on each compo-

nent, which must be considered into the modeling of the pNCs to ensure the

practical manufacturability of the circuits. Consequently, the proposed model-

ing methods are also capable to take the constraints into account.

Additionally, this work enhances an existing machine learning (ML)-based
training method by introducing heuristics to enable the training with tightly

guaranteed non-differentiable technological constraints. Moreover, this work

introduces a training strategy leveraging evolutionary algorithms (EAs). Com-

pared to the ML method, this approach allows training circuit parameters, cir-

cuit architecture, as well as other discrete decision variables simultaneously,

which substantially expands the search space and thus enhances the potential

capability of pNCs.

Reliability Design of Printed Neuromorphic Circuits

Compared to silicon-based electronics, additive manufacturing introduces a

more significant variability in printed devices, which can notably affect the

output of pNCs. Additionally, unlike silicon chips, printed components often

lack adequate encapsulation, rendering them more susceptible to aging effects.

In response to these challenges, this work introduces aging-aware training
to mitigate the impacts of device aging on circuit reliability. Afterwards, this
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work investigates and addresses the collaborative effects of three primary fac-

tors (printing variation, aging effect, and sensing error) to encourage highly

dependable pNCs. Moreover, this work proposes to utilize EA to enhance the

circuit architecture search for further improving the circuit robustness. Lastly,

this work studies the impact of catastrophic faults within circuit components,

revealing the importance of circuit testing for pNCs.

Practicality Design of Printed Neuromorphic Circuits

To augment the practical applicability of pNCs, this dissertation focuses on

three main aspects. Firstly, the cost-effectiveness of pNCs is enhanced. By

leveraging the unique capabilities of additive manufacturing, a novel split man-

ufacturing approach is proposed to combine the advantages of both high- and

low-volume printing technologies. Furthermore, this work introduces a power-
aware training framework that facilitates Pareto-optimal trade-offs between

circuit performance and power consumption. This approach ensures the sus-

tainability and power efficiency of pNCs in diverse applications. Lastly, con-

sidering area-limited applications, this work presents an area-aware training
strategy. Utilizing an EA that allows topology optimization, a significant re-

duction in the footprint of pNCs can be achieved without performance loss.

Extension of Printed Neuromorphic Circuits

Existing pNCs predominantly follow the computing paradigm of MLP, which

lacks the capability to process temporal information. Because it does not pos-

sess component with time-dependencies. To address this limitation, a printable

hardware implementation of recurrent neural networks (RNNs) is proposed.

By integrating learnable printed filters to existing pNCs and restructuring the

circuit architecture, the circuit is capable to process temporal signals. Concur-

rently, a training framework is also proposed to enable the training of bespoke

printed recurrent neuromorphic circuits (pRNCs) for target tasks.

As one of the most popular computing paradigms in neuromorphic comput-

ing, spiking neural networks (SNNs) is one of the most closely to the behavior

of biological neurons. It stands out for their low power consumption and ro-
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bustness against small perturbation. In this work, a printable spike-generator

is proposed and integrated into the existing pNCs to emulate printed spik-
ing neuromorphic circuits (pSNCs). Analogous to pRNCs, we propose a

Transformer-based model to enable the training of the pSNCs for specific sce-

narios in a bespoke manner.

1.2 Structure

The dissertation is structured into five main sections that provide a comprehen-

sive research around the pNCs. This structure is depicted in Figure 1.1. It aims

to facilitate an immediate grasp of the relationships among sections and their

collective contribution to the improvement of pNCs.

• Chapter 2 provides the background for this dissertation, including PE,

neuromorphic computing, and pNCs. In addition, this chapter intro-

duces the preliminary of mathematics, optimization, and ML algorithms

utilized in this work. These preliminaries serve to facilitate the bespoke

circuit designs that are proposed in following chapters.

• Chapter 3 focuses on the modeling and training of pNCs that offers the

capability to consider the physical and technological constraints. Built

upon the modeling, this chapter introduces the corresponding circuit

optimization strategies, leveraging ML and EAs. These modeling and

training approaches are then utilized in the following chapters as funda-

mental methodologies to model the electronic problems and thus address

them.

• Chapter 4 addresses the reliability of the circuits by analyzing a series

of factors that could emerge during circuit manufacturing and operation.

It proposes viable solutions to these challenges, ensuring the reliability

and longevity of the circuits.

• Chapter 5 discusses the practicality issues, considering more practical

factors in the real-world application. This includes the focus on ultra-

low manufacturing cost, energy-efficient power consumption, and com-
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pact circuit footprints, paving the way to move from the laboratory en-

vironment to practical deployment.

• Chapter 6 ventures into the potential extensions of the existing pNCs.

By introducing electronic components with temporal dependencies, the

computing paradigms of the existing pNCs can be extended to RNNs and

SNNs. These extensions significantly broadens the application domains

of the circuits.

• Chapter 7 concludes the work and outlines future directions of pNCs.

1.3 List of Publications

The following list gives a comprehensive overview of all scientific papers pub-

lished by the author that are relevant for this dissertation. Significant parts of

this dissertation (across all chapters) were partly copied from the relevant pa-

pers listed below and assembled into a coherent monograph structure.

Haibin Zhao, Brojogopal Sapui, Michael Hefenbrock, Zhidong Yang, Michael Beigl,
and Mehdi B Tahoori. “Highly-Bespoke Robust Printed Neuromorphic Circuits”. In:
2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2023, pp. 1–6.

Haibin Zhao, Michael Hefenbrock, Michael Beigl, and Mehdi B Tahoori. “Aging-
Aware Training for Printed Neuromorphic Circuits”. In: Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design. 2022, pp. 1–9.

Haibin Zhao, Michael Hefenbrock, Michael Beigl, and Mehdi B Tahoori. “Highly-
dependable printed neuromorphic circuits based on additive manufacturing”. In: Flexible
and Printed Electronics 8.2 (2023), p. 025018.

Priyanjana Pal, Haibin Zhao, Michael Hefenbrock, Michael Beigl, and Mehdi B Tahoori.
“Neural Architecture Search for Highly Robust Printed Neuromorphic Circuits”. In:
Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided De-
sign. 2024, pp. 1–9.

Priyanjana Pal, Florentia Afentaki, Haibin Zhao, Gürol Saglam, Michael Hefenbrock,
Georgios Zervakis, Michael Beigl, and Mehdi B Tahoori. “Fault Sensitivity Analysis
of Printed Bespoke Multilayer Perceptron Classifiers”. In: 2024 IEEE European Test
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Symposium (ETS). IEEE. 2024, pp. 1–6.

Haibin Zhao, Priyanjana Pal, Michael Hefenbrock, Michael Beigl, and Mehdi B Tahoori.
“Power-Aware Training for Energy-Efficient Printed Neuromorphic Circuits”. In: 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE. 2023,
pp. 1–9.

Haibin Zhao, Michael Hefenbrock, Michael Beigl, and Mehdi B Tahoori. “Split Addi-
tive Manufacturing for Printed Neuromorphic Circuits”. In: 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE. 2023, pp. 1–6.

Haibin Zhao, Alexander Scholz, Michael Beigl, Si Ni, Surya Abhishek Singaraju, and
Jasmin Aghassi-Hagmann. “Printed Electrodermal Activity Sensor with Optimized Fil-
ter for Stress Detection”. In: Proceedings of the 2022 ACM International Symposium on
Wearable Computers. 2022, pp. 112–114.

Haibin Zhao, Priyanjana Pal, Michael Hefenbrock, Michael Beigl, and Mehdi B Tahoori.
“Towards Temporal Information Processing – Printed Neuromorphic Circuits with Learn-
able Filters”. In: Proceedings of the 18th ACM International Symposium on Nanoscale
Architectures. 2023, pp. 1–6.

Priyanjana Pal, Haibin Zhao, Maha Shatta, Michael Hefenbrock, Sina B Mamaghani,
Sani Nassif, Michael Beigl, and Mehdi B Tahoori. “Analog Printed Spiking Neuromor-
phic Circuit”. In: 2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2024, pp. 1–6.

1.4 Statement of Reproducibility

The methodologies and experimental results reported in this dissertation are

accessible and reproducible through the source code available in the associated

GitHub repositories1. It is imperative to emphasize that, the reproducibility

of the experimental results is conditional under the corresponding experiment

setups described in the papers listed above. As this dissertation involves mul-

tifaceted enhancements to pNCs, which are not fully orthogonal to each other,

the effectiveness of individual methodologies may yield diminishing returns

when these methods are applied in conjunction.

1The repositories are available at https://github.com/Neuromophic.
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2 Background

To provide a comprehensive context for this dissertation, this chapter briefly

introduces the preliminary knowledge of printed electronics (PE) regarding

printing technologies and materials. Subsequently, the concept of neuromor-

phic computing, which refers to a computing paradigm inspired by biological

brains, is described. Finally, the primitives of printed analog neuromorphic

circuits (pNCs) are presented, along with an overview of the technology spec-

ifications of the pNCs employed in this work.

2.1 Printed Electronics

Printed electronics (PE) is an emerging technology that manufactures electron-

ics in an additive way [13]. Analogous to color printing, PE enables direct

deposition of functional inks onto substrates to fabricate electronic products,

as illustrated by the lower part in Figure 2.1. Evidently, this additive strat-

egy significantly simplifies the complicated manufacturing process and reduces

the demand for expensive infrastructures in traditional photolithography-based

subtractive processes, as shown in the upper part in Figure 2.1.

subtractive
process

additive
process deposition

substrate film
deposition

photoresist
deposition UV exposure development etching photoresist

removal

substrate printed
circuit

Figure 2.1: Comparison of photolithography-based subtractive process and ad-
ditive printed manufacturing. Sourced from [80].
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2.1.1 Printing Technologies

PE encompasses several processes, which can be broadly categorized into high-

and low-volume approaches (see Figure 2.2). High-volume manufacturing ap-

proaches, e.g., screen printing [68] and gravure printing [67], typically neces-

sitate supplementary masks, which may increase the fabrication complexity

and cost. Nevertheless, once the masks have been produced, they can facilitate

the efficient mass replication of electronics. In contrast, low-volume methods,

such as inkjet printing [64] and aerosol jet printing [19], eliminate the require-

ment for masks. They print target electronics through precise control over the

trajectory of nozzle movement. Although these techniques do not match the

scalability of mask-based methods and exhibit slower production speed, they

provide significant technical flexibility and support extremely low manufactur-

ing cost for bespoke electronic fabrication. Some technique specifications of

typical printing technologies are summarizes in Table 2.1.
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substrate
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printed
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squeegee
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screen
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(a) inkjet printing

(c) screen printing

(b) aerosol printing

(d) gravure printing

Figure 2.2: Exemplary printing technologies in PE for high and low through-
put: (a) inkjet printing, (b) aerosol printing, (c) screen printing, and
(d) gravure printing.
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With the diversity of printing technologies, PE can be effectively deployed

across a wide range of applications. Specifically, low-volume manufacturing

techniques can not only facilitate the rapid prototyping thus accelerate product

development, but also enable the personalization of electronic products, which

may even allow individuals to "print their own functional electronic devices

anywhere" [9]. On the other hand, high-volume production methods can sig-

nificantly reduce the manufacturing time and cost per circuit, promoting the

electronification and intellectualization of commodities.

Table 2.1: Comparison of technology specifications of typical printing tech-
nologies. Sourced from [32, 40, 49].

Parameter Inkjet Aerosol Screen Gravure

Resolution (µm) 15−100 10−100 30−100 50−200

Speed (m/min) 0.02−5 0.03−12 0.6−100 8−100

Print Size Large Large Medium Large

Contact mode Contactless Contactless Contact Contact

Mask requirement No No Yes Yes

2.1.2 Functional Inks

The existence of conductive, semiconducting or dielectric inks is the key en-

abler that printing technologies can be used for producing electronic products.

The ink materials can be broadly classified into two categories, namely or-

ganic and inorganic materials. Compared to inorganic inks, organic mate-

rials are distinguished by their versatile molecular structures, lower fabrica-

tion costs, and compatibility with flexible polymer substrates [13]. These fea-

tures foster their wide applications as conductive materials, such as poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) [15, 66, 71].

However, the state-of-the-art (SOTA) carrier mobilities of organic materials

are 3 to 5 orders of magnitude lower than their inorganic counterparts, for

instance, 101cmV−1 s−1 for organic inks [36, 78] versus 105cmV−1 s−1 for

inorganic inks [7]. This disadvantage forces organic semiconductors operating

at high voltages (≥ 25V), rendering them less suitable for field effect transistors
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(FETs) applied in low-energy scenarios in IoT context. In contrast, inorganic

semiconductors composed by oxides are capable to provide substantially low

operating voltages (≤ 1V), which makes them well-suited for devices powered

by on low-capacity batteries [12, 42] or energy harvesters [41]. Therefore,

inorganic semiconductors become more favored in the target domain of PE.

Apart from carrier mobility, several additional outstanding properties of print-

ing materials are also critical factors in material selection. These include stretch-

ability [31], transparency [2], non-toxicity [50], bio-compatibility [30, 39], and

bio-degradability [37, 54], which can be effectively leveraged to accommodate

requirements in diverse target applications of PE.

2.1.3 Substrates

As the foundational and the largest component of electronic devices, the prop-

erties of substrates greatly impact the characteristics of the entire device. For-

tunately, PE offers the adaptability to be applied onto a diverse array of sub-

strates including glass [25], papers [28], plastics [33], textiles [6], and metallic

foils [56], among others. This versatility enables PE to possess unique features

such as porosity [28], stretchability [6], mechanical flexibility [6, 28, 33, 56],

comfort [6], and transparency [33, 25]. Additionally, the SOTA innovations

extend PE to directly printing onto unconventional surfaces such as fruits [8]

or even human skins [63], which significantly broadening the utility of PE.

2.1.4 Discussion

The distinctive advantages facilitate PE for a wide range of emerging applica-

tions where traditional silicon-based solution may be either too expensive or

unable to meet specific requirements. Such applications include smart pack-

aging [1] and smart labels [10] that should be cheap and disposable, or soft

sensors [11, 44] and soft robotics [38] which requires mechanical flexibility.

However, it must be emphasized that, despite its incomparable benefit, PE does

not cause conflict with traditional silicon chips. Because the aim of PE is not to

compete with chips in computationally intensive scenarios, but rather to com-

plement silicon chips in edge scenarios by leveraging their own properties.
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2.2 Neuromorphic Computing

The concept of neuromorphic computer has been envisioned since the era of

Alan Turing [72] and John von Neumann [74], referring to the hardware im-

plementation of neurally inspired computing paradigms [60]. Distinct from

the classic von Neumann architecture [29] with segregated central processing

unit (CPU) and memory unit, neuromorphic computing systems possess collo-

cated memory and processing, namely processing in memory (PIM) [4]. This

collocation not only addresses the bottleneck of limited bandwidth between

the CPU and memory [48], but also facilitates highly parallel processing and

energy-efficiency [60] of the computing system. Consequently, these systems

have shown superior performance over von Neumann architectures in various

domains, including neuroscience [59] and machine learning (ML) [52].

2.2.1 Computing Models

There are several neuromorphic computing models. According to their bio-

logical plausibility, they can be (decreasingly) ranked as the Hodgkin Huxley

model [23], Fitzhugh Nagumo model [17], membrane dynamics model [3],

integrate-and-fire (I&F) model [18], and the McCulloch Pitts model [46]. The

last two models are also widely employed in the research of ML, specifically,

the I&F model forms the foundation of SNNs, whereas the McCulloch Pitts

model serves as the basic of feed-forward MLPs in artificial neural networks

(ANNs) [55].

Among the aforementioned models of neuromorphic computing, the compu-

tational scheme of feed-forward MLP has been most explored [60]. This is due

to the inherent commonalities between neuromorphic computing and ANNs,

coupled with the streamlined operations and exceptional computing efficiency

of ANNs, especially MLPs [55]. Concurrently, neuromorphic devices become

also ideal platforms for executing ANNs, effectively acting as hardware ANN

accelerators [27]. Therefore, the neuromorphic systems that emulate MLPs

are also referred to as hardware MLPs [51]. The following part describes the

preliminary of MLPs and their adaption to neuromorphic hardware.

15



2.2.2 Multilayer Perceptrons
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Figure 2.3: An example of the forward pass in a 4-3-2 multilayer perceptron,
receiving four input data x1, · · · ,x4 and producing two output data
yyŷ1 and yyŷ2. The circles refer to the neuron that performs weighted-
sum operations followed by nonlinear activations, whereas the
edges indicate the weights w(l)

i, j to their corresponding inputs. The
blue color highlights the forward pass of one single neuron.

A modern MLP typically comprises an input layer, multiple hidden layers,

and an output layer. Each hidden and output layer contains multiple neurons.

These neurons process data from the preceding layer by applying a weighted-

sum operation and nonlinear activation. Afterwards, the data will be forwarded

to the subsequent layer as input data. Specifically, the behavior of the l-th layer

can be described by

zzz(l) = aaa(l−1) ·WWW (l)+bbb(l), (2.1)

aaa(l) = f (zzz(l)), (2.2)

where aaa(l−1) = [a(l−1)
1 , · · · ,a(l−1)

Nl−1
] ∈R1×Nl−1 summarizes output from the pre-

ceding layer containing Nl−1 neurons, WWW (l) ∈ RNl−1×Nl refers to the learnable

weight matrix that maps aaa(l−1) into Nl values in the l-th layer, and bbb(l) ∈R1×Nl

indicates the learnable bias term added to each neuron in the l-th layer, fi-

nally, zzz(l) ∈ R1×Nl describes the result after weighted-sum operation. Sub-
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sequently, zzz(l) is activated by a nonlinear function f (·), e.g., rectified linear

unit (ReLU), sigmoid, or hyperbolic tangent (tanh) function [62], and yields

aaa(l) ∈ R1×Nl . Figure 2.3 exemplifies a 3-layer MLP.

To simplify Equation (2.1), the learnable parameters bbb(l) can be fused into

the weight matrix WWW (l) by

zzz(l) = aaa(l−1) ·WWW (l)+bbb(l) =
[︂
aaa(l−1) 1

]︂
⏞ ⏟⏟ ⏞

=:aaã(l−1)

·

⎡⎣WWW (l)

bbb(l)

⎤⎦
⏞ ⏟⏟ ⏞
=:WWW̃ (l)

. (2.3)

In this way, the learnable parameters in a layer can be simplified in one matrix

WWW̃ (l) ∈ R(Nl−1+1)×Nl while padding the input vector aaa(l−1) by a 1. Here, the

overscript (·)˜ denotes the extended variables for this simplification. Moreover,

to facilitate batch data processing, i.e., processing several data simultaneously,

multiple input data aaã(l−1)
b can be assembled into a matrix, i.e.,

AAÃ(l−1)
=

⎡⎢⎢⎢⎣
aaã(l−1)

1
...

aaã(l−1)
B

⎤⎥⎥⎥⎦ ∈ RB×(Nl−1+1).

Here, B denotes the batch size of the data, and aaã(l−1)
b with b∈ {1, · · · ,B} refers

to the b-th data within the batch. Correspondingly, the weighted-summed value

zzz(l) is also extended to ZZZ(l) ∈ RB×Nl . In sum, the mathematical behavior of an

MLP is given by

YYŶ X(WWW̃ ) = f (· · · f ( f (X̃ ·WWW̃ (1)
) ·WWW̃ (2)

) · · ·WWW̃ (L)
),

where X indicates the input to the first layer of the MLP, which can be ex-

plained as AAA(0), whereas YYŶ is the final output from the MLP, which is equivalent

to AAA(L) with L being the total number of layers in the MLP. Note that, both X
and Y are constant matrices provided by the target dataset D = {X,Y}, which

is usually measured from real world scenarios. Rather, WWW̃ =WWW̃ (1)∪·· ·∪WWW̃ (L)

is the summary of all optimization variables that influence the network out-

put YYŶ .
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Training of MLPs. In the early stage of neuromorphic computing, such as

in McCulloch Pitts model, the parameters WWW̃ are not learnable but predeter-

mined [46] or randomized [58]. Benefit from backpropagation [21], a gradient-

based approach, the network parameters are nowadays allowed to be trained ef-

ficiently. Here, training an MLP refers to optimizing the learnable parameters

WWW̃ in a way that the difference between network output YYŶ (with given input X)

and the target output value Y in the dataset is minimized.

For this purpose, an objective function, i.e., a loss function, is required to

guide the update of the parameters. In regression tasks, the loss function can be

simply formulated as the mean squared error (MSE) between YYŶ and Y, namely,

L(WWW̃ ) =
1

B ·NL
∥YYŶ X(WWW̃ )−Y∥2

F,

where ∥ ·∥F is the Frobenius norm [24], denoting the square root of the sum of

the square of each element in the matrix.

However, in classification tasks, the loss function is not intuitive, because

the ultimate objective is to increase classification accuracy, which is a discrete

criterion (either correct or incorrect). This discrete function cannot provide

useful gradient information to guide the gradient-based training process. To

address this issue, a strictly convex function, i.e., the cross-entropy loss [43],

is widely employed to update the learnable parameters. The cross-entropy loss

is defined as

L(WWW̃ ) =− 1
B

(︂
YOH⊙ logYYŶ X(WWW̃ )+(1−YOH)⊙ log

(︁
1−YYŶ X(WWW̃ )

)︁)︂
,

where YOH ∈RB×C is the one-hot encoding [61] of the target Y ∈ RB from the

dataset, and 1 denotes a matrix having the same dimension as YOH with all the

elements being 1. ⊙ refers to the elementwise product. Notably, the number of

neurons NL in the final output layer of the MLP is identical to that of the number

of classes C. In this case, the index of the neuron with the highest output will

be regarded as the classification result. Therefore, the cross-entropy loss aims

to suppress the outputs relating to the wrong classes, while the correct output

will be encouraged to produce a higher value.

Subsequently, training an MLP can be expressed as minimizing the loss
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Figure 2.4: Example of the backpropagation in a multilayer perceptron, propa-
gating from the loss L to several weights (w(1)

11 and w(2)
11 ). The blue

color highlights one of the backpropagation chains.

function L(WWW̃ ) through the change of WWW̃ , namely,

minimize
WWW̃

L(WWW̃ ),

which is an iterative process. In each iteration, the learnable parameters are

updated through gradient descent, i.e.,

WWW̃ ←WWW̃ −α ·∇WWW̃L(WWW̃ ),

where α ∈ R+ denotes the step size of the update, which is also referred to as

the learning rate, and ∇WWW̃L(WWW̃ ) denotes the derivative (gradient) of L(WWW̃ ) with

respect to WWW̃ . Notably, owing to the structured connectivity of MLPs, the gra-

dient of each parameter can be effectively obtained through backpropagation

leveraging the chain rule, i.e.,

∇
WWW̃ (l)L(WWW̃ ) =

dL
dAAA(L)

· dAAA(L)

dZZZ(L)
· dZZZ(L)

dAAA(L−1)
· · · dAAA(l+1)

dZZZ(l)
· dZZZ(l)

dWWW̃ (l)
.

With this approach, the complicated gradient calculation can be split into mul-

tiple simple subproblems, as shown in Figure 2.4.

Several frameworks, such as PyTorch [53] and TensorFlow [45], have al-
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ready been developed to automatically perform the backpropagation and cal-

culate the gradient of the learnable parameters. Moreover, these tool also of-

fer many variations of gradient descent techniques, such as RMSprop [69] or

Adam [34]. These techniques are proposed to adaptively modify the direc-

tion or step size of parameter updates, which may mitigate some challenges

of purely gradient descent method during training, e.g., trapped in local mini-

mum.

Adaption of MLPs to neuromorphic hardware. Three primary methodologies

exist for adapting MLPs on neuromorphic hardware. The first approach refers

to hardware synthesis that transforms existing MLPs into low-level circuit de-

scription [5]. This approach is predominantly utilized to development special-

ized neuromorphic hardware for specific applications. The second technique

involves mapping trained MLPs onto given neuromorphic architectures [14].

This type of tools generally has to consider the inherent limitations of the em-

ployed architecture and the target hardware. Therefore, the MLPs usually need

to be modified to adapt the limitations. Lastly, programming tools can offer

the capability for more flexible programming and thus allow users modifying

computing algorithms manually [70]. These tools are often paired with pro-

grammable or reconfigurable hardware such as field programmable gate arrays

(FPGAs).

Despite the availability of aforementioned tools for adapting MLPs to neu-

romorphic hardware, these strategies are mainly proposed for silicon-based

large-scale digital circuits and are less effective for PE. For instance, in PE,

activation functions such as printed tanh-like (ptanh) function [76] or printed

ReLU-like (pReLU) function [77] cannot accurately resemble the mathemat-

ical counterparts. Consequently, the design and adaption of MLPs in printed

neuromorphic hardware would have to be changed to accommodate printed

transistors and printed circuit components [13].

2.3 Printed Neuromorphic Circuits

Printed neuromorphic circuits (pNCs) combine the methodologies of PE and

neuromorphic computing to create systems that not only leverage the inher-
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ent benefits of printed devices, such as ultra-low cost, adaptable and flexible

manufacturing methods, and circuit softness, but also incorporate the powerful

computational capabilities of neuromorphic computing. These fused advan-

tages make pNCs emerging as a leading technology in the evolution of the

next-generation electronics.

2.3.1 Analog versus Digital Circuits

Despite the unique advantages of PE, there are still drawbacks due to the lim-

itations of its additive manufacturing process. For instance, the feature size of

printed devices is typically in the scope of micrometer to millimeter, which is

three to five orders of magnitude larger than the nanoscale dimensions achiev-

able with photolithographic silicon electronics. Consequently, analog imple-

mentation is more favorable than Boolean digital design. Figure 2.5 illustrates

a 2-bit adder, which is one of the most simple component in digital circuits.

It already requires 7 gates, i.e., 36 transistors, not to mention higher precision

(more bits), the demand of analog-digital-converters (ADCs), and the require-

ment on other components in neuromorphic computing, such as multipliers and

activation functions. Table 2.2 compares the hardware cost for implementing

a printed neuron with three inputs and one output across different design ap-

proaches, namely, 4-bit, 8-bit digital design and analog design. It can be seen

that the analog method necessitates a significantly reduced device counts (two

to three orders of magnitude) compared to its digital counterpart.

Furthermore, the faults, including parametric and catastrophic faults, cannot

be ignored in the additive manufacturing process, where the latter may even

severely impact the performance of pNCs (see Chapter 4.4). To avoid the oc-

currence of catastrophic faults and enable efficient circuit testing, pNCs are

also justified to have low device counts.

In sum, with the consideration of the additive fabrication method, the circuit

footprint, the fabrication cost, the power consumption, and the device faults,

pNCs are limited to have a low device counts. Consequently, analog approach

gains significantly superior. Therefore, this thesis focuses on studying printed

analog neuromorphic circuits and utilizes the term printed neuromorphic cir-

cuits (pNCs) to specifically refer to the analog ones.
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Table 2.2: Comparison of the hardware cost between analog and digital (4-bit
and 8-bit) approaches for a 3-input neuron. (ADC: analog-digital-
converter, ReLU: rectified linear unit, #T: number of transistors).
Sourced from [76].

Approach Components Delay (ms) Area (mm2) Power (µW) #T

4-bit

ADC 13.8 25.4 328 185
Adder 13 7.9 289 59

Multiplier 13.6 15 550 103
ReLU 2.5 1.7 80 10

Neuron 69 48 1250 357

8-bit

ADC 154 957 37180 5938
Adder 29 22 793 144

Multiplier 28 85 3100 583
ReLU 2.55 3.7 210 22

Neuron 522 1068 41250 6602

Analog Neuron 27 0.49 859 4

2.3.2 Circuit Primitives

Circuit primitives for pNCs were originally proposed in [22, 75, 76]. They

consist of resistor crossbars for implementing weighted-sum operations, ptanh

circuit for emulating activation function, and printed negation circuits to re-

semble the expression of negative weights.

Resistor crossbar. The green structure in Figure 2.6 shows the most funda-

mental architecture in pNCs, i.e., the resistor crossbar, resembling the weighted-

sum operations in MLPs. This structure has been widely adopted in various

applications, including PIM [4] and ReRAM-based ANN accelerators [27].

According to Kirchhoff’s law [35], we obtain

∑
j

V j−Vz

RC
j

+
Vb−Vz

RC
b
− Vz

RC
d
= 0.

By expressing the resistance R as the corresponding conductance g = 1/R and

fixing Vb = 1V, this equation can be formulated to

Vz = ∑
j

gC
j

G
V j +

gC
b

G
, (2.4)
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where G refers to the summed conductance of the resistors in the crossbar, i.e.,

∑i gC
i + gC

b + gC
d . In this case, Equation (2.4) shares the same form as Equa-

tion (2.1), i.e., the output voltage Vz can be seen as the weighted-sum of the

input voltages V j. Here, the weights and bias are represented by the ratio of

the conductances. In this way, by designing and printing proper conductance

values, the desired weights and biases can be implemented.

Printed tanh-like circuit. Following the resistor crossbar, the signals are passed

through an inverter-based ptanh circuit to resemble the activation functions

in MLPs. The circuit diagram is illustrated by the red part in Figure 2.6. The

characteristic curve of the circuit can be represented by a modified tanh func-

tion,

Va = ptanh(Vz) = η
A
1 +η

A
2 · tanh

(︂(︂
Vz−η

A
3

)︂
·ηA

4

)︂
, (2.5)

where ηηηA = [ηA
1 , ηA

2 , ηA
3 , ηA

4 ] are auxiliary parameters describing the scaling

and translation of the tanh function. Here, ηηηA is ultimately determined by the

physical quantities qqqA = [RA
1 , RA

2 ,W A
1 , LA

1 ,W A
2 , LA

2 ] in the circuit, where W A
1 ,

LA
1 , W A

2 , and LA
2 are the geometric features (width and length) of the transistor

T A
1 and T A

2 . In previous work like [22, 75, 76, 79], qqqA was designed as a fixed

value, namely qqqA = [180kΩ, 80kΩ, 100µm, 80µm, 500µm, 40µm], whereas
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Figure 2.7: Schematic of a pNC with several negation circuits. The right side
details the negation circuit proposed in [76].

the corresponding auxiliary parameter was ηηηA = [0.134, 0.962, 0.183, 24.10].

In Chapter 3.1, a parametric model of the ptanh circuit is established to enable

the training of qqqA as a learnable parameter. Consequently, qqqA can be optimized

alongside the weights and biases (i.e., conductances in resistor crossbars) for

specific tasks.

Printed negation circuit. Since the conductance can only be positive values,

the resistor crossbars are only able to represent positive weights. However,

negative weights are critical in neuromorphic computing to express negative

relationships. To address this problem, the inverter-based negation circuit is

proposed in [76]. The left side of Figure 2.7 sketches a pNC with several

negation circuits prepended to some input of the printed neurons, expressing

negative weights, while the detailed schematic of the negation circuit is shown

on the right side. Similar to the ptanh circuit, the transfer characteristic of the

circuit can be described by a modified negative tanh function, namely

neg(Vin) =−
(︂

η
N
1 +η

N
2 · tanh

(︂(︂
Vin−η

N
3

)︂
·ηN

4

)︂)︂
, (2.6)

where the auxiliary parameter ηηηN = [ηN
1 , ηN

2 , ηN
3 , ηN

4 ] is determined by the

physical quantities qqqN = [RN
1 ,R

N
2 ,R

N
3 ,R

N
4 ,R

N
5 ,W

N,LN]. Analogously, qqqN was

a fixed design being [160Ω, 80Ω, 25kΩ, 15kΩ, 80kΩ, 500µm, 40µm] with

ηηηN = [−0.104, 0.899,−0.056, 3.858]. They will be extended as a learnable

parameter through the parametric model described in Chapter 3.1.

25



With negation circuit, whenever a negative weight is required, i.e.,

(−|w|) ·Vin,

the respective input will be negated to emulate the negative weight through

|w| · (−Vin)← |w| ·neg(Vin).

Printed neuron. Combining Equation (2.4), Equation (2.5), and Equation (2.6),

the overall behavior of a printed neuron is given by

Va = ptanh

(︄
∑

j

gC
j

G
V ′j +

gC
b

G

)︄
, (2.7)

where V ′j denotes the modified input (i.e., either the original or the negated

input) voltage, depending on the circuit structure, namely,

V ′j =

⎧⎨⎩neg(V j), negation circuit exists,

V j, otherwise.
(2.8)

Moreover, analogous to Equation (2.3), Equation (2.7) can be formulated in

form of matrix multiplication with extension to simplify the bias term, i.e.,

Va = ptanh
(︂

VVṼ ′ ·WWW̃
)︂
, (2.9)

with VVṼ ′ collecting the modified input voltages V ′1,V ′2, · · · with an additional

"1V" and a "0V" at the end. Meanwhile, the weight matrix WWW̃ is given by

WWW̃ = diag(ggg ·1)−1 ·ggg⊤, (2.10)

where ggg vectorizes the conductances in the crossbar, i.e., ggg= [gC
1 ,g

C
2 , · · · ,g

C
b ,g

C
d ].

2.4 Employed Technology Specification

As technological advancements, particularly in hardware, continue to progress,

the performance of the pNCs is expected to evolve as well. Therefore, to en-

sure the reproducibility of this work, this section specifies and appreciates the
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Figure 2.8: Employed printed hardware in this dissertation. (a) printed PE-
DOT:PSS resistors in the crossbars, sourced from [81], and (b) N-
type electrolyte-gated transistor (EGT).

hardware and software technologies utilized in the completion of this thesis.

Hardware specification. In the resistor crossbar, the organic PEDOT:PSS con-

ductive material is utilized. It can typically produce resistance ranging from

100kΩ to 10MΩ by adjusting the width, length, and the number of printed

layers (height), as shown in Figure 2.8 (a).

For transistors, the N-type electrolyte-gated transistor (EGT) is employed,

with signal routing facilitated by indium tin oxide (ITO). The semiconductor

indium oxide (In2O3) serves as the channel material, composite solid polymer

electrolyte (CSPE) is used for the gate insulator, and PEDOT:PSS forms the

top gate. The EGT structure is illustrated in Figure 2.8 (b).

Moreover, the entire printing procedure is conducted using the Dimatix DMP-

2850 inkjet printer. Other processing details can be found in [75, 76].

Software specification. For the SPICE simulation of the hardware, Cadence1

along with the printed Process Design Kit (pPDK) [57] were employed.

At the algorithmic level, the implementation was fully carried out using

Python. The reading and processing of the raw data were facilitated by the

pandas [47] and numpy [20] libraries. The auto-sklearn library [16] and op-

timization tools in the scipy library [73] were utilized to fit the transfer char-

1https://www.cadence.com/.
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acteristics and power consumption models of the nonlinear circuits. For the

ML-based modeling and training of pNCs, PyTorch [53] was the chosen frame-

work, whereas the NEAT library [65] was used as reference for the EA-based

optimization of pNCs.

For the creation of plots, matplotlib [26] in Python was applied, while vector

graphs and flowcharts were developed with AutoDesk AutoCAD and Microsoft

PowerPoint. The organization and completion of the thesis were carried out

using LaTeX and Overleaf 2.

2https://www.overleaf.com/.
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3 Modeling and Training

Printed electronics (PE) enables highly flexible and agile fabrication process

that can easily adapt any circuit component values through a simple modifica-

tion of printing trajectory. Therefore, PE enables bespoke design of the pNCs

for target tasks. To leverage this advantage, it is imperative to optimize the

circuit parameters, e.g., the crossbar resistances corresponding to the weights

in MLPs, in a bespoke manner. For this purpose, a parametric circuit model is

required to be established. With the established circuit model, the pNCs can

be trained to fulfill the desired functionalities by adopting appropriate training

objectives. This chapter elucidates the modeling of the pNCs and handling the

parametric constraints introduced by physical and technological limitations.

Lastly, this chapter introduces the strategies for the training of these pNCs and

consider holistic constraints during training.

3.1 Modeling of Printed Neuromorphic Circuits

The modeling methods for pNCs encompass two primary strategies: physics-

informed modeling and approximation-based modeling. The former is suit-

able for systems that are streamlined and have analytic expression, whereas the

latter is preferable for handling more complicated objects. For instance, the

resistor crossbar, as discussed in Chapter 2.3.2, can be analytically modeled

through Kirchhoff’s law. Conversely, for circuits with complex nonlinearities

and structures, such as ptanh circuits and negation circuits, to ascertain their

transfer characteristic curve with respect to circuit parameters poses substantial

challenge. Consequently, it is more practical to employ data-driven approxi-

mation methods for the parametric modeling.
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3.1.1 Physics-Informed Modeling

Physics-informed modeling involves incorporating the physic laws directly

into the modeling process [3]. This integration can substantially reduce (some-

times even avoid) the demand for extensive dataset to develop accurate models.

Furthermore, by embedding such a priori knowledge into the model, the gen-

eralizability can be well guaranteed.

For instance, in Equation (2.4), the input-output relationship of the resistor

crossbar can already be accurately described by introducing the Kirchhoff’s

law. Certainly, the model should still be further improved to enable the opti-

mization of the existence of the negative weights. In Equation (2.8), the expres-

sion of negative weight, i.e., V j or neg(V j), depends on the presence or absence

of the negation circuit. However, this is a non-causal relationship. Because

the inclusion of a negation circuit should contingent upon the necessity for

negative weights. In other word, the presence of the negation circuit should be

determined by the requirement for negative weights (which should be the result

of the circuit training), rather than determining the sign of the weights through

the existence of the negation circuit. To address this problem, the concept of

surrogate conductance was proposed [20]. A surrogate conductance θ encodes

the physical conductance g by its absolute value |θ |, and denote the presence

of the negation circuit through sign(θ). With this approach, Equation (2.9) and

Equation (2.8) can be reformulated as

Va = ptanh
(︂

VVṼ ·
(︂

WWW̃ ⊙1{θθθ≥0}

)︂
+neg(VVṼ ) ·

(︂
WWW̃ ⊙1{θθθ<0}

)︂)︂
. (3.1)

Here 1{·} is an elementwise indicator function that returns 1 if the respec-

tive condition is true, else 0. Consequently, the well-trained surrogate conduc-

tances θθθ can be converted to the printed conductances through ggg = |θθθ |, and the

presence of the negation circuits by the sign of each element in θθθ .

Physics-informed modeling is also employed to model the printed recurrent

neuromorphic circuit (pRNC) to describe the temporal behavior of printed ca-

pacitors through

I =C
dV
dt

.
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Consequently, the sequential input-output behavior of the whole pRNCs can

be precisely modeled. More details can be found in Chapter 6.1.

3.1.2 Approximation-Based Modeling

Approximation-based modeling refers to capturing the system inputs with cor-

responding outputs through measurement or simulation. Subsequently, the re-

lationship between these inputs and outputs are modeled utilizing approxima-

tion methods. In this regard, ANN is recognized as one of the most promising

candidates as they have been proven to be universal approximators [7], and are

thus particularly suited for developing the black-box surrogate system models.

Moreover, ANN-based system models natively allow gradient-based training,

because the operations in ANN are fully differentiable. It is important to clar-

ify that the ANN employed in system modeling are not the ones intended to be

printed. Instead, these ANNs are the surrogate circuit parametric models that

are created to assist the algorithmic training of the circuit parameters.

Algorithm 1 demonstrates an overview of the workflow of the approximation-

based modeling employed in this work. With this process, the nonlinear cir-

cuits in the pNCs, e.g., ptanh circuit and negation circuit, can be precisely

modeled. Subsequently, their circuit parameters can be trained to yield opti-

mal transfer characteristic curves for the training objective like classification

accuracy.

Taking [23] as an example, we first define a rough search space Q for the pa-

rameters in the nonlinear circuit based on the e.g., printing technologies. Here,

the space of the physical quantities is formulated as Q= {qqq |qqq ∈ [qqqmin,qqqmax]}.
In this initial search space, we sampled B= 10000 points through Quasi Monte-

Carlo (QMC) strategy [16], which are denoted by qqqi, i = 1, ...,10000. QMC is

a pseudo-random sampling strategy, which guarantees the estimation error of

to converge with

O
(︃
(logB)d

B

)︃
,

where d is the dimension of the approximation problem, whereas the conver-
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Algorithm 1: Approximation-based modeling
Input: Number of samples B
Init : Initial feasible search space of circuit parameters QQQ
while sampling not finished do

Sample B points {qqq1, · · · , qqqB} from the feasible space QQQ
Conduct B SPICE simulations with sampled circuit parameters qqqb
Obtaining outputs {ηηη1, · · · , ηηηB}
Check feasibility of QQQ through simulation results
if QQQ is feasible then

sampling finished
else

update QQQ
end

end
Train ANN to fit ηηηb from qqqb, namely, ANN(qqqb) = ηηηb,∀b = 1, 2, · · · , B

gence of random Monte-Carlo (MC) follows

O
(︃

1
B

)︃
.

In other word, for sufficiently large samplings B, the approximation precision

of QMC will always outperform that of the random MC. Meanwhile, com-

pared to grid-based sampling, QMC can provide more marginal information.

Afterwards, we use Cadence Virtuoso1 for SPICE simulation based on a prior

developed pPDK [15] to simulate the input and output voltages (VVV in,VVV out)i for

each sampled circuit (parameterized by qqqi). The green points in Figure 3.1

(left) exemplify a simulation result with a certain qqqi. Note that the number of

points plotted in the figure has been reduced for clarity of visualization.

Afterwards, we fit the discrete simulation points by tanh-like curves pa-

rameterized by ηηη , specifically, we fit the simulated data (VVV in,VVV out)i by Equa-

tion (2.5) or Equation (2.6) (depending on the circuit) with minimal Euclidean

distance, e.g.,

ηηη
∗ = argmin

ηηη

⃦⃦
negηηη (VVV in)−VVV out

⃦⃦
2 .

This optimization problem is solved by the optimization tools in the scipy li-

1https://www.cadence.com
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Figure 3.1: Left: parameter fitting from (VVV in,VVV out) to ηηηN. Green points show
the simulated output voltages with SPICE, and the red curve indi-
cates the fitted negation function parameterized by ηηηN. Right: vi-
sualization of the results from the surrogate model. The x-axis and
the y-axis refer to the true value ηηη̃

N and predicted value ηηη̂
N(qqq).

Blue, green, and red colors denotes the data from training, valida-
tion, and test sets. Sourced from [23].

brary [19]. In this process, we also monitor the fitting error

ε =
⃦⃦

negηηη (VVV in)−VVV out
⃦⃦

2 .

If the fitting error εi exceeds a certain threshold, i.e., if the transfer character-

istic does not follow a tanh-like curve, we marked the corresponding qqqi as in-

feasible. Consequently, we can update the search space Q to exclude the in-

feasible space that do not yield tanh-like transfer characteristics. It is worth

noting that, it is usually an iterative process to determine the feasible search

space Q. Taking the negation circuit as an example, the feasible search space

is finally defined in Table 3.1. We also observe that, the resistances RN
1 and RN

3

must be larger than RN
2 and RN

4 , respectively. Otherwise, the voltage divider

cannot meet the assumption of a constant ratio due to the connections with

surrounding circuit elements.

Finally, we collected feasible physical design parameters qqqi and their cor-

responding auxiliary parameters ηηη i. Since the relationship between qqqi and ηηη i

is complicated, we propose to approximate it by surrogate models based on

ANNs. For this, we build the dataset D = {qqq,ηηη} for training the ANN to
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Table 3.1: Feasible design space of negation circuit. Sourced from [23].

RN
1 RN

2 RN
3 RN

4 RN
5 W N LN

(Ω) (Ω) (kΩ) (kΩ) (kΩ) (µm) (µm)

minimal 10 5 10 8 10 200 10

maximal 500 250 500 400 500 800 70

inequality RN
1 > RN

2 RN
3 > RN

4 - - -

describe the transformation from qqq to ηηη .

To train an effective surrogate model, several ML techniques should be con-

sidered. Feature engineering refers to generate significant more features from

existing datasets [24]. For this, the ratios of voltage dividers, i.e., RN
2 /RN

1 and

RN
4 /RN

3 , and the ratio between W N and LN can be seen as critical features of the

circuits. We can therefore extend the design parameters manually with these

three ratios, i.e.,

qqq ↦→ [RN
1 ,R

N
2 ,R

N
3 ,R

N
4 ,R

N
5 ,W,L,k1,k2,k3],

where k1, k2, and k3 denote the aforementioned ratios. In addition, techniques

for automated ML [5] such as data normalization [13], data split [11], weight

decay [9], early-stopping [14], hyperparameter tuning [8], and neural architec-

ture search [4] can also be used to produce better performing surrogate models.

After employing the training techniques, a 13-layer ANN is obtained as the fi-

nal surrogate negation circuit model. The plot on the right side of Figure 3.1

visualizes the results of all three sets from a surrogate model. We can thus

conclude that, the surrogate model provides acceptable predictions from the

component values qqq to the characteristic curves ηηη and there is no overfitting on

the training data.

In conclusion, approximation-based modeling is more versatile than physics-

informed modeling methods, as it can be applied without any/fewer prior knowl-

edge about the system. In this thesis, we utilize this approach to model the

power consumption of pNCs (Chapter 5.2) and the printed spiking neuromor-

phic circuits (pSNCs) (Chapter 6.2). However, this approach requires ex-

pensive data collection (either through experimental measurements or simu-
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lations), and necessitates significant effort to train effective and generalizable

surrogate system models.

3.1.3 Constraints in Modeling

Although pNCs emulate the computational paradigm of MLPs, as hardware,

pNCs suffer more limitations than MLPs. These limitations must be consid-

ered as constraints in the design and optimization of pNCs. The constraints

are primarily categorized into two types: parametric constrains and holistic

constraints. The former relates to restrictions imposed on single parameters,

usually due to physical, technological, and electrical limitations. The latter per-

tains to performance indicators of circuit design, such as power consumption

and circuit footprint. These holistic constraints cannot be split into parametric

constraints, posing more challenging to resolve them. Thus, holistic constrains

are generally considered during training instead of during circuit modeling.

Therefore, this section primarily introduces methods for parametric constrains

that convert the constrained parameters into unconstrained ones. The solutions

for holistic constraints are introduced in Chapter 3.2.3.

A typical parametric constraint can be observed in Table 3.1, e.g., W N is

limited to a certain interval [W N
min,W

N
max]. Drawing inspiration from data nor-

malization [13], we can convert the constrained problem into an unconstrained

problem by introducing a function with a finite range of values, e.g., the sig-

moid function. Specifically, we introduce an unconstrained optimization vari-

able w ∈ R and map it through

W N =W N
min + sigmoid(w) · (W N

max−W N
min).

In this way, the range of W N is automatically limited in its feasible range.

Moreover, we can optimize w without any constraints and use the intermediate

W N as the feasible width (a geometric feature of the transistors) for further

calculation.

A more complex example is an inequality constraint between two parame-

ters, such as RN
1 > RN

2 in Table 3.1. This type of constraint can also be simpli-
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Figure 3.2: Flowchart for processing the unconstrained learnable parameters
to satisfy circuit constraints. Subsequently, the constrained param-
eters are converted to match the surrogate nonlinear circuit model.
Sourced from [23].

fied as unconstrained problem by introducing a slave variable w ∈ R through

RN
1 > RN

2 ↦→ RN
2 = k1 ·RN with k = sigmoid(w)< 1.

Figure 3.2 illustrates this process for converting a constrained optimization

problem of Table 3.1 into an unconstrained one.

Another typical constraint in pNC is the range of printable conductances,

which is defined as {0}∪ [gmin,gmax] (zero refers to not printing). Unlike the

aforementioned single interval-based constraints, the conductance is learned
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Figure 3.3: Mapping of an unconstrained surrogate conductance to the print-
able range. Sourced from [21].

through surrogate conductance θ , which encodes the printed conductance by

its absolute value, i.e., g = |θ |. Therefore, the constraint on θ is given by

θ ∈ [−gmax,−gmin]∪{0}∪ [gmin,gmax].

To respect this constraint, each learnable surrogate conductance θ is projected

to the printable range before performing the weighted-sum operation in Equa-

tion (2.10), i.e.,

θ ←

⎧⎪⎪⎨⎪⎪⎩
0, |θ |< gmin,

θ , |θ | ∈ [gmin,gmax],

sign(θ) ·gmax, |θ |> gmax,

(3.2)

as shown in Figure 3.3. Obviously, there are intervals of the projection with

zero-gradient. Once θ falls into these intervals, it can no longer be updated

by gradient-based training methods. In response, we introduce a gradient re-

laxation method to still allow gradient-based training, details are described in

Chapter 3.2.1.
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3.2 Training of Printed Neuromorphic Circuits

Upon modeling the pNCs with consideration of their constraints, a training

process is initiated to optimize the learnable parameters in pNCs. Benefiting

from the efficiency of backpropagation, gradient-based optimization emerges

as the primary strategy. Nonetheless, the presence of non-differentiable oper-

ations within circuit design and the circuit constraints, such as those seen in

Equation (3.2), can impede gradient-driven training. This thesis proposes a so-

lution by introducing the relaxed gradients as heuristics to facilitate gradient-

based training despite these hindrances. In addition, this thesis proposes an

evolutionary algorithm (EA). This algorithm skillfully encodes the pNCs and

designs their crossover and mutation processes, enabling the pNCs to evolve

over generations. The superiority of EA over the gradient methods is its ver-

satility: it does not necessitate the problems to be differentiable. Furthermore,

it can simply incorporate constraints by extinction of infeasible individuals.

Moreover, EA can even support the topological optimization of pNCs, offering

a more flexible and comprehensive optimization solution within a larger search

space.

3.2.1 Machine Learning-Based Training

Gradient-based learning with backpropagation [6] forms the backbone of train-

ing modern ANNs. The essential idea of gradient-based training through back-

propagation has been introduced in Chapter 2.2.2. However, straightforward

gradient-based optimization is unable to handle problems that encompass op-

erations which are non-differentiable, e.g., hyperparameters related to neural

architecture. Additionally, some functions do not provide useful update infor-

mation through their gradient, e.g., piece-wise constant functions described in

Equation (3.2). To still allow gradient-based training, this thesis proposes to

introduce heuristics, i.e., relaxed gradients, as surrogate gradients to tackle this

issue, such as straight through estimator (STE) [2].

As exemplified in Figure 3.4, the function produces 0 gradient in the inter-

val θ ∈ [−∞,−gmax]∪ [−gmin,gmin]∪ [gmax,∞]. Once θ falls into this interval,

θ will be no longer updated. To mitigate this issue, we introduce a relaxed
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Figure 3.4: Straight-through gradient estimator for feasible θ . The black curve
indicates the forward pass and the orange dash-dot line denotes the
backward pass for gradient estimation. Sourced from [21].

function, i.e., the orange function, as a heuristic to further enable training of θ .

Although the relaxed function does not produce gradient information that is

identical to the original function, it nonetheless offers useful and heuristic gra-

dient information that can guide the training process toward the correct direc-

tion.

This approach is extensively utilized throughout this thesis, because physical

systems frequently suffer from such limitations. Moreover, circuit design of-

ten contains discrete parameters, such as the count of devices, with Figure 3.5

depicting an example for the count a resistor. As shown in Equation (3.2), if a

conductance g falls below gmin, the component will not be printed; otherwise,

the count of this resistor will be 1. This is represented by the black function

in Figure 3.5. Notably, the gradient of this function is almost 0 everywhere,

making it impossible for providing meaningful gradient information for the

training of parameters with respect to its count. In this case, the gradient relax-

ation method can also be employed to heuristically enable the training through

gradient-based approach.
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Figure 3.5: Forward and backward pass of the count of a printed resistor, fea-
tured by its conductance g. The black curve counts the number
of g by 1 when g > gmin, otherwise 0. In backpropagation, the or-
ange function is employed to derive the gradient information for
the backpropagation. Sourced from [22].

3.2.2 Evolutionary Algorithm-Based Training

As a counterpart of gradient-based optimization process, evolutionary algo-

rithm (EA) are inspired by the natural selection and biological evolution [1].

By leveraging operations like crossover and mutation, the solutions are op-

timized incrementally during evolution. The distinct advantage of EA over

gradient-based methods lies in their versatility and adaptability, e.g., it does

not necessitate a problem to be differentiable. Thus, through strategic encod-

ing, EA allows larger search space, including parameter (weight) optimization

and topology (architecture) optimization. Although EAs are generally less ef-

ficient than gradient-based methods, especially for large scale problems, this

drawback is mitigated by the fact that PE generally targets small-scale cir-

cuits in edge scenarios. Inspired by NeuroEvolution of Augmenting Topologies

(NEAT) [17], this thesis proposes an EA, capable of both training network pa-

rameters (conductances) and searching for optimal neural architecture (circuit

topologies).

The core parts of the proposed approach for training pNCs is shown in Fig-

ure 3.6, involving genes that encode the circuit parameters and genomes that

compose of multiple structured genes to represent the structure of pNCs. They

are optimized through the crossover and mutation during their evolution.
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Figure 3.6: Overview of the EA-based training of pNCs: (a) genes that encode
nodes and edges, (b) crossover from the parent genomes to off-
springs, and (c) mutation of the topology and learnable parameters.
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Encoding. The algorithm involves two gene types, namely node genes in-

dicating neurons and edge genes denoting connections between neurons. As

shown in Figure 3.6(a-1), every node gene holds a unique, fixed, and global

index for identification. Moreover, each node gene includes an Rb and an Rd as

learnable parameters (for weights and biases) followed by an activation circuit

as shown in Figure 2.6. Note that, here the figure illustrates a ptanh circuit as

the activation circuit, however, through specific encoding, the multiple activa-

tion circuits can be optimized and selected during evolution. More details can

be found in Chapter 4.3. These learnable parameters will mutate from genera-

tion to generation. Meanwhile, there are edge genes identified by the indices of

the connected nodes, as shown in Figure 3.6(a-2), which are directional. Each

edge gene contains a learnable resistance R, indicating the crossbar resistance

for weights, and a learnable boolean parameter that indicates the state (en-

abled/disabled) for circuit connectivity (topology). Similarly, these learnable

parameters mutate during evolution.

Several node genes and their connections, i.e., edge genes, form a structured

network that represents a pNC. In this work, such a set of genes that represents

a pNC is referred to as a genome. Afterwards, a group of genomes can fur-

ther form a population. We use to denote the set of genes of all genomes

involved in a population P.

Evolution. In a population, the genomes are segregated into multiple species

based on their similarities during the evolution. Each species undergoes orig-

ination, reproduction, and sometimes extinction. Here, in reproduction, well-

performed genomes will crossover to produce offsprings and their genes will

mutate. In this way, the fitness of the genomes will be gradually optimized, un-

til a certain stop criterion is reached. The overview of this process is illustrated

in Algorithm 2.

Speciation. To protect novel genomes from immediate extinction without be-

ing evolved, the genomes within the population P are grouped into multiple

species S based on their similarity. This speciation allows each species s to de-

velop without impact from other species. Here, the similarity is determined by

both common structures (exemplified as the gray part in Figure 3.6(b) in parent
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1 and 2) and distinctive structures (exemplified as the green and orange parts

in Figure 3.6(b) in parent 1 and 2). The distance of the former is quantified by

the absolute difference in their learnable parameters, whereas the distance of

the latter is measured by the absolute value of their parameters. For boolean

variables, the distance between True and False is set to 1.

Extinction and selection. After speciation, the set of fitness F of each genome

is evaluated by the objective function O(·). Meanwhile, the average fitness

within a species is calculated to represent the fitness of each species Fs and is

summarized in the set FS for all species. If the fitness Fs of a certain species

does not show improvement over K1 generations, it will be extinct unless it

is one of the best K2 species. Subsequently, the top K genomes with respect

to their fitness in each species are chosen as parents Ps = {p1, · · · , pK} for

crossover.

Crossover. Crossover refers to producing offsprings o that randomly inherits

the genes from its parental genomes. This is a crucial process in producing

evolved offspring while preserving well-performed structures. In this work,

each offspring is produced from the crossover between two parents randomly

selected from the parent candidates Ps. For common architectures in both par-

ents (illustrated in Figure 3.6(b) as the gray part), the offspring inherits these

structures directly, and the parameters for these structures are chosen from one

of the parent based on a probability proportional to their fitness ratio. As for

the distinct structures (depicted in Figure 3.6(b) as the green and orange parts),

they are directly passed on to the offspring.

Mutation. Mutation is another primary method for introducing new circuit ar-

chitectures and serves as the essential source for circuit parameter evolution.

As shown in Figure 3.6(c), in this work, mutation is a two-stage process con-

sisting of genome-level mutation (targeting on neural architecture) and gene-

level mutation (primarily for network parameters).

At the genome-level, mutation can either add or delete an edge between two

existing nodes. Analogously, nodes can be added or deleted at an existing edge.

Importantly, to prevent the extinction of newly mutated genomes, the structural
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Algorithm 2: Evolutionary algorithm-based training
Input: D: dataset,

N: population size,
O(·): objective function,
selection(·): parents selection function,
adjust(·): species population size calculator,
K: number of candidate parents for crossover,
K1: patience for species improvement,
K2: number of protected species,
K3: patience for evolution

Init : population P← N genomes,
stop← False,
set of species S←∅,
set of species population size NS←∅,
set of genome fitness F ←∅,
set of species fitness FS←∅

while not stop do
S← speciation(P)
F ,FS←O(S,D)
NS← adjust(Fs)
for s in S do

if Fs not improved for K1 generations then
if s not the best K2 species then

s extinct
end

else
for n in {1,2, · · · ,Ns} do

p1, p2← selection(s,K)
on← crossover(p1, p2)
on←mutation(on)

end
end
s←{o1,o2, · · · ,oNs}

end
if F not improved for K3 generations then

stop← True
end

end
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changes introduced by mutation should not substantially affect the genome fit-

ness. Therefore, to maintain the unchanged circuit output (thus fitness), when

adding an edge in between two nodes, as shown in Figure 3.6(c-1), the con-

ductance of the new edge should be initialized to zero and be optimized during

evolution.

Additionally, when adding a node to an edge, the existing edge will be dis-

abled (not deleted) and the new node is introduced with two connections to

replace said edge, as shown in Figure 3.6(c-3). To preserve the output, the con-

ductance on edge (k, j) should be initialized by that of the edge (i, j), whereas

the output of the node k should be the same as that of node i, i.e.,

ptanh

(︄
g(i,k)

g(i,k)+gk
b +gk

d
V i

a +
gk

b

g(i,k)+gk
b +gk

d
Vb

)︄
=V i

a ,

with the superscript denoting the gene index. For simplicity, we always initial-

ize gb = 0 and gd = 1 for new nodes. Hence,

η
A
1 +η

A
2 · tanh

(︄(︄
g(i,k)

g(i,k)+1
V i

a −η
A
3

)︄
·ηA

4

)︄
=V i

a .

Finally, the conductance on edge (i,k) is initialized to

g(i,k) =
M

1−M
,

with

M =
1

ηA
4 V i

a
tanh−1

(︄
V i

a −ηA
1

ηA
2

)︄
+

ηA
3

V i
a
.

Note that, according to Equation (2.5), M is always real-valued. Furthermore,

the algorithm is only negligible affected even if M ≈ 1 or V i
a ≈ 0, since g will

not approach ∞ but is bounded by the range of printable conductances.

In contrast, the gene-level mutation is targeting to mutate circuit parameters

(i.e., crossbar resistances) and is realized by a perturbation of the old values.

This is implemented by adding a scaled sample from a standard normal distri-

bution to the current resistance value, as shown in Figure 3.6(c-5). Addition-

ally, the state parameter of the edge (i.e., enabled/disabled) is mutated through
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a variable drawn from the Bernoulli distribution, as shown in Figure 3.6(c-6).

Objective. The training objective, i.e., the fitness function, for classification

accuracy is designed as a combination of the classification accuracy (ACC)

and the cross-entropy (CE) loss function, which is a smooth and convex surro-

gate function for classification accuracy [10]. Although EA enables to directly

employ accuracy (i.e., the actual classification metric) as the training target,

integrating cross-entropy can offer a smoother guidance during evolution and

provides fine-grained feedback on improvements. This becomes particularly

valuable when assessing minor perturbations in resistance values in gene mu-

tations. Consequently, the combined metric for classification accuracy is

O(D, ) = CE
(︂
D,

)︂
−ACC

(︂
D,

)︂
. (3.3)

During the evolution, the algorithm will progressively increase the num-

ber of neurons and their connectivity. Over successive generational iterations,

genome fitness improves progressively. Upon reaching the stop criterion (with

which the genomes are sufficiently optimized), the associated topological struc-

tures and parameters can be mapped to the respective hardware primitives and

fabricated.

3.2.3 Constraints during Training

As mentioned in Chapter 3.1.3, apart from parametric constraints, there are

some sophisticated constraints need to be considered during training, such as

the power consumption or the circuit footprint of the pNCs. These constraints

typically cannot be simplified into simple parametric forms but are instead rep-

resented as a comprehensive functional form, i.e., ϕ(θθθ ,qqq). Here, ϕ(·) can

be either analytical expression or black-box models that acquired through e.g.

approximation-based modeling. In this work, we refer to this kind of con-

straints as holistic constraints. In addition, holistic constraints may be either

equality, i.e., ϕ(θθθ ,qqq) = C or inequality ϕ(θθθ ,qqq) ≤ C constraint, where C de-

notes the design requirement of circuit performance ϕ(θθθ ,qqq).

Holistic constraints are easy to be tackled by EA-based training, because

it can simply remove the genomes that do not fit the constraints. However,
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Algorithm 3: Augmented Lagrangian for equality constraint
Input: dataset D,

loss function L(·),
constraint c(·),
learning rate α ,
incremental step size ∆µ ,
stop-criterion,
early-stopping criterion,

Init : λ ← 0,
µ ← 0

while stop-criterion not satisfied do
while not early-stopping do

O(D,θθθ ,qqq)← L(D,θθθ ,qqq)+λ · c(θθθ ,qqq)+ µ

2 · c
2(θθθ ,qqq)

Backpropagation
θθθ ← θθθ −α ·∇θθθO
qqq← qqq−α ·∇qqqO

end
λ ← λ +µ · c(θθθ ,qqq)
µ ← µ +∆µ

end

in gradient-based training, the constraints are hard to be guaranteed, as the

training dynamic is only aware of the local gradient information. To this end,

a naive approach to handle holistic constraints would be adding the constraint

ϕ(·) as a weighted regularizer (penalty term) to the training objective, e.g.,

O(D,θθθ ,qqq) = (1−µ) ·L(D,θθθ ,qqq)+µ ·ϕ(θθθ ,qqq), (3.4)

where µ ∈ [0,1] is a balance factor that weights the loss function and the con-

straint (e.g., circuit power consumption). However, it is almost impossible to

select a suitable µ to meet the constraints with only few trials. Rather, it ne-

cessitates to tune µ for numerous times to draw a Pareto-optimal [18] trade-off

for satisfying the constraint while preserving optimal classification accuracy.

Thus, this approach is mainly used to investigate the relationships between

multiple objectives like power consumption versus classification accuracy.

To match the constraints with fewer training trials, we propose to employ

the augmented Lagrangian algorithm [12] to guarantee the holistic constraints
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during training. Different from the penalty method, augmented Lagrangian in-

troduces an additional term to emulate the Lagrange multiplier. Consequently,

it integrates the advantages of both the penalty method and the normal La-

grangian method. This integration not only guarantees the strict satisfaction of

constraints, but also possesses a robust and fast convergence. Specifically, in

augmented Lagrangian, the objective function is formulated as

O(D,θθθ ,qqq) = L(D,θθθ ,qqq)+λ · c(θθθ ,qqq)+ µ

2
· c2(θθθ ,qqq),

where λ is the Lagrangian multiplier of the constraint c(θθθ ,qqq) = ϕ(θθθ ,qqq)−C,

and µ serves as the weight of the quadratic penalty term. Unlike Equation (3.4),

it is no longer necessary to tune the value of the penalty term µ . Rather, fol-

lowing Karush–Kuhn–Tucker (KKT) condition, the optimal condition (while

satisfying the constraint) is given by

∇O(D,θθθ ,qqq) = ∇L(D,θθθ ,qqq)+(λ +µ · c(θθθ ,qqq)) ·∇c(θθθ ,qqq) = 0.

Subsequently, the Lagrangian multiplier λ should be updated through

λ ← λ +µ · c(θθθ ,qqq)

to converge to the optimal value that satisfies the KKT condition [12]. Algo-

rithm 3 describes an augmented Lagrangian for equality constraints based on

gradient optimization approach.

In practical applications, inequality constraints tend to be more of interest.

Because in circuit design, there is generally a prescribed upper bound of the

budget, e.g., maximal power consumption, rather than a fixed value that must

be reached. Therefore, following the motivation of [12], we formulate an aux-

iliary objective function

O(D,θθθ ,qqq) = max
λ≥0

{︂
L(D,θθθ ,qqq)+λ · c(θθθ ,qqq)

}︂
=

⎧⎨⎩L(D,θθθ ,qqq), if feasible,

∞, otherwise.
(3.5)

In this way, the minimizer of O(D,θθθ ,qqq) is identical to that of L(D,θθθ ,qqq) while

satisfying the inequality constraint. However, Equation (3.5) poses another
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challenge: When the constraint is not satisfied, i.e., c(θθθ ,qqq)> 0, the multiplier

λ tends to ∞, thus, the function cannot provide any gradient information to

update the parameters θθθ and qqq. To mitigate this issue, we introduced a penalty

term on λ to prevent from a very large value, namely,

O(D,θθθ ,qqq) = max
λ≥0

{︂
L(D,θθθ ,qqq)+λ · c(θθθ ,qqq)− 1

2µ
· (λ −λ

′)2
}︂
, (3.6)

where λ ′ denotes the λ value from the last update. In this way, each update

to λ is suppressed to the neighborhood of previous location, preventing from

infinity. Consequently, Equation (3.6) serves as a smoothed approximation of

Equation (3.5) and is utilized as the objective function. Fortunately, Equa-

tion (3.6) presents a quadratic optimization problem with respect to λ , which

is has an analytical solution, namely,

λ =

⎧⎨⎩0, λ
′+µ · c(θθθ ,qqq)< 0,

λ
′+µ · c(θθθ ,qqq), otherwise.

Replacing the λ value in Equation (3.6) by this analytical solution, we simplify

the objective function as

O(D,θθθ ,qqq)=L(D,θθθ ,qqq)+

⎧⎪⎨⎪⎩
− 1

2µ
· (λ ′)2, λ

′+µ · c(θθθ ,qqq)< 0,

c(θθθ ,qqq) ·
(︂

λ
′+

µ

2
c(θθθ ,qqq)

)︂
, otherwise.

Algorithm 4 describes an augmented Lagrangian for inequality constraints based

on gradient optimization approach.

3.2.4 Discussion

Gradient-based approaches surpass EA in efficiency, however, they require the

problem to be differentiable. Consequently, the efforts in gradient methods

largely lies in designing strategies to convert or approximate non-differentiable

problems into differentiable. Additionally, gradient methods have inadequate

capabilities for constrained optimization because the constraints are essen-

tially also non-differentiable (either satisfied or unsatisfied). Therefore, in
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Algorithm 4: Augmented Lagrangian for inequality constraint
Input: dataset D,

loss function L(·),
constraint c(·),
learning rate α ,
incremental step size ∆µ ,
stop-criterion,
early-stopping criterion,

Init : λ ← 0,
µ ← 0

while stop-criterion not satisfied do
while not early-stopping do

O(D,θθθ ,qqq)← L(D,θθθ ,qqq)+

⎧⎨⎩−
1

2µ
·λ 2, λ +µ · c(θθθ ,qqq)< 0,

c(θθθ ,qqq) ·
(︂

λ +
µ

2
c(θθθ ,qqq)

)︂
, otherwise.

Backpropagation
θθθ ← θθθ −α ·∇θθθO
qqq← qqq−α ·∇qqqO

end

λ ←

{︄
0, λ +µ · c(θθθ ,qqq)< 0,

λ +µ · c(θθθ ,qqq), otherwise.
µ ← µ +∆µ

end

constrained problems, it is necessary to employ additional techniques to con-

vert the constrained optimization problem into an unconstrained one, such as

penalty terms or augmented Lagrangian methods.

On the other hand, EAs are favored for their capacity to explore larger op-

timization spaces and to handle constraints during evolution. However, they

possess higher algorithmic complexity compared to the gradient counterpart.

However, the design of EA methods must consider the encodings that render

the desired parameters to be learnable during evolution. Meanwhile, mecha-

nisms need to be employed to protect novel genomes from immediate extinc-

tion without being sufficiently evolved.

Although EAs are less efficient than gradient-based training, it is still favored

in the design and optimization of pNCs, because
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1. The most time-consuming steps in EA are evaluating genomes and pro-

ducing offsprings, which are strongly related (almost proportional to)

the population size N. However, the evaluation and offspring production

in EA are highly suitable to parallelization, through which the training

can be accelerated.

2. Even though EA takes longer training time than gradient methods, the

duration remains acceptable in the broader context of the product de-

velopment cycle. This is not only because circuit optimization is only

part of the non-recurring engineering (NRE), but also due to the target

applications of PE that often require only small-scale circuits.

In summary, both gradient-based and EA-based training methodologies of-

fer unique advantages. Based on specific characteristics of different train-

ing objectives, this dissertation will employ appropriate methods to train the

pNCs. For instance, when we incorporate circuit aging into the training ob-

jective (Chapter 4.1), an additional temporal dimension is introduced, which

can significantly increase the training complexity. As a result, we choose the

gradient-based method for circuit training to guarantee the training efficiency.

Meanwhile, as we focus on optimizing circuit compactness (Chapter 5.3), EA

method is employed because of its superior capability in searching circuit ar-

chitecture.
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4 Reliability Design

The additive manufacturing process of printed electronics (PE) offers signifi-

cant advantages, including exceptional fabrication flexibility, abundant choices

of functional inks, and extremely low production costs. However, this maskless

approach also presents drawbacks in comparison to subtractive manufacturing,

such as the reduced printing precision and large feature sizes [8, 22, 49]. The

former will directly influence the geometric features of the printed devices,

whereas the latter hinders the packaging of the circuits, which leads to aging

problem of circuit components. Unfortunately, as pNCs employ analog com-

puting scheme, these circuits are more susceptible to those variations compared

to digital circuits. In this regard, the design of pNCs have to take circuit ro-

bustness into account. This work emphasizes the importance of algorithmic

level solutions through its ability to substantially enhance the reliability and

robustness of pNCs. Note that, this purely algorithmic level optimization is

independent of the improvements in printing techniques [25] or materials [44],

allowing for enhanced circuit reliability even if the influences could not be

controlled or reduced from those standpoints.

4.1 Robustness against Device Aging

Due to environmental influences, e.g., thermal stress in the field, the thin-film

printed devices exhibit run-time degradation through usage, i.e., aging) [5, 17,

27]. Compared to inorganic materials, the properties of organic materials make

them susceptible to environmental influences such as water, oxygen or photon

irradiation, resulting in poor stability and repeatability of organic electronic

devices under normal operating conditions [8]. Consequently, accounting for

the aging of organic materials is essential in the design of pNCs to enhance

circuit robustness. Given that resistors containing PEDOT:PSS are the primary
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Figure 4.1: The conductance values of six printed PEDOT:PSS resistors mea-
sured over 37 days. Sourced from [51].

organic elements in the pNCs discussed in this study, our attention is centered

on the aging of printed resistors.

4.1.1 Modeling of Resistor Aging

To study the aging of printed resistors, six printed PEDOT:PSS resistors were

fabricated, and their conductances were measured over 37 days. Five of them

have different initial conductances, while two of them have the same initial

conductance. Their conductance values over time are displayed in Figure 4.1.

We first process the measurement data by normalizing the time to an inter-

val of [0,1]. Furthermore, we divided the measured conductance values by the

initial value g0 = g(0) to assess the relative conductance degradation, see Fig-

ure 4.2. Similar to the aging behaviors of ITO resistors described in [18], all

resistors display the aging behavior in the two regions: First, a relatively fast

degradation followed by a more gradual phase. Hence, we model a multiplica-

tive change of the initial conductance, i.e.,

g(t) = g0 ·Aωωω (t), (4.1)

and refer to the function Aωωω (t) as the aging curve parameterized by the vec-

tor ωωω . Several functional forms can describe Aωωω (t) such as a double linear

model suggested in [43] or an exponential behavior which we employ in this

64



ag
in
g
cu
rv
es
J
4(
L)

normalized device life time (L)
Figure 4.2: Curves from the aging model with sampled ωωω ∼ pω (ωωω). The dots

denote conductance measurements of printed resistors normalized
by their initial conductance g0. Sourced from [51].

work. We thus choose the following functional form

Aωωω (t) = ω1 · e−ω2·t−ω1 +1,

with the fitting coefficients ωωω = [ω1,ω2]
⊤. Note that Aωωω (0) = 1, such that

g(0) = g0 at t = 0.

Variational aging model. Since different resistors, even with the same ini-
tial conductance, display different aging behaviors over time, a variational

model of the aging behaviors is required. For this purpose, we model the distri-

butions of the fitting coefficients pω (ωωω). To ensure a plausible functional form

(i.e., monotonically decreasing) with respect to the observed behavior, ω1 and

ω2 need to be positive. This can be achieved by modeling their distribution

(either jointly or independently) using log-normal distributions. In Figure 4.2,

we visualized some generated aging curves by drawing samples ωωω ∼ pω (ωωω).

Note that also other distributions for positive random variables (e.g., gamma

distribution) could be used, depending on the quality of the fit.

In the context of pNCs, the resistor crossbar is significantly impacted by

the aging of the printed resistors. Consequently, we further investigate the

influence of resistor aging on the outcomes of crossbar. As described in Equa-

tion (2.4), the weights w embodied by resistor crossbars are determined by the
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Figure 4.3: Exemplary aging trajectories of the weights with aging conduc-
tances. Sourced from [52].

ratios of the conductances g. Thus, non-proportional changes in conductance

result in deviations of the weights from their initial values. Figure 4.3 depicts

multiple trajectories of weight changes due to aging in a two-dimensional sce-

nario. Since the aging behavior is stochastic, the aging trajectory of the weights

are also stochastic. To consider the aging effects of weights into the design

process of pNCs and thus achieve robust circuits, we subsequently proposed

an aging-aware training approach.

4.1.2 Aging-Aware Training

As introduced in Chapter 2.2.2, the training objective of pNCs without con-

sidering aging is generally defined as the cross-entropy loss to improve the

classification accuracy, denoted by

minimize
θθθ ,qqq

L(D,θθθ ,qqq) .

We refer to the trainings of pNCs with this objective as the nominal training.

However, as mentioned before, this formulation only optimizes for the (surro-

gate) conductance values immediately after fabrication, i.e., θθθ 0. To account

for the changes of the (surrogate) conductances over time, the whole trajectory

of θθθ(t) over the lifetime has to be considered. To achieve this, we integrate the

stochastic aging behaviors into the loss function over the lifetime, leading to
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the aging-aware training objective

minimize
θθθ(t)

∫︂ 1

t=0
L(D,θθθ(t),qqq)dt,

where θθθ(t) = θθθ 0 ⊙Aωωω (t) represents the element-wise product of surrogate

conductances θθθ 0 with their aging curves Aωωω (t) = [Aωωω1(t), Aωωω2(t), · · · ]⊤.

Here, ωωω1,ωωω2, · · · are sampled values from pω (ωωω). Then, for the sampled ωωω ,

the aging-aware training objective is given by

minimize
θθθ 0

∫︂ 1

t=0
L(D,θθθ 0⊙Aωωω (t),qqq)dt. (4.2)

To additionally account for the variations in the aging curves due to pω (ωωω),

we also have to minimize for the expected loss with respect to pω (ωωω), i.e.,

minimize
θθθ 0

Epω (ωωω)

{︃∫︂ 1

t=0
L(D,θθθ 0⊙Aωωω (t),qqq)dt

}︃
. (4.3)

In the following, we refer to aging-aware training when using this training

objective. To apply gradient-based optimization for this objective requires the

calculation of Equation (4.3). For this, we first reformulate the gradient of

Equation (4.3) using the definition of the expected value and Leibniz rule [16]:

∇θθθ 0

∫︂
ωωω

∫︂ 1

t=0
L{D,θθθ 0⊙Aωωω (t),qqq}dt pω (ωωω)dωωω

=
∫︂

ωωω

∫︂ 1

t=0
∇θθθ 0

(︁
L{D,θθθ 0⊙Aωωω (t),qqq} pω (ωωω)

)︁
dt dωωω.

Due to the independence of θθθ 0 and pω (ωωω), we can simplify the expression to

∫︂
ωωω

∫︂ 1

t=0
∇θθθ 0L(D,θθθ 0⊙Aωωω (t),qqq) dt pω (ωωω)dωωω

=
∫︂

ωωω

∫︂ 1

t=0
∇θθθ 0L(D,θθθ 0⊙Aωωω (t),qqq) dt pω (ωωω)dωωω

=Epω (ωωω)

{︃∫︂ 1

t=0
∇θθθ 0L(D,θθθ 0⊙Aωωω (t),qqq) dt

}︃
.

Unfortunately, the integration of the loss function L(·) cannot be calculated in

closed form, and thus the gradient can not be back propagated from the loss
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function to learnable parameters. According to the law of large numbers [10],

the expected value of a function can be estimated by the average of the results

obtained from multiple samples. Thus, we aim to employ MC estimation for

the integration. We first express the integral over t as an expected value with re-

spect to a uniform distribution t ∼U [0,1] with p(t) = 1, then, we can formulate

Equation (4.3) as

Epω (ωωω)

{︃∫︂ 1

t=0
∇θθθ 0L(D,θθθ 0⊙Aωωω (t),qqq) p(t)dt

}︃
which can be seen as

Epω (ωωω)

{︃
Ept (t)

{︂
∇θθθ 0L(θθθ 0,ωωω, t)

}︂}︃
.

We then draw multiple samples ωωω ∼ pω (ωωω) and t ∼ pt(t) using MC to estimate

Equation (4.3) through

1
Nωωω

1
Nt ∑

ωωω ′
∑
t ′

∇θθθ 0L(θθθ 0,ωωω
′, t ′) with

t ′ ∼ U [0,1],

ωωω
′ ∼ pω (ωωω),

where Nωωω is the number of samples ωωω ′ drawn from p(ωωω) and Nt is the number

of samples t ′ drawn from U [0,1] to approximate the integral over t.

Figure 4.4 visualizes the idea of aging-aware training. It shows an exemplary

aging trajectory of weight www(t) corresponding to the printed resistors in time t.

We can see from the right side that, compared to the blue curve from nominal

training, the red curve from aging-aware training tries to locate the whole curve

within a lower loss area, even though it may have a higher initial loss.

4.1.3 Experiment

To evaluate the effectiveness of the aging-aware training of pNCs, we imple-

mented the proposed training approach with PyTorch [35]. As the functionality

of the printed neuromorphic hardware has been validated in [42, 49] and the

contribution of this work is primarily at algorithmic level, the experiment is

conducted at simulation level based on the pPDKs [37].
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Figure 4.4: Exemplary aging trajectory of given weight www(t) (left) and the op-

tima of different objective functions (right). The red dots indicate
the initial (non-aged) weights and the arrows represent the change
in weights due to aging. The background contour in the right figure
exemplifies a loss function L(·), where red and blue denote regions
of higher and lower loss, respectively. The blue curve is the result
of nominal training, while the red curve is the result of aging-aware
training. Sourced from [51].

Datasets. We conduct experiments on the 13 benchmark datasets, which are

recommended by related surveys [15, 38]. They are also employed in other

SOTA studies on pNCs [19, 49] and aligned with the complexity of the appli-

cation domains of PE. Specifically, datasets with a modest number of inputs

and outputs (generally fewer than ten) are more appropriate, due to the large

feature size and low integration density of PE. The detailed information of the

datasets are listed in Table 4.1. Additionally, we normalized the inputs to [0,1]

to simulate the electrical signals from sensors. Then, we split each dataset into

training (60%), validation (20%), and test (20%) sets.

Experiment setup. We use a consistent topology (#input-3-#out put) for all

pNCs on each dataset. In addition, we selected Nω = NT = 50 samples for

Monte-Carlo integration. During training, we employ full-batch training with

the Adam [23] optimizer (in default parameterization) to update parameters in

pNCs. To prevent overfitting, we calculated the loss on validation set for early-

stopping [36] after each parameter update. We start with an initial learning
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rate of 0.1 and halve it after a patience (updates without improvement) of 100-

epochs on the validation set. Additionally, the training process is stopped,

when the learning rate decreases below 10−4.

Regarding the nonlinear circuits, we employ the shared qqqN and shared qqqA

across an entire pNC, rather than allowing each neuron to have independent qqqN

and qqqA. Although the latter strategy offers larger search space for optimization,

it empirically yields worse results [46, 53].

Note that, more details about the implementation can be found in the GitHub

repository1. Moreover, this experimental setup will be the default setup for all

experiments included in this thesis. The description of experiment setups in

following sections will only emphasize the differences to this setup.

Baseline. As the baseline, we report the performance of random guess, i.e.,

to always predict the most frequent class from the combined training and vali-

dation set. Hence, if the pNC gets worse than this baseline, there is no benefit

to considering the output of the pNC anymore.

Result. After training, we choose pNCs based on the best validation loss, as

it would be the one selected for fabrication. We evaluate the results of the test

set. The pNCs are not only evaluated within the normalized time interval [0,1]

(training interval of 37 days), but also extended to [0,10], which represents an

extrapolation to approximately one year. As evaluation metrics, we report the

mean and standard deviation of the classification accuracy with respect to the

stochastic aging behaviors. It can be seen from Figure 4.5, nominal training

produces pNCs that may perform better at t = 0, while aging-aware training

has a higher expectation of accuracy throughout the lifetime, and it is more

robust against the expected aging behaviors based on our aging model. More-

over, since the conductance decay exponentially over time, only slight changes

in the conductances in the interval [1,10] can be observed. To summarize the

overall improvement, we average the accuracy cross all datasets and calculate

the improvement of averaged aging-aware training (relative to nominal train-

ing) across all datasets. The result reflects an overall 35.8% improvement in

the expected accuracy of aging-aware training over nominal training.
1https://github.com/Neuromophic/Aging-aware-training.
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Figure 4.5: Classification accuracy of pNCs from nominal and aging-aware
training on test set. The red lines and areas represent the accu-
racy and standard deviation of aging-aware training, while the blues
represent that of nominal training. The horizontal black dot lines
indicate the random guess. Charts without black dot line mean that
the accuracy of random guesses are lower than the range of charts.
The gray vertical lines separate the extrapolation region from the
training region in terms of time. Sourced from [51].
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Notably, for some datasets, the results of aging-aware training exceed those

of nominal training even at t0, e.g., on Cardiotocography, Energy Efficiency

(y2), Pendigits, and Vertebral Column. This is possibly due to favorable opti-

mization dynamics through sampling. For example, since aging-aware training

samples and calculates gradients for several sets of parameters in the vicinity

of the current solution, it may have an easier time escaping local minima.

4.1.4 Discussion

Due to the vulnerability of organic materials to environmental factors, enhanc-

ing the robustness of pNCs against device aging, particularly resistor aging

within crossbars, is critical. To this end, we experimentally measured the ag-

ing characteristics of PEDOT:PSS and developed a stochastic aging model for

printed PEDOT:PSS resistors. Subsequently, we proposed a framework ca-

pable of considering resistor aging into the training framework of pNCs and

demonstrated its efficacy through experiments. The training framework is in-

dependent of the specific choice of the functional form of the aging behaviors

described in Chapter 4.1.1. Thus, one can easily modify the functional form

Aωωω (t) without any changing the aging-aware training. Apart from algorith-

mic level optimization, another aspect for mitigating aging effect is to develop

effective and low cost encapsulation and packaging technologies for PE.

4.2 Highly Dependable Circuit Design

In addition to aging, pNCs also subject to other influence factors, which can

also substantially impact the functionality of pNCs: Firstly, input variations

caused by uncertainty in the sensing process [14] may cause faulty process-

ing. Secondly, variations in the printing process due to non-uniformly printed

material (device geometry) as well as variations in ink compositions and sub-

strates can perturb the fabricated component values from the design ones [22].

Therefore, to ensure the highly reliable functioning of pNCs, it is essential to

include all these factors during into training. Consequently, this section intro-

duces a dependability-aware training to improve the circuit reliability. Finally,

an ablation study is conducted to analyze the mechanisms of factors affecting
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the pNCs and their joint effect.

4.2.1 Modeling of Impact Factors

Sensing uncertainty. Measurement uncertainty is a quantitative assessment

that provides an estimate of the potential range of the true value of a physical

quantity with a specific level of confidence [11]. The uncertainty arises due

to various processes during the measurement, including the intrinsic error of

the measuring instrument, the coupling between the measuring instrument and

the system being measured, changes in measurement conditions, and the im-

perfections in the calibration procedure. Therefore, it is imperative to respect

the measurement uncertainty during the design of a robust and reliable printed

neuromorphic circuit. Moreover, since the pNC works directly with sensors in

analog domain instead of digital, it is more sensitive to sensing uncertainties.

As measurement uncertainty is the cumulative outcome of various stochas-

tic processes mentioned above, it is often modeled by a Gaussian distribution

in the signal processing community, in accordance with the central limit theo-

rem [31] and the principle of maximum entropy [21]. In this work, we model

the noisy input signals by a Gaussian distribution centered around the original

input X with standard deviation being σ . Formally, this is expressed as

Xnoisy ∼N (X,σ).

Here, σ can also be explained as the uncertainty of the measurement. Essen-

tially, this is an approach of data augmentation [48].

Printing variation. In the manufacturing of PE, the desired component val-

ues, like conductances, can generally not be printed exactly. This variation

primarily arises from the constrained print resolution, which stems from the

physical properties of the functional inks and limitations of the printing tech-

nology. The printing resolution is principally determined by, e.g., the volume

of the smallest printable volume of the droplets [32]. Consequently, by as-

suming that, the printing variation is determined by the geometric variation of

the printing shape which varies within one printing pixel, the printing varia-

tion is often modeled as a uniformly distributed stochastic variable within the
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minimum resolution, i.e.,

θθθ
PV ∼ U [(1− e)θθθ ideal,(1+ e)θθθ ideal],

qqqPV ∼ U [(1− e)qqqideal, (1+ e)qqqideal ].

Here, the value for e is selected based on the specific printing technology to

accommodate printing variations. However, this modeling does not support

gradient-based training approach, because to consider the expected loss with

respect to the stochastic parameters θθθ
PV and qqqPV, the loss function will in-

tegrate the parameters θθθ
PV and qqqPV out. Specifically, the expression of the

expected loss is given by∫︂
θθθ

PV

∫︂
qqqPV

L(θθθ PV,qqqPV,D)p(θθθ PV)p(qqqPV)dθθθ
PV dqqqPV,

where the parameters θθθ
PV and qqqPV "integrated out" from the equation after

the integration over them, and thus hinders the backpropagation. To facilitate

the training process for the learnable parameter θθθ
ideal, we utilized the repa-

rameterization trick [24], i.e., we introduce stochastic variables εεεθθθ and εεεqqq to

independently parameterize and extract θθθ
ideal and qqqideal by

θθθ
PV = εεεθθθ ⊙θθθ

ideal and qqqPV = εεεqqq⊙qqqideal,

where θθθ
PV models the manufactured conductance with printing variation and εεε

is a stochastic variable denoting the printing variation with each element in εεε

following a uniform distribution U [1− e,1+ e].

The impact of printing variation on weights within the resistor crossbar is

rather intuitive: as the conductances deviate from ideal values, their corre-

sponding weights will also deviate. However, its impact on nonlinear circuits

is intricate. We visualize the impact of the variation in nonlinear circuits in Fig-

ure 4.6. The left and right figures exemplify some varied characteristic curves

of ptanh circuit and printed negation circuit under e = 10% variation. It can

be seen, the printing variation perturbs the nonlinear functions from the desig-

nated ones, which justifies the consideration of printing variations in the non-

linear circuit primitives.
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(a) Printed tanh-like circuit with variation
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Figure 4.6: Printing variation perturbs the characteristic curves of nonlinear
circuits from the ideal ones: (a) exemplary characteristic curves of
ptanh circuit with 10% printing variation, (b) exemplary character-
istic curves of printed negation circuit with 10% printing variation.
Sourced from [52].

4.2.2 Dependability-Aware Training

To include the aforementioned influence into the design of dependable pNCs,

we propose a framework that is capable of incorporating all relevant factors

into the training of pNCs, as illustrated in Figure 4.7.

For each resistor crossbar, the learnable surrogate conductance θθθ
ideal is pro-

cessed by a straight-through estimator to maintain its printability. Once con-

verted to a printable value, the stochastic variable εεε is element-wise multiplied

to simulate printing variations for each conductance. θθθ
PV summarizes all the

corresponding surrogate conductances suffering from printing variation. Sub-

sequently, the aging decay Aωωω (t) is multiplied to reflect the aging behaviors

of conductances already affected by printing variations, denoted by θθθ
aged. Fi-

nally, the resulting conductances are transformed to the corresponding weights

in the weighted-sum operation.

Regarding the nonlinear circuits, we do not consider their parameters learn-

able qqqideal but rather fixed to certain design values. Details on how these pa-

rameters can be learned can be referred to Chapter 3.1. Nevertheless, we still

account for their printing variations and aging behaviors during training. The

nonlinear circuits comprise two types of components, namely resistors, charac-
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terized by their conductances, and transistors, characterized by their geometric

features. We consider both printing variations and aging effects for the printed

resistors, but for the transistors, we only consider printing variation on W and

L, as aging behavior of inorganic materials not as significant as organic ma-

terials. After the aged parameters for the nonlinear circuits, i.e., (qqqA)aged and

(qqqN)aged, have been calculated, they can be mapped to the auxiliary parame-

ters (ηηηA)aged as well as (ηηηN)aged via differentiable surrogate nonlinear circuit

models. These auxiliary parameters can then be utilized to construct nega-

tion functions and ptanhs functions, which will be integrated into pNCs for

weighted-sum and activation functions, respectively.

With consideration of the stochasticity in the data flow, the value of the

loss function L(Dnoisy,(θθθ)aged,(qqq)aged) is no longer a deterministic value, but

rather a stochastic distribution with respect to Xnoisy, εεεθθθ , εεεqqq, and ωωω . The loss

can be explicitly denoted as

L(Xnoisy,Y,θθθ ,qqq,εεεθθθ ,εεεqqq,ωωω, t).

In general, gradient-based numerical optimizers require the loss to be expressed

as a deterministic scalar value instead of a function or distribution. To solve

this problem, we adopt the expectation to assess the value of the loss and obtain

the dependability-aware training objective function:

L(θθθ ,qqq) = EXnoisy

{︃
Eεεεqqq

{︃
Eεεεθθθ

{︃
Eωωω

{︃∫︂ 1

0
L(Xnoisy,Y,θθθ ,qqq,εεεθθθ ,εεεqqq,ωωω, t)dt

}︃}︃}︃}︃
.

For simplify, the lifetime was normalized to t ∈ [0,1]. Additionally, the inte-

gral over the lifetime can be expressed as a mathematically equivalent expected

value with respect to a uniform distribution pt(t) = U [0,1], and the stochastic

input Xnoisy can be reparameterized as the multiplication of the original X with

a stochastic variable ννν , with ννν ∼N (1,σ). With this approach, all variables can

be consistently treated as the expectation of the perspective variables. Conse-

quently, ννν , εεεθθθ , εεεqqq, ωωω , and t can be summarized by one stochastic variable

γγγ := [ννν ,εεεθθθ ,εεεqqq,ωωω, t]
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with density

pγ (γγγ) = pν (ννν) · pε (εεεθθθ ) · pε (εεεqqq) · pω (ωωω) · pt(t).

Thus, the final objective function of the dependability-aware training can be

written as

L(D,θθθ ,qqq) =
∫︂

γγγ

L(D,θθθ ,qqq,γγγ)pγ (γγγ)dγγγ. (4.4)

Unfortunately, due to the complexity of L(·), usually no analytical solution

for Equation (4.4) can be found. We thus employ MC method to obtain an

approximation of Equation (4.4), namely,

Eγγγ{L(D,θθθ ,qqq,γγγ)}=
∫︂

γγγ

L(D,θθθ ,qqq,γγγ)pγ (γγγ)dγγγ

≈ 1
Nγ

∑
γγγ ′′′

L(D,θθθ ,qqq,γγγ ′),
(4.5)

where γγγ ′ = [ννν ′,εεε ′
θθθ
,εεε ′qqq,ωωω

′, t ′] describes a set of Nγ samples drawn from the

distribution pγ (γγγ). With this approach, each time the loss need to be computed,

Equation (4.5) can be employed to obtain an estimate by drawing Nγ samples

from pγ (γγγ). Similar to the objective, also gradients for Equation (4.4) can be

obtained via MC gradient estimation via

∇θθθL(D,θθθ ,qqq)≈ 1
Nγγγ

∑
γ ′

∇θθθ L(D,θθθ ,qqq,γγγ ′).

These estimated gradients can then be used by common gradient-based opti-

mization algorithms such as SGD [6] or Adam [23].

4.2.3 Experiment

To evaluate the effectiveness of the dependability-aware training of pNCs, we

implemented the proposed training approach with PyTorch [35] and conduct

experiments on the 13 benchmark datasets as described in Chapter 4.1.3.

Experiment setup. We choose e = 10% to reflect the printing variation, as

typical printing resolutions range from 20µm to 100µm [22], whereas the
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Table 4.3: Independent effects of aging (AG), printing variation (PV), and sens-
ing uncertainty (SU) in the dependability-aware training. Sourced
from [52].

Awareness
Averaged

experiments
Averaged
accuracy

Improvement

(mean)
Accuracy

Robustness
(std)

AG-aware Exp. 5, 6, 7, 8 0.811±0.046
13.03% 61.58%

AG-unaware Exp. 1, 2, 3, 4 0.718±0.120

PV-aware Exp. 3, 4, 7, 8 0.794±0.071
7.99% 26.46%

PV-unaware Exp. 1, 2, 5, 6 0.735±0.096

SU-aware Exp. 2, 4, 6, 8 0.779±0.077
3.89% 13.26%

SU-unaware Exp. 1, 3, 5, 7 0.750±0.089

component feature sizes in printed neuromorphic circuits are on the order of

1mm [49]. Therefore, ±10% can be seen as a reasonable estimate. Moreover,

we take σ = 0.1 for ννν to simulate sensing uncertainty of the inputs X. Other

training configurations are also the same by default as in Chapter 4.1.3.

Ablation study. In this work, multiple factors that could potentially impact the

results are considered. To investigate the effects of these factors independently

and jointly, we conduct an ablation study. Specifically, we conducted exper-

iments on all possible combinations of the three factors (8 combinations in

total) to assess their combinatorial effects. To facilitate the identification of in-

dividual experiments, they are numbered from Exp. 1 to Exp. 8. Furthermore,

the terms "aging behavior", "printing variation", and "sensing uncertainty" are

abbreviated to "AG", "PV", and "SU", respectively (see Table 4.2 for details).

The abbreviation with an additional over line indicates that, the experiment is

unaware of the corresponding factor, e.g., AG refers to aging-unaware training.

Hence, the specific pNCs are only trained with consideration of the specific

factors, while for testing, all effects, i.e., aging, printing variation, and sensing

uncertainty are included.
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Result. After training, we choose pNCs based on the best validation loss, as

it would be the one selected for fabrication. We evaluate the resulted pNCs on

the test set base on Nγ = 5000 samples.

In this work, dependability is conceptualized to reflect two aspects of the

performance of the pNCs, i.e., accuracy and robustness against stochastic

variations. Here, the accuracy and robustness are indicated by the mean ac-
curacy and the standard deviation of accuracy with respect to the stochastic

variable γγγ . Thus, the metrics are calculated on each dataset and reported in

Table 4.3. As a summary, the averaged values of all the dataset for each exper-

iment are also reported.

Through the comparison of Exp. 8 and Exp. 1, we conclude that, with con-

sideration of all three factors in the training process, a substantial 27% im-

provement in accuracy and a 74% improvement in robustness.

Independent analysis. To analyze the impact of a certain factor independently

of other factors, we divided the eight experiments into two groups (e.g., ex-

periments with, and without AG-aware training) and average the performance

respectively. Table 4.3 summarizes the analysis of each factor.

It is evident from Table 4.3, that AG-aware training provides the most sig-

nificant improvement in both accuracy and robustness, namely 13.03% and

61.58%. This is followed by PV-aware training, which achieves an improve-

ment of 7.99% in average accuracy and 26.46% in robustness. Lastly, the SU-

aware training approach delivers the lowest accuracy improvement of 3.89%

and lowest robustness improvement of 13.26%.

Based on the given comparison, we conclude that the three stochastic fac-

tors exhibit different degrees of influence on the pNCs: As aging and print-

ing variation lead to changes in every conductance (thus weight) of the pNCs,

whereas sensing uncertainty only explicitly affects the first weighted-sum oper-

ation (multiplicatively), which results in the weaker impact on the performance

of the pNCs. On the other hand, for the comparison of aging and printing

variation, we hypothesize that aging has a more substantial impact on the con-

ductance than printing variation (based on the input noise, variations, and aging

behavior assumed in this experiment). Consequently, AG-aware training yields

greater improvements compared to PV-aware training.
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Joint analysis. Despite the independent analysis of the impact of each fac-

tor on pNCs, their actual effects are not entirely independent of each other.

To assess their relationships, we conduct an ablation study to evaluate the im-

provement provided by each factor in different settings (see Figure 4.8).

Figure 4.8(a) demonstrates that AG-aware training can substantially improve

the accuracy of pNCs from nominal training (unaware of neither aging nor

printing variation nor sensing uncertainty). The same is true when only SU-

aware training is used. Conversely, it offers less improvement for pNCs that

have already trained with consideration of printing variations. We hypothe-

size that printing variation and aging effect may have similar effects in train-

ing pNCs, which renders the additional improvement of AG-aware training

over PV-aware training insignificant. This hypothesis is also supported by Fig-

ure 4.8(b).

In Figure 4.8(b), it can be seen that PV-aware training can significantly in-

crease the accuracy of pNCs from standard training and SU-aware training.

However, PV-aware training offers only less improvement when AG-aware

training is already employed. This suggests that the aging effects not only

have a similar influence as printing variation, namely perturbing the resulting

weights, but also exert a stronger impact than printing variation. Therefore, ad-

ditional PV-aware training has little benefit when AG-aware training is already

utilized. In contrast to PV- and AG-aware training, SU-aware training offers

around 2% - 3% improvement in all cases, as shown in Figure 4.8(c). This

indicates that the impact of sensing uncertainty may be orthogonal to that of

printing variation or aging.

Regarding robustness, similar effects are observed. From Figure 4.8, it is

evident that both AG- and PV-aware training can substantially enhance the

robustness of pNCs. However, as they might have similar mechanisms of in-

fluence on pNCs, their combined effect exhibits some overlapping. Moreover,

since the impact of aging is more significant than that of printing variation, the

additional PV-aware training in conjunction with AG-aware training does not

bring significant benefits. Orthogonal to them, SU-aware training consistently

provides stable improvement in robustness.
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4.2.4 Discussion

In this section, we perform experiments to confirm the effectiveness of the

dependability-aware training of pNCs. Our results demonstrate that the pro-

posed method can enhance the accuracy and robustness of pNCs by 27% and

74%, respectively. Among all effects considered in training, AG-aware train-

ing yields the most significant improvement. While PV-aware training also

contributes significantly, our ablation study reveals that printing variation and

aging effect may have similar potential mechanisms on the pNCs, suggesting

that the contribution of AG-aware training may partly cover that of PV-aware

training.

Notably, SU-aware training consistently delivers improvement in accuracy

and robustness across all experiments. This suggests that, sensing uncertainty

might have a distinct mode of effect on pNCs compared to the other two fac-

tors. Even though the improvement from SU-aware training is slightly lower

than that from PV- and AG-aware trainings, it is possibly due to the choice of

σ value. We suspect that, the effect of SU-aware training may change with

different σ values. Nevertheless, due to the possibly orthogonal effects to the

other two factors, it is meaningful to consider sensing uncertainty to improve

the dependability of pNCs.

Although the dependability-aware training is conducted at fully algorithmic

level, the outcomes from the ablation study may also indicate the impact of var-

ious factors on network performance, and thus, guide the development of the

hardware technologies. For instance, aging-aware training demonstrates a sub-

stantial enhancement in network performance, implying that, the aging process

may exert a more pronounced effect on circuits. Consequently, in fabrication,

it is suggestible to prioritize the efforts both in the materials as well as in the

process to reduce the impact of aging, including the adoption of passivation

techniques or superior materials that display lower aging variation.

4.3 Architecture Search for Reliability Design

The previous section offered a comprehensive consideration and analysis of the

primary factors influencing the reliability of pNCs. Nevertheless, its optimiza-
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tion remains limited to the parameter space of continuous and differentiable

conductance values and EGT geometrics. In this section, we will bring the

optimization of pNCs to a higher level by leveraging the capability of the EA

method for discrete variables [34]. This approach enables not only to inves-

tigate the circuit architecture, which is also referred to as neural architecture

search (NAS), but also to automatically and optimally select the activation cir-

cuits for each printed neuron, thereby achieving higher robustness of the pNCs.

4.3.1 Design of Printed Activation Circuits

Different nonlinear circuit designs often correspond to different transfer char-

acteristic curves. Additionally, these schemes exhibit varying levels of robust-

ness against variations in circuit components. To investigate the impact of

different activation circuits on classification accuracy and robustness, this work

designs and models multiple nonlinear circuits that emulate classical activation

functions in ANNs. Figure 4.9 and Figure 4.10 shows the circuit schematics

and the transfer characteristic curves of the proposed circuit.

Printed sigmoid circuit. The design of printed sigmoid (pSigmoid) circuit

can is shown in Figure 4.9(b) and can be modeled by a modified sigmoid func-

tion [39], i.e.,

Va = η
S
1 +η

S
2 · sigmoid

(︂(︂
Vz−η

S
3

)︂
·ηS

4

)︂
,

where sigmoid(·) function is defined by

sigmoid(x) =
1

1+ e−x .

Here, similar to Equation (2.5), ηηηS = [ηS
1 ,η

S
2 ,η

S
3 ,η

S
4 ] is the auxiliary param-

eter determined by the physical quantities qqqS = [RS
1 ,R

S
2 ,R

S
3 ,W

S
1 ,L

S
1 ,W

S
2 ,L

S
2 ] in

the circuit.

Printed clipped ReLU circuit. Printed clipped ReLU (pCReLU) circuit, as

shown in Figure 4.9(c), emulates the clipped ReLU function. Different from

ReLU function, clipped ReLU function, also called hard sigmoid, does not
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Figure 4.9: Proposed nonlinear activation circuits. The functional forms, in-
cluding (a) tanh function, (b) sigmoid function, (c) clipped ReLU
function, and (d) ReLU function. Sourced from [34].

increase proportionally with increasing input, but rather truncated by a certain

value when the input is sufficiently large. The functional form of its transfer

characteristic curve is illustrated in Figure 4.10. The mathematical model of

this circuit is modeled as

Va =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η

CR
1 , Vz < η

CR
3 ,

η
CR
2 , Vz > η

CR
4 ,

ηCR
2 −ηCR

1
ηCR

4 −ηCR
3

Vz +
ηCR

1 ηCR
4 −ηCR

2 ηCR
3

ηCR
4 −ηCR

3
, otherwise,

where ηηηCR = [ηCR
1 ,ηCR

2 ,ηCR
3 ,ηCR

4 ] are auxiliary parameters determined by

the physical quantities qqqCR = [RCR
1 ,W CR

1 ,LCR
1 ].

Printed ReLU circuit. The design of printed ReLU (pReLU) circuit is shown

in Figure 4.9(d). As the transfer characteristic curve has not only a slope in the

negative half but also a smooth transition at Vz = 0 (see Figure 4.10), neither

the ideal ReLU function, nor its variation, e.g., LeakyReLU [50] function nor

the softplus [26] function, is sufficient to precisely describe the printed ReLU

circuit. Thus, we combine a softplus function to provide the smoothness at

Vz = 0 and a constant linear function to provide the slope at negative half.
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printed ReLU circuit with different qqqR. Sourced from [34].

Consequently, the function that describes printed ReLU circuit is designed as

Va = η
R
1 · (x−η

R
3 )+η

R
2 · softplus(Vz−η

R
3 ,η

R
5 )+η

R
4 ,

where the softplus(·, ·) function is expressed by

softplus(x,k) =
1
k
· log(1+ ek·x).

Likewise, ηηηR = [ηR
1 ,η

R
2 ,η

R
3 ,η

R
4 ,η

R
5 ] are auxiliary parameters determined by

the physical quantities qqqR = [RR
1 ,R

R
2 ,R

R
3 ,R

R
4 ,W

R
1 ,LR

1 ].

Table 4.4 reports the empirical feasible design spaces of the proposed printed

activation circuits. Out of these spaces, the transfer characteristics of the cir-

cuits do not emulate the corresponding functional forms.
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Table 4.4: Feasible design space of different activation circuits. Sourced
from [34].

Circuit Range
R1 R2 R3 R4 W1 L1 W2 L2

(kΩ) (kΩ) (kΩ) (kΩ) (kΩ) (µm) (µm) (µm)

ptanh
min 250 6 - - 80 40 480 30

max 2000 32 - - 100 80 500 40

pSigmoid
min 350 40 - - 80 80 500 40

max 750 80 - - 600 200 800 80

pCReLU
min 1000 - - - 40 80 - -

max 10000 - - - 100 200 - -

pReLU
min 10 500 1 30 200 80 - -

max 100 2000 20 100 800 120 - -

4.3.2 Modeling of Activation Circuits

Figure 4.10 exemplifies some specific transfer characteristics with different

physical quantities qqq. Similar to the ptanh and negation circuits, the character-

istics of the proposed circuits can be modified through their physical quantities.

This property enables us to do bespoke design of these nonlinear circuits for

specific objectives. However, on the other hand, the printing variation of the

physical quantities will also perturb the transfer curves from the designed ones.

Therefore, it is crucial to consider these issues into the training of the pNCs.

To this end, we establish the surrogate models for these nonlinear circuits.

Analogous to Chapter 3.1.2, the modeling of the proposed printed activation

circuits are implemented through approximation-based modeling. Following

the algorithm introduced in Algorithm 1, we build the datasets of the transfer

characteristic curves of the designed circuits and train corresponding surrogate

models to calculate the auxiliary parameters ηηη from their physical quantities qqq,

namely:

qqqS ↦→ ηηη
S, qqqR ↦→ ηηη

R, qqqCR ↦→ ηηη
CR

With these surrogate circuit models, the physical quantities qqq can be incorpo-

rated into the forward pass in pNCs. Meanwhile, they may also be optimized
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to yield the best transfer characteristic curves parameterized by ηηη for specific

tasks.

4.3.3 Architecture Search for High Reliability

To enable EAs to automatically select the optimal activation circuit for each

neuron, along with the optimization of physical quantities within the circuits,

we modify the encoding and mutation strategy based on the one introduced in

Chapter 3.2.2.

'%+

'!+
ptanh
A?

pReLU
A@

pCReLU
A+@

pSigmoid
AA

(a) node gene for selectable activation (b) edge gene

'+

input of
node 2

output of
node 1

enabled

Figure 4.11: Encoding of the genes that can enable both selection of activation
circuit types and physical quantities of the selected activation cir-
cuit. Sourced from [34].

Modification of the EA. Figure 4.11(a) depicts the modified encoding of a

node gene. Different from the fixed activation circuits described in Chap-

ter 3.2.2, the new gene comprises all four activation circuits and their respective

physical quantities qqq. Additionally, a learnable pointer directs to one of the ac-

tivation circuits, which will then be utilized in the forward pass of the pNC.

In the mutation process, the physical quantities qqq of all activation circuits,

irrespective of whether their corresponding activation circuits are pointed (acti-

vated), undergo random alterations (see Figure 4.12). Concurrently, the pointer

will also mutate with a certain probability to randomly point to another activa-

tion circuit.
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(a) numerical mutation (b) discrete decision mutation

E(G023)

G023G45%

ptanh pCReLU

pSigmoid

pReLU

Figure 4.12: Mutation of the node gene that is related to selectable and learn-
able activation circuits. Sourced from [34].

4.3.4 Experiment

We implement the training framework with Python2 and conduct training on

the pNC utilizing the EA methodology and test it on 13 benchmark datasets

(described in Table 4.1) against gradient-based optimization techniques as a

baseline as the experiment.

Experiment setup. Drawing insights from other works on EA and guided by a

series of preliminary trials, we have strategically initialized the network topolo-

gies for all datasets as unconnected networks, which consist solely of nodes

corresponding to the number of outputs. To achieve a sufficient good result,

the population for these experiments is set at N = 1,000. Each node is initial-

ized to have a random activation circuit among the given design.

During evolution, the top 10 best genomes in each species are chosen to be

the candidate parents for crossover. The patience for species improvement, i.e.,

K1, is 20, while the number of species being protected, i.e., K2, is 2. In terms

of the mutation mechanisms, the probability of introducing either a new node

or a new connection is set at a substantial rate of 0.7, while the probability for

the deletion of a node or a connection is at 0.3. In this way, the topology of the

network can grow to a larger scale. In addition, there exists a 0.1 chance that the

edges will toggle its state from enabled to disabled, or vice versa. Furthermore,

the mutation rate of changing the pointer of selected activation circuit is 0.1.

In training (evolution) process, we utilize a full-batch training, with termi-

2https://github.com/Neuromophic/eNAS_leanrable_selectable_LNC.
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Figure 4.13: Normalized error rate with 5% and 10% printing variations.
Sourced from [34].

nation upon a patience threshold, i.e., K3, of 100 generations. This specific

criterion hinges on observing no significant improvement in the performance

metrics on the validation dataset over the aforementioned span of generations.

To ensure that our findings are statistically reliable and to mitigate the variabil-

ity due to stochastic elements of the training process, we repeat the training

sessions ten times, employing different random seeds varying from 1 to 10.

Note that, this configuration will be treated as the default setup for all the

trainings with EAs in this thesis.

As training objective, we do not include all the factors described in Chap-

ter 4.2. Rather, we take only printing variation into consideration to exhibit the

effectiveness of the EA. We take ε ∼ U [1−e,1+e] with e = 5% and e = 10%

to exam the robustness for both high and low printing precision, respectively.

Baseline. As the baseline, we employ the gradient-based training method,

following the default setup as described in Chapter 4.1.3. Moreover, To provide

an upper bound classification accuracy of each dataset, we also trained the
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Figure 4.14: Histogram of different selected activation circuits with 0%, 5%,
and 10% printing variations. Sourced from [34].

pNCs without any variation, i.e., e = 0. Because the accuracy in this case can

be seen as the theoretically highest achievable values. We denote the accuracy

in this case as the reference accuracy.

Result. After training the pNCs on training datasets and early-stopping the

training on validation datasets, we test the trained pNCs on test sets. Table 4.5

reports the classification accuracy and the running time of the training.

Given that the classification accuracy under variation is close to the theoret-

ical upper bound (i.e., the reference accuracy), the absolute magnitude of the

increment in accuracy becomes less significant due to boundary effects [40].

Consequently, we normalize the accuracy by their perspective reference accu-

racy, subsequently, we focus on the error rate instead of the improvement of the

classification accuracy. The result is plotted in Figure 4.13. We can conclude

that, compared to the baseline, pNCs trained from EA provide a significant

reduction of error rate by 55.38% in ±5% and 25.11% in ±10% printing vari-

ations.

In addition to the performance regarding classification results, we also ana-

lyze the robustness of different activation circuits to provide further guidance

for future design. To this end, we summarize the percentages of different ac-

tivation circuits used in pNCs after the training, as illustrated in Figure 4.14.

A clear trend can be observed where the number of ptanh circuits decreases

significantly with increasing printing variation, while the number of pCReLU

and pReLU circuits increases. We speculate that, there are two factors influ-
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encing the robustness of the pNCs against printing variation. The first factor is

the intrinsic robustness of the circuit to variance, i.e., whether a small change

in the physical quantity qqq leads to a substantial change in ηηη . Secondly, the

circuit should also exhibit a smaller slope in its transfer characteristic, because

the resistor crossbar weighted-sum suffers from variation as well, causing fluc-

tuations in the input voltages to the activation circuits. Consequently, the ac-

tivation function should have a low slope to prevent drastic changes in the

output due to minor input variations. By checking Figure 4.10, our speculation

is justified, as the experimental results align with our expectation. Therefore,

we conclude that, at high printing variation scenarios, pCReLU circuits will

become dominant. Conversely, at low printing variation, ptanh is capable to

finely distinguish small input differences, and thus can grant the pNCs a greater

expressiveness, making ptanh circuits dominant in low variation cases.

4.3.5 Discussion

The introduction of NAS elevates the optimization of pNCs to a higher level, as

demonstrated by the experiments. Although other factors like aging and sens-

ing errors were not considered in the objective function, their implementation

is technically straightforward.

Furthermore, we obtain a useful insight for selecting or designing pNCs to

withstand hardware variations. Under conditions of high variation, it is advis-

able to design or utilize activation circuits that are intrinsically robust to resist

variation inside activation circuits, and exhibit small slops to resist input per-

turbation.

4.4 Fault Analysis

Previous sections have examined the reliability of pNCs in terms of factors that

influence its classification accuracy. These variations are typically anticipated

and expected during the design process. However, unexpected problems can

arise during the fabrication process of PE, such as catastrophic faults like open

or short of circuit components. An example of the transistor fault is shown in

Figure 4.15. As these faults are rare and should often be mitigated by improved
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printing techniques or circuit testing, this section primarily examines the im-

pact of catastrophic faults on the pNCs [33], and less about its algorithmic level

solution. This section justifies the importance of circuit testing or post-printing

for pNCs.

non-defective EGT defect EGT

Figure 4.15: Micrographs of the electrolyte-gated transistor (EGT): function-
ing EGT (left) compared to EGT with exploded electrolyte (right).
Sourced from [13].

4.4.1 Modeling of Printing Faults

In order to incorporate the device faults into the forward pass of pNCs, we

first study and model the faults of printed devices. Afterwards, we propose an

algorithm to emulate the random faults into pNCs.

Empirically [13], the faults of PE can be categorized into the defects in re-

sistors and in transistors. For printed resistors, as illustrated in Figure 4.16(a),

the faults can be modeled as either open or short circuits. In this case, the re-

sistor can be simply modeled by setting its resistance R = ∞ (open circuit) or

R = 0 (short circuit), correspondingly, the conductance is modeled as g = 0

and g = ∞.

In contrast, the fault models of transistors are more complex. As depicted

in Figure 4.16(b), transistor faults can be summarized into four types: Gate-

Drain (G-D) short, Gate-Source (G-S) short, Drain-Source (D-S) short, and

Gate open. In this work, we typically consider transistors in the nonlinear

circuits, such as activation circuits or negation circuits, as a whole unit. Con-

sequently, we do not model transistor faults independently into the pNCs. In-
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normal resistor short resistor open

normal G-D short G-S short open

(a) models of resistor faults

(b) models of transistor faults

D-S short

Figure 4.16: Circuit schematics of the resistor and transistor faults.

stead, we analyze the activation circuit or negation circuit as complete entities

to understand and model their faults.

Due to the low probability of faults occurring, the scenario of more than two

faults in the same nonlinear circuit can be disregarded. Therefore, it is suffi-

cient to consider only one fault when modeling the nonlinear circuit with fault.

For ptanh circuit (shown in Figure 2.6), we account for the short and an open

RA
1 or RA

2 , and the G-D short, G-S short, D-S short, and Gate open in T A
1 or

T A
2 . This results in 12 different fault situations, and we plot the characteristic

curves of the ptanh circuit for those faults in Figure 4.17(a). Analogous, the

faults of the negation circuit are shown in Figure 4.17(b). Evidently, the faults

in nonlinear circuits can lead to catastrophic consequence. Given the stream-

lined and compact design of these circuits, each component plays a crucial

role. For instance, if a pull-up resistor is short, the transistor can no longer be

activated, resulting in a nearly constant characteristic curve. For the negation

circuit, as it consists of only one transistor, once the transistor is faulty, the cir-

cuit will lose the nonlinearity, as shown in Figure 4.17(b). Regarding the ptanh

circuit, if a transistor, which functions as an inverter, fails, the tendency of its

characteristic curve will be totally in opposition, see Figure 4.17(a).

To model the faulty negation circuit, denoted by negf(·), we simply employ

a linear function

negf
i(Vin) = kfN

i ·Vin

to fit the curves in Figure 4.17(b) through the parameter kfN
i . As a result, we
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(a) Printed tanh-like circuit with faults
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Figure 4.17: Impact of printing fault on nonlinear circuits of pNCs: (a) charac-
teristic curves of ptanh circuit with different faults in its compo-
nents, and (b) characteristic curves of printed negation circuit with
different faults in its components. The black bold curves refer to
the fault-free cases, while the colored dash-dot lines indicate dif-
ferent faults. Sourced from [33].

obtained 14 faulty negation functions, encompassing two types of faults for

each of the five resistors and four types of faults for the transistor. They are

denoted by negf
i(·), i = 1, · · · ,14.

As the characteristics of faulty ptanh, denoted by ptanhf(·), exhibit negative

tanh-like behavior, we thus use the

ptanhf(Vz) =−
(︂

η
fA
1 +η

fA
2 · tanh

(︂
(Vz−η

fA
3 ) ·η fA

4

)︂)︂
to fit the curves of the faulty ptanh circuits. Thus, we obtained 12 faulty ac-

tivation functions, including two types of faults for each of the resistors and

four types of faults for the two transistors. They are denoted by ptanhf
i(·), i =

1, · · · ,12.

4.4.2 Injection of Faults

To simulate the occurrence of faults in algorithmic level, we introduce the

mask-based method to inject faults. Specifically, for the surrogate conduc-

tances within a resistor crossbar, θθθ is multiplied by a mask vector before in-
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volved into the forward pass of the pNC, i.e.,

θθθ
f = θθθ ⊙MfC, (4.6)

where MfC has the same dimension as θθθ and its elements are all set to 1 by

default. Therefore, the default faulty crossbar conductance θθθ
f equals to the

designed conductances θθθ . When injecting a fault, we randomly set a value in

MfC to 0 (for open circuit) or ∞ (for short circuit).

For the negation circuits, we employ

negf(·) = NEGf ·MfN, (4.7)

where the first term includes all the negation functions, i.e.,

NEGf = [neg(·),negf
1(·),negf

2(·), · · · ,negf
14(·)]

and the mask matrix is

MfN = [mfN
0 ,mfN

1 , · · · ,mfN
14 ]
⊤, mfN

i ∈ {0,1}, ∑
i

mfN
i = 1.

In this way, by setting mfN
0 = 1, the final negation circuit negf(·) is identical

to the original and functional circuit neg(·) as introduced in Equation (2.6).

Otherwise, by setting mfN
i = 1, i = 1, · · · ,14, the i-th faulty negation circuit

will be employed in the forward pass of the pNC.

Similarly, we utilize

ptanhf(·) = PTANHf ·MfA, (4.8)

to handle the faults in ptanh circuit. Here, the first term includes all the ptanh

functions, i.e.,

PTANHf = [ptanh(·),ptanhf
1(·),ptanhf

2(·), · · · ,ptanhf
12(·)]

and the mask matrix is

MfA = [mfA
0 ,mfA

1 , · · · ,mfA
12 ]
⊤, mfA

i ∈ {0,1}, ∑
i

mfA
i = 1.
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In this way, by setting mfA
0 = 1, the final activation circuit ptanhf(·) is identical

to the original and functional circuit ptanh(·) as introduced in Equation (2.5).

Otherwise, by setting mfN
i = 1, i = 1, · · · ,12, the i-th faulty ptanh circuit will

be employed in the forward pass of the pNC.

After injecting faults into the circuit primitives, Equation (4.6) - Equation (4.8)

are then employed to replace the corresponding terms in Equation (3.1).

4.4.3 Experiment

To investigate the impact of faults on pNCs and evaluate the tolerance of pNCs

trained with different strategies, we employed three training methods: nominal

training, variation-aware training, and training with dropout. We then intro-

duced 1, 2, and 4 faults respectively into the trained pNCs and observed the ef-

fect on classification accuracy. The implementation can be found in the GitHub

repository3.

Experiment setup. The major training setups are kept identical to the default

one described in Chapter 4.1.3. Additionally, in variation-aware training, we

take e = 10%, while in dropout training, we set the dropout rate to 10%. Ad-

ditionally, we also combine both variation-aware training and dropout to train

pNCs. Note that, the variation or dropout is only introduced during training.

In test stage, we only inject device faults without any additional variation or

dropout.

Baselines. Nominal training refers to train pNCs with cross-entropy loss [29]

as the objective function to straightforwardly increase the classification accu-

racy. As it forms the most basic training method, we treat the nominal training

as the baseline. Meanwhile, variation-aware training, as introduced earlier in

this chapter, considers parametric variations that may impact the classification

accuracy of the pNCs. Therefore, we want to study whether it can also provide

robustness against catastrophic faults. Lastly, dropout [45] is a common train-

ing trick in ML, referring to deactivate some neurons randomly during training

to prevent overfitting. Since the deactivation in dropout training resembles the

3https://github.com/Neuromophic/FaultAnalysis.
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open of the device in the pNCs, we speculate dropout training may enhance

the circuit tolerance to faults. For all these training strategies, we consider the

fault-free cases as the baselines in this experiment.

Result. Figure 4.18 represents the performance of pNCs trained with different

strategies and tested with 0, 1, 2, and 4 faults in a whole pNC. It is clear that

there is a significant decrease in the average classification accuracy of pNCs on

all the datasets with the number of faults increases. Additionally, the variance

of the classification accuracy increases as well, meaning that the reliability of

pNCs becomes hard to estimate.

Another conclusion is that, unfortunately, neither variance-aware training,

dropout training, nor a combination of these methods significantly improves

the robustness of the circuit to faults. This justifies the development of novel

algorithms that can improve the circuit robustness against faults or detect the

faults efficiently.

4.4.4 Discussion

This section suggests typical faults in pNCs and model their faulty behaviors.

Subsequently, we propose a mask-based method to resemble fault injection.

Finally, the robustness of multiple training methods are studied in the experi-

ment, however, none of them can offer significant improvement against faults.

Therefore, it necessitates to improve existing hardware technologies or develop

other techniques to overcome circuit faults, such as upgrading ink qualities or

printing techniques. In terms of circuit design, more robust circuit schematics

can be proposed with enhanced resilience to combat component faults. Addi-

tionally, developing circuit testing is also crucial. Because, due to the additive

manufacturing characteristics of PE, it should be possible to compensate for

circuit faults by reconfiguring and reprinting some of the components once

the faults have been detected and located. The effectiveness of this technique,

named in-situ tuning, was initially demonstrated in [20].
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Figure 4.18: Box plot of the classification accuracy of pNCs from nominal
and variation-aware training, dropout training, and dropout with
variation-aware training on test set. In the test phase, pNCs are
tested under 4 scenarios: fault-free, single-fault, double-fault, and
quadruple-fault conditions. Sourced from [33].
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4.5 Summary

In this chapter, we investigate and improve the reliability and robustness of

pNCs. Firstly, we identify several key factors that affect the reliability of pNCs,

including aging, sensing errors, printing variation, and component faults. Then,

we analyze the behavior of these factors, develop their mathematical models,

and incorporate them into the forward pass of the pNCs training frameworks.

In terms of algorithmic perspective, this chapter first proposes objective

functions that can improve the expected classification accuracy under aging,

sensing errors, and printing variation. Afterwards, by introducing MC es-

timation, the proposed objective functions can be efficiently solved through

gradient-based optimization methods. EAs can further bring the training of

pNCs to a higher level. By facilitating the optimization of discrete variables,

the search space of pNCs is expanded to include the circuit architecture and

decision for selecting different activation circuits. The effectiveness of these

methods has been demonstrated through experiments.

By analyzing the experimental results, further suggestions for pNCs design

can be derived. Regarding the fabrication process, the experiments in Chap-

ter 4.2 indicates that, the impact of printing variation is significantly covered

by aging. Therefore, developing techniques for anti-aging or packaging may

be prioritized over reducing printing errors. Conversely, sensing error is inde-

pendent of aging and printing variation, thus, improving sensor accuracy and

incorporating sensing uncertainty-aware training are always critical. More-

over, due to the lack of optimization algorithms for fault tolerance, reducing

the printing failure rate remains an important objective as well. In terms of

circuit design, the experiment in Chapter 4.3 reveals that, improving circuit

robustness against variations depends not only on the enhancing the inherent

robustness of the circuit itself, but also on designing characteristic curves with

small slopes to resist fluctuations in the input signals caused by variation of

preceding components.

Ensuring the reliability of the circuit is the first step in transitioning pNCs

from labor concept to real-world deployment. In the next chapter, this thesis

will address various issues in the application of pNCs, as enhancing the practi-

cality of pNCs is the next critical step towards its deployment.
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5 Practicality Design

Printed electronics (PE) exhibits unique properties like stretchability [35], poros-

ity [20], bio-compatibility [24], and cost-effectiveness, making pNCs the ideal

candidate for integrating computing ability and smartness into edge products

such as the packaging of fast-moving consumer goods [1], product labels [6],

and bandages [41]. However, for effective implementation of pNCs in these ar-

eas, only the classification accuracy and device reliability (as described in pre-

vious chapters) are insufficient. The product must also address key concerns

of the target customers (either consumer or business). For instance, whether

the additional cost from pNCs is sufficiently low; given the pNCs are generally

integrated in disposable electronics, whether they provide meaningful battery

lifetime; and considering the large feature size of PE, whether pNCs can be

easily embedded in small scale scenarios.

This chapter studies, models these critical issues, and proposes correspond-

ing algorithmic solutions to address these problems to facilitate the real-world

deployments of pNCs. Notably, due to the no free lunch theorem in optimiza-

tion [49], parametric optimization of the pNCs can only provide a trade-off

between the utility factors and classification accuracies. Therefore, this chap-

ter employs Pareto-analysis [44] to facilitate Pareto-optimization under varying

requirements on hardware or classification accuracy.

5.1 Split Manufacturing for Ultra-low Cost

Although the additive manufacturing strategy of PE can already significantly

reduce the manufacturing cost of pNCs, different manufacturing technologies

still possess unique and distinct technical characteristics. Therefore, by com-

bining the advantages of various printing technologies, the printing cost of

pNCs may be further reduced. Fortunately, the additive process of PE allows
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Figure 5.1: Resistor reprinting by adding layers: (a) microscope photos,
(b) physical schematics, and (c) circuit diagrams. Sourced
from [52].

for the effective integration of multiple printing technologies by simply layer-

ing materials printed by different methods on top of each other.

As introduced in Chapter 2.1.1, replication printing technologies, such as

gravure and screen printing (Figure 2.2, bottom part), are designed for high-

volume production. Gravure printing involves engraving a pattern onto a cylin-

der, which can then produce a large number of circuits by rotating the cylin-

der. Screen printing uses a stencil with hollowed-out patterns, and a squeegee

to apply the printing material onto the substrate. These methods are efficient

and cost-effective for mass production, as the masks (cylinder or stencil) are

reusable but difficult to modify once created. In opposite, jet-printing tech-

nologies (Figure 2.2, top part) like inkjet printing are better suited for indi-

vidual manufacturing. It allows for highly customizable and bespoke printing

routes and materials, resulting in diverse functionalities but at the cost of higher

production times and variable costs per circuit.

This section aims to combine both high- and low-volume printing technolo-

gies to further reduce the printing cost for pNCs. Specifically, high-volume

methods are employed to print a large common part of all pNCs to ensure the

efficiency and low cost, while low-volume but highly flexible printing process

will be utilized to do the point-of-use correction of each individual pNC. In

this way, both printing cost and classification accuracy of the pNCs can be

guaranteed.
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5.1.1 Resistor Reprinting

Thanks to the additive manufacturing characteristic of PE, printed circuits can

be easily adjusted post-fabrication through adding material or modifying the

geometric shape of a component. Figure 5.1 shows a printed resistor with addi-

tional layers of conductive ink added post-fabrication to adjust its conductivity.

For brevity, this procedure will be referred to as reprinting in the following.

As shown in Figure 5.1, resistor reprinting can be seen as printing an addi-

tional, parallel conductive path, with the total conductance being the sum of

the conductances of the each print, i.e.,

1
R
= ∑

i

1
Ri .

Thus, the reprinted corresponding surrogate conductance can be denoted by

θ = ∑
i

θ
i,

As the resulting conductance can be split into multiple sub-conductances, this

work proposes to produce the conductance via an initial fabrication step (high-

volume) followed by an individual customization via, e.g., inkjet-printing. Thus,

the surrogate conductance can be expressed as θ = θC +θ I . Here, θC (com-

mon surrogate conductance) denotes the conductance of the initial printing. As

it is fabricated with a high-volume process, it is shared by all circuits fabricated

with the same mask. Subsequently, θ I (individual surrogate conductance) de-

notes the conductance value of the additional material printed to customize the

device in a reprinting step. In the following, we refer to the vector θθθ as the

summary of all conductance values in a pNC. Analogously, θθθ
C and θθθ

I sum-

marize their corresponding common and individual conductance values.

5.1.2 Training Framework for Multiple pNCs

Reprinting allows to combine high- and low-volume technologies. To find a

large and common part in a set of pNCs and the perspective individual parts

that retain acceptable classification accuracies, we introduce a training frame-

work that allows to train multiple pNCs for different tasks simultaneously. The
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Figure 5.2: Structure of learnable parameters in an exemplary super-model for
joint training of multiple pNCs. Each sub-model has its own in-
dividual conductance θθθ

I
k, while the common conductance θθθ

C is
shared across all sub-models. The resulting conductance of the
pNC for the k-th task θθθ k equals θθθ

C + θθθ
I
k and determines the re-

sulting weights in the pNC. The input/output layers of all pNCs in
a super-model are padded to the same dimensionality. The inputs
denoted by 0 will be connected to ground. Sourced from [52].

framework considers a decomposition of the conductances of multiple pNCs

into a common part, which is shared across all pNCs, and individual parts,

which vary among the pNCs of different tasks. By fabricating the circuits with

combined technologies, costs and production time can be saved, while attain-

ing comparable performances for the circuits.

Super training model. When different pNCs should be fabricated for a set of

different tasks k = 1, · · · ,K, we need to train K different pNCs to address them.

If these pNCs are trained independently, little commonality can be expected

between them. Thus, there is little potential for joint production and split man-

ufacturing. To increase this potential, the training of these pNCs should be

done jointly. For this purpose, we introduce the super-model for training pNCs

of different tasks jointly to achieve a high commonality and thus high potential

for joint production via split additive manufacturing. For a set of K tasks, a

super-model has a set of parameters θθθ
C, which is shared among all pNCs, and

114



several sets of parameters θθθ
I
k with k = 1, · · · ,K that are unique to each indi-

vidual task k. The (surrogate) conductance vector of a pNC trained for task

k is then implicitly determined by θθθ k := θθθ
C + θθθ

I
k. A conceptual illustration

can be seen in Figure 5.2. Naturally, for this to work, the architecture of all

pNCs need to be compatible in the sense that they have the same number of

input, hidden, and output neurons. To address this, we take the maximal num-

ber of input/output among all pNCs as the number of input/output for all pNCs

(see Figure 5.2). For tasks with fewer inputs, zero-padding is employed in

training, which relates to connecting those inputs to 0V (GND) in the circuits.

As for output, irrelevant outputs can be simply ignored in the classification

tasks.

Constraints. To achieve valid pNCs, several constraints of the printing tech-

nology need to be respected. Firstly, as θθθ
C and θθθ

I
k are independent printing

through different methods, each element of them should follow the range of

printable conductance values i.e., [−gmax,−gmin]∪{0}∪ [gmin,gmax], where

gmax and gmin depend on the specific technology and θ = 0 refers to no print-

ing. Beyond this, we also have to consider that reprinting can only increase

the conductances from their original values, i.e., |θθθ k| ≥ |θθθC| for any task k. In

other words, we cannot change the choice of connecting either Vi or neg(Vi),

to adjust what would relate to the sign of the weights via reprinting. To respect

this constraint, θθθ
C determines the signs of the entries of θθθ t via

θθθ k := sign(θθθC) · |θθθ I
k|+θθθ

C,

while θθθ
I
k is only able to adjust the absolute value of the resulting conductances.

Training objective. Through the proposed training framework, a connection

between different tasks is established via the common θθθ
C. However, this for-

mulation does not necessitate high commonality between the individual pNCs.

For example, the solution after training may likely have θθθ
C = 000 and express

everything via the uncoupled θθθ
I
k. Therefore, to encourage high commonality,

we add a penalty term to the training objective to keep the individual conduc-

tances θθθ
I
k, and thus the reprinting effort, low. In this work, the penalty term is
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formulated as the ℓ1 norm of all the individual conductances θθθ
I
k, i.e.,

C(θθθ I) = ∑
k

⃦⃦
θθθ

I
k
⃦⃦

1,

because both printing times and the amount of the printing materials of the

individual printing are approximately proportional to the size of the entries

of θθθ
I
k.

Consequently, the training objective of the super pNC considering both ac-

curacy and reprinting costs is then given by

L(θθθC,θθθ I) = (1−µ)∑
k

L(Dk,θθθ
C,θθθ I

k)+µ ·C(θθθ I),

where L(·) cross-entropy loss and Dt denotes the training data of the k-th task.

Furthermore, the coefficient µ ∈ [0,1] denotes a hyperparameter adjusting the

influence of the costs C(θθθ I). Notably, we do not include the nonlinear circuits

qqq as learnable parameters, because with some initial experiments, we have con-

cluded that the learning of qqq does not significantly improve the effectiveness of

the proposed method.

For µ = 0, the training objective is unaffected by the cost C(θθθ I) of the

reprinting required for each task. In this case, the training of the super pNC can

be conceptually equated to the completely independent training of K pNCs for

K tasks. Consequently, there may be little commonality between the different

pNCs and thus little potential for a sensible production of θθθ
C via a high-volume

production process. However, the individual pNCs may also achieve the best

accuracy as they are not bound together. On the other hand, for high values

of µ (i.e., µ → 1), the cost C(θθθ I) will completely dominate the loss term in

training. This should lead to a solution where ∀k : θθθ
I
k = 000. In this case, the

individual pNCs are solely determined by θθθ
C, and are thus all the same. While

this is the most economical in terms of production costs, the resulting pNCs

likely provide no useful accuracy for their respective tasks. Thus, µ may be

used to express a trade-off between cost and accuracy. To find an appropriate

value of µ , we suggest training the super pNC for different values of µ and

draw a Pareto-front.
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5.1.3 Experiment

We implement1 the proposed method, and conduct an experiment with 30

benchmark datasets, whose complexities and use cases match the PE and pNC

profile. The results are additionally analyzed regarding the accuracy-cost trade-

off by generating a Pareto-front of possible solutions.

Datasets. Unlike the default datasets listed in Table 4.1, we have to col-

lect more datasets to test the effectiveness of the proposed method on a large

number of datasets. Specifically, a subset of the 121 classification benchmark

datasets summarized in [11] was taken. We select datasets which are suitable

for PE and pNCs, most notably, tasks with a limited number of inputs and out-

puts (≤ 10). Moreover, since numerous pNCs are trained simultaneously, we

limit the experiments to datasets with the number of data points between 100

and 1 000, which leaves 30 datasets. Finally, we scale all the inputs to [0,1] to

simulate the electrical signals from sensors and put all inputs on the same scale.

We split each dataset into training (60%), validation (20%), and test (20%) sets.

The detailed information about the datasets can be found in Table 5.1.

Experiment setup. As described in previous section, the architecture of all

pNCs is determined by the maximal number of input and output of all the

datasets. In this experiment, the architecture is chosen to be 9-3-8, where the

number of inputs and outputs are determined by the datasets. For training, still

follow the default gradient-based training configuration introduced in Chap-

ter 4.1.3. Additionally, to investigate the trade-off between accuracy and cost,

we select 50 different µ ∈ [0,1] with equidistant.

The training is repeated 30 times (with seeds varying from 1 to 30) for dif-

ferent initialization for each value of µ to make sure to achieve a sufficiently

good solution for each value of µ .

Baseline. As the baseline, we report the performance of the pNCs with µ = 0,

which equivalent to train the pNC considering only individual θθθ
I . This result

1https://github.com/Neuromophic/Split_Manufacturing_One_Mask.
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Table 5.1: Benchmark datasets and baseline accuracy for split additive manu-
facturing tasks. Sourced from [52].

Dataset # Input # Data Baseline Source# Output accuracy

Acute Inflammation 6-2 120 0.904 [8]

Acute Nephritis 6-2 120 0.925 [8]

Balance Scale 4-3 625 0.671 [42]

Blood 4-2 748 0.747 [50]

Breast Cancer 9-2 286 0.724 [58]

Breast Cancer Wisconsin 9-2 699 0.955 [30]

Breast Tissue 9-6 106 0.409 [40]

Ecoli 7-8 336 0.592 [18]

Energy (y1) 8-3 768 0.816 [47]

Energy (y2) 8-3 768 0.761 [47]

Fertility 9-2 100 0.857 [13]

Glass Identification 9-6 214 0.439 [12]

Haberman’s Survival 3-2 306 0.788 [15]

Hayes-Roth 3-3 132 0.342 [17]

Indian Liver Patient Dataset 9-2 583 0.684 [45]

Iris 4-3 150 0.701 [2]

Mammographic Mass 5-2 961 0.728 [10]

MONK’s Problem 1 6-2 124 0.598 [46]

MONK’s Problem 2 6-2 169 0.617 [46]

MONK’s Problem 3 6-2 122 0.576 [46]

Pima Indians Diabetes 8-2 768 0.644 [43]

Pittsburgh Bridges MATERIAL 7-3 106 0.902 [39]

Pittsburgh Bridges SPAN 7-3 92 0.509 [39]

Pittsburgh Bridges T-OR-D 7-2 102 0.800 [39]

Pittsburgh Bridges TYPE 7-6 105 0.665 [39]

Seeds 7-3 210 0.454 [5]

Teaching Assistant Evaluation 5-3 151 0.397 [28]

Tic-Tac-Toe Endgame 9-2 958 0.632 [32]

Vertebral Column (2 cl.) 6-2 310 0.635 [3]

Vertebral Column (3 cl.) 6-3 310 0.586 [3]
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Figure 5.3: Results of experiment with 100 different µ values: (a) normal-

ized accuracies of 30 tasks. Each task is indicated by a different
color, (b) summarized accuracies (average normalized accuracies),
the blue curve and area denote the mean and standard deviation
respectively, (c) normalized cost of the individual (point-of-use)
reprinting, the red curve and area denote the mean and standard
deviation respectively, (d) scatter plot of summarized accuracy ver-
sus cost of reprinting for all the runs. The red curve displays the
Pareto-front and the bold points denote different possible trade-offs
on the Pareto front. Sourced from [52].

can be regarded as the upper bound of the circuit performance. We also refer

to this as individual pNCs.

Result. After training, we evaluate the pNCs on the test sets. Table 5.1 re-

ports the accuracies of baseline. To analyze the impact of µ more clearly and

to eliminate the disparate difficulties among different tasks, we normalize the

accuracy by the baseline through

normalized accuracy =
accuracy

baseline accuracy
,

where the baseline accuracy should theoretically indicate the best accuracy that

can be achieved by the perspective pNCs. Note that this is not always achieved
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in practice due to the complex nature of the nonlinear optimization problem

that neural network training resembles. The resulting curves are displayed

in Figure 5.3(a).

To summarize the overall implications of µ for all the pNCs, we report the

summarized accuracy, which refers to the average value of the normalized ac-

curacies over all the tasks trained from a super-model. The result is shown

in Figure 5.3(b). We also show the relationship between µ and the cost of

reprinting in Figure 5.3(c). To obtain the Pareto-front, we plot all the C(θθθ I)

versus their summarized accuracy in Figure 5.3(d). Based on the scatters, we

draw the Pareto-front as the red dashed line.

As can be seen in Figure 5.3(a)-(c), at µ = 0, which refers to fully individual

printing, the summarized accuracy is normalized to 1, and the expected cost of

individual reprinting is the highest. Analogous to the treatment of the accuracy,

we normalize all the printing costs by the cost at µ = 0, as shown by the black

point in Figure 5.3(c), where C̃(θθθ I) denotes the normalized reprinting cost.

With increasing µ , the normalized accuracy, summarized accuracy, and the

cost of reprinting C(θθθ I) will decrease. For µ greater than a certain threshold,

i.e., µ ≥ 0.7 in this experiment, the cost penalty completely dominates the

training objective. Thus, as expected, θθθ
I
k = 000 for all pNCs, and the training

results are equivalent to performing all tasks with the same pNCs. We refer to

this pNC as common pNC. The orange points in Figure 5.3(b), (c) and (d) show

the common pNC with the best accuracy.

Contrary to our expectation, the summarized accuracy does not decrease im-

mediately as µ is increased from 0. This could be due to two possible reasons:

Firstly, the C(θθθ I) term may act as a regularization and mitigates overfitting

to the training set of the specific task. Therefore, the accuracy of some pNCs

could even slightly increase, e.g., the pink curve in Figure 5.3(a). Secondly,

µ only explicitly affects θθθ
I rather than θθθ

C. Hence, θθθ
C would be adjusted ac-

cordingly during training to compensate for the loss of accuracy caused by the

penalty term. This phenomenon allows reducing the cost of individual print-

ing, while retaining an acceptable accuracy. Such a solution can be found at

the purple point in Figure 5.3(b), where µ ≈ 0.37.

The Pareto-curve in Figure 5.3(d) reveals the relationship between the cost
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for individual configuration and the summarized accuracies of super pNCs.

Compared to fully individual printing (black point), the point-of-use printing

cost can be reduced to 38.6% without any noticeable loss in accuracy (purple

point). Moreover, if the summarized accuracy is allowed to be reduced by e.g.,

5%, the reprinting cost can be further reduced to 15.7% (blue point). Finally,

using a single common pNC (orange point) leads to a 75% summarized ac-

curacy, but consequently also no reprinting costs. Other exemplary trade-off

options are summarized in Table 5.2.

Table 5.2: Different trade-offs between reprinting cost and classification accu-
racy, drawn from the Pareto-front. Sourced from [52].

Printing technology Summarized accuracy Reprinting cost C̃(θθθ I)

individual 100% 100.0%

100% 38.6%

95% 15.7%

ours 90% 5.7%

85% 2.9%

80% 1.4%

common 75% 0.0%

5.1.4 Discussion

In this section, we propose a design strategy for multiple and different pNCs to

leverage the additive manufacturing nature of the PE. Through resistor reprint-

ing technology, the gap between high- and low-volume printing are bridged,

and their advantages are combined. The experiment shows that, given pNCs

that are trained together (co-designed) with shared conductances, a substantial

amount of point-of-use printing cost can be saved, while still obtaining pNCs

with sufficient accuracies. This can result in substantial time savings when

fabricating pNCs even in case each circuit is different from others and each

individual circuit is only required in a small batch. Additionally, depending on

the requirements, manufacturers may be able to adjust their production strategy

based on the cost-accuracy trade-off visualized by the Pareto-front.
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5.2 Power-Efficient Circuit Design

In many target applications of PE such as smart packaging, the printed devices

are possibly disposable and consequently may not be accessible for recharg-

ing. Therefore, they are generally powered by their initial printed batteries [7]

or printed energy harvesters [25]. In this case, the low power consumption of

the circuit becomes particularly crucial. Moreover, due to resistive nature of

weighted-sum crossbar and lack of P-type transistors in this printed technol-

ogy, the need for low-power design is even further justified. In this section, we

modify the existing circuit structure in a more power-efficient way, and then

propose power-aware training for pNC by explicitly integrating power models

into the objective function. Specifically, we derive the accurate power models

for the circuit primitives in the pNC. Afterwards, by integrating these models

into the pNC framework, the power of the circuits can be estimated during the

training process. Finally, by combining the original loss function (for classi-

fication accuracy) with the estimated power, a Pareto-front of power-accuracy

trade-offs can be established. Further, this section employs augmented La-

grangian method to enable the constraint training with prescribed power bud-

get. This can significantly reduce the training effort compared to drawing the

Pareto-front and thus accelerate the circuit design cycle.

5.2.1 Power-Efficient Circuit Structure

In previous design (Figure 2.7), negation circuits are prepended to the respec-

tive resistors whenever negative weights are necessitated. However, this ap-

proach is suboptimal regarding power conservation, as some inputs are repeti-

tively converted to their corresponding negatives. To eliminate this redundancy

and thus reduce the power, we modified the circuit design, as shown in Fig-

ure 5.4(a). With this modified structure, only one single negation circuit is

required for each input. Subsequently, resistors may be connected to either V i
in

or neg(V i
in), depending on the sign of the corresponding weights.

Moreover, as we notice, the previous negation circuit design consumes sig-

nificantly higher power (in mW) than other primitives (in µW), we propose a

new design of the negation circuit, as illustrated in Figure 5.4(b). The new
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Figure 5.4: Modified pNC design for low power consumption: (a) modified
crossbar with each input voltage negated maximally once, sourced
from [53], and (b) modified negation circuit consuming lower
power, sourced from [54].

negation circuit requires also µW-level power consumption. The feasible de-

sign space of the modified negation circuit is reported in Table 5.3.

To validate the new circuit design and assess other characteristics such as

latency of the new circuit designs, we performed SPICE simulation with the

pPDK [37]. The new circuit structure yields the similar input-output behavior

and similar latency as the previous design, however, the power consumption

decreases due to the reduced power and reduced number of negation circuits.

Table 5.3: Feasible design space of the modified negation circuit.

R1 R2 R3 W1 L1 W2 L2 W3 L3

(kΩ) (kΩ) (kΩ) (µm) (µm) (µm) (µm) (µm) (µm)

min 250 6 300 80 40 40 30 80 50

max 2000 32 500 100 80 60 40 200 150

5.2.2 Power Consumption Model

Due to the structural simplicity of resistor crossbar arrays, we derive analyti-

cal solutions for the power consumption through physics-informed modeling

method (Chapter 3.1.1). In contrast, due to the complexity of the nonlinear

circuits, we obtain the power models through approximation-based modeling

approach (Chapter 3.1.2) with data collected from SPICE simulation.
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Power consumption of resistor crossbar. Due to the pure resistivity of the

crossbar array (excluding the negation circuits), the analytical power model can

be directly obtained from the formula of electronic power. For each individual

resistor, the power can be calculated by

P =
∆V 2

R
= ∆V 2 ·g,

wherein ∆V refers to the potential difference between the two ends of the re-

sistor. Therefore, the power consumption for the crossbar excluding negation

circuits can be modeled as

PPPC = ((VVV Ex
in ⊙1{θθθ≥000}+neg(VVV Ex

in )⊙1{θθθ<000})−VVV Ex
z )2⊙|θθθ |,

where (·)2 denotes an element-wise square operation, moreover (·)Ex refers to

the stack of repeated vectors, i.e.,

VVV Ex
in =

[︂
VVV⊤in, · · · ,VVV

⊤
in

]︂
∈ R(M+2)×N

and

VVV Ex
z =

⎡⎢⎢⎢⎣
VVV z
...

VVV z

⎤⎥⎥⎥⎦ ∈ R(M+2)×N .

In this way, each element in the matrix PPPC represents the power of the cor-

responding resistor. By summing all elements in PPPC, the over all power con-

sumption of the crossbar can be obtained by

PC = 111⊤M+2 ·PPPC ·111N , (5.1)

where 111M+2 ∈ RM+2 and 111N ∈ RN are a vector with all the elements being 1.

Additionally, we can see that, the weights are scale-invariant with respect to

the resistances. Thus, the resistances can be scaled up to save power, while the

weights remain unchanged. Consequently, for estimating the lowest power for

the crossbar with given weights, the resistances are first up-scaled to the highest

feasible values, which depends on the printing technology and the latency of
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Figure 5.5: Left: Power of some negative weight circuits with input voltages
Vin ranging from −2V to 2V, the legend shows the configuration
of the circuit components qqqN, the right bottom box shows the shape
of the pink curve. Right: visualization of the results from the sur-
rogate power consumption model. The x-axis and the y-axis refer
to the normalized true power and predicted value. Blue, green, and
red colors denotes the data from training, validation, and test sets.
Sourced from [53].

the circuit. In this work, the maximal feasible resistance has been identified to

be 1MΩ through SPICE simulation.

Power consumption of nonlinear circuits. For the nonlinear circuits, i.e., nega-

tion circuits and ptanh circuits, estimating the power consumption based on

the physical quantities qqqN and qqqA is challenging. We therefore train ANNs to

approximate the power consumption of these circuits based on SPICE simula-

tions. Here, we establish the power consumption models for both ptanh circuit

and negation circuit, in addition, as the negation circuit is a newly proposed

circuit, we establish its surrogate model for calculating its transfer character-

istic curve as well. The modeling process follows the pipeline introduced in

Chapter 3.1.2.

The left side in Figure 5.5 exemplifies the power of the negation circuits

with different physical quantity values. The input voltage Vin ranges from−2V

to 2V. The legend denotes the corresponding circuit configuration qqqN. It is no-

table that, although the power varies with changing input voltage, as shown by
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the pink curve in the right bottom box, the variation is so small that the power

consumption can be regarded as a constant with respect to the DC input volt-

age Vin. Moreover, due to the absence of a priori knowledge for the magnitude

of input voltages, the distribution of the input voltages should be assumed as a

uniform distribution ranging between −2 V and 2 V according to the principle

of maximum entropy [19]. Consequently, the expected power consumption PN

is represented by the mean value with respect to input voltages.

With these data, we finally obtain a 15-layer ANN as the surrogate power

model. The performance of the surrogate model is demonstrated on the right

side of Figure 5.5, where the horizontal axis denotes the true power consump-

tion from SPICE simulation and the vertical axis refers to the predicted power

from the surrogate model. We can qualitatively conclude that, the surrogate

model generates acceptable power estimations. Moreover, the losses on train-

ing and test sets indicate that the model generalizes well.

Power estimation for a printed neuron. Building upon the developed power

consumption models, we are able to estimate the power of each printed neuron

by accumulating the power of each circuit primitive, namely:

P = PC +NN ·PN +NA ·PA, (5.2)

where NN and NA denote the number of negation circuits and ptanh circuits.

Moreover, PN and PA are the estimated power consumption from the surro-

gate power models.

It is notable from Equation (5.2) that, the overall power consumption of

the pNC can not only be reduced through lowering the power consumption

of the nonlinear circuits themselves, but also through reducing the number of

the nonlinear circuits. Fortunately, PE natively allows for such highly flexible

printing patterns, meaning that, whenever arbitrary subcircuits are modified

or excluded, PE can be easily adjusted to the updated circuits through simply

modifying its printing trajectories and without costly extras.

However, since we primarily leverage gradient-based optimization to reduce

the power consumption, we require useful gradient information of the power

with respect to all our design parameters. Unfortunately, NN and NA in Equa-
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tion (5.2), representing the number of negation circuits and ptanh circuits, de-

pends on θθθ but represents a piece-wise constant function. Specifically, the

count of negation circuits NN in a M-input N-output crossbar array is expressed

by

NN = columnmax
{︂
1{θθθ<000}

}︂
·111M+2, (5.3)

where columnmax(·) returns the column-wise maximum values, because each

column in θθθ in Figure 5.4(a) is relating to one input voltage. If the whole

column of surrogate conductances is positive, the corresponding input voltage

does not require to be passed through any negation circuit. Similarly, NA is

calculated through

NA = 111⊤N · rowmax
{︂
1{|θθθ |>000}

}︂
, (5.4)

meaning that, if any weight corresponding to a ptanh activation circuit (i.e.,

a row of resistors) is non-zero, the ptanh circuit should be printed to activate

the input. In contrast, if all the weights corresponding to the ptanh circuit are

zero-valued, the corresponding ptanh circuit can be removed from printing.

Evidently, the count of the devices, i.e., the 1{·} function, is a piece-wise

constant function. To address this issue and enable the optimization of NN

and NA through θθθ , we soft-count of the nonlinear circuits as shown in Fig-

ure 3.5. Specifically, we relax the function by a sigmoid(·), denoted by NN
soft,

NA
soft. In the forward pass of the soft-count, NN

soft and NA
soft are still calculated

by Equation (5.3) and Equation (5.4), however, in the backpropagation, relaxed

functions,

columnmax{1− sigmoid(θθθ)} ·111⊤M+2,

and

111⊤N · rowmax{sigmoid(|θθθ |)} ,

are employed to generate the gradient for updating θθθ for the counts of negation

circuits and ptanh circuits respectively.

By replacing NN and NA in Equation (5.2) with soft-counts, the resulting

power estimation of the printed neuron can be formulated as

P = PC +NN
soft ·P

N +NA
soft ·P

A. (5.5)
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The computational graph for the complete power estimation is shown by the

green part in Figure 5.6. Note that this figure only represents the computational

graph for one neuron. In case multiple neurons are adopted, the VVV out of one

neuron will be passed to the next neuron as the input voltages. Consequently,

the output of the last neuron will be regarded as the actual output of the pNCs.

Moreover, the power consumption of all neurons will be summed up, serving

as the final estimate for the power consumption. It can also be seen that, the

changes in qqqN and qqqA not only impact the circuit power, but also influence their

transfer characteristics, and thus, the accuracy of the classification. Therefore,

qqqN and qqqA can not be simply chosen to provide lower power consumption, but

also have to be jointly considered with the classification accuracy. This jus-

tifies to propose an appropriate objective that can involve both metrics during

training.

5.2.3 Power-Aware Training

For nominal training of pNCs, we typically employ cross-entropy [31] as the

loss function to ensure the classification accuracy. However, to jointly optimize

both classification accuracy and power consumption, power-aware training ob-

jective should be considered.

Power-aware training with penalty method. A naive approach is to add two

terms with a balance factor µ:

L(D,θθθ ,qqq) = (1−µ) ·L(D,θθθ ,qqq)+µ ·P(D,θθθ ,qqq), (5.6)

where L(·) denotes the cross-entropy loss and µ ∈ R+ denotes a scaling fac-

tor to express the trade-off between loss and power consumption. If µ = 0,

the training objective entirely corresponds to the accuracy of the classification

tasks. In this case, the trained pNC should achieve the highest accuracy, which

can be regarded as the upper bound. However, since power consumption is

totally ignored, the corresponding power should also be regarded as an up-

per bound. Conversely, if µ = 1, power P dominates the training objective

whereas the accuracy is disregarded. Therefore, the trained pNCs may exhibit

the lowest power consumption but, at the same time, also the poorest accuracy.
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Since the trade-off between power and accuracy is only implicitly influenced

by µ , and, considering that a specific trade-off will be chosen based on dif-

ferent application scenarios, we decide to train pNCs with different µ ∈ [0,1]

and construct a Pareto-front [44] to facilitate the selection of various trade-offs

with Pareto-optimality.

Power-aware training with augmented Lagrangian. There is an obvious draw-

back of the penalty method: in practice, circuit design typically requires ensur-

ing a prescribed power consumption to guarantee factors such as the circuit

operation time. However, attempting to determine the optimal circuit classi-

fication accuracy for a given power consumption by plotting the Pareto-front

necessitates hundreds or even thousands of trainings. To address the problem,

we introduce the augmented Lagrangian method (as described in Algorithm 3

and Algorithm 4), which can constrain the power consumption of the pNC to a

predefined value (or less) with one single training.

Fine-tuning. It is worthy to highlight that pNCs trained with either penalty

method (for Pareto-front) or the augmented Lagrangian (for constrained train-

ing) may not reach optimal trade-off between power and accuracy. Because

the power consumption term, functioning as a penalty, suppresses the conduc-

tances through soft-count for decreasing the device counts, and thus circuit

power. However, if, e.g., any input conductance of a neuron cannot be all

suppressed to zero for a given µ , the corresponding ptanh circuit can not be

removed. In this case, such suppression on the input conductances through

NAsoft not only fails to reduce the count of ptanh circuits, but also diminishes

the classification accuracy by forcing parameters from the optimal values for

the cross-entropy loss.

To mitigate this problem, we introduce the fine-tuning process. After the

main training process introduced above, we generate masks mC for each sur-

rogate conductance θ and multiply them to indicate the parameters after re-

moving the useless components (i.e., the resistors with zero conductances, the

ptanh circuits with all input conductances being zero, and the negation circuits
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for the voltages that do not need to be negated), i.e.,

θ ← mC ·θ ,

where mC is either 1 or 0, indicating whether the parameter is removed.

Regarding the removal of ptanh circuits, if all input parameters of a neuron

are removed, the output voltage of this neuron will be multiplied with a mask

value equaling 0, i.e.,

a← mA ·a,

where a refers to the activated value by ptanh circuit, and mA is mask being

either 1 or 0. If a ptanh circuit is removed, its corresponding mask will be 0 to

emulate a 0V open circuit.

As for the negation circuits, we introduce

θ ← θ
+ · (1−mN)+θ ·mN

to emulate the removal of the negation circuit. Here, θ+ = max{0,θ}, and mN

refers to existence of the negation circuit. mN = 0 marks the negation circuit is

removed, therefore, surrogate conductance θ can only be positive.

Subsequently, we take the cross-entropy loss as the objective function to

train the remaining network towards higher classification accuracy. With this

mask-based emulation, the trade-off between classification accuracy and power

can be further improved without any invalid penalty. In other word, the impact

of the noneffective power penalty on the classification accuracy can be recov-

ered in the fine-tuning stage.

5.2.4 Experiment

To evaluate the effectiveness of the power-aware training of pNCs, we imple-

mented the proposed approaches23 with PyTorch [36] and conduct experiments

on the benchmark datasets described in Table 4.1.

2https://github.com/Neuromophic/Power-Aware-Training.
3https://github.com/Neuromophic/AugmentedLagrangian.
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Experiment setup. For both Pareto and augmented Lagrangian approaches,

we employ gradient-based training and follow the default pipeline employed

in Chapter 4.1.3 for basic training. Subsequently, in fine-tuning, as it can be

seen as a warm-start near the optimum, we select a smaller initial learning rate

as 0.01. Other setups in fine-tuning are kept the same as the default setup.

Regarding augmented Lagrangian, we utilize the inequality version, because

the power consumption of pNCs is generally a discrete value due to the discrete

device counts. Thus, equality constraints are hardly to be guaranteed.

To investigate the trade-off between accuracy and power, we uniformly se-

lect 50 values in µ ∈ [0,1] to draw the Pareto-front as the benchmark of the

power-accuracy problem. In augmented Lagrangian, we take 20%, 40%, 60%,

80% of the maximal power consumption of the pNCs as the constraints.

Result. After training, we evaluate the trained pNCs on the test sets. In order

to obtain the Pareto-front, we plot the entirety of powers versus their respective

accuracies for all runs (random seeds) and all values of µ by the cyan points

in Figure 5.7. Subsequently, we can delineate the Pareto-front by the valid pink

curve.

The Pareto-front illustrates the relationship between power and accuracy. In

comparison to power-unaware training (i.e., conceptually the top right corner

maximal accuracy and maximal power consumption), the power can be slightly

reduced without any accuracy loss. This is because

1. The original pNC architectures for the target datasets might be redun-

dant. Therefore, after removing few of the components, the accuracy

does not reduce.

2. The power term functions as a regularization term, which can avoid

overfitting on training data, and thus improve the classification accuracy.

This may compensate the accuracy loss due to the penalty on power.

Furthermore, this approach enables other Pareto-optimal trade-offs for any

given power and accuracy. These trade-offs can be chosen in consideration

of the specific design requirements and application contexts.

However, in real circuit design, there is generally a prescribed power bud-

gets. This can be ensured by the augmented Lagrangian methods during train-
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ing. The vertical lines in Figure 5.7 show the predefined power constraints

during training. They are namely 20% (blue), 40% (orange), 60% (red), 80%

(black) of the maximal power consumption of the perspective datasets. The

corresponding training results are scattered by the diamond symbols with the

identical colors. It can be seen, the augmented Lagrangian approach can effec-

tively ensure the inequality constraints (i.e., the points locate on the left side

of the vertical lines), while achieving comparable or even better results than

the optimalities trained from penalty-based objective. We speculate two main

reasons for this

1. In the penalty method, when the balance factor of power consumption

significantly outweighs that of the cross-entropy loss to encourage low

power consumption, the optimization problem may become ill-conditioned.

This is why the augmented Lagrangian outperforms penalty-based method

especially in case of low power trade-offs.

2. The penalty method can be explained as Lagrangian method through

minimize
θθθ ,qqq

(1−µ) ·L(D,θθθ ,qqq)+µ ·P(D,θθθ ,qqq)

= minimize
θθθ ,qqq

(1−µ) ·L(D,θθθ ,qqq)+µ ·P(D,θθθ ,qqq)−C

= minimize
θθθ ,qqq

L(D,θθθ ,qqq)+
µ

(1−µ)⏞ ⏟⏟ ⏞
=:λ ∗

(︂
P(D,θθθ ,qqq)

)︂
− 1

(1−µ)
C

= minimize
θθθ ,qqq

L(D,θθθ ,qqq)+λ
∗
(︂
P(D,θθθ ,qqq)− 1

µ
C⏞⏟⏟⏞

C′

)︂

= minimize
θθθ ,qqq

L(D,θθθ ,qqq)+λ
∗
(︂
P(D,θθθ ,qqq)−C′

)︂
.

In other word, for any given µ , the training is likely to converge at the

point with λ ∗ = µ

1−µ
being the Lagrangian multiplier, and a certain C′

being the constraint on power consumption. However, the given λ ∗ =
µ

1−µ
may not correspond to any specific C′, meaning that λ ∗ is not a

Lagrangian multiplier for any constraint C′. Consequently, the training

result does not lie on the Pareto-front.

3. Even if λ ∗ is a valid Lagrangian multiplier associated with a specific
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and existing constraint C′, whose corresponding solution will locate on

the Pareto-front, the gradient-based method is not guaranteed to con-

verge to that solution. Because according to the KKT condition, the

optimal solution of the Lagrange equation is only necessarily to have

zero-gradient, while its Hessian (second-order derivative) can be either

positive-definite or not. In contrast, the gradient method converges only

at points where the gradient is zero and the Hessian is positive-definite.

Therefore, in case the Hessian of the optimum of the Lagrangian equa-

tion is not positive-definite, the gradient method fails to achieve.

5.2.5 Discussion

In this section, we target the design of power-efficient pNCs. By establishing

physics-informed and approximation-based power consumption models, the

circuit power can be explicitly incorporated into the design objective of the

pNCs. Thanks to the highly flexible processing of PE, device parameters and

even circuit structures can be easily adjusted to realize low power pNCs. By

introducing a variable trade-off factor in the training process of pNCs, a Pareto-

front can be drawn, from which any optimal trade-offs between accuracy and

power can be chosen according to specific requirements or application scenar-

ios. We further propose an augmented Lagrangian-based training method, that

can avoid the costly training of the penalty-based method, and can achieve even

better results due to its better formulation of the optimization problem.

5.3 Highly Compact Circuit Design

Despite the unique advantages of PE and pNCs, pNCs still face the challenges

inherent to PE, i.e., large feature sizes and low device counts. Such drawback

imposes considerable limitation when applying pNCs to scenarios with con-

strained areas, such as smart band-aids [41] or compact smart packaging [1].

Therefore, the architectural topology of the pNC, especially the number of neu-

rons and connections, need to be considered in such area-scarce applications.

To enable effective training for compact pNCs, it is imperative to explicitly

incorporate the circuit area into the training objective. In this work, the circuit
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area A is estimated the area of the individual devices and their counts. Since

device count is an integer variable related to circuit topology, considering the

area in the training objective necessitates training algorithms that are capable

of topology optimization. To this end, we employ an EA-based method for

the simultaneous training of both crossbar conductances (weights) and circuit

topologies (neural architecture). The algorithmic details were introduced in

Chapter 3.2.2.

5.3.1 Modeling of Circuit Footprint Area

To achieving the compact circuit design, it is required to establish a precise

model for estimating the circuit area. Therefore, we first build the circuit area

model that can estimate circuit footprint of the pNCs from their architecture.

Since the trained circuits need to go through a placement and a routing process

before area estimation, the relationship between circuit netlist and the final area

exhibits high complexity. Usually, with the increasing number of devices, their

connections will grow in a super-linear way, driving the routing problem more

complicated and thus requiring more area than their linear relationship. Conse-

quently, we employ approximation-based method (Chapter 3.1.2) to precisely

model the circuit area estimator.

Area of Circuit Primitive. The schematics of a printed resistor is depicted

in Figure 5.8(a). Due to the additive manufacturing, the resistance values are

progressively modulated by sequentially depositing resistive material on top

of the existing resistors. Therefore, differences in printed resistors with dif-

ferent values primarily arise in their thickness, whereas their areas remaining

unchanged. Moreover, Figure 5.8(b) and (c) show the microscopic photos of

the printed negation and ptanh circuits. As these circuits are predefined and fix

during training, their respective areas remain also constant. Consequently, we

read the area information directly from [48] as AR = 0.15mm2, AN = 22mm2

and AA = 30mm2, correspondingly.

Software for Circuit Area Calculation. We utilize mature and well-developed

commercial electronic design automation (EDA) tools to facilitate automatic
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(a) printed resistor with multiple additive
layers for different resistances

(b) microscopic photo
of negation circuit

(c) microscopic photo
of ptanh circuit

1mm 1mm

500 µm
1 layer

2 layers

3 layers
(a-1) microscopic photos

(a-2) physical schematic

"!
""
"#

(a-3) circuit diagram

Figure 5.8: Schematics and photos of the primitives in pNCs. (b) and (c)
sourced from [48] with permission for reprinting.

placement and routing, serving as an estimator of circuit footprints. Although

there are no specialized placement and routing tools developed for PE, the com-

monalities between PE and printed circuit boards (PCBs) suggests us to apply

PCB-design tools for PE. Because both PE and PCBs are to place some prede-

fined geometric components in a 2D surface, and their routing is featured by

the connected pins on the given 2D space. In this context, we utilize EasyEDA4

tool for the automatic placement and routing of pNCs.

Although PE is predominantly a 2D technology, thanks to the additive man-

ufacturing, the issue of wire-crossing can be simply addressed. As illustrated in

Figure 5.9(c), we can print insulating materials, in our setup, the dimethyl sul-

foxide (DMSO), on top of the printed wires at the region that will be crossed.

Subsequently, the second wire can be printed over the insulator. This approach

is similar to multilayer PCBs with via holes, where the PCBs substrates func-

tion as the insulator to avoid the intersection of wires, and the via holes provide

connections across layers of substrates. Therefore, the automatic routing algo-

rithm can natively support the tasks in PE. However, the additive PE offers

significantly greater flexibility than PCBs in managing such issues.

Circuit Area Estimator. As it is hard to integrate the EasyEDA into the train-

ing approach of the pNCs, we have to develop a model that can estimate the

circuit area during training and can be integrated into the algorithm. Given

the sophisticated relationship between the circuit area and its architecture, we

4The software is available at https://easyeda.com/.
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adopt an ANN-based model as the area estimator, because it is proven to be

a universal approximator. The approximation-based establishment of the area

estimator comprised three stages: data acquisition, model design, and model

training.

• Data acquisition. We first defined our customized library in EasyEDA

based on the printed component geometry depicted in Figure 5.8, which

includes dimensions and pin configurations. Subsequently, we randomly

generate 500 different pNCs architectures and convert them into netlists

for importation into EasyEDA for automatic placement and routing. Key

setups for placement and routing are reported in the gray box in Fig-

ure 5.9. After this, we use the minimum bounding rectangles for each

circuit to denote the area footprint of the pNCs. Since the algorithm

provided by EasyEDA is not deterministic, i.e., each conduction may

produce a different result, we repeated the algorithm ten times per pNC,

and record their bounding box areas.

• Area estimator model. With the collected data, we constructed an ANN-

based model that is capable of estimating the circuit areas A from their

device counts Ni and device areas Ai, denoted by

A = AreaEstimator(NA,AA,NN,AN,NR,AR).

As the area generated by EasyEDA is not a deterministic value but rather

follows a certain distribution, we employ a variational autoencoder (VAE)

as the area estimator. Because VAEs natively support probability dis-

tribution as model output [21] and widely used as generative AI mod-

els [34]. In our area estimator model, input features (circuit netlists) are

encoded to multiple latent distributions. The decoder then draws sam-

ples from the latent distributions to estimate the circuit areas.

• Area estimator training. To train the area estimator for precisely estimat-

ing circuit areas, the collected dataset is randomly divided into training

(60%), validation (20%), and test (20%) sets. We used the training data

to guide the training of the model, while employing the validation set

to avoid overfitting through the early-stopping technique. Meanwhile,

we utilized data normalization and hyperparameter tuning to enhance
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Figure 5.9: Placement and routing of the pNCs. (a) A naive placement that
mimics the form of neural networks described in Figure 5.11(b),
and (b) the solution of the automatic placement and routing from
EasyEDA software. The gray box shows the major setups of the
algorithm (with technology specification of PE). (c) illustrates the
wire cross in PE: (c-1) is the symbol of cross that appears in (a) and
(b), while (c-2) denotes the microscopic photo of a wire-cross with
PEDOT:PSS as the conductive wire and DMSO (dimethyl sulfox-
ide) as the insulator, sourced from [38].
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Figure 5.10: Performance of the variational autoencoder (VAE)-based area es-
timator on the test data. The x-axis is the ground truth area from
the EasyEDA, while the y-axis denotes the estimated areas. Each
blue point is a test data. The gray diagonal line refers to the ideal
case where the estimation equals the ground truth. The gray area
around the line represents the variation of the ground truth areas.

the precision of the area estimator. Afterwards, the final model with a

7-layer encoder and a 7-layer decoder is selected as the area estimator

for pNCs. Figure 5.10 illustrates the model performance on test data,

which has not been used during training. The results suggest that, the

area estimator can provide acceptable (≤ 5% error) area estimation, and

does not overfit the training data.

5.3.2 Area-Aware Training

Although this chapter primarily considers EA as the primary method for the

compact design of pNCs, there are also gradient-based methods as viable solu-

tion for the architectural design. Therefore, this chapter also reviews, analyzes,

and conducts experiments on gradient-based methods, assessing their potential

and effectiveness in optimizing circuit architecture, and serve as the contrast to

EA-based methods.
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EA-based training. The fundamental EA algorithm has already been intro-

duced in Algorithm 2. As it can be directly utilized for the compact pNCs

design, we only do minor modification regarding the objective (fitness) func-

tion and the initialization of the pNC architecture.

As for training objective for the classification accuracy, we employ the com-

bination of the cross-entropy [31] and the classification accuracy as introduced

in Equation (3.3), namely:

O(D, ) = CE
(︂
D,

)︂
−ACC

(︂
D,

)︂
.

With the consideration of the circuit area, the overall objective is defined as

minimize (1−µ)O(D, )+µ
A( )

A′
, (5.7)

where µ ∈ R+ expresses the balance between accuracy and area, and A′ is a

constant multiplier to calibrate the area term of the similar magnitude with the

accuracy term O(D, ). Since this term simply aims to balance the loss term

and the area term into a similar order of magnitudes, A′ is not required to be a

precise value, and will not impact the training results.

Regarding the initialization of the circuit architecture, the EA starts with

only output nodes to facilitate the generation of more compact pNCs. From

there, it progressively increases the number of neurons and their connectivity.

After the evolution, the associated topological structures and parameters can

be mapped to the respective hardware primitives and flexibly printed.

Gradient-based training. SOTA gradient-based strategies for optimizing net-

work architectures are NAS [9] and network pruning [23]. Unfortunately, NAS

approaches are mainly designed for deep neural networks (DNNs) with block

structures [4, 14, 55, 57] such as residual blocks with different kernel sizes

or long-short-term-memory (LSTM) blocks, and they require hand-crafted ar-

chitectures. For instance, in differentiable architecture search (DARTS) [26],

several convolutional kernels with different sizes are pre-designed as candi-

dates, and finally, the optimal one is chosen by learning the importance factor

for each block. However, NAS essentially degrades to network pruning in the
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context of MLPs, because the importance factors for blocks in DNNs can be

interpreted directly as the weights in MLPs.

Network pruning refers to remove parts of the network parameters to re-

duce the network size. Here, a regularizer (penalty function) is often employed

to encourage higher sparsity of network parameters. Depending on the forms

of regularization, pruning can be divided into unstructured pruning (targeting

individual parameters) [16] and structured pruning (targeting groups of param-

eters) [22]. The former typically incorporates the ℓp norms of parameters into

the regularizer independently, e.g., through

∥g1∥1 +∥g2∥1 + · · ·+∥gi∥1 + · · · (5.8)

to promote increased number of zero-valued parameters In contrast, the lat-

ter applies penalties to the ℓp norms of grouped parameters, e.g., all weights

associated with a neuron

∥[g1, g2, · · · , gi, · · · ]∥2 (5.9)

to foster the elimination of complete neurons. Therefore, the latter is also

named grouped pruning [27, 51].

In ML, structured pruning is more favored as it streamlines both from the

algorithm and the hardware perspectives by simplifying the matrix multipli-

cations. Unstructured pruning, on the other hand, does not provide obvious

improvement due to the lack of conclusive tools to support sparse matrix mul-

tiplication. Conversely, in the context of pNCs, both pruning approaches bring

significant benefits. Because owing to the highly flexible and agile manufactur-

ing process of PE, removing any component can contribute to the compactness

of the circuits: Unstructured pruning can remove crossbar resistors, whereas

structured pruning enables to remove entire printed neurons. Notably, this is

a unique advantage of the additive PE. In this regard, we employ combined

unstructured pruning, Equation (5.8), and structured pruning, Equation (5.9),

methods as a SOTA baseline for the proposed evolutionary architecture algo-

rithm.

In addition to existing network pruning methods, this work also enhances
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Figure 5.11: Comparison of the circuit architecture from (a) gradient and (b)
evolutionary approaches. In (a), the dashed edges and nodes are
pruned. The red color refers to pruning a neuron when all its input
weights are pruned. The green color represents the case of pruning
a negation circuit when all the weights associated to a voltage are
positive.

the existing pruning method to specifically encourage the compact design of

pNCs, namely the area-aware training.

Despite the large amount of research on the functional forms [29, 33, 56]

of regularization functions, these studies typically employ simple and differ-

entiable functions, that are not directly applicable to assess the circuit area.

To address this issue and explore more potential of gradient-based pruning in

compact pNC design, we aim to incorporate circuit area of pNCs directly as

the regularization in the training objective. This approach promotes the ex-

plicit optimization of compact pNCs. Additionally, as the circuit area is signif-

icantly influenced by the circuit architecture, which is non-differentiable and

fails to offer valid gradient information, we employ gradient-relaxation meth-

ods to heuristically guide the gradient-based training. The basic idea of this

gradient relaxation was introduced in Chapter 3.2.1.

As illustrated by the dashed neuron in Figure 5.11(a), the presence of a neu-

ron can be expressed by the existence of its input weights embodied by the

conductance gi, i.e.,

max
i

{︂
[1{g1>0},1{g2>0}, · · · ,1{gi>0}, · · · ]

}︂
. (5.10)

This method belongs to structured pruning, as it aims to eliminate the entire
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neuron. Different from traditional regularization like Equation (5.9), Equa-

tion (5.10) only suppresses the largest input conductance in the crossbar, which

avoids the impact on other input conductances and thereby minimizing the ef-

fect on classification accuracy caused by the regularization. As the indicator

function 1{·} is a piece-wise constant function, we employ the soft-count to

enable the gradient-based training. Specifically, we still use the result of Equa-

tion (5.10) in the forward pass, while calculating gradients using a smooth

relaxation called soft-counts, Nsoft, in the backward pass. In this work, the

sigmoid(·) function is used as the smoothing function, therefore, the function

used for backpropagation of Equation (5.10) is given by

max
i
{[sigmoid(g1),sigmoid(g2), · · · ,sigmoid(gi), · · · ]} ,

as shown in by the orange function in Figure 3.5.

Analogously, the presence of a negation circuit can be calculated through

negative surrogate conductances, i.e.,

max
j

{︂
[1{θ1<0},1{θ2<0}, · · · ,1{θ j<0}, · · · ]

}︂
.

where θ j refers to the succeeding conductances from a neuron, as shown by

the green part in Figure 5.11. If none of the corresponding weights is negative,

the output voltage from the preceding neuron does not need to be negated.

Similarly, the gradient of this function is relaxed by

max
j
{1− [sigmoid(θ1),sigmoid(θ2), · · · ,sigmoid(θi), · · · ]} .

Regarding the count of the resistors, which aligns with unstructured pruning,

we employ 1gi>0 to count each crossbar resistor, while its gradient is given by

sigmoid(gi)

With these soft-counts, the area estimator adapted for gradient-based is:

Asoft = f (Nsoft
i ,Ai).

Finally, we use the cross-entropy loss to guide the training for higher accuracy.
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Comparable to Equation (5.7), the training objective for the pruning is

minimize
θθθ ,qqq

(1−µ)CE(D,θθθ ,qqq)+µ
Asoft(θθθ)

A′
. (5.11)

Similar to Chapter 5.2, to mitigate the noneffective penalty introduced by

the soft-count, we employ the mask-based pruning method after the training

process, and conduct a fine-tuning stage to further improve the classification

accuracy without any increase in the circuit areas.

5.3.3 Experiment

To evaluate the efficacy of the proposed methods, we implemented both evolu-

tionary and pruning algorithms5 with PyTorch and conducted experiments on

13 benchmark datasets as introduced in Table 4.1.

Experiment Setup. To conduct the EA-based training, we follow the default

evolution setup suggested in Chapter 4.3.4, whereas for gradient-based pruning

methods, we employ the pipeline introduced in Chapter 4.1.3.

5https://github.com/Neuromophic/Area-Aware-Training.
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In addition, in EA, to preserve a minimum size of the circuits, the archi-

tecture for all datasets are initialized as unconnected networks, i.e., featuring

only #output nodes. But in the network pruning, as it can only remove circuit

components, it is critical to start with a larger architecture to ensure the com-

petitive sub-architectures are included in the search space. Therefore, initialize

the (#input-4-3-#out put) topology as a basis structure for pruning. This initial

size is slightly more expansive than those typically employed in other sections.

To investigate the trade-off between accuracy and area, we run 50 exper-

iments, for both EA and pruning, with 50 uniformly selected values in µ ∈
[0,1]. The whole process is repeated ten times (with random seed varying

from 1 to 10) for each µ to ensure achieving a sufficiently good solution.

Result. After training, results are calculated on the corresponding test sets. It

is evident that, with increasing µ , the training objective gradually transitions

from prioritizing classification accuracy to minimizing circuit area. Conceptu-

ally, µ = 0 yields the highest accuracy and the largest area. As the objective in

this case only focuses on the accuracy and ignores the circuit area, the network

trained through gradient approach in this case is therefore referred to as the

reference. We report the classification accuracy, circuit area, and training time

in this case in Table 5.4.

Meanwhile, as µ increased, the both area and classification accuracy de-

creased. In this process, since the reduction ratio of accuracy and area holds

more significance than their specific values, subsequent data will be normalized

by the results of the reference values of the baseline, i.e., the existing pruning.

The change of accuracy and area versus µ is described in Figure 5.12.

Existing pruning vs. area-aware training. By comparing the SOTA pruning

methods with the modified compactness-specific area-aware pruning, we con-

clude that, although they yield similar accuracies, the circuit area from existing

pruning is consistently larger than the area-aware pruning. We speculate that,

this is because of the unawareness of the circuit area of the existing pruning.

For instance, the device counts of the negation circuits is not included in the

regularization term. Consequently, the training will not encourage more posi-

tive weights to reduce the number of negation circuits.
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Figure 5.13: Scatters and Pareto fronts of three methods, green for existing
pruning that is unaware of circuit area, red for proposed area-
aware pruning, and black for evolutionary algorithm (EA)-based
area-aware training.

EA approach vs. area-aware training. It can be seen that even with µ = 0,

EA can already achieve competitive classification accuracy and a substantially

smaller circuit area, when compared to the gradient approach. We speculate

that, this is because the EA method starts the search from the minimal archi-

tecture, and thus may converge near it. Subsequently, as the µ increases, al-

though both methods decrease the accuracy and area of pNCs, the EA method

produces a more modest degradation in accuracy.

To obtain the Pareto-optimal trade-offs between accuracy and area, we plot

the entirety of normalized areas versus their respective normalized accuracies

for all runs and all values of µ in Figure 5.13 with the green (for existing prun-

ing), red (for area-aware pruning), and black scatters (for EA). Based on the

scatters, three Pareto-fronts are drawn with their identical colors. Notably, the

Pareto-front of EA significantly outperforms that of the gradient-based train-

ing methods. Because EA natively support the optimization of circuit architec-

tures. Moreover, the area-aware training yields better trade-offs compared to

the area-unaware counterpart.

To provide more quantitative comparison, Table 5.5 displays several trade-

off points from the Pareto-fronts. It is evident that the EA approach offers

3.1× area-savings without any accuracy degradation compared to pruning. In
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Table 5.5: Accuracy-area trade-offs with Pareto-optimality.

Normalized Area-Aware Pruning EA (superiority over pruning)

Accuracy (%) Area (%) Power (mW) Area (%) Power (mW)

100 100 78 32 ( ↓ 3.1× ) 26 ( ↓ 3.0× )

90 44 37 15 ( ↓ 2.9× ) 13 ( ↓ 2.9× )

80 31 22 12 ( ↓ 2.5× ) 4 ( ↓ 5.5× )

case a 10% reduction in normalized accuracy is permissible, only 15% of the

reference area is needed, which is 2.9× area reduction compared to area-aware

pruning. Moreover, as a byproduct of lower device counts, the power can also

be greatly reduced compared to pruning. Specifically, the EA surpasses the

area-aware pruning method by 3.0× and 2.9× power reduction respectively

while providing 100% and 90% normalized accuracies.

Algorithm complexity. Beyond the primary concerns, i.e., area and accuracy

in this work, the complexity of the algorithms also draws our attention, because

this is a notable distinction between gradient and evolutionary approaches.

Thus, we summarize the training times for both methodologies in Table 5.4.

In our experiments, EA demands significantly more time (≈ 7×) than its

gradient counterpart. However, we have the following comments on this issue:

The most time-consuming steps in EAs are evaluating genomes and producing

offspring, which are nearly proportional to the population size N. We selected a

sufficient large N to explore the full capabilities of EAs, which can be reduced

in real design and optimization scenarios. Genome evaluation and offspring

production are well-suited to parallelization, although parallelization is not in-

cluded in this thesis, it can be easily addressed in the future. Despite longer

training times in our setup (30 minutes to 3 hours), the duration is still accept-

able within the broader product development cycle, as circuit optimization is

only part of NRE and target applications of PE often require small-scale cir-

cuits.

149



5.3.4 Discussion

This section focuses on the inherent challenges of PE, i.e., the large feature

sizes and limited device counts, restricting the broader application of pNCs

in compact scenarios. We leveraged the capability of PE for flexibly print-

ing any bespoke circuit architecture for specific target objectives. To explore

this potential, we proposed an area-aware training objective and adapted it to

two different approaches, namely EA-based method and gradient-based prun-

ing approaches. Simulation results reveal that the proposed method is capable

to facilitate compact design of pNCs, and EA presents a superiority over the

gradient-based pruning benchmarks. This significantly expands the range of

application scenarios and enhances the practicality of pNCs.

5.4 Summary

This chapter focuses on the utility of pNCs. Leveraging the additive manufac-

turing of PE, this chapter explores a hybrid fabrication strategy that merges the

cost-effectiveness and scalability of high-volume printing with the highly be-

spoke fabrication of low-volume printing. This approach optimizes both cost

and classification accuracy in the production of pNCs across varying specifica-

tions and batches. Power consumption is a pivotal factor in circuit design. This

chapter manages the power-aware training that precisely models the power-

consumption of pNCs and facilitates optimal power-accuracy trade-offs in dif-

ferent situations. Additionally, this chapter delves into the compact design of

pNCs, which is critical for area-constrained applications. By establishing an

accurate model to predict circuit area after placement and routing, this chap-

ter proposes an objective function that supports area-aware training, balancing

circuit footprint with classification accuracy.

Methodologically, this chapter primarily utilizes the Pareto-analysis with

penalty methods to identify the best compromises among multiple objectives,

offering valuable insights for circuit design. It also introduces the augmented

Lagrangian method (for both equality and inequality constraints) to achieve or

even surpass Pareto-optimal within single training. This method significantly

enhances the efficiency of pNC design and optimization with given budgets.
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6 Extension of Printed Neuromorphic Circuits

Previous chapters primarily adhered to pNCs with computational paradigm

of MLPs. However, this paradigm inherently lacks the capability to handle

temporal information due to the absence of time-dependent operations. As

illustrated in Figure 6.1, research in neuromorphic computing hardware ex-

tends beyond feedforward ANNs or MLPs to include recurrent neural networks

(RNNs) and spiking neural networks (SNNs).

This chapter first introduces a PE implementation of printed recurrent neu-

romorphic circuits (pRNCs). By including learnable filters into existing pNCs

and modifying the circuit architecture, the new circuit can process temporal

signals similarly in the way of RNNs. Moreover, SNN is one of the most

biological plausible computing paradigms, are recognized for its low power

consumption and resilience to noise. This chapter also proposes a printed

spike-generator and its inclusion into existing pNCs to emulate printed spik-

ing neuromorphic circuits (pSNCs).

For both circuit designs, we propose corresponding circuit modeling meth-

ods and training schemes to leverage the agile manufacturing of PE, enabling

highly customized circuit training for specific tasks.

6.1 Printed Recurrent Neuromorphic Circuits

In many scenarios like stress detection [22], the concrete signal values might be

less informative due to physiological variation among individuals. In contrast,

the temporal changes in the signal often exhibits more meaningful information.

However, this kind of time-series data processing is beyond the reach of the ex-

isting pNCs with MLP-paradigms. This is because of their lack of component

to memorize historical signals.

To address this limitation, we propose to introduce learnable printed capaci-
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Figure 6.1: A breakdown of network models in neuromorphic implementa-
tions, grouped by overall type and sized to reflect the number of
associates papers. Sourced from [18] (2017).

tors into the existing pNCs, which allow the circuit to memorize, and thus, pro-

cess temporal sensory data. By combining the capacitors with existing prim-

itives in pNCs, we construct the printed temporal processing block (pTPB).

Additionally, by stacking multiple pTPBs, pRNCs can be constructed to pro-

vide more sophisticated computing functionalities.

6.1.1 Circuit Design of Recurrent pNCs

Before propose the circuit design of pRNCs, we shortly review the preliminary

of RNNs and analyze their essential advancement over the MLPs.
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Figure 6.2: Schematic of a 3-input 4-output printed temporal processing block
(pTPB) that receives sensor signals and yields outputs to subse-
quent devices. Sourced from [21].

Recurrent neural networks. RNNs were initially proposed to handle inputs

with variable lengths, as the input dimensionality for an MLP is always pre-

determined. By incorporating an internal hidden state hhh, an RNN is then capa-

ble of processing variable length inputs through repeated state updates. RNNs

have demonstrated remarkable success in areas such as handwriting recogni-

tion [7]. Notably, RNNs are theoretically Turing-complete, meaning that they

can execute arbitrary programs to process any given input sequences [10]. A

general formulation of RNN state equations is given by

hhht = f1( f2(hhht−1)+ f3(Xt)),

YYŶ t = f4(hhht),
(6.1)

where the subscript t ∈ {0,1, · · · ,T} refer to the iteration (time step), hhht is the

internal hidden state at the t-th step, Xt denotes the input at the t-th step, and YYŶ t

represents the output at the t-th step. Moreover, the functions f1(·), · · · , f4(·)
are classic operations in ANNs, such as learnable affine mappings and/or ac-

tivation functions. The specific choices of them vary across different network

architectures, e.g., in Elman RNNs [17], f2(·) and f3(·) are weighted-sum op-

erations with biases, while f1(·) and f4(·) are functions of learnable linear

mappings with activation functions.
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Printed Recurrent Neuromorphic Circuits. Notably, the essential capability

of RNNs to process temporal information is the update of the hidden state con-

taining previous information. Inspired by the similar behavior of the capac-

itors, we introduce printed capacitors into the existing pNCs to construct the

printed circuits that may emulate RNN-paradigms. Further, to include other

operations in ANNs as shown in Equation (6.1), we combine the filters with

crossbars and ptanhs circuits. Consequently, the pTPB is proposed and repre-

sented in Figure 6.2. It can be seen that the most essential part in the circuit are

framed by the blue boxes, which consist of capacitors and resistors, resembling

RC low-pass filters to provide time-dependencies. To enable bespoke design of

the proposed circuits, we also establish the corresponding model to facilitate

the training of the circuit components for target tasks. For this, we will first

model the filters while considering their coupling with the rest of the circuit.

Afterwards, we will develop the model to cover the entire pTPB.

6.1.2 Modeling of Recurrent pNCs

Different application scenarios generally necessitate different temporal pro-

cessing behaviors. Conveniently, the highly flexible additive printing tech-

niques of PE can enable such task-specific fabrication. To design the be-

spoke signal processing behaviors for target tasks, we develop the mathemat-

ical model of the proposed pTPB and the corresponding pRNCs, along with

an optimization objective. With this approach, the components in pTPBs (e.g.,

the capacitance) can be optimized alongside the resistances in the crossbars

(representing weights and biases).

Modeling of single filter. Initially, we concentrate on modeling the filter with-

out considering its coupling to the successive circuit. Taking the filter unit

in Figure 6.2 as an example, we obtain:

IF
R =

(︂
V F

in−V F
out

)︂
/RF,

IF
C =CFdV F

out/dt,

IF
R = IF

C , (6.2)
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where the superscript (·)F indicates the values in this filtering unit. Therefore,

the differential equation of the capacitor voltage V F
out with respect to time can

be expressed by
dV F

out
dt

=− 1
RFCF V F

out +
1

RFCF V F
in.

By using backward Euler integration [2], we obtain the update of the V F from

time step to time step:

V F
outt =

RFCF

RFCF +∆t⏞ ⏟⏟ ⏞
=:β

V F
outt−1 +

∆t
RFCF +∆t⏞ ⏟⏟ ⏞

=:1−β

V F
int

= βV F
outt−1 +(1−β )V F

int ,

(6.3)

where ∆t refers to the step size of the temporal discretization, V F
int and V F

outt are

the input and output of the filter at time step t. Evidently, β ∈ (0,1) depends

on RF and CF, thus, by finding suitable RF and CF, a desired filtering behavior

can be achieved. As these values will be learned jointly with the crossbar

resistors to fit the specific tasks, they are referred to as learnable filters.

Modeling of coupled filter. To connect the learnable filters with the resistor

crossbars, it is imperative to take the impact of their interface into account.

This impact primarily results from the fact that the current flowing through the

resistor RF does not fully feed into the capacitor CF, but is partially shunted

towards the crossbar, see red arrows in Figure 6.2. To reflect this interface in

our model, we modify Equation (6.2) to

IF
R = IF

C + Icouple =: µIF
C ,

with Icouple refers to the coupling current flows towards crossbar, and

µ := 1+
Icouple

IF
C

is a decoupling factor. Consequently, Equation (6.3) is reformulated to

V F
outt =

µRFCF

µRFCF +∆t⏞ ⏟⏟ ⏞
=:β ′

V F
outt−1 +

∆t
µRFCF +∆t⏞ ⏟⏟ ⏞

=:1−β ′

V F
int

= β
′V F

outt−1 +(1−β
′)V F

int , (6.4)
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It is notable that µ is contingent on the values of RF, CF and RC, which vary

continuously during the training process. Additionally, µ is also determined

by the frequency of the input signal, which is generally agnostic in the design

stage. Therefore, to minimize the coupling effect, the resistances in the filters

are designed with lower values (≤ 1kΩ) than that of the resistors in crossbars

(100kΩ-10MΩ), while the capacitances are designed as high as the printing

technology allows (100nF-100µF). By analyzing of signal frequencies in the

experimental datasets (see Table 6.1) and conducting SPICE simulations with

pPDK [16], we empirically determined µ ∈ [1,1.3] for the given applications.

Modeling of temporal processing block. Although Equation (6.4) emulates

Equation (6.1), it possesses only one learnable parameter, i.e., β ′. To expand

the design space, and better mimic the expressiveness of classic RNNs, a more

sophisticated combination of the learnable filters, crossbars, and ptanh circuits

is designed.

As sketched in Figure 6.2, to match analogous computational capabilities

of classic Elman RNNs [17], we first pass the input voltages through resis-

tor crossbars followed by ptanh activation circuits, before feeding them to the

filters. Here, the ptanh circuits are introduced to decouple the learnable fil-

ters from the preceding crossbars, because proper weighted-sum computation

through the crossbar necessitates a negligible output current IC
out. However, the

resistivity of the filter circuit is much lower than the crossbars. Additionally,

we also apply an identical process to output voltages from learnable filters. In

the rest of the work, we refer to this stack of primitive layers as a pTPB, i.e.,

the entire circuit exemplified in Figure 6.2. Consequently, the mathematical

model of a pTPB can be described as

VVV F
t = βββ

′⊙VVV F
t−1 +(1−βββ

′)⊙ptanh(WWW 1VVV in
t +bbb1),

VVV out
t = ptanh(WWW 2VVV F

t +bbb2),
(6.5)

where VVV in
t ∈ RNin and VVV out

t ∈ RNout vectorize the input and output voltages of

the pTPB at time point t. VVV F
t ∈ RNF summarizes the output voltages of the

filter layer and βββ
′ ∈ RNF collects the β ′ values of each filter. Moreover, WWW 1 ∈

RNF×Nin , bbb1 ∈ RNF , WWW 2 ∈ RNout×NF , and bbb2 ∈ RNout denotes the weighted-sum
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operations emulated by the corresponding crossbars. Additionally, ⊙ indicates

element-wise multiplication.

By comparing Equation (6.5) with Equation (6.1), we conclude that, the

designed circuit layer represents an instance of an RNN with f1(·) and f2(·)
being identity functions, while f3(·) and f4(·) are weighted-sums followed by

activation functions.

Notably, a pRNC may consist of multiple pTPBs connected successively for

accomplishing more intricate computational tasks. In case of multiple pTPBs,

we denote the initial input voltages (typically sensor signals) by Xk, and rep-

resent the final output of the last layer by YYŶ t(βββ
′,θθθ ,qqq,Xt ,Xt−1, · · · ,X0), which

is a function of βββ
′ in the learnable filters, the crossbar conductances θθθ , the

components in nonlinear circuit qqq, and the input voltages at all time steps

Xt , · · · ,X0.

6.1.3 Training of pRNCs

In case of training basic pNCs (without pTPB), the cross-entropy loss [12] can

be minimized with respect to learnable surrogate conductances θθθ to decrease

the mismatch between the label Y and the circuit prediction YYŶ (θθθ ,qqq,X) for an

input X, and thus improve the classification accuracy. In contrast, the pRNCs

is time-dependent and allows obtaining predictions for each time step YYŶ t based

on the current input Xt and previous inputs Xt−1, · · · ,X0. We thus consider the

temporal dynamics of the circuit output and, to encourage consistent correct

classification at every point in time, the objective function can be modified to

minimize
βββ
′
,θθθ ,qqq

1
T

T

∑
t=0

L
(︁
YYŶ t(βββ

′,θθθ ,qqq,Xt ,Xt−1, · · · ,X0),Y
)︁

⏞ ⏟⏟ ⏞
L(D,βββ

′
,θθθ ,qqq)

. (6.6)

Additionally, it is necessary to consider the dependency of the decoupling fac-

tor µ and the initial voltages of the capacitors. The former has been previously

mentioned in the modeling of pTPBs, while the latter is generally caused by the

preceding input signal. To reduce the dependencies of the circuit coupling (µ)

and the initial voltage VVV F
0 on the results, we integrate our loss function over

the value ranges for both variables, assuming [1,1.3] for µ , and [0,1] for VVV F
0 .
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Through this, we should achieve a configuration of that learnable parameters ggg

and βββ
′ that is robust to the choice of either value, which leads to the training

objective of

minimize
βββ
′
,θθθ ,qqq

∫︂
L(D,βββ ′,θθθ ,qqq,µ,VVV F

0)p(µ)dµ p(VVV F
0)dVVV F

0 .

Unfortunately, no analytical solution for the integral (or its gradient with re-

spect to the learnable parameters) exists. We thus rewrite the minimization of

the training objective using equivalent formulation as an expected value

minimize
βββ
′
,θθθ ,qqq

Ep(µ),p(VVV F
0)

{︂
L(D,βββ ′,θθθ ,qqq,µ,VVV F

0)
}︂
, (6.7)

which allows to obtain MC estimates of the function value (and its gradients)

whenever needed. Consequently, based on the ranges for VVV F
0 and µ , we choose

p(VVV F
0) = U [0,1] and p(µ)∼ U [1,1.3], i.e., uniform densities over their as-

sumed ranges.

Notably, given that the circuit operates continuously on input signals rather

than performing a one-time computing, the circuit latency is implicitly incor-

porated in the training objective Equation (6.7). By encouraging more correct

classifications at each time step, the circuit should be trained to achieve correct

output as fast as possible.

6.1.4 Experiment

To evaluate the pRNCs, we implemented the proposed approach1 with Py-

Torch [14] and conduct experiments on 15 benchmark time-series datasets.

Datasets. To find benchmark datasets for testing the temporal information

processing, we first sourced all datasets from the UCR time-series classifica-

tion archive [3]. Afterwards, we filtered out datasets based on their complex-

ity. Only datasets with Nin and Nout below ten are kept to match the typical

complexity of the target applications of PE. Subsequently, we preprocess the

datasets by resizing the series lengths uniformly to 128, normalized the sig-

1The code is available at https://github.com/Neuromophic/LearnableFilters.
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nal values to the range of [−1,1], reshuffle and split the datasets into train-

ing (60%), validation (20%), and test (20%) sets. The information of the

datasets is listed in Table 6.1. Then, we leveraged a 2-layer RNNs as a base-

line to remove datasets whose difficulty surpassed the capabilities of general

RNNs, because these are not the target applications of pNC. Ultimately, the top

15 datasets with optimal RNN performance are retained for the further experi-

ment.

Experiment setup. For each dataset, we adopt a 2-layer pRNC (consisting of

two consecutive pTPBs) with the number of learnable filters NF equaling to

Nout. For training-related setups, we follow the standard pipeline as introduced

in Chapter 4.1.3.

Baselines. For comparison, we consider 2-layer basic pNCs without pTPB as

a baseline. The topology is kept the same as the pRNCs, i.e., Nin-NF-Nout with

NF = Nout. This comparison intends to assess the temporal processing ability

of both pNCs and pRNC. Since pNCs are unable to process temporal sensory

data, the classification results should form random guesses (RG), which refers

to always predicting the most probable class in training data. Besides, we also

compare the pRNCs with the RNNs that we strived to mimic. Specifically,

we adopt the Elman RNNs provided in PyTorch, and analogously, we utilize

2-layer RNNs with the number of hidden states (equivalent to the number of

learnable filters NF) being equal to Nout. After hyperparameter tuning, we ini-

tiate the learning rate for RNNs to 0.01, while all other training setups are kept

identical to those of the pRNCs, which is the default training setup.

Result. After training, we select the best models (trained with three different

random seeds) for each dataset according to the accuracy on the validation set.

Note that, in accordance with the proposed objective, we have computed the

classification accuracy at every time step, and subsequently average these ac-

curacies over time to yield the overall classification accuracy on each dataset.

These selected models are then evaluated on the test set. Ultimately, for each

dataset, we summarize its mean accuracy with respect to random seeds and

the corresponding standard deviation. The result is presented in Table 6.1. To
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obtain a straightforward insight on the effectiveness of each models in vari-

ous scenarios (datasets), we also averaged the accuracy and standard deviation

with respect to datasets. The averaged values are reported in the last row of Ta-

ble 6.1.

As can be seen in Table 6.1, basic pNCs without pTPB are unable to pro-

cess temporal data, and thereby only achieve similar classification accuracy to

that of the random guess. However, by comparison of averaged performance

between pRNCs and basic pNCs, it reveals that pRNCs are indeed capable of

processing time-series data. By comparing the performance of pRNCs with

RNNs, we conclude that the pRNCs can attain a comparable (98%) classifica-

tion accuracy to their completely hardware-agnostic Elman RNN counterparts.

Interestingly, a closer observation of Table 6.1 reveals that pRNCs and RNNs

do not consistently yield comparable performance on every dataset. Their ac-

curacy differs significantly on datasets such as CBF, DistalPhalanxTW, Pow-

erCons, and SmoothSubspace. This may be due to the physical limitations of

the circuits (and consequently their distinct computational models).

Hardware cost. To investigate the additional hardware resources required by

the new circuit design, we collect the device counts and total power consump-

tion of both the previous pNCs and the proposed pRNCs in different application

scenarios . Analogously, we averaged the hardware costs across all datasets to

report a comprehensive comparison regarding the hardware costs between the

pRNC and its pNC counterpart. The results can be seen in Table 6.2. Evi-

dently, the capability of pRNCs for temporal signal processing requires only

approximately 1.5× more devices and 1.3× more power consumption.

6.1.5 Discussion

This section addresses the inherent limitations of pNCs based on the MLP

paradigm in processing temporal signals, i.e., time-series data. By incorpo-

rating capacitors, the circuit gains time-dependency, enabling to memorize and

process historical input signals. Leveraging this feature of the capacitors, we

designed a learnable filter sub-circuit as a primitive. Subsequently, we con-

sidered the architecture for integrating the learnable filter primitives into the
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main body of pNCs and addressed their interaction (coupling), resulting in the

pTPB. The pTPB then serves as a fundamental block of the pRNCs to process

more complex computing tasks.

In addition, we developed a parameterized model of pRNCs and designed a

training objective function tailored for specific tasks. This enables the pRNCs

to learn distinct filtering behaviors for the target tasks. Thanks to the agile man-

ufacturing capabilities of PE, these bespoke designs can be easily implemented

without additional costs.

Experiments have demonstrated that the proposed pRNCs require only mi-

nor additional hardware to provide efficient temporal signal processing capa-

bilities nearly equivalent to the Elman RNNs. In sum, this new circuit design

significantly broadens the application scenarios of the general pNCs family.

6.2 Printed Spiking Neuromorphic Circuits

As introduced in Chapter 2.2 and Figure 6.1 from [18], spiking neural network

(SNN) [6] is one of the most initial intention of neuromorphic computing and

remains one of the most frequently investigated types of neuromorphic hard-

ware. This is due to its plausibility of the biological signal processing and its

competitiveness in terms of circuit area, energy efficiency, and real-time pro-

cessing capabilities. Some researchers even claim, in the extreme, that only

SNNs can be truly considered as "neuromorphic computing". Several studies

have successfully implemented analog printed spiking neurons [9, 19]. How-

ever, these implementations primarily rely on organic transistors, necessitating

high operating voltages, which do not align with the targeted edge application

scenarios considered in this thesis.

Moreover, those works often focus solely on the functional implementa-

tion at circuit level, such as mimicking the behavior of spiking neurons with

the integrate-and-fire (I&F) or leaky-integrate-and-fire (LIF) model. However,

they fail to propose corresponding parametric modeling to facilitate the train-

ing of circuits containing these spiking neurons. A critical reason for this prob-

lem originates from the inconsistency between the designed circuits and the

claimed operating principles. For instance, both [9] and [19] assert to design

analog printed spiking neurons based on the I&F principle. However, this is
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technically impossible for analog circuits, because, as shown in Figure 6.3, the

execution of an I&F neuron requires an ideal comparator (necessitating an ideal

transistor as switch with no linear region between cut-off and saturation region;

and can be charged or discharged instantaneously) and momentary reset/switch

of the membrane and output voltages (requiring instantaneous changes of ca-

pacitor voltages). Consequently, lacking accurate modeling of these hardware

neurons, one can only train the circuits with the ideal I&F model and then

naïvely employ the proposed circuit (with another behavior) to replace the ideal

I&F model. Evidently, this will significantly reduce the classification accuracy

of the circuits or even render them completely unusable.

To address these challenges, this section introduces a hardware-software co-

design that emulates spike generation using a set of circuits with fast charging

and discharging functions (referred to as a spike-generator). This design is fea-

sible, compatible, and friendly with analog circuits. Although this circuit does

not replicate any existing SNN model, we employ the approximation-based

modeling approach to accurately model the relationship between the input and

output signals of the spike-generator, rather than claiming it with another be-

havior like LIF. This accurate surrogate model allows us to integrate the pro-

posed spike-generator into existing pNCs, resulting in printed spiking neuro-

morphic circuit (pSNC), and train them effectively. This end-to-end training

approach ensures consistency between the algorithm optimization and the real

hardware implementation, enabling the proposed circuit to be fully leveraged

and trained for the target tasks.

6.2.1 Circuit Design of Spiking pNCs

Before diving into the concrete circuit design of the pSNCs, we briefly go

through the models of the spiking neurons.

Spiking neural networks. Both SNNs and ANNs consists of weighted-sum

operations and nonlinear activations. The main difference between SNNs and

ANNs is their nonlinear activation behaviors. In ANNs, weighted-summed

data are activated by nonlinear activations in magnitude domain, i.e., nonlinear

conversion of one magnitude value to another magnitude value. In contrast,
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SNNs transform weighted-summed data into temporal spike trains for the de-

livery and processing of information. As shown in Figure 6.3, the primary

working principle of a I&F neuron is to

1. integrate the input signal as membrane voltage, then

2. membrane voltage increases and may reach the threshold value,

3. once the threshold voltage is reached,

4. a spike is generated at the output side, and

5. the membrane voltage is reset.

However, step 3 and step 5 are challenging for the implementation of analog

circuits because they require idea comparators and instantaneous reset of ca-

pacitor voltages. To avoid these difficulties, we analyze the purpose of this

design, and employ an end-to-end design method to design the printed spiking

neuron.

We notice that, the design of I&F neuron aims to link the magnitude of in-

put voltages (step 1) with the time interval for the membrane voltage (step 2

and step 5) to reach a certain threshold (step 3), and thus the output spike (step 4).

In other word, the magnitude of the input signals is encoded through the occur-

rence of the output spikes. Follow this idea, we propose the guideline of our

pSNCs, namely

1. the number of spikes in a certain temporal interval should monotonically

relate to the input magnitude, and

2. the implementation of spikes can be relaxed through a fast charging stage

followed by a discharging stage.

According to these principles, we proposed the printed spike-generator that

comprises a charging and a discharging circuits that can encode the input sig-

nals to the corresponding spike-like pulses.

Printed spike-generator. The design of a printed spiking neuron is shown in

Figure 6.4. The resistor crossbar is identical to that in the basic pNCs.

After the weighted-sum, the resulting voltage performs as the gate voltage

of T ch, which controls the drain-source (DS) current to charge the succeeding
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Figure 6.4: Circuit level implementation of printed spiking neuromorphic cir-
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weighted-sum operation and the printed spike-generator. The
spike-generator can be further decomposed into a charge network
and a discharge network. Sourced from [13].

charging circuit. The charging circuit primarily consists of a Rch and Cch, form-

ing a circuit to provide V ch to the amplifier with a delay directly proportional

to both Rch ·Cch and the frequency of the spikes.

V ch is then strengthened through an amplifier circuit that has identical archi-

tecture as the ptanh circuit as introduced in Figure 2.6. The amplifier output is

connected to two RC pairs: the first one consists of the pull-up resistor Rdis
1 with

Cdis
1 , while the second pair is Rdis

2 and Cdis
2 . These two RC pairs are essential

for the oscillation functionality by adding a small phase shift due to capaci-

tance charging. The voltage across the capacitor Cdis
2 controls transistor T dis,

which manages the discharging of Cch. As the gate voltage of T dis exceeds the

cut-off region, the DS current flows through T dis, initiating Cch to discharge.

However, as the input voltage from the crossbar continues to supply the charge

network, Cch gets recharged again, maintaining the spike oscillations of the

circuit.

The amplification of the signal at Cch is shown in Figure 6.4. As the output

signal of Cdis
1 still remains considerably below supply voltage VDD, a second

amplifier is connected to boost the amplitude of the output spikes (i.e., Vout)
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to facilitate the activation of succeeding neurons. The specific values of the

components in the spike-generator is reported in Table 6.3.

Table 6.3: Component values in the spike-generator. Sourced from [13].

Component Values

Rch, Rdis
1 , Rdis

2 10kΩ

W ch, W dis 600µm

Lch,Ldis 40µm

Cch,Cdis1 ,Cdis2 10µF

6.2.2 Modeling of Spike-Generator

To fully leverage the computing functionalities of the proposed circuit, we also

propose the corresponding modeling method to precisely describe the hard-

ware behaviors. After that, we integrate the established model into the existing

training framework of pNCs to enable the bespoke design of pSNCs.

To enable gradient-based training via backpropagation [8], a fully differen-

tiable model to describe the transfer characteristic of the printed spike-generator

circuit is needed. However, given the high circuit complexity and the unusual

circuit mechanism, the common hardware-agnostic SNN training frameworks,

e.g., the snnTorch [5], are incompatible with proposed circuits. Therefore, we

employ approximation-based modeling approach (see Chapter 3.1.2) to build

the precise surrogate model of the spike-generator. Different from the mod-

eling of nonlinear activation circuit such as ptanh circuit, the behavior of the

spike-generator should be described by a sequence-to-sequence model to in-

corporate the temporal dimension of the circuit. To this end, we utilize a

Transformer-based as the surrogate spike-generator model to learn the circuit

behavior for mapping the input voltage sequences into the output voltage se-

quences. A Transformer [20] is a neural network model initially proposed

for natural language processing. It is, therefore, aptly suited for processing se-

quential data. The essential part of the Transformer is the attention mechanism,

which enables the model to account for positional and value correlations. The

effectiveness of Transformer has been shown by numerous SOTA models like
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BERT [4] and ChatGPT [15]. Notably, this Transformer-based model is not

the one being printed, but rather an algorithmic surrogate model that serves the

training of the circuit components.

To prepare the data required for training the surrogate spike-generator model,

we conducted 5000 SPICE simulations for a single spike-generator circuit

based on the pPDK [16]. The duration of the simulation is 3s and the temporal

step size is 1ms. To ensure that the surrogate model can comprehensively and

accurately mimic the behavior of the original spike-generator circuit in any op-

erating scenario, we designed the following patterns of input voltages, namely,

1. constant voltages, ranging from 0V to 2V, serving to represent the case

of stable inputs;

2. the output voltages obtained from step 1, i.e., Vout, representing the case

of a cascade of multiple neurons; and

3. diverse harmonic signals with varying frequencies (0−5Hz), ampli-

tudes (0−1A), phases (0−2π), and their combinations, expressing the

circuit behavior in other complex situations.

Considering the causality nature of the hardware, i.e., the output of the cir-

cuit must not depend on the future input signals, we introduce causal attention

layers in the Transformer. After hyperparameter tuning, we select a 3-layer

Transformer architecture, with each layer having three attention heads. Fol-

lowing the pipeline of from Chapter 3.1.2, we split the dataset, train and finally

obtain the surrogate spike-generator model. The mean squared error (MSE) is

1.1× 10−6 on the validation set and 9.7× 10−7 on the test set; therefore, we

conclude that the model is capable of sufficiently interpolating and accurately

predicting the output voltages. Figure 6.5 exemplifies some results to show the

precision of the surrogate model compared to SPICE simulation.

6.2.3 Training of pSNCs

In the training of existing pNCs the cross-entropy loss L(·) is minimized with

respect to the crossbar conductances θθθ for maximizing the classification ac-

curacy. However, given that the output of pSNC is a temporal data series,

temporal dynamics of the circuit output need to be considered. Therefore, to
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encourage the overall classification accuracy at every time step, a modified

training objective can be formulated as

minimize
θθθ

1
T

T

∑
t=0

L(Xt ,Y,θθθ)⏞ ⏟⏟ ⏞
L(D,θθθ)

, (6.8)

where Xt is input data series at each time step t and Y denotes the correspond-

ing classes. They are summarized by D, denoting the target dataset for pSNCs,

and θθθ summarizes all the learnable conductances in the pSNC. Subsequently,

as all the operations in Equation (6.8) are fully differentiable, and can be up-

dated through gradient based optimizers, such as Adam [11] and SGD [1].

Notably, unlike the objective for pNCs, which includes physical quantities qqq

for the nonlinear circuits as optimization variables, the learnable parameters in

Equation (6.8) only include the crossbar resistors, representing the weights and

biases. Because, in this thesis, we do not include the circuit components in the

spike-generator in a parameterized way to train the surrogate model. Rather,

these circuit components are considered predefined and fixed. However, this

limitation can be easily addressed by collecting a more comprehensive simula-

tion dataset that is parameterized by the circuit components as well.

6.2.4 Experiment

To evaluate the proposed pSNC, we implement the proposed training frame-

work2 with PyTorch [14] and conducted a comparative study of pSNC against

the prior pNCs and the benchmark hardware-agnostic SNNs [5].

Datasets. Although SNNs or pSNCs exhibit capabilities in processing tempo-

ral information datasets, most SOTA research on SNNs are typically employing

"temporized" datasets. Here, temporized datasets refers to datasets that contain

originally only non-temporal information, such as the datasets described in Ta-

ble 4.1. However, they are converted into temporal datasets through specific

methods, e.g., encoding a spike train with the spike density proportional to the

magnitude of the values in the datasets, as represented in Figure 6.6. Therefore,

2Code available at https://github.com/Neuromophic/Printed_Spiking_NN.
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Figure 6.6: Dataset temporization that encodes real numbers into the density of
the temporal spike trains.

this section directly takes the temporized datasets listed in Table 4.1. This not

only keeps the consistency with other SNNs works, but also facilitates the fair

comparison with previous pNCs.

Experiment setup. The major training setup follows the suggestion proposed

in Chapter 4.1.3. As Equation (6.8) only includes crossbar conductances in-

stead of the parameters in the spike-generator. For fair comparison, we also

exclude the physical quantities qqq in the training of the baseline pNCs and only

train θθθ . For SNNs, as we want to explore the potential classification abilities of

the fully functional SNNs as a reference, we not only train the weights and bi-

ases, but also two critical learnable parameters inside the spike neuron, namely

the leakage of the membrane voltage and the firing threshold. The impact of

these factors can be observed in Figure 6.3(a) and (b).

Baselines. The basic pNCs are employed as a baseline to provide the hard-

ware reference. Additionally, considering the target computing paradigm, pSNCs

are also compared with its hardware-agnostic counterpart, SNNs, with the LIF

mechanism [5].

Result. After training the networks, we select the models with the lowest loss

on the validation set, as they are the ones that would be printed. Note that,
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in accordance with the objective proposed in Equation (6.8), we computed the

classification accuracy at every time step and subsequently averaged the accu-

racies over time to yield the overall classification accuracy of a dataset. These

selected models are then evaluated on the test set. Finally, for each dataset, we

summarized the mean accuracy and the power consumption with respect to the

random seeds. The result is presented in Table 6.4. To get insights into the ef-

fectiveness of each model in various scenarios, we also averaged the accuracy

and standard deviation with respect to target tasks. The comparative analysis

among SNN, pNCs, and pSNCs (illustrated in Table 6.4) reveals that pSNCs

exhibits a similar level of accuracy as SNN and pNCs. Across the 13 bench-

mark datasets, pSNCs achieved an average accuracy only 1% lower than the

established reference pNCs.

In terms of power consumption, a significant improvement of pSNC over

pNCs can be observed, which is around 3.86× higher in power and energy ef-

ficiency. This advancement is a consequence of the inherent sparsity of voltage

activations within the network, aligning with the requirements of PE, particu-

larly in low-power applications where energy efficiency is a critical concern.

Hardware cost. To investigate the additional hardware resources required by

the pSNCs, we collected the device counts and total power saving of both

the previous pNCs and the proposed pSNCs in different application scenarios.

Analogously, we averaged the hardware costs across all datasets to provide a

comparison regarding the hardware costs between pSNCs and its pNCs coun-

terpart. The results can be seen in Table 6.5.

It can be seen, the total number of devices, on average, increased by 50%

when employing pSNCs compared to pNCs due to a higher transistor count

and the addition of capacitors. Although the area footprint expanded, pSNCs

achieved a significant reduction in power consumption due to their spiking

nature. Also, the datasets of various sizes provide a wide range of spectra to

showcase the circuit capability, tailored for PE applications.
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Table 6.5: Hardware costs of basic printed analog neuromorphic circuits
(pNCs) and printed spiking neuromorphic circuits (pSNCs).
Sourced from [21].

Dataset #Transistors #Resistors #Capacitors #Total Device
pNC pSNC pNC pSNC pNC pSNC pNC pSNC

1 18 54 85 96 - 27 103 177

2 14 42 79 77 - 21 93 140

3 24 72 118 129 - 36 142 237

4 48 144 268 264 - 72 316 480

5 22 66 127 121 - 33 149 220

6 22 66 131 121 - 33 153 220

7 14 42 83 77 - 21 97 140

8 16 48 82 85 - 24 98 157

9 38 114 254 230 - 57 292 401

10 20 60 107 110 - 30 127 200

11 24 72 116 129 - 36 140 237

12 18 54 81 96 - 27 99 177

13 18 54 100 99 - 27 118 180

Average 23 69 126 126 - 35 149 228

6.2.5 Discussion

This section highlights the potential of merging printed manufacturing tech-

niques and innovative algorithms in the field of PE and SNNs. Specifically, we

by analyzing the working principle of general SNNs, we propose the circuit

design of pSNCs. Subsequently, we established a precise surrogate spike-

generator model to incorporate into the spiking behaviors into the training

framework of pNCs and thus formed the training method for pSNCs. In this

way, the trained circuits can exactly predict and reflect the real hardware pNCs.

The presentation of pSNCs completes the last major piece of the puzzle of

implementing neuromorphic computing paradigms through PE (as shown in

Figure 6.1). This progress significantly enhances the functionality of the gen-

eral pNCs series and their adaptability to various edge application scenarios.
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6.3 Summary

This chapter highlights the intrinsic limitations of the computational paradigm

employed by the previous pNCs, i.e., the MLPs. Specifically, the MLP-like

paradigms are unable to process temporal signals, restricting its application

horizon. Additionally, as it is not an event-driven algorithm, the circuits must

operate continuously, leading to inefficient energy consumption. These intrin-

sic challenges can not be addressed by the methodologies introduced in previ-

ous chapters. To tackle these issues and broaden the existing pNCs, this chapter

introduces two novel variations of pNCs: the pRNC and the pSNC.

The new circuit designs leverage printed capacitors to incorporate tempo-

ral dependencies. We utilized capacitors and resistors to construct learnable

low-pass filters, which serve as the foundation for the pTPB. As the iterative

behavior of the pTPBs aligns with that of the RNNs, the proposed pRNCs are

able to handle application scenarios that necessitate RNNs. For the pSNC, we

analyzed the working principles of SNNs and developed a hardware-friendly

spike-generator that contains a charging and a discharging circuit.

Beyond proposing novel circuit designs, we also developed accurate opti-

mization models for these circuits to describe their hardware behaviors. Con-

sidering the complexity of the circuits, we employed physics-informed mod-

eling for the pRNCs and approximation-based modeling for the pSNCs. Both

modeling approaches exhibit a high level of hardware consistency, accurately

reflecting the circuit behaviors in algorithmic level. Based on these models, we

proposed the circuit objective functions for highly bespoke training tailored to

specific tasks.

Although this chapter does not involve the reliability and practicality con-

siderations discussed in the previous chapters as metrics and objectives, those

methods can be seamlessly applied to new circuits. This chapter mainly fo-

cuses on exploring the advantages of the circuit innovations, because the newly

proposed circuits allow PE-based neuromorphic computing hardware to cover

the mainstream computing paradigm, enabling the pNC family to provide effi-

cient, low-energy computing in most scenarios, and laying a solid foundation

for the popularization of pNC in edge scenarios.
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7 Conclusion and Outlook

Printed electronics (PE), due to its flexible additive manufacturing, diverse ma-

terial choices, and extremely low fabrication cost, has emerged as a pivotal en-

abler of edge devices within the context of IoT. Printed analog neuromorphic

circuits (pNCs) leverage these unique advantages and also integrate the ex-

cellent computational capabilities of neuromorphic computing. Consequently,

pNCs hold the potential to informatize, electronify, and intellecturalize the

most edge scenarios in daily life, such as smart packaging, smart band-aids,

and smart clothing.

However, pNCs also face challenges inherent to additive manufacturing,

such as large feature size, low integration density, and high variations. While

existing research has proposed some circuit primitives of pNCs and validated

the basic concept of these circuits, significant improvement is needed to en-

able pNCs being practically deployed. This thesis addresses these challenges

through a series of studies around pNCs.

The first major contribution of this thesis is developing the methodology

for establishing optimization models for pNCs, while incorporating physical

and technical constraints. After the modeling, this thesis enhances an existing

ML-based training method, addressing the weakness of gradient-based train-

ing. By introducing heuristic gradient, the training process is enabled even with

non-differentiable variables and operations. In addition, an EA-based training

method is proposed to efficiently search for optimal circuit architectures, bring-

ing the training to a higher level. Importantly, these methodologies are not only

applicable to modeling and training for pNCs, but can also be transplanted to

other circuit problems, which lays a solid foundation for subsequent contribu-

tions.

The second primary contribution focuses on improving the reliability of

pNCs. This dissertation experimentally measures and models the stochastic
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aging behavior of the organic printed resistors (PEDOT:PSS) and introduces

aging-aware training to enhance classification accuracy over the circuit life-

time. Besides, this work identifies three main factors affecting the circuit re-

liability, namely sensing error, printing variation, and device aging. To this

end, this work proposes a training objective that considers all these factors to

significantly boost circuit reliability. To even further enhance the circuit reli-

ability, new nonlinear activation circuits are designed and optimally selected

through an EA. Experimental results demonstrate that, to achieve high robust-

ness, the activation circuits need not only to be stable against variation, but

also to exhibit a low slope of its characteristic to resist input variations caused

by the previous layer. Lastly, this thesis examines the impact of catastrophic

faults on pNCs and highlights the limitations of algorithmic optimization in

such cases, justifying and opening new research areas for the testing and post-

printing measures.

The next contribution enhances the practical utility of pNCs. Reliability is

only an initial prerequisite of the deployment of pNCs. There are further chal-

lenges like circuit cost, battery lifetime, and circuit compactness. Given the

target application of PE in low-cost edge applications, such as smart packag-

ing, pNCs must be inexpensive. By leveraging the additive manufacturing of

PE, the thesis combines the unique benefits of both high- and low-volume man-

ufacturing, and significantly reducing fabrication costs through split additive

manufacturing. Regarding the power consumption, this work precisely models

the power of pNCs and proposes power-aware training based on the augmented

Lagrangian method. With this approach, the circuit can be trained to provide

the best classification accuracy within the given power budget. This approach

outperforms the existing penalty-based methods. Lastly, this dissertation also

focuses on circuit compactness by developing an accurate area model to pre-

dict circuit area footprint from the netlist. Notably, the area model can provide

precise prediction of the circuit area after placement and routing. As the circuit

compactness is strongly related to the circuit architecture, an EA in employed

to conduct area-aware training. This approach enhances compactness, making

the circuits suitable for area-constrained applications like smart band-aids.

The final contribution of this work extends the computational paradigm of
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pNCs. Existing designs of pNCs primarily based on MLP-scheme, which lacks

capabilities for temporal signal processing. This is essentially due to the ab-

sence of circuit components with time-dependencies. To address this, we uti-

lize printed capacitors to create low-pass filters, and further structure printed

recurrent neuromorphic circuits (pRNCs). Subsequently, a hardware-software

co-design framework is proposed to enable the bespoke training of both con-

ductances (weights) and capacitances (filtering behaviors) for specific tasks,

achieving a performance nearly equivalent to hardware-agnostic Elman RNNs.

This work also designs printed spiking neuromorphic circuits (pSNCs). By

proposing the corresponding parametric model as well as the training frame-

work, the pSNCs can be trained on target datasets to yield results that are

comparable to hardware-agnostic LIF SNNs. The extension of computing

paradigms enriches the family of pNCs, and thus expands their application

range and scenarios.

Despite the progress made in this thesis, which lays a robust foundation

for the practical deployment of pNCs, there remain multiple opportunities for

further exploration and enhancement of pNCs.

Regarding the reliability, while parameter variations such as aging and print-

ing errors have been incorporated into the training process, catastrophic faults

pose a significant challenge at the algorithmic level, where intuitive solutions

fall short. This underscores the need for future research on the testing of pNCs,

such as designing input patterns to efficiently locate faults. Similar to [1], once

a fault is localized, additive manufacturing techniques can be utilized for post-

printing recovery.

pNCs currently lack specialized placement and routing algorithms. Although

preliminary work [3] has explored this issue, considering the number of wire

crossovers, it employs EA, which is inefficient, and is targeted to digital pNCs.

Although we have borrowed the algorithm from mature and efficient commer-

cial PCB design tools in this thesis, yet this approach is not optimal neither.

Future algorithms should aim to support the routing and placement for pNCs

at the transistor level, while respecting various technical characteristics and

specifications of the PE.

New materials often drive disruptive innovations. With the recent realiza-
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tion of printed memristors [2], memristor-based pNCs could emerge in the

future. The unique properties of memristors allow for reconfigurable circuits

by adjusting the resistance. This feature can be utilized to compensate for con-

ductance degradation due to aging, or to reconfigure the identical circuits for

different tasks, which can significantly reduce the fabrication costs for bespoke

printing. Additionally, memristors may also enable the development of entirely

new computational paradigms in the future.

Furthermore, algorithms for modeling and training pNCs can also be im-

proved. In modeling, particularly approximation-based modeling, obtaining a

representative dataset through extensive SPICE simulations is necessary be-

fore building the ANN-based surrogate models. However, the data preparation

can be time-consuming, and large-scale surrogate models are often required to

accurately describe circuit behavior, increasing the cost of training surrogate

models and reducing the efficiency of the training framework of pNCs. Recent

work have directly linked PyTorch, the training framework for pNCs, to the

SPICE [4]. Future research should follow this progress for accelerated pNCs

training. Moreover, to conduct comprehensive training for pNCs taking ac-

count for both aging, printing variation, fabrication cost, power consumption,

and circuit area footprint, numerous MC samples will be introduced. There-

fore, employing analytic or hybrid analytic-numerical methods can be consid-

ered in future work to handle of stochastic variables in the modeling. Also,

the training will be a multi-objective, requiring several trade-off parameters.

This may significantly reduce training efficiency. To this end, more advanced

methods to achieve Pareto-optimality should be adopted.

It is hoped that the methods, discussions, and ideas presented in this thesis

will provide support and inspiration for future work on the algorithm-driven

design and optimization of pNCs.
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