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Abstract

Objects with physical properties that must be tightly controlled (e.g., dimen-
sions, transmittance, reflectance and concentrations) are common in indus-
trial production processes in the automobile, semiconductor and biological
industries. An industrial measurement system for quality assurance must fea-
ture high precision and accuracy to allow 100 percent control over the prop-
erties of objects for the manufacturing process. Ellipsometry is a reliable and
very sensitive method for characterizing materials and thin films. It features
high precision and sensitivity and allows nondestructive measurement for
process monitoring of optical elements, displays and semiconductors. Ellip-
sometry uses the changes in polarization when polarized light is reflected (or
transmitted) from a sample at an oblique (or normal) angle of incidence (AOI).

Measurements with conventional ellipsometers are only possible on plane
surfaces or plane surface elements (with respect to the size of the measure-
ment beam). A signal is only detected if the angle and height of the polar-
ization state generator (PSG) and polarization state analyzer (PSA) in rela-
tion to the surface normals are aligned in such a way that they comply with
the laws of reflection. Even slight misalignments from the ideal reflection
or transmission settings can result in significant experimental errors. For
larger misalignments, it is not possible to generate any meaningful signals.
For nonplanar samples, the curvature of the surface alters the AOI and the
vertical position of the reflected light, so the ideal reflection condition for the
ellipsometer cannot be achieved. The angle settings for the PSG and the PSA
must be very precisely adjusted relative to the surface normals. The height
of the surface relative to the optical components must also be adjusted very
accurately. These conditions are necessary for ellipsometry measurements.
Nonplanar samples must be adjusted to allow the PSA to receive a sufficient
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signal. The process of the alignment and adjustment for the ellipsometer and
sample is time-consuming. Therefore, inline inspection of curved surfaces
is almost impossible using a standard ellipsometry configuration. However,
many applications require quality monitoring or characterization for nonpla-
nar surfaces.

To overcome the geometric limitation, retroreflex ellipsometry is proposed for
nonplanar surfaces, including a prototype, polarization ray tracing and two
analysis methods for two-phase and three-phase systems. The retroreflex el-
lipsometer measures Mueller matrices for nonplanar surfaces. This uses the
concept of the retroreflector, which returns the light beam from the sample
on the same beam path with a fixed phase difference of 180∘. The polariza-
tion effect is the same as that for an ideal mirror within an angular range
of approximately ±30∘. For optically isotropic two-phase systems (ambient/
substrate), the proposed ellipsometer simultaneously measures the AOI, the
tilt angle and the refractive index with calibrated reflectance values. For opti-
cally isotropic three-phase systems (ambient/ thin film/ substrate), the system
measures the AOI, the tilt angle and the film thickness using the refractive in-
dices of the film and substrate.

In order to verify the proposed method and the retroreflex ellipsometer, sev-
eral experiments are conducted. The accuracy and precision of the retroreflex
ellipsometer are determined using straight-through measurements in air and
a reference sample. The refractive index of an off-axis parabolic mirror is mea-
sured and the result is compared with that of a commercial ellipsometer. The
film thickness of a protected gold-coated concave mirror is measured and the
results are compared with those of a commercial ellipsometer. The surface
of the concave mirror is reconstructed using calculated angles of incidence
and tilt.

Overall, retroreflex ellipsometry addresses the geometric restrictions of con-
ventional ellipsometry, whereupon samples are no longer limited to flat sur-
faces. Hence, ellipsometric measurements can be used comprehensively for
many industrial production processes for the first time, e.g., the characteriza-
tion of optical properties of freeform optics and defect inspection for samples
with almost arbitrary shapes. Retroreflex ellipsometry has high flexibility for
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different shapes of surfaces and the complexity of the system is simple. More-
over, it has great potential for use inline and in situ quality control systems
because of the large acceptable angular range for the reflection or refraction
of beams at the sample.

iii





Kurzfassung

Objekte mit physikalischen Eigenschaften, die streng kontrolliert werden
müssen (z. B. Abmessungen, Transmissionsgrad, Reflexionsgrad und Konzen-
trationen), sind in industriellen Produktionsprozessen wie in der Automobil-,
Halbleiter- und Bioindustrie üblich. Ein industrielles Messsystem für die
Qualitätssicherung muss eine hohe Präzision und Genauigkeit aufweisen,
um eine hochgenaue Kontrolle der Eigenschaften der Objekte für den Her-
stellungsprozess zu ermöglichen. Die Ellipsometrie ist eine zuverlässige und
sehr empfindliche Methode zur Charakterisierung von Materialien und dün-
nen Schichten. Sie zeichnet sich durch hohe Präzision und Empfindlichkeit
aus und ermöglicht zerstörungsfreie Messungen zur Prozessüberwachung
von optischen Elementen, Displays und Halbleitern. Die Ellipsometrie nutzt
die Änderungen der Polarisation, wenn polarisiertes Licht von einer Probe
unter einem schrägen (oder normalen) Einfallswinkel (AOI) reflektiert (oder
durchgelassen) wird.

Messungen mit herkömmlichen Ellipsometern sind nur an ebenen Flächen
oder ebenen Flächenelementen (bezogen auf die Größe des Messstrahls) mög-
lich. Ein Signal wird nur dann erkannt, wenn Winkel und Höhe des Pola-
risationszustandsgenerators (PSG) und des Polarisationszustandsanalysators
(PSA) in Bezug auf die Oberflächennormalen so ausgerichtet sind, dass sie
den Gesetzen der Reflexion entsprechen. Schon geringe Abweichungen von
den idealen Reflexions- oder Transmissionseinstellungen können zu erhebli-
chen Messfehlern führen. Bei größeren Ausrichtungsfehlern ist es nicht mög-
lich, aussagekräftige Signale zu erzeugen. Bei nicht ebenen Proben verän-
dert die Krümmung der Oberfläche den AOI und die vertikale Position des
reflektierten Lichts, so dass die ideale Reflexionsbedingung für das Ellipso-
meter nicht erreicht werden kann. Die Winkeleinstellungen für das PSG und
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das PSA müssen sehr genau auf die Oberflächennormalen abgestimmt wer-
den. Auch die Höhe der Oberfläche relativ zu den optischen Komponenten
muss sehr genau eingestellt werden. Diese Bedingungen sind für ellipsometri-
sche Messungen erforderlich. Nicht planare Proben müssen justiert werden,
damit die PSA ein ausreichendes Signal empfangen kann. Der Prozess der
Ausrichtung und Justierung von Ellipsometer und Probe ist zeitaufwändig.
Daher ist die Inline-Inspektion gekrümmter Oberflächen mit einer Standard-
Ellipsometriekonfiguration fast unmöglich. Viele Anwendungen erfordern je-
doch eine Qualitätsüberwachung oder Charakterisierung von nicht ebenen
Oberflächen.

Zur Überwindung der geometrischen Beschränkung wird die Retroreflex-
Ellipsometrie für nichtplanare Oberflächen vorgeschlagen, einschließlich
eines Prototyps, Polarisationsstrahlverfolgung und zwei Analysemetho-
den für zwei- und dreiphasige Systeme. Das Retroreflex-Ellipsometer misst
Mueller-Matrizen für nichtplanare Oberflächen. Dabei wird das Konzept des
Retroreflektors verwendet, der den Lichtstrahl von der Probe auf demselben
Strahlengang mit einer festen Phasendifferenz von 180∘ zurückwirft. Der
Polarisationseffekt ist derselbe wie bei einem idealen Spiegel innerhalb ei-
nes Winkelbereichs von etwa 30∘. Für optisch isotrope Zweiphasensysteme
(Umgebung/Substrat) misst das vorgeschlagene Ellipsometer gleichzeitig
den AOI, den Neigungswinkel und den Brechungsindex mit kalibrierten
Reflexionswerten. Bei optisch isotropen Dreiphasensystemen (Umgebun-
g/Dünnschicht/Substrat) misst das System den AOI, den Kippwinkel und
die Schichtdicke unter Verwendung der Brechungsindizes von Schicht und
Substrat.

Insgesamt überwindet die Retroreflex-Ellipsometrie die geometrischen Ein-
schränkungen der konventionellen Ellipsometrie, wodurch die Proben nicht
mehr auf ebene Flächen beschränkt sind. Damit können ellipsometrischeMes-
sungen erstmals umfassend für viele industrielle Produktionsprozesse genutzt
werden, z.B. zur Charakterisierung der optischen Eigenschaften von Freiform-
optiken und zur Defektkontrolle bei nahezu beliebig geformten Proben. Die
Retroreflex-Ellipsometrie hat eine hohe Flexibilität für unterschiedliche Ober-
flächenformen und die Komplexität des Systems ist gering. Darüber hinaus
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bietet sie aufgrund des großen zulässigen Winkelbereichs für die Reflexion
oder Brechung der Strahlen an der Probe ein großes Potenzial für den Einsatz
in Inline- und In-situ-Qualitätskontrollsystemen.
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Notation

This chapter introduces the notation and symbolswhich are used in this thesis.

General notation

Scalars italic Roman letters 𝑥, 𝑋
italic Greek letters 𝛼,Ψ

Vectors bold Roman lowercase letters 𝐤
Matrices bold Roman uppercase letters 𝐌

Symbols

arg(⋅) argument of a complex number
(⋅)† Hermitian adjoint of a matrix
(⋅)+ Moore–Penrose inverse
(⋅)T transpose of a matrix
̂(⋅) unit vector

∏ product operator
‖⋅‖ Euclidean distance
ℑ(⋅) imaginary part of a complex number
ℜ(⋅) real part of a complex number
⊗ Kronecker product
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Notation

∶= defined as
𝛼 azimuthal rotation angle
𝛽 film phase thickness
∆ phase change
𝛿rp, 𝛿rs phase of p- and s-polarized light
𝛿 retardance
𝛿𝑖 phase of the wave
𝜀0 permittivity of free space
𝜼 surface normal
𝛾 deflection angle
𝜆 wavelength
Ψ amplitude ratio
𝜌 ratio of the amplitude reflection coefficients
𝜎 standard deviation
𝜃max maximum incident angle
𝛿𝜃 included angle
𝜃0 angle of incidence
𝜃′0 nominal angle of incidence
𝜃B Brewster’s angle
𝜙 tilt angle
𝜒2 squared error function
𝐁 magnetic induction
𝑐 speed of light
ℂ set of complex numbers
exp(𝑥) exponential function, exp(𝑥) = 𝑒𝑥

𝐄 electric field
̃𝐸 amplitude of the electric wave

|𝐸𝑥|, |𝐸𝑦| normalized electric field amplitudes
𝑑 film thickness

xvi



Notation

𝐷𝜃 thickness cycle
doffset offset for the reflected beam
𝐷𝐼(𝐌) depolarization index of a Mueller matrix
h offset along the surface normal
𝐼 intensity
i imaginary unit
𝐉 Jones matrix
𝑗𝑖𝑗 elements of a Jones matrix
𝐉(3) 3D Jones matrix
𝑗(3)𝑖𝑗 elements of a 3D Jones matrix
𝐤 propagation vector
𝑘 extinction coefficient
𝐌 Mueller matrix
𝑀𝑖𝑗 elements of a Mueller matrix
�̂� normalized Mueller matrix
𝑚𝑖𝑗 normalized elements of a Mueller matrix
𝐧 surface normal
𝑁 complex refractive index
𝑛 refractive index
𝑁𝑀 ,𝑆𝑀 ,𝐶𝑀 NSC parameters for a Mueller matrix
𝐎 3D transformation matrix
𝐏 polarization transfer matrix
𝑃 irradiance
ℝ set of real numbers
ℝ>0 set of positive real numbers
𝑟 radius
𝐫 coordinates in vector form
𝑟p, 𝑟s reflection amplitude coefficients
𝑅p, 𝑅s magnitude of the reflection amplitude coefficients

xvii
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𝑅 reflectance
𝐒 Stokes vector
𝑆0, 𝑆1, 𝑆2, 𝑆3 Stokes parameters
�̂� normalized Stokes vector
𝑠1, 𝑠2, 𝑠3 normalized Stokes parameters
𝐬, 𝐩 local coordinate system
𝑡 time
𝑡p, 𝑡s transmission amplitude coefficients
𝑇p, 𝑇s magnitude of the transmission amplitude coefficients
𝑢 uncertainty
x, y, z world coordinates
ℤ set of integers
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Acronyms

2D two-dimensional

3D three-dimensional

AOI angle of incidence

BFP back focal plane

CCD charge-coupled device

CMOS complementary metal-oxide semiconductor

DI depolarization index

DOP degree of polarization

IES Lehrstuhl für Interaktive Echtzeitsysteme

IOSB Fraunhofer-Institut für Optronik, Systemtechnik und Bil-
dauswertung

KIT Karlsruher Institut für Technologie

LCVR liquid crystal variable retarder

LP linear polarizer
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Acronyms

NA numerical aperture

NPBS non-polarizing beamsplitter

NRMSE normalized root-mean-squared error

PDF probability density function

PEM photoelastic modulator

POI plane of incidence

PSA polarization state analyzer

PSG polarization state generator

QWP quarter-waveplate

RMSE root-mean-squared error

SD standard deviation
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1 Introduction

1.1 Motivation

Objects with physical properties that must be tightly controlled (e.g., dimen-
sions, transmittance, reflectance and concentrations) are common in indus-
trial production processes in the automobile, semiconductor and biological
industries. An industrial measurement system for quality assurance must fea-
ture high precision and accuracy to allow 100 percent control over the prop-
erties of objects for the manufacturing process.

Ellipsometry is a reliable and very sensitive method for characterizing mate-
rials and thin films [Fuj07]. It features high precision and sensitivity and al-
lows nondestructive measurement for process monitoring of optical elements,
displays and semiconductors. Ellipsometry uses the changes in polarization
when polarized light is reflected (or transmitted) from a sample at an oblique
(or normal) angle of incidence (AOI). Figure 1.1 shows an ellipsometer in the
reflection configuration. A collimated beam of light is emitted from a polar-
ization state generator (PSG), reflected by the sample in accordance with the
law of reflection and detected by a polarization state analyzer (PSA). By using
a model which includes the physical structure and optical properties of the
test object and measuring the changes in polarization states after reflection
or transmission, the optical properties (refractive indices) or film thickness of
the test object can be calculated. The object model shows the physical struc-
ture of the test object, such as the substrate, the number and types of films
and the roughness of the surface. These known and measured parameters are
used to determine the unknown physical properties of the observed object
using an optimization process.
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PSG PSA

Sample

n

Figure 1.1: Schematic diagram of a general ellipsometer in the reflection configuration: 𝐧 is the
surface normal of the sample. A PSG emits light with different polarization states
and a PSA detects the polarization states of light that is reflected from the sample.

Ellipsometry is a standard laboratory tool for special applications in biology
and medicine [Arw98] and for accurately measuring the thickness of thin
films from sub-nanometers to a few micrometers [Tom16]. It can also be used
to characterize materials, detect contaminants [Ped82], determine the degree
of crystallinity [Shi97] or to monitor the corrosion of alloys [Kot09]. How-
ever, it is rarely used in industrial applications because of the geometrical
limitations of conventional ellipsometry. Measurements with conventional
ellipsometers are only possible on plane surfaces or plane surface elements
(with respect to the size of the measurement beam). A signal is only detected
if the angle and height of the PSG and PSA in relation to the surface nor-
mals are aligned in such a way that they comply with the laws of reflection.
Even slight misalignments from the ideal reflection or transmission settings
can result in significant experimental errors. For larger misalignments, it is
not possible to generate any meaningful signals (see Figure 1.2). For nonpla-
nar samples, the curvature of the surface alters the incidence angle and the
vertical position of the reflected light, so the ideal reflection condition for the
ellipsometer cannot be achieved.

The angle settings for the PSG and the PSA must be very precisely adjusted
relative to the surface normals (typical deviations< ±0.1∘) [Hil11]. The height

2
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PSG PSA

Sample

n

Figure 1.2: Schematic diagram of a conventional ellipsometer measuring a nonplanar sample.
The surface normal 𝐧 is changed by the curvature of the surface.

of the surface relative to the optical components must also be adjusted very
accurately (typical deviations < 0.2 mm). These conditions are necessary for
ellipsometry measurements. Nonplanar samples must be adjusted to allow
the PSA to receive a sufficient signal. The process of the alignment and ad-
justment for the ellipsometer and sample is time-consuming. Therefore, inline
inspection of curved surfaces is almost impossible using a standard ellipsom-
etry configuration.

However, many applications require quality monitoring or characterization
for nonplanar surfaces, e.g., the uniformity of metallic coatings [Sha19], mul-
tilayer coatings on extreme ultraviolet mirrors for high reflectance [Gra22],
functional coatings on lenses for anti-reflection and self-cleaning [Sar20] and
the oxide layer on a Si-enriched sphere for volume evaluation [Fuj17]. For
most semiconductor processes, samples must be rotated to produce uniform
layers, e.g., plasma-enhanced chemical vapor deposition and epitaxial growth
process. Rotating samples inevitably produces a wobble effect because the ro-
tational axis and the surface normal for the sample are not parallel. A holistic
approach is required to overcome the geometric limitation. The measurement
systemmust also be pertinent to different shapes of surfaces and must feature
minimal complexity to allow use in real industrial applications.

3
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1.2 Research topics

This study is concerned with ellipsometry measurements of nonplanar sur-
faces. The problems of nonplanar surfaces are quantified by the following
calculation.

Figure 1.3 shows a planar surface (dotted line) that defines the 𝑥𝑦 plane (𝑧 =
0). The 𝑧 axis (0,0,1) is the surface normal 𝐧. If beam 𝐤0 is incident on the 𝑦𝑧
plane and the incidence angle is 𝜃0, the incident beam 𝐤0 and the reflected
beam 𝐤1 are expressed as:

𝐤0 = (0, sin 𝜃0, − cos 𝜃0), (1.1)

𝐤1 = (0, sin 𝜃0, cos 𝜃0). (1.2)

x

y

z

k0

k1

k′
1

n′

h

doffset

θ0

Figure 1.3: The position of the reflected beam is changed due to the offset of the sample along
the surface normal 𝐧.
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If the surface has an offset ℎ along the surface normal 𝐧, then the surface
normal and the reflected beam become 𝐧′ and 𝐤′1, so 𝑑offset is the offset for
the reflected beam:

𝑑offset = 2ℎ sin 𝜃0. (1.3)

For an incidence angle of 70∘ and an offset along 𝐧 of 1 mm, the beam offset
𝑑offset on the detector is about 1.9 mm.

Figure 1.4 illustrates a tilt surface (solid line) and a reference surface (dashed
line) on the 𝑥𝑦 plane. If the reference surface rotates around the 𝑦 axis, the
surface normal for the sample becomes 𝐧′ = (sin𝜙, 0, cos𝜙). Using the law
of reflection, the angle of incidence 𝜃′ and the reflected beam 𝐤′1 after tilting
are calculated as:

cos 𝜃′0 = cos 𝜃0 cos𝜙, (1.4)

𝐤′1 = (cos 𝜃0 sin 2𝜙, sin 𝜃0, cos 𝜃0 cos 2𝜙). (1.5)

The included angle 𝛿𝜃 between the original reflected beam𝐤1 and the reflected
beam 𝐤′1 after tilting is calculated using the scalar product:

cos 𝛿𝜃 = sin2 𝜃0 + cos2 𝜃0 cos 2𝜙. (1.6)

For an incidence angle of 70∘, if a surface tilts 5∘ around the 𝑦 axis, the angular
deviation is 3.4∘ for the detector. If the distance between the surface and the
detector is 150 mm, the offset is 8.9 mm.

For nonplanar surfaces, sample offset and tilt must be considered. A photo-
diode is used for intensity measurements in ellipsometry and the diameter of
the photosensitive area is usually less than 5 mm. Therefore, using the calcu-
lation results, sample offset and tilt produce a significant displacement in the
detector, especially at large angles of incidence. The beam displacement also

5
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x

y

z

k0

k1

k′
1

n′

ϕ

θ′0

θ0

δθ

Figure 1.4: The position of the reflected beam when the sample is tilted around the 𝑦 axis.

decreases the measurement accuracy. In the worst case, the detector does not
receive any signal. The angular deviation of the reflected beam also causes un-
expected polarization effects in optical elements. Waveplates (retarders) are
very sensitive to the angle of incidence so a change in the AOI changes the
retardance of the waveplates, which causes measurement errors for the PSA.

For analysis of ellipsometry measurements, the AOI must be known. The ac-
curacy of the AOI determines the accuracy of measurement results for refrac-
tive indices and film thickness. A full measurement of a nonplanar surface
requires a raster scan. A curved surface also changes its surface normal dur-
ing the scanning. An accurate value for the AOI increases the accuracy of the
results. A special optical design, measurement methods and data analysis for
the AOI are necessary for ellipsometry measurements of nonplanar surfaces.
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1.3 Main contribution

1.3 Main contribution

This study develops an ellipsometer with a holistic approach for nonplanar
surfaces. The main contributions are:

A return-path Mueller matrix ellipsometer with a retroreflector is designed
and constructed, which is named retroreflex ellipsometer.

• The retroreflex ellipsometer measures Mueller matrices for nonplanar
surfaces. This uses the concept of the retroreflector, whose
polarization characteristics are the same as those for an ideal mirror
within an angular range of approximately ±30∘ [Che20].

• The polarization model for nonplanar surfaces is derived by
polarization ray tracing. The model is used to analyze measured
Mueller matrices to calculate the ellipsometry parameters and the
angles for coordinate rotation [Che23a].

Several methods that use retroreflex ellipsometry have been proposed to de-
termine the angle of incidence. A Monte Carlo uncertainty analysis of these
methods is simulated. The effect of a spherical shape on the measurement of
ellipsometric parameters is analyzed.

• For optically isotropic two-phase systems (ambient/ substrate), the
proposed ellipsometer simultaneously measures the angle of
incidence, the tilt angle and the refractive index with calibrated
reflectance values [Har20, Che21b].

• For optically isotropic three-phase systems (ambient/ thin film/
substrate), the system measures the angle of incidence, the tilt angle
and the film thickness using the refractive indices of the film and
substrate [Che23a].

In order to verify the proposed method and the retroreflex ellipsometer, sev-
eral experiments are conducted.

7
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• The Mueller matrix for the retroreflector is analyzed and measured at
different angles of incidence using a commercial, in order to determine
the polarization characteristics ellipsometer [Che20].

• The accuracy and precision of the retroreflex ellipsometer is
determined using straight-through measurements in air and reference
samples [Che20, Che23a].

• The refractive index of an off-axis parabolic mirror is measured and the
result is compared with that for a commercial ellipsometer [Che20].

• The film thickness of a protected gold-coated concave mirror is
measured and the results are compared with those for a commercial
ellipsometer. The surface of the concave mirror is reconstructed using
calculated angles of incidence and tilt [Che23a].

1.4 Thesis outline

The outline of this thesis is shown as follows:

Chapter 2 Related work
This chapter presents related work on methods of measuring thin films and
the optical properties of curved surfaces using ellipsometry.

Chapter 3 Polarized light and ellipsometry
The fundamental knowledge of polarized light, polarization ray tracing and
ellipsometry are introduced in this chapter.

Chapter 4 Retroreflex ellipsometry
This chapter explains the principle of retroreflex ellipsometry. The system
design and the retroreflex ellipsometry prototype are demonstrated. A polar-
ization analysis of the retroreflector is also presented.

Chapter 5 Measurement methods and uncertainty analysis for non-
planar surfaces
Using retroreflex ellipsometry, several methods are proposed to calculate the
incident angle, tilt angle and the angle of the coordinate rotation for optically
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isotropic two-phase and three-phase systems. The Monte Carlo uncertainty
for these methods and analysis of ellipsometric measurements of nonplanar
surfaces are also calculated.

Chapter 6 Results and discussion
Several experiments are conducted and the results are analyzed to verify the
proposed method and the retroreflex ellipsometer.

Chapter 7 Conclusion and outlook
Conclusions are drawn and proposals for future research are presented.
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This study develops an ellipsometer and analysis methods for nonplanar sur-
face measurements. This chapter presents an extensive overview of related
work in three sections. Section 2.1 shows the variety of ellipsometers that can
be used to measure nonplanar surfaces. Section 2.2 shows different methods
to characterize nonplanar surfaces using ellipsometric measurements. The
features and challenges of these methods are discussed in Section 2.3.

2.1 Ellipsometry for nonplanar surfaces

Ellipsometry is usually used for planar surfaces but some ellipsometers mea-
sure nonplanar surfaces. There are three types: microellipsometry, imaging
ellipsometry and return-path ellipsometry. In this section, the basic principles
and the main features of these approaches are described.

2.1.1 Microellipsometry

Microellipsometry is a special configuration of ellipsometry that uses an ob-
jective lens to focus the input light on the sample and collects the reflected
light at the sensor. The objective lens is placed perpendicularly to the surface.
Microellipsometry uses high numerical aperture (NA) objective lenses to en-
hance spatial resolution for measurements of microstructures. The measure-
ments are single-point or whole-field, depending on the configuration. This
technique has been widely used since the 1980s. The spot size (a few mm) for
traditional ellipsometry is much larger than that for microellipsometry, which
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is several microns with a high-NA objective lens. Therefore, microellipsome-
try produces high-resolution 2D maps of polarimetric parameters from the
sample.

PSG

NPBS

Lens

Sample

PSA

Figure 2.1: Schematic diagram of a microellipsometer.
The first microellipsometer was proposed by Stevens in 1980 [Ste80]. The
schematic diagram of typical microellipsometers is shown in Figure 2.1. Col-
limated light from the polarization state generator (PSG) is focused using the
objective and reflected light is collected by the same objective. The light then
traverses the non-polarizing beamsplitter (NPBS) and is received by the po-
larization state analyzer (PSA). The angles of incidence on the sample vary
depending on the position of light rays on the objective. The NA for the ob-
jective determines the maximum incidence angle 𝜃max on the sample. The
definition of NA is shown in Figure 2.2 and is calculated as:

NA = 𝑛 sin 𝜃max, (2.1)

where 𝑛 is the refractive index of the medium next to the objective lens and
𝜃max is half the angular aperture.
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θmax

Objective

θmax

Figure 2.2: Numerical aperture of an objective. The dashed line is the optical axis of the objective.

In an air environment (𝑛 = 1), for an objective lens with a NA value of 0.9,
the maximum incident angle is 64.16∘ and the minimum incident angle is 0∘.
For a planar sample that is aligned with the optical axis, the distribution of
incidence angles exhibits radial symmetry. Therefore, microellipsometry is
also called angle-resolved ellipsometry. The ellipsometric parameters can be
calculated by the intensity distribution on the sensor. Similar setups can be
found in the studies of See et al. [See96], Feke et al. [Fek98], Zhan and Leger
[Zha02], Ye et al. [Ye07] and Otsuki et al. [Ots13].

PSG

NPBS

Objective

Sample

PSA

Mirror

Sensor

Figure 2.3: Schematic diagram of a microellipsometer with off-axis illumination.
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Another variation of microellipsometry is shown in Figure 2.3. Instead of on-
axis illumination, off-axis illumination was used by Leonhardt et al. [Leo91]
to improve lateral resolution. This configuration decreases the effect of beam
focusing if the input beam from the PSG is much smaller than the diameter of
the aperture of the objective [Hol96]. Therefore, the angle of incidence is fixed
for a planar surface. This setupmeasures surface topography and ellipsometry
parameters simultaneously by scanning the surface. The surface profile is
determined using a variety of sensors or methods, such as a charge-coupled
device (CCD) array [Leo91] or a change in the input azimuth angle [Hol96].

To reduce the mechanical scanning time, imaging back focal plane (BFP) mi-
croellipsometry is used. The schematic diagram is shown in Figure 2.4. The
off-axis illumination is focused onto the BFP of the objective. If the objective
fulfills Abbe’s law, the illumination is parallel and impinges on the surface
at an oblique incident angle. The light is then recollected by the objective
lens and is received by the PSA. Surface topography is also measured using
microscopic fringe projection [Leo98] and interferometry [Leo03].

PSG

Lens

NPBS

Objective

Sample

Lens

PSA

BFP

Figure 2.4: Schematic diagram of back focal plane microellipsometry.
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2.1.2 Imaging ellipsometry

Microellipsometry gives high lateral resolution but the entire sample must be
scanned in vertical and lateral directions to obtain the ellipsometry parame-
ters and topography. The scanning process is time-consuming and requires
high-precision stages and auto-focusing sensors to adjust the sample to the fo-
cus plane. Imaging ellipsometry uses imaging sensors, such as a CCD sensor
or a complementary metal-oxide-semiconductor (CMOS) sensor, to measure
an area instead of a single point. Each pixel on the imaging sensor represents
a single ellipsometric measurement and the lateral resolution depends on the
pixel size and the lens system. Therefore, imaging ellipsometry gives high
lateral resolution (up to 1 µm [Che21a]) with area measurements. Different
configurations have been developed for the spatial characterization of sam-
ples by Löschke [Lös79], Cohn et al. [Coh88], Jin et al. [Jin96], Han and Chao
[Han06], Wurstbauer et al. [Wur10], Arteaga and Kuntman [Art14] and Jin
et al. [Jin21].

PSG PSA

Sample

Objective

Figure 2.5: Schematic diagram of imaging ellipsometry.

A typical configuration of imaging ellipsometry is shown in Figure 2.5. Col-
limated beams impinge on the surface and the reflected light passes through
the imaging lens system to the PSA, which contains an imaging sensor. To in-
crease the field of view, low-NA objectives are used for imaging ellipsometry.
However, the lateral resolution is proportional to the NA of the objective. A
high-NA objective results in higher-resolution images and allows a large an-
gular deviation for deflected beams from a nonplanar sample. Therefore, for
nonplanar surfaces, a high-NA objective is essential. Kajihara et al. measured
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a non-polar lubricant on a magnetic disk using two-stage imaging ellipsom-
etry microscopy (NA = 0.9) [Kaj11]. Duwe et al. used imaging ellipsometry
with an objective numerical aperture of 0.45 to measure a micro-lens array
with a radius of curvature of 6.5 mm [Duw19].

2.1.3 Return-path ellipsometry

Figure 2.6 shows a schematic diagram for return-path ellipsometry. The light
beam that is reflected from the surface is reflected back to the same position
on the surface by a reflecting element, such as a planar mirror, a spherical
mirror or a retroreflector. This configuration features a simple construction,
is suitable for process monitoring and has a higher sensitivity to the optical
properties of surfaces than conventional ellipsometers [Azz77].

PSG

NPBS
Sample

Reflecting element

PSA

Figure 2.6: Schematic diagram showing return-path ellipsometry.

The planar mirror configuration for return-path ellipsometry uses a planar
mirror to reflect light back to the PSA so it can only be used for flat surfaces
because there is an optical lever. Any small angular or offset in the sam-
ple is greatly magnified in the displacement of the reflected beam [Ale89] so
reflected light can only be received by the PSA when the planar mirror is
perpendicular to the reflected ray. Slight misalignments or curved surfaces
can cause significant experimental errors. Planar mirror types for return-
path ellipsometry for different applications are described in the studies of
O’Bryan [OBr36], Yamamoto [Yam74], Yamaguchi and Takahashi [Yam76],
Azzam [Azz77], Wang and Arwin [Wan04], and Watkins et al. [Wat10].
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For most coating processes in semiconductor manufacturing, samples are
usually rotated by a rotary stage to obtain uniform layers, such as plasma-
enhanced chemical vapor deposition and the epitaxial growth process. The
rotation of samples inevitably produces a wobble because the rotational axis
and the surface normal for the sample are not parallel. As mentioned in
Section 1.2, ellipsometry is very sensitive to the angle of incidence and the
sample position. To obtain accurate measurements, Haberland et al. used
return-path ellipsometry and replaced the planar mirror with a spherical
mirror [Hab98]. In terms of geometric optics and paraxial approximation,
every ray that passes the center of curvature of the spherical mirror is re-
flected back along its original path. If the sample is placed in the geometrical
center of the spherical mirror, the incident ray is always perpendicular to the
spherical mirror so no polarization distortion is induced by the mirror [Fu95].
This configuration reduces the error from the angular deviation induced by
sample wobbling during rotation but non-polarizing beamsplitters have a
narrow wavelength range (e.g., 400-700 nm, 700-1100 nm or 1100-1600 nm)
and polarization distortion [Art14] because they have multilayer dielectric
coatings which have very strong polarization-dependent properties. Because
of the optical properties of the NPBS, they are not suitable for spectroscopic
ellipsometry. Johs and He modified the design of Haberland et al. by re-
placing the NPBS with two right-angle prisms [Joh11]. The prisms have a
wide wavelength range and produce no polarization distortion because the
double reflection from the prisms cancels the change in the polarization state.
However, mechanical constraints mean that there is an offset between the
incident beam and the reflected beam from the sample. A spherical mirror
configuration is used for return-path ellipsometry because there is a high
angular tolerance if the sample is rotated or curved. However, the alignment
condition is not fulfilled for large sample offsets because the sample is not
positioned in the center of the spherical mirror.

To solve the alignment problem for nonplanar samples, Hartrumpf and Ne-
gara developed a laser scanner using a retroreflector (retroreflective sheet) at
Fraunhofer IOSB [Har17]. A retroreflector is used as a reflector. A retrore-
flector returns the light beam from the sample on the same beam path with a
fixed phase difference of 180∘, so the polarization effect is the same as that for
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an ideal mirror [Li19]. In this configuration, the alignment condition for the
sample and the detector is fulfilled at an angular deviation up to 30∘ [Neg20].
This design also addresses the problem of large sample offsets because the
size of the retroreflector is flexible, so deflected beams are covered during
scanning. In 2020, Negara et al. used return-path imaging ellipsometry with
a rotating reflector that consists of a mirror and a retroreflector to determine
surface inclination and refractive index [Neg20].

2.2 Characterization of nonplanar surfaces
using ellipsometric measurements

This section describes different approaches to characterize nonplanar samples
or to reduce the effect of nonplanar surfaces on ellipsometric measurements.

The surface normal from a nonplanar sample changes during scanning mea-
surements. For conventional ellipsometry (see Figure 1.2), the change in the
surface normal is seen in the misalignment of the PSA with respect to the
plane of incidence (POI) [Asp71]. The misalignment affects the measurement
accuracy for ellipsometry parameters. Manymethodsminimize the alignment
error [Asp71, Zei74, Rie79, Joh93, An03, Men16].

Lee and Chao determined that the azimuthal deviation in the polarizer is the
same as the deviation in the surface normal for a calibrated rotating-analyzer
ellipsometer [Lee05]. The study used the three-intensity technique to mea-
sure a SiO2/Si sample with a ±2∘ tilt angle at an incidence angle of 70∘. The
measured azimuthal deviation for the polarizer is similar to the tilt angle.
Further experiments verified the high degree of accuracy (0.03∘) for tilt an-
gle measurements by tilting a well-calibrated sample with a spacer [Han09].
However, the three-intensity measurement is only valid for small tilt angles
(a few degrees) [Duw19] because deviation in the incident angle must be con-
sidered for large tilt angles [Li16]. Prior knowledge of the incident angle for
a reference measurement is also required.
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Neuschaefer-Rube and Holzapfel proposed a method to measure surface ge-
ometry and material distribution using microellipsometry [Neu03]. The study
used an objective lens to focus and recollect a light beam on the sample, which
is described in Section 2.1. The surface inclination is determined directly us-
ing the polarization model without other topometric measurement methods,
such as interferometry, deflectometry and laser triangulation. The angle of
incidence and the surface orientation are determined using the eight-zone-
measurement algorithm. When the entire surface is scanned, the surface pro-
file is reconstructed using the surface inclination (gradient data). However,
the focusing beam (60 µm) induces a greater deviation in the phase differ-
ence than in the amplitude ratio. For transparent samples, the error in the
phase difference is several degrees. Decreasing the spot size even increases
the measurement error.

In 2016, Li et al. used a conventional ellipsometer to measure nonplanar sur-
faces [Li16]. The study determined the effect of deviation in the incident plane
and proposed aMueller matrix model with two azimuthal rotation matrices to
describe the Mueller matrix for the tilted surface. The angles of two rotation
matrices have the same absolute values but different signs. Mueller matrix el-
lipsometry was used to measure the thickness of the oxide layer on a convex
lens and the radius of curvaturewas calculated by the scanning result. In 2019,
Duwe et al. modified the Muller matrix model proposed by Li et al. because
there is a significant mismatch at greater tilt angles [Duw19]. They showed
that the two rotation angles have different signs and values and that there is
no analytical form for the exit side of the rotation matrix. This was verified
using a spectroscopic imaging ellipsometer to measure a tilted sample. The
experimental results feature a lower root-mean-squared error (RMSE) for a
large tilt angle (8∘) than the result for the study by Li et al. The patent that
was awarded to Duwe [Duw22] demonstrates the analytical form for the in-
cident side of the rotation matrix and the approximated rotation matrix for
the exit side.

Johs and He used a return-path Mueller matrix ellipsometer to measure sam-
ples with awobble effect [Joh11] and showed that if an optically isotropic sam-
ple is tilted with regard to the plane of incidence, there is optical anisotropy.
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The study established a Mueller matrix model to describe the measurement
system and compensated for wobble using two azimuthal rotation matrices
for the receiver and source optics. The rotational matrices are determined by
fitting the measured Mueller matrix numerically. The proposed return-path
ellipsometer measures samples with a ±0.8∘ substrate wobble and a sample
path length of 1 m to the ellipsometer. The variation in the intensity is less
than 2%. However, this setup is only suitable for pure angular deviation be-
cause sample offsets produce a large displacement in the reflected beam, so
the center and height of the sample must be aligned and adjusted carefully.
Using a similar configuration of Johs and He, Negara et al. proposed aMueller
matrix model with two azimuthal rotation matrices that have the same values
and signs [Neg20]. The study measured an uncoated gold parabolic mirror.
The respective mean absolute errors for incidence angle, tilt angle and height
are 0.33∘, 0.72∘ and 24.8 µm, respectively.

Křepelka used geometrical ray tracing and polarization optics to analyze el-
lipsometric measurements using a convex mirror [Kre11]. Three averaging
methods were used to reduce measurement errors. A small spot size with a
suitable convergent angle reduces measurement errors that are induced by
spherical shape. Another approach to reduce the mixed polarization effect
from nonplanar surfaces was proposed by Zhang et al. [Zha12], who used
an aperture to allow central rays to pass and block the remainder of the rays.
An aperture size of 4 mm minimizes the deviation in the incidence angle to a
range of ±0.15∘ and the error in the phase difference is reduced to 0.024∘.

2.3 Summary

Table 2.1 summarizes the features and challenges of nonplanar surface mea-
surements for different types of ellipsometry. Microellipsometry is a straight-
forward method to measure ellipsometry parameters and surface topometry.
Microellipsometry uses a high numerical aperture microscope objective to
collect the reflected light to increase the lateral resolution. A high-NA objec-
tive is also used for measuring nonplanar surfaces. The acceptable gradient
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for a sample is equal to the half maximum incidence angle 𝜃max for the objec-
tive [Tho20]. For samples with a steep gradient, high-NA objectives lenses are
required. An objective lens with a NA of 0.8 can receive a change in reflected
light up to 26.6∘. However, the working distance for high-NA objectives is
usually short: an objective (CFI Achromat 60X, Nikon) with a NA of 0.8 has
a working distance of 0.3 mm. This limits the practical applications of non-
planar surfaces because the short working distance increases the danger of
collision between the objective and the sample. The hardware for topomet-
ric measurements also increases the system complexity, especially in terms
of system alignment and calibration. To increase accuracy, the planes of the
measurement beam must be accurately focused so vertical and area scanning
of all surface points is necessary and this is very time-consuming.

Table 2.1: Comparison of four different types of RPE.

Configuration Features Challenges

Microellipsometry High lateral resolution
Surface profile

Complex system
Vertical and area scanning
Short working distance

Imaging
ellipsometry

Medium lateral resolution
Large field of view
Area measurements

Focus scanning
Spectral scanning
Limited spectral range

Return-path
ellipsometry

Simple setup
High sensitivity
Large slope and offset*

High-intensity illumination
Low lateral resolution
Limited spectral range
Polarization distortion

*The reflecting element is a retroreflective sheet.

Imaging ellipsometry using high-NA objectives is used to measure nonpla-
nar surfaces but the distance between the sample and the objective is limited.
As mentioned in Section 1.2, the offset in the deflected beams is proportional
to the distance between the sample and the objective. To measure surfaces
with a steep gradient, the objective must be close to the surface. Only a small
range of gradients can be measured because the PSA is sensitive to the inci-
dence angle. A PSA comprises a linear polarizer and a waveplate that is made
of bi-refringent materials and is designed for a normal incidence angle. Thus,
the retardance of a waveplate is changed to a different degree when the inci-
dent angle is not normal. A large incidence angle for the waveplate induces
significant errors in retardance. The depth of focus of objectives is also limited
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so only the center region of the image is focused. Therefore, focus stacking
is necessary to get a wider field of view. This combines multiple images that
are taken at different focal planes into a single image. The spectral range of
cameras and optical components is usually between 250 nm and 1700 nm so
imaging ellipsometry is suited for use in laboratory tools.

Return-path ellipsometry has a high sensitivity to the optical properties ofma-
terials because there is a double reflection from the sample. The sensor and
illumination units are on the same side so in-situ measurements are possible
because only one observing window is required. Special reflectors (spheri-
cal mirror or retroreflector) allow ellipsometric measurements for nonplanar
surfaces but this configuration requires a high-power light source because the
NPBS, which has a split ratio of reflectance and transmittance of 50:50, loses
a large amount of power from the light source (more than 75% by a reflection
and transmission). The system also requires careful calibration for the polar-
ization distortion that is induced by the non-polarizing beamsplitter because
the NPBS is not an ideal component for polarization optics. The beamsplit-
ter must be accurately aligned and calibrated [Che20]. The spectral range of a
NPBS is limited to a certain range because there are anti-reflection coatings, so
they have a range in the visible (400-700 nm), near-infrared (700-1100 nm) and
infrared (1100-1600 nm) spectra. Prisms can be used instead of NPBS to give
a larger spectral range but system complexity increases and beams are off-
set on the sample. A return-path ellipsometer measures steep gradient slopes
(maximum angle deviation ±30∘) and large offsets (no limitation) in samples
if a retroreflective sheet is used as a reflecting element [Har17, Neg20, Che20].
Return-path ellipsometers use collimated beams, which have a low lateral res-
olution. Imaging sensors increase resolution but multiple reflections and scat-
tering in the retroreflector can degrade image quality. In general, return-path
ellipsometry is suitable for inline or in-situmeasurements because installation
is flexible and large angular deviations and offsets are acceptable.

Ellipsometric measurements are described using Jones or Mueller matrices
and the calibrated system is associated with a particular plane of incidence,
which is defined by the incident ray and the surface normal. However, if
the sample is curved or tilted, the POI changes because the curvature of the
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surface and optical anisotropy occurs in the measured Jones orMueller matrix
for optically isotropic materials. If coordinates are not transformed correctly
for the changed POI to the measured results, experimental errors increase
significantly, especially for large tilt angles. Therefore, the transformation
must be accurately determined.

The azimuthal deviation in the polarizer is used to determine the tilt angle for
surface geometry. This method is easily applied using ellipsometers without
the need for extra hardware. However, for conventional ellipsometers with
two rotating arms, there is no expression for the coordinate transformation
matrix for the exit side (PSA). An approximation must be made, which causes
calculation errors in the analysis. Return-path ellipsometry expresses the co-
ordinate transformation matrices of the incident and exit sides in analytical
form without any approximation [Che23a].
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This chapter presents the details of polarized light and ellipsometry. The nota-
tion and formulae for polarized light and ellipsometry are those in the volumes
by Azzam and Bashara [Azz87], Fujiwara [Fuj07] and DIN 50989 Part 1-3 [DIN
5098918, DIN 5098921, DIN 5098922]. The polarization of light waves is firstly
described by mathematical representation in Section 3.1. The reflection and
transmission of light for two-phase and three-phase systems are described us-
ing Fresnel equations in Section 3.2. Jones calculus and Mueller calculus are
used to mathematically describe optical components and measurements in
Sections 3.3 and 3.4. Section 3.5 uses polarization ray tracing to calculate the
path and polarization state of light rays through optical systems described in
the book of Chipman et al. [Chi18]. The principle of ellipsometry andMueller
matrix measurements is demonstrated in Section 3.6.

3.1 The polarization of light waves

Light is an electromagnetic wave that is described by Maxwell’s equations
[Bor16]. Figure 3.1 shows the propagation of an electromagnetic wave, where
the electric field 𝐄 and magnetic induction 𝐁 are perpendicular to each other.
The electric field for a plane monochromatic wave at a fixed point in a space
is expressed as:

The electric field of a monochromatic wave at a fixed point in a space can be
expressed as:

𝐄 = 𝐸𝑥�̂� + 𝐸𝑦�̂� + 𝐸𝑧 ̂𝐳,
𝐸𝑖 = ̃𝐸𝑖 cos(𝜔𝑡 + 𝛿𝑖), 𝑖 = 𝑥, 𝑦, 𝑧,

(3.1)

25



3 Polarized light and ellipsometry

where �̂�, �̂� and ̂𝐳 denote unit vectors of the cartesian coordinate; 𝜔 is the
angular frequency and ̃𝐸𝑖 and 𝛿𝑖 are defined as the amplitude and phase of
the wave which vibrates along with the 𝑖th axis at time 𝑡. For this thesis, all
unit vectors are denoted by a lowercase letter with a hat symbol.

E

B

Propagation
direction

Figure 3.1: Propagation of an electromagnetic wave.
In terms of ellipsometry, polarized light is approximated by a uniform
transverse-electric plane wave that travels along the propagation vector �̂�
at position 𝐫 and time 𝑡 as:

𝐄(𝐫, 𝑡) = [ ̃𝐸 cos(𝜔𝑡− 2𝜋
𝜆 �̂�⋅𝐫+𝛿𝑢)]�̂�+[ ̃𝐸′ cos(𝜔𝑡− 2𝜋

𝜆 �̂�⋅𝐫+𝛿𝑢′)] ̂𝐮′, (3.2)

where ̃𝐸 and ̃𝐸′ are the amplitudes of the electric vectors, which are inde-
pendent of position 𝐫 and time 𝑡, �̂� and ̂𝐮′ are the directions of the linear
polarization, which are orthogonal to each other and �̂�, and 𝛿𝑢 and 𝛿𝑢′ are
phases. If a wave propagates along the 𝑧 axis and �̂� and �̂� are parallel to the
𝑥 and 𝑦 axes, Equation 3.2 is written as:

𝐄(𝑧, 𝑡) = [ ̃𝐸𝑥 cos(𝜔𝑡 −
2𝜋
𝜆 𝑧 + 𝛿𝑥)]�̂� + [ ̃𝐸𝑦 cos(𝜔𝑡 −

2𝜋
𝜆 𝑧 + 𝛿𝑦)]�̂�. (3.3)

The Poynting vector represents the instantaneous flow of energy for an elec-
tromagnetic field and the irradiance 𝑃 of a light beam is the magnitude of the
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time average of the Poynting vector:

𝑃 = 𝜀0𝑐
2 𝐄† ⋅ 𝐄, (3.4)

where 𝑐 and 𝜀0 are the speed of light and the permittivity of free space. The
dagger superscript represents a Hermitian adjoint of a vector. However, the
term intensity 𝐼 is more commonly used. If the constant 𝜀0𝑐/2 is neglected,
𝐼 is defined in a simple form as:

𝐼 = 𝐄† ⋅ 𝐄. (3.5)

3.2 Reflection and transmission of light

3.2.1 Fresnel equations

Figure 3.2 shows an incident ray in direction 𝐤i impinging on a homogeneous
and optically isotropic interface (two-phase system), where 𝑁, 𝜼 and 𝐤 are
the complex refractive index, the surface normal and the propagation vector,
respectively. The complex refractive index is defined as:

𝑁 = 𝑛 − i𝑘, (𝑛, 𝑘) ∈ ℝ (3.6)

η

ki kr

kt

θi θr

θt

Ni

Nt

Figure 3.2: Light reflection and transmission at an oblique angle of incidence for a two-phase
system.
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The surface normal 𝐧 is usually represented in outward orientation but the
surface normal 𝜼 here is defined as the inward orientation for polarization ray
tracing in Section 3.5. The relationship between these two surface normals
is �̂� = − ̂𝜼.

The reflected ray propagates in direction 𝐤r and the refracted ray propagates
in direction 𝐤t. The propagation vectors 𝐤i, 𝐤r and 𝐤t are coplanar and the
plane they open is called the plane of incidence. The law of reflection states
that the angle of incidence equals the angle of reflection (𝜃i = 𝜃r) and this is
written in vector form as:

�̂�r = �̂�i − 2(�̂�i ⋅ ̂𝜼) ̂𝜼. (3.7)

The law of refraction (or Snell’s law) describes the propagation direction of
light when light enters a medium at an oblique angle of incidence, which is
described as:

𝑁i sin 𝜃i = 𝑁t sin 𝜃t. (3.8)

The laws of reflection and refraction are explained by electromagnetic theory.
As mentioned in Section 3.1, a uniform transverse-electric plane wave that
is transverse along the 𝐤 direction is described as the superposition of two
linearly polarized waves (p- and s-polarized light waves) whose propagation
vectors are orthogonal, which is written as:

𝐄 = 𝐄p + 𝐄s = 𝐸p�̂� + 𝐸s ̂𝐬, (3.9)

where 𝐸p and 𝐸s are the amplitudes of p- and s-polarized waves. The p-
polarized light 𝐄p oscillates in the plane of incidence while the s-polarized
light 𝐄s oscillates perpendicular to the plane of incidence. �̂� and ̂𝐬 directions
can be formulated as:

̂𝐬 = 𝐤 × 𝜼
|𝐤 × 𝜼| , �̂� = �̂� × ̂𝐬. (3.10)
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3.2 Reflection and transmission of light

The Fresnel equations describe the reflection and transmission of light using
amplitude coefficients 𝑟p, 𝑟s, 𝑡p and 𝑡s as:

𝑟p ∶=
𝐸rp

𝐸ip
= 𝑁t cos 𝜃i −𝑁i cos 𝜃t
𝑁t cos 𝜃i +𝑁i cos 𝜃t

,

𝑟s ∶=
𝐸rs
𝐸is

= 𝑁i cos 𝜃i −𝑁t cos 𝜃t
𝑁i cos 𝜃i +𝑁t cos 𝜃t

,
(3.11)

𝑡p ∶=
𝐸𝑡𝑝
𝐸𝑡𝑝

= 2𝑁i cos 𝜃i
𝑁t cos 𝜃i +𝑁i cos 𝜃t

,

𝑡s ∶=
𝐸𝑡𝑠
𝐸𝑡𝑠

= 2𝑁i cos 𝜃i
𝑁i cos 𝜃i +𝑁t cos 𝜃t

.
(3.12)

Equations 3.11 and 3.12 can be transformed to polar coordinate representa-
tion as:

𝑟p = |𝑟p| exp (i𝛿rp), 𝑟s = |𝑟s| exp (i𝛿rs),
𝑡p = |𝑡p| exp (i𝛿tp), 𝑡s = |𝑡s| exp (i𝛿ts).

(3.13)

For a reflected beam, the reflectance for p- and s- polarized waves equals the
square of the magnitude of the amplitude reflection coefficients as:

𝑅p = |𝑟p|2,
𝑅s = |𝑟s|2.

(3.14)

For a transmitted beam, the transmittance for p- and s- polarized waves is
expressed as:

𝑇p =
𝑁t cos 𝜃t
𝑁i cos 𝜃i

|𝑡p|2,

𝑇s =
𝑁t cos 𝜃t
𝑁i cos 𝜃i

|𝑡s|2.
(3.15)
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3 Polarized light and ellipsometry

The reflectance 𝑅 and transmittance 𝑇 for natural or unpolarized light are the
average of the reflectance and transmittance for p- and s- polarized waves:

𝑅 =
𝑅p + 𝑅s

2 ,

𝑇 =
𝑇p + 𝑇s

2 .
(3.16)
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Figure 3.3: Amplitude coefficient and phase change at an air/glass interface (𝑁i = 1 and𝑁t =
1.5).

Using these equations, light reflection is interpreted using amplitude reflec-
tion coefficients for p- and s- polarizations. Figure 3.3 shows the amplitude co-
efficient and the phase change at an air/glass interface (𝑁i = 1 and𝑁t = 1.5).
The value of 𝑟s is negative and the phase change 𝛿rs is 180∘. For a large in-
cidence angle (over Brewster’s angle), 𝑟p becomes negative and the phase
change 𝛿rp becomes 180∘. If the refractive indices of the mediums are real
numbers (𝑘 = 0), Brewster’s angle 𝜃B is the angle of incidence if 𝑟p equals
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3.2 Reflection and transmission of light

0, which is defined as:

𝜃B = tan−1 𝑁t
𝑁i
. (3.17)

The Brewster’s angle for the air/glass interface is 56.3∘.

Figure 3.4 shows the reflectance value at an air/glass interface (𝑁i = 1 and
𝑁t = 1.5). The value of 𝑅 increases as the incident angle increases. At a
normal angle of incidence, 𝑅 equals 0.04. At a glancing angle, 𝑅 equals 1.

0 30 60 90
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0.2

0.4

0.6

0.8

1

Figure 3.4: Reflectance at at an air/glass interface (𝑁i = 1 and𝑁t = 1.5).

3.2.2 Optical interference in a three-phase system

If a light ray impinges on a three-phase system (ambient/ thin film/ substrate),
interference occurs if the absorption of the film is weak. Figure 3.5 shows the
optical model of a three-phase system, where 𝑁0, 𝑁1 and 𝑁2 are the complex
refractive indices of the ambient, the film and the substrate. 𝜃0 and 𝑑 are
the angle of incidence and the film thickness. In this case, the light waves
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3 Polarized light and ellipsometry

are reflected from the ambient/thin film interface and the thin film/substrate
interface. Constructive and destructive interference occur.

N2

N1

N0 Ambient

Film

Substrate

t01

t12

r12

t01r01

d

θ0

r012

Figure 3.5: Optical model for an ambient(0)-film(1)-substrate(2) system.

For multi-layer analysis, the Fresnel equations 3.11 and 3.12 are written in a
general form as:

𝑟𝑗𝑘,p =
𝑁𝑘 cos 𝜃𝑗 −𝑁𝑗 cos 𝜃𝑘
𝑁𝑘 cos 𝜃𝑗 +𝑁𝑗 cos 𝜃𝑘

,

𝑟𝑗𝑘,s =
𝑁𝑗 cos 𝜃𝑗 −𝑁𝑘 cos 𝜃𝑘
𝑁𝑗 cos 𝜃𝑗 +𝑁𝑘 cos 𝜃𝑘

,
(3.18)

𝑡𝑗𝑘,p =
2𝑁𝑗 cos 𝜃𝑗

𝑁𝑘 cos 𝜃𝑗 +𝑁𝑗 cos 𝜃𝑘
,

𝑡𝑗𝑘,s =
2𝑁𝑗 cos 𝜃𝑗

𝑁i cos 𝜃𝑘 +𝑁t cos 𝜃𝑘
,

(3.19)

where 𝑟𝑗𝑘 and 𝑡𝑗𝑘 represent the amplitude reflection and transmission coef-
ficients at the 𝑗th interface. The p- and s-polarized light waves of the sum of
all the reflected waves are expressed as:

𝑟012,p =
𝑟01,p + 𝑟12,p exp (−i2𝛽)

1 + 𝑟01,p + 𝑟12,p exp (−i2𝛽)
,

𝑟012,s =
𝑟01,s + 𝑟12,s exp (−i2𝛽)

1 + 𝑟01,s + 𝑟12,s exp (−i2𝛽)
,

(3.20)
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3.3 Jones vector and Jones matrix

where 𝛽 is the film phase thickness, which is defined as:

𝛽 = 2𝜋𝑑
𝜆 (𝑁2

1 −𝑁2
0 sin

2 𝜃0)1/2. (3.21)

3.3 Jones vector and Jones matrix

In Section 3.2, Fresnel equations are used to analyze light that is reflected or
transmitted at an interface at an oblique angle of incidence. However, this
method is only suitable for a single interface. It is difficult to apply to the
propagation of an optical wavewith several polarizing components because of
the complicated calculation. R. Clark Jones developed a mathematical model
for the polarization of coherent light to simplify the calculation. This is called
Jones calculus [Jon41].

In a Cartesian coordinate system, a light beam that travels along the 𝑧 axis is
expressed as the superposition of the electric fields 𝐄𝑥 and 𝐄𝑦 , as shown in
Equation 3.3, which is written in a matrix form as:

𝐄(𝑧,𝑡) = [
̃𝐸𝑥 cos(𝜔𝑡 −

2𝜋
𝜆
𝑧 + 𝛿𝑥)

̃𝐸𝑦 cos(𝜔𝑡 −
2𝜋
𝜆
𝑧 + 𝛿𝑦)

] . (3.22)

The temporal information is suppressed because waves are assumed to be
monochromatic so Equation 3.22 is simplified using phasor notation [Azz87]
as:

𝐄(𝑧) = 𝑒−i2𝜋𝑧/𝜆 [
̃𝐸𝑥𝑒i𝛿𝑥
̃𝐸𝑦𝑒i𝛿𝑦

] . (3.23)

Jones calculus considers only relative changes in amplitude and phase so the
constant term exp[−i2𝜋𝑧/𝜆] is omitted and the relative phase difference (𝛿𝑥−
𝛿𝑦) and the normalized light intensity are used. Equation 3.23 is then written
as:

𝐄 = [𝐸𝑥𝐸𝑦] = [|𝐸𝑥|𝑒
i(𝛿𝑥−𝛿𝑥)

|𝐸𝑦|
] , |𝐸𝑥|2 + |𝐸𝑦|2 = 1, (3.24)
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3 Polarized light and ellipsometry

where |𝐸𝑥| and |𝐸𝑦| are normalized electric field amplitudes for the normalized
light intensity (𝐼 = 1). This form of the electric field is called normalized Jones
vector 𝐄. Table 3.1 summarizes the Jones and Stokes vectors for some states
of polarization. The Stokes vectors are described in Section 3.4.

The polarization characteristics of optical elements or the interaction at the
boundaries are described by Jones Matrices 𝐉, which are 2 × 2 matrices with
complex elements. If a light source interacts with an optical element, this
relationship can be written as:

𝐄′ = 𝐉 ⋅ 𝐄 = [𝑗11 𝑗12
𝑗21 𝑗22] ⋅ [

𝐸𝑥
𝐸𝑦] = [𝐸

′
𝑥
𝐸′𝑦] , (3.25)

where 𝐄 and 𝐄′ are the Jones vectors of the incident and exit beams and 𝐉
is the Jones matrix for the optical element. Table 3.2 summarizes the Jones
matrices for some optical elements. If light propagates through𝑄 polarization
elements 𝐉𝑞 , the total polarization effect 𝐉Total of cascading𝑄 optical elements
is expressed using matrix multiplication as:

𝐉Total =
𝑄
∏
𝑞=1

𝐉𝑄−𝑞+1 = 𝐉𝑄 ⋅ 𝐉𝑄−1⋯𝐉𝑞⋯𝐉2 ⋅ 𝐉1. (3.26)

Jones vectors and Jones matrices provide a mathematical method to describe
polarization elements. Jones calculus is used for fully polarized light. For
partially polarized light, a 2× 2 coherence matrix is used [Bor16] but Mueller
calculus uses a convenient method to describe fully polarized, partially polar-
ized, or unpolarized state of light, which is presented in Section 3.4.
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3.3 Jones vector and Jones matrix

Table 3.1: The Jones and Stokes vectors for some states of polarization.

Polarization state Jones vector Normalized Stokes vector

Linear polarization at 0∘ [10]
⎡
⎢
⎢
⎣

1
1
0
0

⎤
⎥
⎥
⎦

Linear polarization at 90∘ [01]
⎡
⎢
⎢
⎣

1
−1
0
0

⎤
⎥
⎥
⎦

Linear polarization at 45∘ 1
√2
[11]

⎡
⎢
⎢
⎣

1
0
1
0

⎤
⎥
⎥
⎦

Linear polarization at 135∘ 1
√2
[ 1−1]

⎡
⎢
⎢
⎣

1
0
−1
0

⎤
⎥
⎥
⎦

Right-circular polarization 1
√2
[1i]

⎡
⎢
⎢
⎣

1
0
0
1

⎤
⎥
⎥
⎦

Left-circular polarization 1
√2
[ 1−i]

⎡
⎢
⎢
⎣

1
0
0
−1

⎤
⎥
⎥
⎦
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3 Polarized light and ellipsometry

Table 3.2: The Jones matrices for some optical elements.

Optical element Jones matrix

Free space propagation [
1 0
0 1

]

Polarizer at angle 𝛼 [
cos2 𝛼 cos𝛼 sin𝛼

cos𝛼 sin𝛼 sin2 𝛼
]

Compensator* [
𝑒i𝛿 cos2 𝛼 + sin2 𝛼 (𝑒i𝛿 − 1) cos𝛼 sin𝛼
(𝑒i𝛿 − 1) cos𝛼 sin𝛼 𝑒i𝛿 sin2 𝛼 + cos2 𝛼

]

Ideal mirror [
1 0
0 −1

]

Sample [
sinΨ 𝑒i∆ 0

0 cosΨ
]

Coordinate rotation [
cos𝛼 sin𝛼
− sin𝛼 cos𝛼

]

*Compensator (or linear retarder) with fast axis at angle 𝛼 and retardance 𝛿.
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3.4 Stokes vectors and Mueller matrices

3.4 Stokes vectors and Mueller matrices

Jones vectors only describe completely polarized light. In 1852, George
Gabriel Stokes showed that the polarization state of light can be described
by four measurable quantities (Stokes parameters) [Sto52]. Stokes vectors
describe fully polarized light and unpolarized or partially polarized light.
Stokes vectors are expressed in terms of the intensity of polarized light as:

𝐒 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆0
𝑆1
𝑆2
𝑆3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐼𝑥 + 𝐼𝑦
𝐼𝑥 − 𝐼𝑦

𝐼+45∘ − 𝐼−45∘
𝐼R − 𝐼L

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.27)

𝑆0 is the total intensity of the light beam, 𝐼𝑥 and 𝐼𝑦 represent the intensity of
linear polarized light in the 𝑥 (0∘) and 𝑦 (90∘) directions, 𝐼+45∘ and 𝐼−45∘ are
the intensity of linear polarized light at 45∘ and −45∘ and 𝐼R and 𝐼L represent
the intensity of right- and left-circular polarization. The Stokes parameters
describe unpolarized or partially polarized light, which is characterized by
the degree of polarization (DOP) as

𝐷𝑂𝑃(𝐒) = √𝑆21 + 𝑆22 + 𝑆23
𝑆0

, 0 ≤ 𝐷𝑂𝑃 ≤ 1. (3.28)

The DOP for fully polarized light is 1 and the DOP for unpolarized light is 0.

Stokes vectors are normalized to represent polarization states using only
polarization-dependent information. The normalized Stokes vector �̂�, which
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is independent of the absolute intensity, is defined as:

�̂� = 𝐒
𝑆0

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑠1
𝑠2
𝑠3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 0 ≤ 𝑠𝑖 ≤ 1. (3.29)

Table 3.1 shows the Stokes parameters for some polarization states. The nor-
malized Stokes vector for unpolarized light is [1, 0, 0, 0]T, which cannot be
described using Jones vectors.

The Mueller matrix was developed by Hans Mueller in the early 1940s.
Mueller matrices M (4 × 4 matrix) characterize the interaction between
polarization elements and polarized light [Shu62]. If a light source interacts
with an optical element, this relationship can be written as:

𝐒′ = 𝐌 ⋅ 𝐒 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆0
𝑆1
𝑆2
𝑆3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆′0
𝑆′1
𝑆′2
𝑆′3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.30)

where 𝐒 and 𝐒′ are the Stokes vectors of the incident and exit beams and
𝐌 is the Mueller matrix of the optical element. Table 3.3 summarizes the
Mueller matrices for some optical elements. Similarly to Jones calculus, the
total polarization effect𝐌Total of cascading𝑄 optical elements is described as:

𝐌Total =
𝑄
∏
𝑞=1

𝐌𝑄−𝑞+1 = 𝐌𝑄 ⋅ 𝐌𝑄−1⋯𝐌𝑞⋯𝐌2 ⋅ 𝐌1. (3.31)
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Similarly to Stokes vectors, Mueller matrices are normalized to represent po-
larization states using only polarization-dependent information. The normal-
ized Mueller matrix �̂� is defined as:

𝐌 = 𝑀11�̂� = 𝑀11

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

𝑚41 𝑚42 𝑚43 𝑚44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

0 ≤ 𝑚𝑖𝑗 =
𝑀𝑖𝑗
𝑀11

≤ 1,

(3.32)

where �̂� is the normalizedMueller matrix and𝑀11 is the reflectance or trans-
mittance of the optical element for unpolarized light. In terms of the reflection
of light, 𝑀11 equals 𝑅:

𝑀11 = 𝑅 =
𝑅p + 𝑅s

2 . (3.33)

The normalized Mueller matrix �̂� is used for sample analysis because the
elements in the matrix are independent of intensity.

A depolarizer reduces the degree of polarization for light. The Mueller matrix
of an ideal depolarizer 𝐌ID is expressed as:

𝐌ID =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.34)

The depolarization index (DI) is used to describe the degree of depolarization
for a Mueller matrix. DI is defined as the Euclidean distance, denoted as ‖⋅‖,
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3 Polarized light and ellipsometry

between the normalized Mueller matrix and ideal depolarizer [Chi18]:

𝐷𝐼(𝐌) ∶= ‖
‖‖
𝐌
𝑀11

−𝐌ID
‖
‖‖ =

√(∑𝑖𝑗𝑀2
𝑖𝑗) − 𝑀2

11

√3𝑀11
, 0 ≤ 𝐷𝐼 ≤ 1. (3.35)

For non-depolarizing Mueller matrices, 𝐷𝐼 equals 1. If 𝐷𝐼 for an optical ele-
ment is 0, the element is an ideal depolarizer and its exit beam becomes un-
polarized light.

Figure 3.6 shows the different domains of 4×4 matrices. Mueller matrices
are a subset of real 4×4 matrices because Mueller matrices describe physical
properties (polarization). Mueller-Jonesmatrices arematrices that are derived
from Jones matrices.

Real matrices 4⨉4 
Mueller matrices 

Mueller-Jones matrices 

Figure 3.6: Different domains of 4×4 matrices.

A Jones matrix is converted to a Mueller matrix using the transformation
[Fuj07]:

M = A(J⊗ J∗)A−1, (3.36)
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3.4 Stokes vectors and Mueller matrices

where ⊗ denotes the Kronecker product, the asterisk denotes complex con-
jugation, and A is the transformation matrix:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.37)

In contrast, only non-depolarizing Mueller matrices can be transformed into
Jones matrices because Jones matrices only pertain to non-depolarized sys-
tems.
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Table 3.3: Mueller matrices for some optical elements.

Optical element Mueller matrix

Free space propagation

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

Linear polarizer at angle 𝛼 1
2

⎡
⎢
⎢
⎢
⎢
⎣

1 cos 2𝛼 sin 2𝛼 0
cos 2𝛼 cos2 2𝛼 cos 2𝛼 sin 2𝛼 0
sin 2𝛼 cos 2𝛼 sin 2𝛼 sin2 2𝛼 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

Compensatora
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 cos 𝛿 sin 𝛿
0 0 − sin 𝛿 cos 𝛿

⎤
⎥
⎥
⎥
⎥
⎦

Ideal mirror

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

Sampleb 𝑅

⎡
⎢
⎢
⎢
⎢
⎣

1 −𝑁M 0 0
−𝑁M 1 0 0
0 0 𝐶M 𝑆M
0 0 −𝑆M 𝐶M

⎤
⎥
⎥
⎥
⎥
⎦

Coordinate rotation

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 cos 2𝛼 sin 2𝛼 0
0 − sin 2𝛼 cos 2𝛼 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

𝑎 Compensator (or linear retarder) with fast axis at 0∘ and retardance 𝛿.
𝑏 𝑅 = 1

2
(𝑅p +𝑅s),𝑁M = cos 2Ψ , 𝑆M = sin 2Ψ sin∆ and 𝐶M = sin 2Ψ cos∆
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3.5 Polarization ray tracing

3.5 Polarization ray tracing

A monochromatic plane electromagnetic wave that propagates along the 𝑧
axis is described by Jones vectors and Jones matrices in an 𝑥𝑦 coordinate sys-
tem. If the wave is not propagating along the 𝑧 axis, then coordinate transfor-
mation is used for the 𝑥𝑦 coordinate system. The Jones calculus uses a local
coordinate, which is determined by the propagation vector, to calculate the
polarization properties of optical elements and the polarization state of beams
in an optical system. If the ray propagates through many optical elements or
curved surfaces (e.g., folded mirrors, corner cubes, spherical and parabolic
mirrors), the local coordinate transformation can be complicated.

This section describes the use of polarization ray tracing, which was proposed
by Chipman. et al. [Chi18], to analyze the polarizationmodel in a global coor-
dinate system (3D Cartesian coordinates), using orthogonal transformations.
Polarization ray tracing calculus uses the global coordinate to analyze polar-
ization properties mathematically. Therefore, there is no need to determine
the local coordinate transformation manually, which is tedious and intricate.

ηq

Pq

kq−1

kq

Eq−1 Eq

sq pq
s′qp′

q

Figure 3.7: Incident and reflected rays follow the propagation vectors (k𝑞−1, k𝑞) at the 𝑞th op-
tical interface and the polarization states (E𝑞−1, E𝑞). (s𝑞, p𝑞, k𝑞−1) and (s′𝑞, p′𝑞, k𝑞)
are local coordinate bases for the incident and reflected rays. The local coordinate
bases are orthogonal coordinates, as defined in Equation 3.39.

Figure 3.7 shows that an electric field vector E𝑞−1 propagates in direction
k𝑞−1 and the exiting electric field vector E𝑞 is reflected in direction k𝑞 , which
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3 Polarized light and ellipsometry

is expressed as:

E𝑞 =
⎡
⎢
⎢
⎢
⎣

𝐸𝑥,𝑞
𝐸𝑦,𝑞
𝐸𝑧,𝑞

⎤
⎥
⎥
⎥
⎦

= 𝐏𝑞E𝑞−1 =
⎡
⎢
⎢
⎢
⎣

𝑃𝑥𝑥,𝑞 𝑃𝑥𝑦,𝑞 𝑃𝑥𝑧,𝑞
𝑃𝑦𝑥,𝑞 𝑃𝑦𝑦,𝑞 𝑃𝑦𝑧,𝑞
𝑃𝑧𝑥,𝑞 𝑃𝑧𝑦,𝑞 𝑃𝑧𝑧,𝑞

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐸𝑥,𝑞−1
𝐸𝑦,𝑞−1
𝐸𝑧,𝑞−1

⎤
⎥
⎥
⎥
⎦

, (3.38)

where (𝑥, 𝑦, 𝑧) represents the global Cartesian coordinate system, 𝐏𝑞 denotes
the polarization transfer matrix, which describes the polarization effect (re-
flection or refraction) at each interface and 𝑞 is the number of interfaces. 𝐬, 𝐩
and 𝐤 are local coordinate bases for the light beam. 𝐬 and 𝐩 are perpendicular
and parallel to the POI and 𝜼 is the surface normal. The local coordinate sys-
tems for incident and reflected light are respectively defined by ( ̂𝐬𝑞 , �̂�𝑞 , �̂�𝑞−1)
and ( ̂𝐬′𝑞 , �̂�′𝑞 , �̂�𝑞). The normalized vectors are:

̂𝐬𝑞 =
�̂�𝑞−1 × ̂𝜼𝑞
||�̂�𝑞−1 × ̂𝜼𝑞||

,

�̂�𝑞 = �̂�𝑞−1 × ̂𝐬𝑞,
̂𝐬′𝑞 = ̂𝐬𝑞,
�̂�′𝑞 = �̂�𝑞 × ̂𝐬𝑞,
�̂�𝑞 = �̂�𝑞−1 − 2(�̂�𝑞−1 ⋅ ̂𝜼𝑞) ̂𝜼𝑞.

(3.39)

Equation 3.40 defines the polarization transfer matrix 𝐏𝑞 as:

𝐏𝑞 = Oout,𝑞J
(3)
𝑞 O−1

in,𝑞

=
⎡
⎢
⎢
⎢
⎣

̂𝑠𝑥,𝑞 �̂�′𝑥,𝑞 ̂𝑘𝑥,𝑞
̂𝑠𝑦,𝑞 �̂�′𝑦,𝑞 ̂𝑘𝑦,𝑞
̂𝑠𝑧,𝑞 �̂�′𝑧,𝑞 ̂𝑘𝑧,𝑞

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

𝑗(3)11 𝑗(3)12 0
𝑗(3)21 𝑗(3)22 0
0 0 1

⎤
⎥
⎥
⎥
⎦

⋅
⎡
⎢
⎢
⎢
⎣

̂𝑠𝑥,𝑞 ̂𝑠𝑦,𝑞 ̂𝑠𝑧,𝑞
�̂�𝑥,𝑞 �̂�𝑦,𝑞 �̂�𝑧,𝑞
̂𝑘𝑥,𝑞−1 ̂𝑘𝑦,𝑞−1 ̂𝑘𝑧,𝑞−1

⎤
⎥
⎥
⎥
⎦

,

(3.40)

where O−1
in,𝑞 and Oout,𝑞 are transformation matrices and 𝐉(3)𝑞 is the 3D Jones

matrix (3×3) for the 𝑞th interface in local ̂𝐬 and �̂� bases. Substituting Equation
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3.5 Polarization ray tracing

3.40 into Equation 3.38 gives the exiting electric field vector 𝐄𝑞 as:

𝐄𝑞 = Oout,𝑞J
(3)
𝑞 O−1

in,𝑞 ⋅ 𝐄𝑞−1. (3.41)

The transformation matrix O−1
in,𝑞 projects the electric field vector E𝑞−1 onto

the local coordinate system ( ̂𝐬𝑞 , �̂�𝑞 . �̂�𝑞−1).

𝐄sp,𝑞−1 = O−1
in,𝑞 ⋅ 𝐄𝑞−1 = O−1

in,𝑞

⎡
⎢
⎢
⎢
⎣

𝐸𝑥,𝑞−1
𝐸𝑦,𝑞−1
𝐸𝑧,𝑞−1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝐸s,𝑞−1

𝐸p,𝑞−1

0

⎤
⎥
⎥
⎥
⎦

. (3.42)

The transformation matrix 𝐎out,𝑞 converts the local coordinate system to the
global coordinate system ( ̂𝐬′𝑞 , �̂�′𝑞 , �̂�𝑞).

𝐄𝑞 = Oout,𝑞 ⋅
⎡
⎢
⎢
⎢
⎣

𝐸s,𝑞

𝐸p′,𝑞

0

⎤
⎥
⎥
⎥
⎦

= 𝐸s,𝑞 ̂𝐬𝑞 + 𝐸p′,𝑞 ̂𝐩′𝑞. (3.43)

𝐏𝑞 for a reflection or refraction at optically isotropic interfaces can be derived
by 3D Jones matrices 𝐉(3)r,𝑞 and 𝐉(3)t,𝑞 as:

𝐉(3)r,𝑞 =
⎡
⎢
⎢
⎢
⎣

𝑟s 0 0
0 𝑟p 0
0 0 1

⎤
⎥
⎥
⎥
⎦

,

𝐉(3)t,𝑞 =
⎡
⎢
⎢
⎢
⎣

𝑡s 0 0
0 𝑡p 0
0 0 1

⎤
⎥
⎥
⎥
⎦

,

(3.44)
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3 Polarized light and ellipsometry

where r and t indicate reflection and transmission. 𝑟p, 𝑟s, 𝑡p and 𝑡s are ampli-
tude coefficients for reflection and transmission, which are defined in Equa-
tions 3.11 and 3.12. Finally, the total polarization effect 𝐏Total of cascading
isotropic optical elements is described as:

𝐏Total =
𝑄
∏
𝑞=1

𝐏𝑄−𝑞+1 = 𝐏𝑁𝐏𝑁−1⋯𝐏𝑞⋯𝐏2𝐏1. (3.45)

3.6 Ellipsometry

3.6.1 Principles of ellipsometry

In ellipsometric measurements (reflection), polarized light beams impinge
onto a sample at an oblique angle which is shown in Figure 3.8. The polar-
ization states of reflection of light can be described by p- and s-polarizations
which is introduced in Section 3.2. Ellipsometers measure the change of
polarization states between the incident and reflection beams which can
be defined as the ratio 𝜌 of the amplitude reflection coefficients for p- and
s- polarizations:

𝜌 ∶=
𝑟p
𝑟s
= (

𝐸rp

𝐸ip
)/(𝐸rs

𝐸is
) = tanΨ𝑒𝑖∆. (3.46)

For transmission measurements, the ratio 𝜌 of the amplitude transmission
coefficients for p- and s- polarizations is defined as

𝜌 ∶=
𝑡p
𝑡s
= (

𝐸tp

𝐸ip
)/(𝐸ts

𝐸is
) = tanΨ𝑒𝑖∆. (3.47)

In Equation 3.46, tanΨ is the absolute value of the amplitude ratio for p- and
s-polarizations (||𝑟p|| / |𝑟s|) and ∆ is the phase difference (𝛿rp − 𝛿rs), where 𝛿rp
and 𝛿rs are the phase changes for p- and s- polarizations after reflection at
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3.6 Ellipsometry

Sample

Figure 3.8: Measurement principle for ellipsometry.

the interface.

Ψ = tan−1(
|𝑟p|
|𝑟s|

)

∆ = 𝛿rp − 𝛿rs.
(3.48)

∆ is determined in terms of 𝜌 as:

∆ = arg(𝜌) =

⎧⎪⎪
⎨⎪⎪
⎩

tan−1[ℑ(𝜌)/ℜ(𝜌)], if ℜ(𝜌) > 0 and ℑ(𝜌) ≥ 0
tan−1[ℑ(𝜌)/ℜ(𝜌)] + 360∘, if ℜ(𝜌) > 0 and ℑ(𝜌) < 0
tan−1[ℑ(𝜌)/ℜ(𝜌)] + 180∘, if ℜ(𝜌) < 0 and ℑ(𝜌) ≥ 0
tan−1[ℑ(𝜌)/ℜ(𝜌)] + 180∘, if ℜ(𝜌) < 0 and ℑ(𝜌) < 0

(3.49)

In Equation 3.49, ifℜ(𝜌) = 0, ∆ = 90∘ (ℑ(𝜌) > 0) and ∆ = 270∘ (ℑ(𝜌) < 0).
Therefore, the ranges of Ψ and ∆ are [0∘,90∘] and [0∘,360∘].

Figure 3.9 shows a two-phase system (ambient/ substrate), where 𝑁0 and 𝑁1
are the refractive indices of the ambient and the substrate. Usually, air is the
ambient space (𝑁0 = 1) and the angle of incidence 𝜃0 is a known parameter.
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3 Polarized light and ellipsometry

Substituting Equation 3.11 into Equation 3.46 gives 𝑁1 as:

𝑁1 = 𝑁0 tan 𝜃0√
1− 4𝜌

(1 + 𝜌)2 sin
2 𝜃0. (3.50)

After the ellipsometry measurement of Ψ and∆, the complex refractive index
of the substrate 𝑁1 is determined.

N1

N0 Ambient

Substrate

θ0

Figure 3.9: Optical model for an ambient(0)-substrate(1) system.

3.6.2 Mueller matrix measurements

Ellipsometry uses null, rotating-analyzer, rotating-compensator and phase-
modulation methods, which have different measurable Stokes parameters,
measurable regions and measurement times [Fuj07]. Null ellipsometry is the
first ellipsometry instrument. The polarization state generator (PSG) includes
a linear polarizer and compensator. Changing the rotation angle of the lin-
ear polarizer can let the reflected light become linearly polarized. Then, the
polarization state analyzer (PSA) uses a rotatable linear polarizer to find the
extinction or null condition, i.e., the intensity becomes zero. Finally, the el-
lipsometric parameters (Ψ ,∆) are determined by the rotation angles of the
linear polarizers in the PSG and PSA. The rotating-analyzer method uses a
fixed linear polarizer in the PSG and a rotating linear polarizer in the PSA.
This configuration can only measure 𝑆0, 𝑆1 and 𝑆2. The measurable regions
of Ψ and ∆ are [0∘, 90∘] and [0∘, 180∘]. If a compensator is set in front of the
rotating polarizer, 𝑆3 can be measured and the measurable regions of Ψ and
∆ become [0∘, 90∘] and [0∘, 360∘]. The rotating-compensator method com-
prises a rotating compensator and a fixed linear polarizer in the PSA. The
PSG is a fixed linear polarizer. The measured intensity is modulated by the
rotating compensator. Therefore, full Stokes parameters (𝑆0, 𝑆1, 𝑆2 and 𝑆3.)
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3.6 Ellipsometry

can be calculated by the Fourier analysis. The measurable regions of Ψ and
∆ are [0∘, 90∘] and [0∘, 360∘]. Phase-modulation ellipsometry includes a PSG
(a linear polarizer) and a PSA (a phase modulator and fixed linear polarizer).
The measured intensity is modulated by the phase modulator. Full Stokes pa-
rameters can be determined with at least two different rotation angles of the
modulator by the Fourier analysis. The measurable regions of Ψ and ∆ are
[0∘, 90∘] and [0∘, 360∘].

As described in Section 3.4, the Mueller matrix provides a mathematical
method to describe the polarization properties of samples, including the
depolarizing effect and anisotropic properties. Mueller matrix ellipsometry
has been widely used in the last two decades to determine film thickness
and optical constants.

Figure 3.10 shows a schematic diagram of conventional ellipsometry, which
uses a PSG and a PSA.The PSG produces different polarization states for light
and the PSA measures the polarization state after reflection at the sample.
PSGs usually include rotating waveplate, liquid crystal retarders or photoe-
lastic modulators. This study uses the rotating waveplate method for the PSG.

PSG PSA

Sample

Figure 3.10: A conventional ellipsometer consists of a PSG and a PSA. 𝐒 is the Stokes vector
from the PSG and 𝐒′ is the Stokes vector received by the PSA.

A PSG that consists of a laser, a linear polarizer (LP) and a quarter-waveplate
(QWP) is shown in Figure 3.11. The Stokes vector of the laser (𝐒Laser) is
𝐼0[1 1 0 0]T. The LP is used to extract linearly polarized light and the QWP
is a compensator that generates a phase difference (retardance 𝛿) of 90∘. The
output from the PSG is described using the Stoke vector and the Mueller
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3 Polarized light and ellipsometry

Matrix as:

𝐒 = 𝐌QWP(𝛼PSG) ⋅ 𝐌LP ⋅ 𝐒Laser =
1
2𝐼0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
cos2 2𝛼PSG

cos 2𝛼PSG sin 2𝛼PSG
− sin 2𝛼PSG

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.51)

where the transmission axis of the linear polarizer is parallel to the 𝑥 axis
and the fast axis orientation of the QWP is at 𝛼PSG measured from the 𝑥 axis.
The detailed Mueller matrices for the LP and QWP are shown in Table 3.3.
Rotating the QWP produces different polarization states of light.

SLaser

LP QWP

PSG

S

Figure 3.11: A PSG consists of a laser, a linear polarizer (LP) and a quarter-waveplate (QWP).
The transmission axis of the linear polarizer is parallel to the 𝑥 axis and the fast
axis orientation of the QWP is 𝛼PSG.

There are three types of PSA: time sequential, modulated and division of am-
plitude and division of aperture [Chi18]. This study uses the time sequential
method (rotating waveplate), as shown in Figure 3.12. The measured Stokes
vector 𝐒′ are expressed as:

𝐒′ = 𝐌LP ⋅ 𝐌QWP(𝛼PSA) ⋅ 𝐒, (3.52)

where 𝐒 is the input Stokes vector [𝑆0 𝑆1 𝑆2 𝑆3]T. The total intensity 𝐼 of 𝐒′
is written as:

𝐼 = 1
2(𝑆0 +

1
2𝑆1 +

1
2𝑆1 cos 4𝛼PSA +

1
2𝑆2 sin 4𝛼PSA + 𝑆3 sin 2𝛼PSA)

= 𝑎0 + 𝑏2 sin 2𝛼PSA + 𝑎4 cos 4𝛼PSA + 𝑏4 sin 4𝛼PSA,
(3.53)
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S′
Detector

LP QWP

PSA

S′

Figure 3.12: A PSA consists of a detector, a linear polarizer (LP) and a quarter-waveplate (QWP).
The transmission axis of the linear polarizer is parallel to the 𝑥 axis and the fast axis
orientation of the QWP is 𝛼PSA.

where 𝑎0, 𝑎4, 𝑏2 and 𝑏4 are Fourier coefficients. The detector measures a
modulated signal (𝐼) over one optical cycle, e.g., the QWP rotates from 0∘ to
180∘, with 50 sample points. The signal is the superposition of sine and cosine
waves. Therefore, the Stokes parameters for 𝐒′ are determined by Fourier
analysis to obtain the Fourier coefficients. A typical method for the discrete
Fourier transform is Hadamard analysis. Then, the Stokes parameters can be
calculated as:

𝑆0 = 2(𝑎0 − 𝑎4), 𝑆1 = 4𝑎4, 𝑆2 = 4𝑏4, 𝑆3 = 2𝑏2. (3.54)

Ellipsometry measurements in Figure 3.10 represent the Mueller matrix mea-
surement as:

𝐒′ = 𝐌Sample𝐒, (3.55)

where 𝐒 is the Stokes vector for the light from the PSG and 𝐒′ is the Stokes
vector that is received by the PSA. Since there are 16 elements to be deter-
mined in the Mueller matrix for the sample, only four different Stokes vectors
that are linearly independent are necessary to determine the Mueller matrix.
Moreover, usuallymore than 4 Stokes vectors are used to calculate theMueller
matrix to obtain stable results. If the PSG generates 𝑗 Stokes vectors 𝐒𝑗 , then
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a 4 × 𝑗 matrix 𝐂 is written as:

𝐂 ∶= [𝐒1 𝐒2 𝐒3 ⋯ 𝐒𝑗] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆0,1 𝑆0,2 𝑆0,3 ⋯ 𝑆0,𝑗
𝑆1,1 𝑆1,2 𝑆1,3 ⋯ 𝑆1,𝑗
𝑆2,1 𝑆2,2 𝑆2,3 ⋯ 𝑆2,𝑗
𝑆3,1 𝑆3,2 𝑆3,3 ⋯ 𝑆3,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.56)

The PSA measures 𝑗 Stokes vectors 𝐒′𝑗 after 𝑗 Stokes vectors 𝐒𝑗 reflect from
the sample. Then, a 4 × 𝑗 matrix 𝐃 is written as:

𝐃 ∶= [𝐒′1 𝐒′2 𝐒′3 ⋯ 𝐒′𝑗] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑆′0,1 𝑆′0,2 𝑆′0,3 ⋯ 𝑆′0,𝑗
𝑆′1,1 𝑆′1,2 𝑆′1,3 ⋯ 𝑆′1,𝑗
𝑆′2,1 𝑆′2,2 𝑆′2,3 ⋯ 𝑆′2,𝑗
𝑆′3,1 𝑆′3,2 𝑆′3,3 ⋯ 𝑆′3,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.57)

Substituting Equations 3.56 and 3.57 into Equation 3.55 gives the matrix𝐃 as:

𝐃 = 𝐌Sample ⋅ 𝐂. (3.58)

If more than 4 Stokes vectors are measured, the system is overdetermined and
can be solved as a least squares problem. If the rank of matrix 𝐂 equals 4 (full
rank), the Moore–Penrose inverse 𝐂+ is used to calculate the Mueller matrix
for the sample as:

𝐌Sample = (𝐂†𝐂)−1𝐂†𝐃 = 𝐂+𝐃. (3.59)
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4 Retroreflex ellipsometry

This chapter describes retroreflex ellipsometry and a prototype is developed
accordingly. Section 4.1 presents the design and components of retroreflex el-
lipsometry. The polarization analysis of the retroreflector, which is the most
critical component in retroreflex ellipsometry, is examined in Section 4.2. Po-
larization ray tracing for nonplanar surfaces is introduced in Section 4.3. The
prototype and system calibration are described in Section 4.4. The develop-
ment of the retroreflex ellipsometer is summarized in Section 4.5.

4.1 System design

Laser

LP1QWP1 NPBS
Sample

Retroreflector

QWP2

LP2

Detector

PSG

PSA

Figure 4.1: Schematic diagram of a retroreflex ellipsometer comprising of PSA, PSG, and NPBS.
Figure 4.1 schematically illustrates Mueller matrix retroreflex ellipsometry.
The setup uses the principle of a return-path and dual rotating-compensator
ellipsometry [Hag80], wherein a retroreflector returns the light beam from
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the sample back onto itself along the same beam path with a phase difference
of 180∘ (i.e., polarization similar to that for an ideal mirror). The light beam
from the sample is reflected by the non-polarizing beamsplitter (NPBS) onto
the polarization state analyzer (PSA). The polarization state generator (PSG)
generates light with different polarization states and the PSA measures the
polarization states of light that is reflected from the sample.

The design of the PSG uses the rotating waveplate method, which is described
in Section 3.6. The combination of the fixed linear polarizer and a quarter-
waveplate generates different polarization states of light. The normalized
Stokes parameters (𝑠1, 𝑠2 and 𝑠3) of the PSG in Equation 3.51 are shown in
Figure 4.2.

0 60 120 180 240 300 360
-1

-0.5

0

0.5

1

Figure 4.2: Simulation of normalized Stokes parameters generated by the PSG.
The PSA (also called a polarimeter) also uses the rotating waveplate method
with a fixed linear polarizer. As described in Section 3.6, the Fourier coeffi-
cients are determined using a sequence of intensity measurements over 360∘.
The Stokes vector is then solved using Equation 3.54. This design of the PSA
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is the most common polarimeter for full Stokes parameters determination be-
cause the optical configuration is simple and the measurement sensitivity is
uniform for ellipsometry parameters (Ψ ,∆) [Fuj07]. However, a mechanical
rotating element is required for the QWP. Vibration and misalignment of the
rotation center induce measurement errors. The measurement time is also
limited by the rotational speed of the rotary stage.

The Mueller matrix model for retroreflex ellipsometry in Figure 4.1 is writ-
ten as:

𝐒′ = 𝐌NPBS,r𝐌Sample𝐌Retro𝐌Sample⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝐌measured

𝐌NPBS,t𝐌QWP𝐌LP ⋅ 𝐒Laser⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝐒PSG

= 𝐌measured𝐒PSG,
(4.1)

where 𝐒Laser and 𝐒′ denote the Stokes vector for the laser and the Stokes vector
that is measured by the PSA, respectively. 𝐌NPBS,t and𝐌NPBS,r are theMueller
matrices of transmission and reflection of the NPBS. 𝐌Retro is the Mueller
matrix for the retroreflector, which is identical to the Mueller matrix for an
ideal mirror:

𝐌Retro = 𝐌Mirror =
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥
⎦
. (4.2)

This system is suited to inline or in-situ measurements because the PSG and
the PSA can be integrated into a single unit on one arm. This device is also
more sensitive to the optical properties of surfaces than conventional ellip-
someters because the interaction between the light beam and the sample (re-
flection or transmission) occurs twice, on the path to the retroreflector and the
path back to the PSA. This configuration can also be easily applied to reflec-
tion or transmission measurements because the retroreflector allows flexible
installation and tolerances are loose.
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4 Retroreflex ellipsometry

4.2 Polarization characteristics of the
retroreflector

To measure nonplanar surfaces, a retroreflector (retroreflective sheet) is used
to return the light beam back to the sample along the same beam path. The
retroreflective sheet consists of many tiny spherical glass beads that reflect
the light beam. Figure 4.3 shows a microscope image of a retroreflective sheet.
The spherical glass beads are placed randomly and their diameters vary be-
tween about 50 µm and 100 µm. This type of the retroreflector is also called
a cat’s eye retroreflector and produces an effect that is similar to the red-
eye effect in flash photography. There are two types of retroreflectors: cat’s
eye and corner cube. However, the polarization characteristics of the latter
retroreflector are strongly dependent on the incidence angle and the incidence
zones [Seg03, Kal07]. For the former retroreflector, if the incident angle is less
than 12∘, the glass bead type (cat’s eye) reflects polarized light with a phase
shift of 180∘ [Ste85, Li19].

Figure 4.3: Microscopic image of the retroreflector.

The cat’s eye retroreflector is widely used as a laser tracker for precision align-
ment [May93]. There are many studies involving wavefronts [Bee66], ray
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4.2 Polarization characteristics of the retroreflector

tracing [Yan00] and efficiency analysis [Yan12] but only some studies deter-
mine the polarization properties of the cat’s eye retroreflector [Zho11, Li19,
Neg23].

Figure 4.4 shows a schematic diagram of a cat’s eye retroreflector with radius 𝑟
and the refractive index of the glass bead is 2. Two refractions and one reflec-
tion respectively occur at points A, C and B.The input beam is parallel to the 𝑧
axis and the input beam height is ℎ so the angle of incidence is calculated as:

𝜃0 = sin−1 (ℎ𝑟 ), (4.3)

where ℎ/𝑟 indicates the normalized incident height of the cat’s eye retrore-
flector and the range is [0, 1].
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Figure 4.4: Schematic diagram of a cat’s eye retroreflector. The refractive indices of air (𝑁air)
and the glass bead (𝑁glass) are 1 and 2, respectively.

The deflection angle 𝛾 is derived by ray tracing as:

𝛾 = (4𝜃1 − 𝜃0) − 𝜃0

= 4 sin−1 ( ℎ2𝑟 ) − 2 sin−1 (ℎ𝑟 ).
(4.4)

Figure 4.5 illustrates the relationship between 𝛾 and ℎ/𝑟. The deflection angle
increases with the ℎ/𝑟 ratio. At a distance 𝑧 (𝑧 ≫ 𝑟), the offset distance along
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4 Retroreflex ellipsometry

the 𝑦 direction is:

Offset ≈ 𝑧 sin 𝛾. (4.5)
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Figure 4.5: Deflection angle 𝛾 for a Cat’s eye retroreflector as a function of ℎ/𝑟 ratio.

Figure 4.6 shows the offset distance at a distance 𝑧 from 0 to 200 mm for
ℎ/𝑟 = 0.1, ℎ/𝑟 = 0.15 and ℎ/𝑟 = 0.2. Table 4.1 lists the numerical values
of the incident angle 𝜃0, the deflection angle 𝛾 and the offset distances at
distances 𝑧 of 100 mm and 200 mm for ℎ/𝑟 = 0.1, ℎ/𝑟 = 0.15 and ℎ/𝑟 = 0.2.

Table 4.1: Numerical values of the incident angle 𝜃0, the deflection angle 𝛾 and the offset dis-
tances (𝑧 = 100 mm and 𝑧 = 200 mm) for ℎ/𝑟 = 0.1, ℎ/𝑟 = 0.15 and ℎ/𝑟 = 0.2.

ℎ/𝑟 AOI 𝜃0 𝛾 Offset (100 mm) Offset (200 mm)
0.10 5.74∘ 0.01∘ (0.25 mrad) 0.03 mm 0.05 mm
0.15 8.63∘ 0.05∘ (0.85 mrad) 0.09 mm 0.17 mm
0.20 11.54∘ 0.12∘ (2.05 mrad) 0.20 mm 0.41 mm
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Figure 4.6: Offset 𝑦 distances at a distance 𝑧 from 0 to 200 mm for ℎ/𝑟 = 0.1, ℎ/𝑟 = 0.15 and
ℎ/𝑟 = 0.2

For ℎ/𝑟 = 0.2, the maximum offset at a distance 𝑧 of 200 mm is 0.41 mm.
However, on the return path, there are two reflections due to the sample and
NPBS (see Figure 4.1). There is an optical lever so the deflection angle in-
creases 4-fold and the offset at the detector is about 1.64 mm.

In the prototype for retroreflex ellipsometry, the free space aperture for the
polarimeter (PSA) is 3 mm (diameter). Therefore, it is assumed that the po-
larimeter receives the light beam when the height of the normalized incident
beam is less than 0.2. The following analysis for polarization characteristics
only considers the case of ℎ/𝑟 < 0.2. Due to the intellectual property for the
retroreflector, the refractive index of each interface is not known. Previous
studies show that the refractive index of the glass bead is close to 2 [Yan00,
Li19]. Therefore, the glass beads are assumed to have a refractive index of 2
in this analysis.
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4 Retroreflex ellipsometry

4.2.1 Small-angle approximation

For ℎ/𝑟 < 0.2, the maximum incident angle is 11.54∘. The small-angle ap-
proximation is used to calculate the Fresnel coefficients of the refraction and
reflection at the interfaces. The approximation is listed below.

sin 𝜃 ≈ 𝜃,
cos 𝜃 ≈ 1.

(4.6)

At an incident angle of 11.54∘, the relative errors in sin 𝜃 and cos 𝜃 are 0.7%
and 2.0%. Substituting sin2 𝜃t + cos2 𝜃t = 1 into Equation 3.8 (Snell’s law)
gives:

cos 𝜃t =√
1 − 𝑁2

i

𝑁2
t
sin2 𝜃i. (4.7)

Substituting Equation 4.7 into the ratio for the amplitude transmission coef-
ficients in Equation 3.47 gives 𝜌Refraction:

𝜌Refraction =
𝑡p
𝑡s
=
𝑁i cos 𝜃i +𝑁t√1− 𝑁2

i

𝑁2
t
sin2 𝜃i

𝑁t cos 𝜃i +𝑁i√1− 𝑁2
i

𝑁2
t
sin2 𝜃i

. (4.8)

In terms of the refraction at point A in Figure 4.4, 𝑁i = 1, 𝑁t = 2 and
𝑁2

i sin
2 𝜃i/𝑁2

t ≈ 0 so the approximation of the inner term in Equation 4.8 is

√
1− 𝑁2

i

𝑁2
t
sin2 𝜃i ≈ 1. (4.9)

Equation 4.8 can then be simplified as:

𝜌Refraction,A =
𝑁i +𝑁t
𝑁t +𝑁i

= 1

= tan (45∘)𝑒i0∘ .
(4.10)
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4.2 Polarization characteristics of the retroreflector

Substituting the result (Ψ = 45∘ and ∆ = 0∘) into the Mueller matrix for
the sample in Table 3.3 gives the Mueller matrix of the refraction at point A
and the ellipsometric parameters (Ψ ,∆) are calculated using Equations 3.48
and 3.49:

𝐌Refraction, A =
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥
⎦
. (4.11)

In terms of the refraction at point C, 𝑁i = 2 and 𝑁t = 1, a similar approx-
imation in Equation 4.9 is applied and the Mueller matrix for the refraction
at point C is shown as:

𝐌Refraction, C =
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥
⎦
. (4.12)

In terms of the reflection at point B, substituting Equation 4.7 into the ratio of
the amplitude reflection coefficients in Equation 3.46 gives 𝜌Reflection as:

𝜌Reflection,B =
𝑟p
𝑟s

=
𝑁t cos 𝜃i −𝑁i√1− 𝑁2

i

𝑁2
t
sin2 𝜃i

𝑁t cos 𝜃i +𝑁i√1− 𝑁2
i

𝑁2
t
sin2 𝜃i

𝑁i cos 𝜃i +𝑁t√1− 𝑁2
i

𝑁2
t
sin2 𝜃i

𝑁i cos 𝜃i −𝑁t√1− 𝑁2
i

𝑁2
t
sin2 𝜃i

.
(4.13)

In this case, 𝑁i = 2 and 𝑁t = 1. The condition in Equations 4.6 and 4.9 is
also applied. Then 𝜌Reflection, B can be simplified and the Mueller matrix for
the reflection is shown as follows:

𝜌Reflection,B =
𝑁t −𝑁i
𝑁t +𝑁i

𝑁i +𝑁t
𝑁i −𝑁t

= −1

= tan (45∘)𝑒i180∘ .
(4.14)
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𝐌Reflection,B =
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥
⎦
. (4.15)

Finally, the Mueller matrix for the retroreflector is written as:

𝐌Retroreflector = 𝐌Refraction,C ⋅ 𝐌Reflection,B ⋅ 𝐌Refraction,A

=
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥
⎦
.

(4.16)

At small angles of incidence (𝜃0 ⩽ 11.54∘), the refraction does not change the
polarization state of the incident beam and the reflection is similar to that in
an ideal mirror. The total polarization characteristics of the retroreflector are
approximately the same as those for an ideal mirror.

4.2.2 Numerical simulation

In order to obtain a more accurate result, a numerical simulation without the
small-angle approximation is applied. The ratio of the amplitude reflection
coefficients for the retroreflector can be written as:

𝜌Retroreflector = 𝜌Refraction,C ⋅ 𝜌Reflection,B ⋅ 𝜌Refraction,A. (4.17)

Using the assumed refractive indices, the simulation values (Ψ and∆) for the
retroreflector are shown in Figure 4.7. The maximum error in Ψ is are −0.88∘
at ℎ/𝑟 of 0.2 and there is no error in ∆. A polarimeter measures light beams
from ℎ/𝑟 = 0 to ℎ/𝑟 = 0.2 so the average values for Ψ and ∆ are 44.71∘ and
180.00∘, respectively. Substituting average values into the Mueller matrix for
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4.2 Polarization characteristics of the retroreflector

the sample gives the simulated Mueller matrix for the retroreflector as:

𝐌Retroreflector =
⎡⎢⎢⎢
⎣

1 −0.01 0 0
−0.01 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥
⎦
. (4.18)

The result of the numerical simulation is similar to the result of small-angle
approximation. The maximum deviation of the Mueller matrix of an ideal
retroreflector is 0.01.
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Figure 4.7: Simulation values of Ψ and∆ for the retroreflector based on the assumed refractive
indices.

4.2.3 Experimental validation

In order to verify the polarization characteristics of the retroreflector, a com-
mercial spectroscopic ellipsometer (Smart SE, HORIBA Scientific) is used to
measure the retroreflector for incident angles from 0∘ to 30∘. The accuracy of
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4 Retroreflex ellipsometry

the ellipsometer for the straight-throughmeasurement (air) is Ψ = 45∘±0.05∘
and ∆ = 180∘ ± 0.2∘.
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Figure 4.8: Measurement results for the retroreflector using a commercial spectroscopic ellip-
someter. The incident angle ranges from 0∘ to 30∘.

The measurement result is shown in Figure 4.8. The maximum deviation in
each Mueller matrix element is less than 0.05 between 400 nm to 700 nm and
the Mueller matrices are similar to the Mueller matrix for an ideal mirror for
an incident angle of less than 30∘. The Mueller matrix for the retroreflector

64



4.2 Polarization characteristics of the retroreflector

at a wavelength of 635 nm is listed as

𝐌Retroreflector,635 =
⎡⎢⎢⎢
⎣

1. −0.008 0. −0.001
−0.004 0.993 −0.031 0.006
−0.010 −0.025 −0.984 −0.028
0.001 0.016 0.013 −0.993

⎤⎥⎥⎥
⎦
. (4.19)

The standard deviation (SD) 𝜎 for the Mueller matrix elements at different
incident angles for a wavelength of 635 nm is shown as:

𝐌𝜎,635 =
⎡⎢⎢⎢
⎣

0. 0.002 0.002 0.001
0.002 0.002 0.001 0.001
0.002 0.001 0.001 0.002
0.001 0.002 0.001 0.001

⎤⎥⎥⎥
⎦
. (4.20)

The experimental results are in good agreementwith the simulation results us-
ing the small-angle approximation and numerical analysis. The standard de-
viation shows that the retroreflector has good polarization-preserving prop-
erties at incidence angles between 0∘ to 30∘.
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4 Retroreflex ellipsometry

4.3 Polarization ray tracing for nonplanar
surfaces

Jones or Mueller calculus is used to describe ellipsometric measurements. For
planar surfaces, the plane of incidence (POI), which is defined by the incident
ray and the surface normal, is fixed and the ellipsometer is calibrated under
this coordinate system. If the sample is curved or tilted, the POI alters be-
cause the surface normal changes. Therefore, the ellipsometric measurements
for nonplanar surfaces require additional coordinate transformation to obtain
correct results. In this section, polarization ray tracing, which is described in
Section 3.5, is used to determine the coordinate transformation.

Figure 4.9 demonstrates a measurement schematic of retroreflex ellipsome-
try for a flat sample defining the 𝑥𝑦 plane whose surface normal is (0, 0, 1)T.
When the sample rotates around the 𝑦 axis, the surface normal n becomes the
vector (sin𝜙, 0, cos𝜙)T. The tilt angle 𝜙 is defined as that between the surface
normal n and the 𝑧 axis, and the angle of incidence 𝜃0 as that between the
surface normal n and the incident beam k0. The nominal angle of incidence
𝜃′ is the angle between the 𝑧 axis and the incident beam k0. The relationship
between 𝜃0, 𝜃′ and 𝜙 is shown as:

cos 𝜃0 = cos 𝜃′ cos𝜙. (4.21)

If 𝜙 is 0, 𝜃0 equals 𝜃′, i.e., the sample is aligned and the measurement is under
a calibrated coordinate system. In the measurement, the incident beam is
reflected by the sample (𝑞 = 1), retroreflector (𝑞 = 2) and sample (𝑞 = 3),
respectively. The net polarization transfer matrix PTotal is expressed as:

PTotal = Oout,3J
(3)
3 O−1

in,3 ⋅ Oout,2J
(3)
2 O−1

in,2 ⋅ Oout,1J
(3)
1 O−1

in,1. (4.22)

The Jones matrices of the optically isotropic sample and retroreflector (ideal
mirror) are shown in Table 3.2. It is worth mentioning that the Jones matrices
J in Section 3.3 are defined in local 𝑥 and 𝑦 bases, which correspond to �̂�
and ̂𝐬 bases. The 3D Jones matrix J(3) for a reflection at an optically isotropic

66



4.3 Polarization ray tracing for nonplanar surfaces

x

y

z

Sample

k0

s0′

p0′
s0

p0α

k1

Retroreflector

n

ϕ

θ0

θ′

Figure 4.9: Schematic diagram of a flat sample rotates around the 𝑦 axis. The incident beam
follows the direction k0 is reflected by the sample, retroreflector and sample, respec-
tively.

interface, defined in local ̂𝐬, �̂� and �̂� bases, is expressed as:

J(3) = [
𝑗(3)11 0 0
0 𝑗(3)22 0
0 0 1

] , (4.23)

where 𝑗(3)11 = 𝑗22 and 𝑗(3)22 = 𝑗11. Hence, the 3D Jones matrices of the optically
isotropic sample and retroreflector are written as:

J(3)Sample = J(3)1 = J(3)3 = [
cosΨ 0 0
0 sinΨ exp[i∆] 0
0 0 1

] , (4.24)

J(3)Retro = J(3)Mirror = J(3)2 = [
−1 0 0
0 1 0
0 0 1

] , (4.25)
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The 3D Jones matrix of the coordinate rotation is expressed as:

J(3)R (𝛼) = [
cos𝛼 sin𝛼 0
− sin𝛼 cos𝛼 0
0 0 1

] . (4.26)

Following the ray tracing method described in Section 3.5, the propagation
vectors, surface normals and local coordinate basis vectors are listed in Table
4.2. The inner terms O−1

in,3Oout,2J
(3)
2 O−1

in,2Oout,1 in Equation 4.22 can be simpli-
fied as J(3)Retro. Then Equation 4.22 is written as:

P = Oout,3J
(3)
SampleJ

(3)
RetroJ

(3)
SampleO

−1
in,1. (4.27)

In addition, O−1
in,1 can be decomposed into the product of a rotation matrix

J(3)R (𝛼1) and a local coordinate transformation matrixOin(𝜙=0),1 andOout,3 can
be decomposed into the product of a local coordinate transformation matrix
Oout(𝜙=0),3 and a rotation matrix J(3)R (𝛼3) as following:

O−1
in,1 =

⎡
⎢
⎢
⎢
⎢
⎣

− cos𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

sin𝜙 cos𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

sin𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
sin𝜙

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

cos𝜙 sin𝜃′ cos𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

cos𝜙 sin2 𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

0 sin 𝜃′ − cos 𝜃′

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

cos𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

sin𝜙

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
0

− sin𝜙

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

cos𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⋅ [
−1 0 0
0 cos 𝜃′ sin 𝜃′
0 sin 𝜃′ − cos 𝜃′

]

= J(3)R (𝛼1) ⋅ Oin(𝜙=0),1,
(4.28)
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Oout,3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− cos𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

− sin𝜙

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
0

sin𝜙 cos𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

− cos𝜙 sin𝜃′ cos𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
− sin 𝜃′

sin𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

− cos𝜙 sin2 𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
cos 𝜃′

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
−1 0 0
0 − cos 𝜃′ − sin 𝜃′
0 − sin 𝜃′ cos 𝜃′

] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

cos𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

sin𝜙

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
0

− sin𝜙

√cos2 𝜙 sin2 𝜃′+sin2 𝜙

cos𝜙 sin𝜃′

√cos2 𝜙 sin2 𝜃′+sin2 𝜙
0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= Oout(𝜙=0),3 ⋅ J(3)R (𝛼3),
(4.29)

where tan𝛼1 = tan𝛼3 = tan𝜙/ sin 𝜃′.

It can be observed from Equations 4.28 and 4.29 that 𝛼1 and 𝛼3 have the same
value and sign. In addition,Oin(𝜙=0),1 andOout(𝜙=0),3 represent the coordinate
transformation when the tilt angle is 0, i.e., the calibrated ellipsometer for flat
samples is based on the coordinate transformation Oin(𝜙=0),1 and Oout(𝜙=0),3.
Substituting Equation 4.28 and 4.29 into Equation 4.22 gives the polarization
model of tilted surfaces.

P = Oout(𝜙=0),3 ⋅ J(3)R (𝛼)J(3)SampleJ
(3)
RetroJ

(3)
SampleJ

(3)
R (𝛼) ⋅ Oin(𝜙=0),1, (4.30)

where 𝛼1 = 𝛼3 = 𝛼.
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4.3 Polarization ray tracing for nonplanar surfaces

Substituting tan𝛼 = tan𝜙/ sin 𝜃′ into Equation 4.21 gives the relationship
between the tilt angle 𝜙, incident angle 𝜃0 and rotation angle 𝛼 as:

sin𝜙 = sin 𝜃0 sin𝛼. (4.31)

If 𝜃0 and 𝛼 are known, the tilt angle 𝜙 can be calculated by Equation 4.31.

The term J(3)R (𝛼)J(3)SampleJ
(3)
RetroJ

(3)
SampleJ

(3)
R (𝛼) in Equation 4.30 indicates the mea-

sured 3D Jones matrix by retroreflex ellipsometry. It can be transformed to
the representation of Mueller calculus as

M = MR(𝛼)MSampleMRetroMSampleMR(𝛼). (4.32)

The Mueller matrix of an isotropic sample MSample can be expressed by the
NSC representation:

𝐌Sample = 𝑅
⎡⎢⎢⎢
⎣

1 −𝑁M 0 0
−𝑁M 1 0 0
0 0 𝐶M 𝑆M
0 0 −𝑆M 𝐶M

⎤⎥⎥⎥
⎦
, (4.33)

where 𝑁M ∶= cos 2Ψ , 𝑆M ∶= sin 2Ψ sin∆, and 𝐶M ∶= sin 2Ψ cos∆. Ψ and
∆, which are functions of the angle of incidence and the refractive index of the
sample, represent amplitude ratio and phase difference. If the sample does not
depolarize the light, then 𝑁2

M + 𝑆2M + 𝐶2
M = 1 is fulfilled. The Mueller matrix

of a coordinate rotation MR(𝛼) is expressed as:

M𝑅(𝛼) =
⎡⎢⎢⎢
⎣

1 0 0 0
0 cos 2𝛼 − sin 2𝛼 0
0 sin 2𝛼 cos 2𝛼 0
0 0 0 1

⎤⎥⎥⎥
⎦
, (4.34)
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4 Retroreflex ellipsometry

When a flat sample is measured with a calibrated POI (𝛼 = 0), the measured
Mueller matrix is written as:

𝐌Meas,𝛼=0 = 𝑅2
⎡⎢⎢⎢
⎣

1 + 𝑁2
M −2𝑁M 0 0

−2𝑁M 1 + 𝑁2
M 0 0

0 0 𝑆2M − 𝐶2
M −2𝐶M𝑆M

0 0 2𝐶M𝑆M 𝑆2M − 𝐶2
M

⎤⎥⎥⎥
⎦

. (4.35)

If the sample is tilted (𝛼 ≠ 0), then the measuredMueller matrix is written as:

𝐌Meas =

𝑅2
⎡⎢⎢⎢
⎣

1 + 𝑁2
M −2𝑁M cos 2𝛼 2𝑁M sin 2𝛼 0

−2𝑁M cos 2𝛼 𝑔2 + 𝑔1 cos 4𝛼 −𝑔1 sin 4𝛼 2𝑔3 sin 2𝛼
−2𝑁M sin 2𝛼 𝑔1 sin 4𝛼 −𝑔2 + 𝑔1 cos 4𝛼 −2𝑔3 cos 2𝛼

0 2𝑔3 sin 2𝛼 2𝑔3 cos 2𝛼 𝑔1 − 𝑔2

⎤⎥⎥⎥
⎦

,

𝑔1 ∶= 1 − 𝐶2
M,

𝑔2 ∶= 1 − 𝑆2M,
𝑔3 ∶= 𝐶M𝑆M.

(4.36)

In Equation 4.36, the measured Mueller matrix for an isotropic sampleMSample
becomes anisotropic wherein the off-diagonal 2 × 2 blocks are nonzero ele-
ments because the plane of incidence is changed.

The normalized Mueller matrix �̂�Meas is shown as:

�̂�Meas =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −2𝑁M cos 2𝛼
1+𝑁2

M

2𝑁M sin 2𝛼
1+𝑁2

M
0

−2𝑁M cos 2𝛼
1+𝑁2

M

𝑔2+𝑔1 cos4𝛼
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M

−𝑔1 sin4𝛼
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M

2𝑔3 sin 2𝛼
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M
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M

𝑔1 sin4𝛼
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M

−𝑔2+𝑔1 cos4𝛼
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M
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1+𝑁2

M

0 2𝑔3 sin 2𝛼
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M

2𝑔3 cos 2𝛼
1+𝑁2

M
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1+𝑁2

M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.37)
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4.3 Polarization ray tracing for nonplanar surfaces

The 16 elements of the normalized Mueller matrix �̂�Meas are reduced to eight
different elements owing to the symmetry of the matrix. Further, the off-
diagonal elements of the matrix can be used for the alignment of the sample
and the determination of the plane of incidence. The rotation angle and NSC
parameters can be solved analytically as following:

2𝛼 = − tan−1(𝑚13
𝑚12

) = tan−1(𝑚31
𝑚21

) = − tan−1(𝑚24
𝑚34

) = tan−1(𝑚42
𝑚43

),

𝑁2
M

(1 + 𝑁2
M)2

= 𝑚2
12 +𝑚2

13
4 = 𝑚2

21 +𝑚2
31

4 ,

𝑆2M
(1 + 𝑁2

M)2
= 1
2(√𝑚2

42 +𝑚2
43 +𝑚2

44 +𝑚44)

= 1
2(√𝑚2

24 +𝑚2
34 +𝑚2

44 +𝑚44),
𝐶2
M

(1 + 𝑁2
M)2

= 1
2(√𝑚2

42 +𝑚2
43 +𝑚2

44 −𝑚44)

= 1
2(√𝑚2

24 +𝑚2
34 +𝑚2

44 −𝑚44).

(4.38)

In Equation 4.37, elements𝑚32 and𝑚43 have a high sensitivity to the change
of the tilt and incident angles, respectively [Joh11]. Figure 4.10 shows the
simulation result of a gold plane mirror that rotates around the 𝑦 axis (see
Figure 4.10) in a range of 𝜙 from −22.5∘ to 22.5∘ at an angle of incidence
of 70∘; whereupon 𝑚32 changes from −0.85 to 0.85 while 𝑚43 only has a
difference of 0.1 during the rotation. Figure 4.11 shows the simulation data of
a gold plane mirror whose angle of incidence is altered from 45∘ to 90∘ at a
tilt angle of 5∘; whereupon𝑚32 only has a difference of 0.35 while𝑚43 varies
from -0.98 to 0.98. These results show the feasibility to determine the incident
and tilt angles from the measured Mueller matrix.
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4 Retroreflex ellipsometry
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Figure 4.10: Simulation result of a gold plane mirror rotated around the 𝑦 axis in a range of 𝜙
from −22.5∘ to 22.5∘ at an angle of incidence of 70∘. The refractive index of the
gold mirror is 0.184 − 3.431i.
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Figure 4.11: Simulation result of a gold plane mirror at angles of incidence ranging from 45∘ to
90∘ at a tilt angle 𝜙 of 5∘. The refractive index of the gold mirror is 0.184−3.431i.
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4.4 Prototype, system calibration and data analysis

4.4 Prototype, system calibration and data
analysis

The prototype of the retroreflex ellipsometer is shown in Figure 4.12. It
features a laser light source with a wavelength of 635 nm. The collimated
laser beam passes through a linear polarizer, a quarter-waveplate and a
non-polarizing beamsplitter (NPBS) and the returning beam is reflected by
the NPBS and is received by a polarimeter (PAX1000, Thorlabs Inc.). The
ellipsometry data is analyzed using a dual rotating-compensator Mueller
matrix ellipsometry which is described in Section 3.6, so all Mueller matrix
elements can be obtained.

Laser 
Diode Linear

Polarizer

Quarter-Wave
Plate

Polarimeter

NPBS

Figure 4.12: Photograph of the retroreflex ellipsometer prototype.

To ensure accurate results, every component in the prototype must be either
calibrated ormeasured, especially theNPBS.TheNPBS has strong polarization
distortions, that should be taken into account [Joh11, Liu16, Zha18]. Figure
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4 Retroreflex ellipsometry

4.13 shows the calibration procedure for this study, which is similar to that
of Liu et al. [Liu16]. Laser beams from the PSG are transmitted through the
NPBS and are measured using a calibrated polarimeter, where the measured
Stokes vectors are denoted as SPSG. A mirror then reflects the laser beam to
the NPBS and the polarimeter measures the beams that are reflected from the
NPBS, which is denoted as S′. The Mueller matrix model of the calibration
process is expressed as:

𝐒′ = 𝐌NPBS,R ⋅ 𝐌Mirror ⋅ 𝐒PSG, (4.39)

where 𝐌NPBS,R indicates the Mueller matrix for the reflection of the NPBS.
𝐌NPBS,R is calculated by matrix multiplication. During the assembly and the
calibration procedures, it is important that all of the polarized components are
aligned carefully with the axis of the polarimeter to reduce alignment errors
in the system.

SPSG

S
′

(a)

(b)

PSG

MirrorNPBS

P
S
A

PSG

NPBS

PSA
SPSG

S
′

(a)

(b)

Figure 4.13: Calibration procedure for the NPBS and the corresponding setup.
After calibration, the ellipsometer is able to measure samples. To obtain the
ellipsometric parameters (Ψ ,∆) and the tilt angle𝛼 from theMuellermatrixM
in Equation 4.32, a numerical fitting method is used to find those parameters.
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4.5 Summary

The squared error function 𝜒2 is defined as:

𝜒2 =
4
∑
𝑖,𝑗=1

(𝑚Exp
𝑖𝑗 −𝑚Calc

𝑖𝑗 )2, (4.40)

where𝑚Exp
𝑖𝑗 and𝑚Calc

𝑖𝑗 denote the experimental and calculated matrix element
quantities, respectively.

4.5 Summary

Retroreflex ellipsometry overcomes the geometric limitations of standard el-
lipsometers by using a cat’s eye retroreflector. The polarization properties of
the retroreflector are analyzed using the small-angle approximation, numeri-
cal simulation and experimental validation. These results are in good agree-
ment and verify the polarization-preserving properties at an incident angle
of less than ±30∘. Therefore, retroreflex ellipsometry can measure nonplanar
surfaces without the need for time-consuming adjustment because the condi-
tions for alignment between the PSA and the sample with nonplanar surfaces
is automatically fulfilled by the retroreflector.

However, the PSA can receive signals when the normalized incident height
ℎ/𝑟 is less than 0.2. The light from the range of ℎ/𝑟 ∈ [0.2, 1] is blocked by
the polarimeter’s aperture. Therefore, only 4% of the light can be detected. In
consequence, retroreflex ellipsometry requires longer integration time for the
PSA or high-power light sources, such as lasers and Xenon light. In addition,
using a high reflective coating on the reflection side of the retroreflector can
increase the reflection efficiency.

The polarization model for nonplanar surfaces is derived by polarization ray
tracing. The relationship between the angle of incidence 𝜃0, azimuthal rota-
tion angle 𝛼 and tilt angle 𝜙 is determined. The azimuthal rotation angle 𝛼
can be obtained by the measured Mueller matrix for the sample. If the AOI is
known, the tilt angle can be calculated.
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4 Retroreflex ellipsometry

A prototype based on the principle of retroreflex ellipsometry is built. The
dual rotating-compensator configuration can measure the full Mueller matrix
for the sample. A calibration method for the NPBS is proposed to compen-
sate for the polarization distortion induced by the NPBS. A numerical fitting
method is applied to obtain the ellipsometric parameters (Ψ , ∆) and the az-
imuthal rotation angle 𝛼 from the measured Mueller matrix �̂�Meas,
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5 Measurement methods and
uncertainty analysis for nonplanar
surfaces

Retroreflex ellipsometry addresses the geometric limitations of standard el-
lipsometers. However, the geometric data for the portion of the sample that
is within the measurement field is still necessary for accurate measurements
of the refractive index or film thickness. This chapter presents two methods
for two-phase and three-phase systems. Section 5.1 uses ellipsometric param-
eters and reflectance data to calculate the angle of incidence and the optical
properties of isotropic substrates. Section 5.2 uses a numerical inversemethod
to calculate the angle of incidence and film thickness using ellipsometric pa-
rameters and the optical properties of the sample. A Monte Carlo simulation
is used to quantify and propagate uncertainties for these methods. The effect
of curved surfaces on ellipsometric measurements is determined in Section
5.3 using numerical simulation.

5.1 Analytical determination of the angle of
incident and the refractive index for a
two-phase system

Ellipsometry is sensitive to the angle of incidence. A slight error in deter-
mining the AOI can cause significant errors in the refractive index calcula-
tion. For a nonplanar surface, the angle of incidence changes because the
surface is curved. The height and inclination of the sample are adjusted to al-
low the ellipsometer to measure the sample in a calibrated plane of incidence.
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5 Measurement methods and uncertainty analysis for nonplanar surfaces

This alignment process is very time-consuming and the range of adjustment is
limited so only some positions on the sample can be measured [Har20]. Spec-
troscopic ellipsometry can use a dispersion model [Fuj07], measurements at
different angles [Woo99] and reflectance measurements [Del02] to determine
the AOI and the refractive index. The first two methods are not suitable for in
situ or inline measurements because they require a long measurement time.
The reflectance can also be measured using the ellipsometric parameters if the
intensity is calibrated using a known standard so ellipsometry and reflectance
measurements can be used for in situ or inline measurements. However, the
major disadvantage of reflectance measurements is that they are significantly
affected by the stability of the illumination and the photodetector so it is dif-
ficult to calibrate an absolute intensity [Stu00].

Many studies use ellipsometric parameters and reflectance data to measure
dielectric functions and thin films [Haz83, An93, Stu00, Liz13, Löp15, Liu19].
However, these assume that the samples are flat and that the angle of inci-
dence is fixed and known. These assumptions are not valid for nonplanar
surfaces and experimental errors arise if the sample is offset or tilted. In 2010,
Ghosh et al. measured the reflectance for p- and s-polarized waves (𝑅p, 𝑅s)
to determine the refractive index of spherical balls for rendering with an LED
sphere with about 150 individually controllable lights (circularly polarized)
[Gho10]. The study achieved a relative error of 1.5% for the refractive index of
a rubber ball. Only dielectric materials were used and additional photometric
measurements were required to obtain the surface geometry but the solution
represents an advance for ellipsometric measurements. To allow ellipsometric
measurements for nonplanar surfaces, this study combines retroreflex ellip-
sometry and reflectance data to measure the optical properties of an isotropic
two-phase systemwith nonplanar surfaces using the reflectance R and ellipso-
metric data (Ψ ,∆) with no prior knowledge of the angle of incidence. A two-
phases system includes an ambient and a substrate. The following describes
two methods to determine the AOI and the refractive index for transparent
and non-transparent substrates.
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5.1 Analytical determination of the angle of incident and the refractive index for a two-phase
system

5.1.1 Transparent substrates

Figure 5.1 shows the refraction and reflection of a ray of light that impinge
from an ambient material with a refractive index of 𝑁0 on a substrate with
a refractive index of 𝑁1. The roughness and the backside reflection of the
substrate are not considered by this study.

N1

N0 Ambient

Substrate

θ0

Figure 5.1: Optical model of a two phase system (ambient(0)/ substrate(1)).

If the substrate is transparent, its extinction coefficient (𝑘) is 0, so 𝑁1 = 𝑛 ∈
ℝ>0. According to Fresnel’s equations in Equation 3.11, the amplitude reflec-
tion coefficient for p- and s- polarization is also a real number (𝑟p, 𝑟s ∈ ℝ).
Figure 5.2 shows the amplitude coefficient at an air/glass interface, which
shows that 𝑟s is negative, 𝑟p is positive when ∆ is 180∘, and 𝑟p is negative
when ∆ is 0∘. By substituting tanΨ = ||𝑟p|| / |𝑟s| and the sign condition for 𝑟p
into Equation 3.16, 𝑟p and 𝑟s are expressed as:

𝑟p = { √2R sinΨ , if ∆ = 180∘
−√2R sinΨ , if ∆ = 0

, (5.1)

𝑟s = −√2R cosΨ . (5.2)

The direct relationship between the p- and s-polarization and the angle of
incidence is shown as [Azz86]:

cos 2𝜃0 =
𝑟2s − 𝑟p
𝑟s − 𝑟s𝑟p

. (5.3)
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Figure 5.2: Amplitude coefficient 𝑟p and 𝑟s, and the phase change ∆ at an air (𝑁0 = 1 )/ glass
(𝑁1 = 1.5) interface.

By combining Equations 5.1 and 5.2 with Equation 5.3, cos 2𝜃0 is rewritten as:

cos 2𝜃0 =
⎧⎪
⎨⎪
⎩

−2√𝑅 cosΨ+√2 tanΨ
√2−2√𝑅 sinΨ

, if ∆ = 180∘

−2√𝑅 cosΨ−√2 tanΨ
√2+2√𝑅 sinΨ

, if ∆ = 0∘
. (5.4)

The angle of incidence is calculated using Equation 5.4 and the refractive index
is calculated using Equation 5.5 [Azz87].

𝑁1 = 𝑁0 tan 𝜃0√
1− 4𝜌

(1 + 𝜌)2 sin
2 𝜃0. (5.5)

By using trigonometric formulas, tan 𝜃0 and sin 𝜃0 are expressed as

tan 𝜃0 =√
1 − cos 2𝜃0
1 + cos 2𝜃0

, (5.6)
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sin2 𝜃0 =
1
2(1 − cos 2𝜃0). (5.7)

Substituting Equations 5.4, 5.6 and 5.7 into Equation 5.5 gives the refractive
index of the transparent substrate as:

𝑁1 =
⎧⎪
⎨⎪
⎩

𝑁0√
(√2R sinΨ+1)(√2R cosΨ+1)
(√2R sinΨ−1)(√2R cosΨ−1)

, if ∆ = 180∘

𝑁0√
(√2R sinΨ−1)(√2R cosΨ+1)
(√2R sinΨ+1)(√2R cosΨ−1)

, if ∆ = 0∘
. (5.8)

If the angle of incidence is equal to the Brewster angle, then Ψ = 0, 𝑟p = 0 and
𝑟s = −√2𝑅. Substituting these values into Equations 5.4 and 5.8, the angle of
incidence and the refractive index are calculated as:

cos 2𝜃0 = −√2𝑅, (5.9)

𝑁1 = 𝑁0

√√√
√

1+√2R
1 − √2R

. (5.10)

The reflectometric and ellipsometric measurements of Hazebroek and Visser
[Haz83] are used to verify the proposed method. The study by Hazebroek and
Visser used a laser interferometric ellipsometer to measure the ellipsometric
parameters and the reflectance of a silica disc (Heraues Ultrasil). Table 5.1
shows the experimental data and the calculated data for two angles of inci-
dence using the nominal refractive index.

The data in Table 5.1 is used to validate the proposed method. The phase dif-
ference ∆ for the experimental measurements is zero. Table 5.2 shows the
experimental results and two theoretical values using the proposed method.
The calculation results are almost the same as the theoretical values. Only
one result shows a difference of 0.0001 in the refractive index and this may
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Table 5.1: Experimental data and calculated parameters for silicawith a refractive index of 1.4593
at a wavelength of 568.1 nm. The table is reproduced from [Haz83], where R∥ = R𝑝,
R⊥ = R𝑠 and R = 1

2
(R∥ + R⊥). The columns for Theory 1 and Theory 2 show the

simulation data based on the nominal refractive index of the sample.

Exp. 1 Theory 1 Exp. 2 Theory 2
AOI 𝜃0 69.78∘ - 74.77∘ -
Ψ 21.31∘ 21.32∘ 27.84∘ 27.83∘
∆ −0.03∘ 0. 0.05∘ 0.
R∥ 0.0397 0.0420 0.1010 0.1047
R⊥ 0.2737 0.2783 0.3683 0.3757
𝑅 0.1567 0.1604 0.2347 0.2402
𝑛 1.4595 1.4593 1.4590 1.4593
𝑘 0.0004 0. 0.0011 0.

be due to a rounding error or the resolution of the experiment data. For the
calculation, the maximum difference in the angle of incidence is 0.16∘ and in
the refractive index is 0.0103. These results show satisfactory agreement and
prove the utility of the derived equations. The most probable source of error
in the set of measurements is the reflectance, which is smaller than the the-
oretical value. This is probably due to the effect of surface roughness, which
can create a small amount of non-specularly scattered light. The experimental
result for the phase difference∆ is not zero, in contrast to the nominal value.
This is probably because stress-induced birefringence or internal strain is in-
duced during the manufacturing process, which causes a phase change in the
sample (see [Haz83] for more details).

Table 5.2: Calculation results for Table 5.1 using the proposed method.

Evaluation AOI 𝜃0 Refractive index 𝑛 ∆𝜃0 ∆𝑛
Exp. 1 69.62∘ 1.4508 −0.16∘ −0.0087
Theory 1 69.78∘ 1.4592 0∘ 0.0001
Exp. 2 74.61∘ 1.4487 −0.16∘ −0.0103
Theory 2 74.77∘ 1.4593 0∘ 0

5.1.2 Non-transparent substrates

Non-transparent materials include semi-transparent, metallic and opaquema-
terials. The extinction coefficient (𝑘) of these materials is non-zero, i.e, 𝑁1 ∈
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ℂ, so the refractive index of a non-transparent substrate is defined as:

𝑁1 = 𝑛 − i𝑘. (5.11)

Fresnel’s equations describe reflectance R and ellipsometric parameters (Ψ ,∆)
in terms of the complex refractive index 𝑁1 and the angle of incidence 𝜃0.
There are three unknown parameters and three equations for R, Ψ and ∆. It
is possible to solve the equations for 𝑛, 𝑘 and 𝜃0 analytically.

The Fresnel equations for the reflection 𝑟p, 𝑟s in phase notation is described in
Equation 3.13. Substituting tanΨ = ||𝑟p|| / |𝑟s| and Equation 3.14 into Equation
3.16, ||𝑟p|| and |𝑟s| gives:

||𝑟p|| = √2R sinΨ
|𝑟s| = √2R cosΨ

(5.12)

Substituting Equation 3.13 into Equation 5.3 gives cos 2𝜃0 as:

cos 2𝜃0 =
𝑒𝑖𝛿rs |𝑟s|

2 − 𝑒𝑖(𝛿rp−𝛿rs) ||𝑟p||
|𝑟s| − 𝑒𝑖𝛿rp ||𝑟p|| |𝑟s|

. (5.13)

The angle of incidence 𝜃0 is a real number so cos 2𝜃0 is also a real number
and the imaginary part of cos 2𝜃i is 0. The imaginary part of Equation 5.13
is written as:

ℑ(cos 2𝜃0) =
||𝑟p|| (|𝑟s|

2 − 1) sin (𝛿rp − 𝛿rs) + (|𝑟s|
2 − ||𝑟p||

2) sin 𝛿rs
|𝑟s| (||𝑟p||

2 − 2 ||𝑟p|| cos 𝛿rp + 1)
= 0. (5.14)

Then, sin 𝛿rs is solved as:

sin 𝛿s =
||𝑟p|| (|𝑟s|

2 − 1) sin (𝛿rp − 𝛿rs)
||𝑟p||

2 − |𝑟s|
2 . (5.15)
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Substituting Equation 5.12 and 𝛿rp − 𝛿rs = ∆ into Equation 5.15 gives sin 𝛿rs
in the form of R, Ψ and ∆ as:

sin 𝛿rs =
sin∆ sinΨ (1 − R − R cos 2Ψ )

√2R cos 2Ψ
. (5.16)

The angle of incidence is calculated using the real part of Equation 5.13:

ℜ(cos 2𝜃0) =
(|𝑟s|

2 + ||𝑟p||
2) cos 𝛿rs − ||𝑟p|| (1 + |𝑟s|

2) cos∆
|𝑟s| (||𝑟p||

2 − 2 ||𝑟p|| cos 𝛿rp + 1)
. (5.17)

Substituting Equation 5.12 and 𝛿rp = ∆+𝛿rs into Equation 5.13, gives cos 2𝜃0
in terms of R, Ψ , ∆ and 𝛿rs as:

cos 2𝜃0

= 2R cos 𝛿rs −√R − R cos 2Ψ (1 + R + R cos 2Ψ ) cos∆
(√R + R cos 2Ψ )[1 + R − R cos 2Ψ − 2√R − R cos 2Ψ cos (∆ + 𝛿rs)]

.

(5.18)

The angle of incidence is then calculated using Equation 5.18 and the complex
refractive index is calculated using Equation 5.5.

The interval of 𝛿rs is from 0∘ to 360∘ so there are two solutions for 𝛿rs in
Equation 5.16. Only one solution is in agreement with the experimental result.
The refractive index of a gold mirror is 0.1838 − 3.4313i at a wavelength of
632.8 nm. The respective simulated parameters of Ψ ,∆ and R for the mirror
at an angle of incidence of 70∘ are 43.65∘, 108.15∘ and 0.937, respectively.
The calculation results are listed in Table 5.3. Solution 1 is wrong because
the calculated angle of incidence has an error of 55∘ and the refractive index
shows that the gold mirror is a transparent material (𝑘 ≈ 0). Only Solution
2 is in agreement with the simulation parameters and the differences are due
to rounding errors.
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Table 5.3: Results for the simulation data for a gold mirror (𝑁 = 0.1838−3.4313i) at an angle
of incidence of 70∘. The respective values for the simulated parameters Ψ ,∆ and R
are 43.65∘, 108.15∘ and 0.937, respectively. Solutions 1 and 2 show the calculated
parameters using Equations 5.16, 5.18 and 5.5.

Sol. 1 (𝛿rs < 90∘) Sol. 2 (𝛿rs > 90∘)
Phase of 𝑟s (𝛿rs) 10.98∘ 169.02∘
Phase of 𝑟p (𝛿rp) 119.13∘ 277.16∘
Angle of incidence 𝜃0 14.80∘ 69.98∘
Refractive index 𝑁1 0.2379 − 0.0018i 0.1834 − 3.4262i

Mathematically, 𝛿rs is a monotonically increasing function of the angle of inci-
dence so the minimum value for 𝛿rs occurs at normal incidence and the maxi-
mum value occurs at grazing incidence (𝛿rs = 180∘). The amplitude reflection
coefficient for s-polarization is given by:

𝑟s(𝜃0) =
𝑁0 cos 𝜃0 −√𝑁2

1 −𝑁2
0 sin

2 𝜃0

𝑁0 cos 𝜃0 +√𝑁2
1 −𝑁2

0 sin
2 𝜃0

. (5.19)

For 𝜃0 = 0, 𝑁0 = 1 (air) and 𝑁1 = 𝑛 − i𝑘,

𝑟s(0) =
1 − (𝑛2 + 𝑘2)
(𝑛 + 1)2 + 𝑘2 + i 2𝑘

(𝑛 + 1)2 + 𝑘2 . (5.20)

Since 𝑛 and 𝑘 are positive real numbers for absorbing substrates, 𝑟s(0) is in
quadrant II in the complex plane if (𝑛2 +𝑘2) is greater than 1. In the infrared
and visible regions, either or both 𝑛 or 𝑘 of 𝑁1 is greater than 1 so 𝛿rs is
between 90∘ to 180∘. This constraint is then used to calculate the AOI 𝜃0 and
the complex refractive index. Solution 1 (𝛿rs < 90∘) in Table 5.3 only exists if
(𝑛2 +𝑘2) is less than 1, which is at extreme ultraviolet or X-ray wavelengths.

The reflectometric and the ellipsometric measurements of Hazebroek and
Visser [Haz83] are used to verify the proposed method. Table 5.5 shows
the experimental data.

This data is used to verify the proposed method for non-transparent sub-
strates. Table 5.5 shows experimental results for the lubrication oil and cast
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Table 5.4: Experimental data and calculated parameters for lubrication oil and a cast iron part
at a wavelength of 568.1 nm. The table is reproduced from [Haz83], where R∥ = R𝑝,
R⊥ = R𝑠 and R = 1

2
(R∥ + R⊥).

Lubrication oil Cast iron
𝜃0 75.00∘ 69.78∘
Ψ 27.53∘ 29.03∘
∆ 0.47∘ 122.24∘
𝑅∥ 0.1073 0.2529
𝑅⊥ 0.3943 0.8197
𝑅 0.2508 0.5363
𝑛 1.4899 2.5269
𝑘 0.0101 3.2563

iron using the proposed method and the results are compared with the orig-
inal data. The calculation results are almost the same as the experimental
values. For the lubrication oil, the respective difference in the AOI and 𝑛 is
0.01∘ and 0.0007. For the cast iron, the respective difference in the AOI 𝜃0,
0.07∘, 0.0106 and 0.0150, respectively. The most probable source of error in
the set of measurements is the reflectance, which is smaller than the simulated
value using ellipsometry. Surface roughness may account for this difference
because the cast iron was polished with diamond paste but there is still a small
amount of non-specularly scattered light. The proposed method assumes per-
fect specular reflection. Any difference in reflectance induces an uncertainty
in the AOI and the complex refractive index. However, these results are in
very good agreement so the derived equations are correct and the method is
feasible for real applications.

Table 5.5: Calculation results for Table 5.4 using the proposed method.

Lubrication oil Cast iron
AOI 𝜃0 75.00∘ 69.71∘
𝑁1 1.4892 − 0.001i 2.5163 − 3.2413i
Δ𝜃0 −0.01∘ −0.07∘
Δ𝑛 −0.0007 −0.0106
Δ𝑘 0. −0.0150
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5.1.3 Uncertainty analysis

The proposed method determines the refractive index of the substrate using
the angle of incidence and ellipsometric parameters. Hence, the accuracy of
the angle of incidence has a significant effect on the refractive index. For
reflectance measurements, the light source can be unpolarized or polarized.
Mueller matrix ellipsometry uses a polarized light source and the first element
of theMueller matrix represents the reflectance of the sample. If an ellipsome-
ter is calibrated properly, most systematic errors can be eliminated, such as
component imperfections and azimuth errors. However, random errors due
to noise from the detector and the light source are unavoidable. There is un-
certainty in the angle of incidence 𝜃0 because there are experimental errors
in the ellipsometric data and the reflectance measurement.

A Monte Carlo error analysis, which is a widely used tool to estimate uncer-
tainty through a model by substituting a range of values, is used to determine
the uncertainty in the angle of incidence. The probability density functions
(PDF) for the Monte Carlo analysis are Gaussian distributions. The number of
Monte Carlo trials is 106. The typical measurement uncertainty in ellipsomet-
ric data in spectroscopic ellipsometry is (𝑢(Ψ ), 𝑢(∆)) = (0.01∘,0.02∘), where
𝑢 denotes the standard uncertainty in form of a standard deviation. For specu-
lar surfaces, the uncertainty in reflectance is 0.0001 in [Haz83], 0.002 [Lam06]
and 0.003 [Hei15]. In order to demonstrate the effect of reflectance, four dif-
ferent parameters for reflectance (𝑢(R) = 0, 0.001, 0.003, 0.005) are used to
account for uncertainty in the laboratory instruments. 𝑢(R) = 0 is used to
show the effect of 𝑢(Ψ ) and 𝑢(∆). The uncertainty in the angle of incidence
is represented by the root-mean-squared error (RMSE).

RMSE =
√√√
√

𝑇
∑
𝑖=1
(𝑦𝑖 − ̂𝑦

𝑇 )2, (5.21)

where 𝑦𝑖 , ̂𝑦𝑖 and 𝑇 are the 𝑖th observed values, the 𝑖th prediction value and
𝑇 measurement times. The normalized root-mean-squared error (NRMSE) is
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used to calculate the performance for the proposed models.

NRMSE = RMSE
̂𝑦 . (5.22)

5.1.3.1 Transparent substrates

Figure 5.3 shows the RMSE value for the angle of incidence 𝜃0 for the sim-
ulated measurements using a N-BK7 window for which the refractive index
is 𝑁1 = 1.5151 at a wavelength of 632.8 nm. The curve (a) shows the uncer-
tainty in the AOI, which is induced only by the ellipsometric parameters and
the RMSE for an angle of incidence that is less than 0.01∘ between 40∘ and
80∘. If the uncertainty in the reflectance is 0.001 (curve (b)), the RMSE for
the AOI is less than 0.09∘. The curve (c) (𝑢(R) = 0.003) shows that the RMSE
for the AOI is less than 0.28∘. In curve (d) (𝑢(R) = 0.005), the RMSE for the
AOI is less than 0.47∘. The uncertainty decreases as the angle of incidence
increases for curves (b), (c) and (d).
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Figure 5.3: The RMSE for an angle of incidence between 40∘ and 80∘ for the N-BK7 window
(𝑁1 = 𝑛 = 1.5151). The uncertainty in the ellipsometric parameters (𝑢(Ψ),𝑢(∆))
is (0.01∘, 0.02∘) and the uncertainty in the reflectance are (a) 𝑢(R) = 0, (b) 𝑢(R) =
0.001, (c) 𝑢(R) = 0.003 and (d) 𝑢(R) = 0.005.
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An appropriate angle of incidence (large 𝜃0) reduces the uncertainty. For
transparent substrates, a large angle of incidence decreases the RMSE for the
AOI.

Figure 5.4 shows the RMSE for the refractive index (𝑛) corresponding to Figure
5.3. Curves (a) and (b) exhibit smaller differences (NRMSE(𝑛) < 0.5%) than
the nominal value between angles of incidence of 40∘ and 80∘. In curves (c)
and (d), 𝑛 is better than 0.034 (2.3%) for an angle of incidence 𝜃0 of 40∘ and
80∘. The simulation results show good agreement with the experiment results
of Ghosh et al. [Gho10]. The uncertainty is satisfactory (NRMSE(𝑛) ≤ 2.3%)
for the refractive index.
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Figure 5.4: The RMSE for 𝑛 between an incident angle of 40∘ and 80∘ for the N-BK7 window
(𝑁1 = 𝑛 = 1.5151). The uncertainty in the ellipsometric parameters (𝑢(Ψ),𝑢(∆))
is (0.01∘, 0.02∘) and the uncertainty in the reflectance is (a) 𝑢(R) = 0, (b) 𝑢(R) =
0.001, (c) 𝑢(R) = 0.003 and (d) 𝑢(R) = 0.005.

To use the proposed method for different transparent materials, a simulated
refractive index (1.5 ≤ 𝑛 ≤ 2) is used to calculate the RMSE for 𝑛 at an angle
of incidence of 60∘, which is a commonly used angle for ellipsometry. The
calculation method is the same as that for Section 5.1.3. The uncertainty in
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the ellipsometric parameters (𝑢(Ψ ),𝑢(∆)) is (0.01∘, 0.02∘) and the uncertainty
in the reflectance is 𝑢(R) = 0.003. Figure 5.5 shows the result for the RMSE for
the refractive index. The RMSE for 𝑛 increases as 𝑛 increases but the NRMSE
for 𝑛 is constant (0.9%) as 𝑛 increases. The simulated results show that the
proposed method is feasible for different transparent materials.
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Figure 5.5: The RMSE of the refractive indices for different transparent materials (1.5 ≤
𝑛 ≤ 2) at an incident angle of 60∘. The uncertainty of ellipsometric parameters
(𝑢(Ψ),𝑢(∆)) is (0.01∘, 0.02∘) and the uncertainty of reflectance is 𝑢(R) = 0.003.

5.1.3.2 Non-transparent substrates

Figure 5.6 shows the RMSE for the angle of incidence 𝜃0 for the simulated
measurements for an aluminum mirror for which the refractive index is𝑁1 =
1.4482−7.5367i at a wavelength of 632.8 nm. Curve (a) shows the uncertainty
in the AOI 𝜃0 due only to the ellipsometric parameters and the RMSE for the
AOI 𝜃0 is less than 0.26∘ between angles of incidence 𝜃0 of 40∘ and 80∘. If
the uncertainty in the reflectance is 0.001 (curve (b)), the RMSE for the AOI
𝜃0 is less than 0.37∘. Curve (c) (𝑢(R) = 0.003) shows that the RMSE for the
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AOI 𝜃0 is less than 1.09∘. For curve (d) (𝑢(R) = 0.005), the RMSE for the AOI
𝜃0 is less than 1.94∘.
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Figure 5.6: The RMSE for an angles of incidence between 40∘ and 80∘ for an aluminum mir-
ror (𝑁1 = 1.4482 − 7.5367i). The uncertainty in the ellipsometric parame-
ters (𝑢(Ψ),𝑢(∆)) is (0.01∘, 0.02∘) and the uncertainty in the reflectance 𝑅 is (a)
𝑢(R) = 0, (b) 𝑢(R) = 0.001, (c) 𝑢(R) = 0.003 and (d) 𝑢(R) = 0.005.

The uncertainty arises as the AOI 𝜃0 increases for curves (b), (c) and (d). In
contrast to transparent substrates, a small AOI 𝜃0 decreases the uncertainty
if the uncertainty in the reflectance is considered. For the same conditions,
the RMSE for 𝜃0 for non-transparent substrates is greater than the RMSE for
𝜃0 for transparent substrates. Hence, it can be expected that the uncertainty
in the refractive index for non-transparent substrates is also greater than that
for transparent substrates.

Figures 5.7 and 5.8 show the RMSE for a complex refractive index (𝑁1 =
𝑛 − i𝑘). Curves (a) and (b) show small differences (NRMSE(𝑛) < 3.9% and
NRMSE(𝑘) < 4.0%) between angles of incidence of 40∘ and 80∘. For curve (c),
the RMSE for 𝑛 is less than 0.10 (7.0%) and the RMSE for 𝑘 is less than 0.54
(7.1%) for an angle of incidence of less than 73∘. For curve (d), 𝑛 is less than
0.15 (10.0%) and 𝑘 is less than 0.78 (10.0%) is the angle of incidence is less than
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69∘. If the AOI is appropriate (𝜃0 < 69∘), the uncertainty in the refractive
index is acceptable (NRMSE(𝑛,𝑘) < 10%), even for the worst case (curve (d)).
The accuracy of the measured complex refractive index is sufficient for mate-
rial identification in terms of a distinction between Al (𝑁 = 1.4482−7.5367i)
and Ag (𝑁 = 0.0562 − 4.2760i) at a wavelength of 632.8 nm.
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Figure 5.7: The RMSE for 𝑛 between angles of incidence of 40∘ and 80∘ for an aluminum
mirror (𝑁 = 1.4482 − 7.5367i). The uncertainty in the ellipsometric parame-
ters (𝑢(Ψ),𝑢(∆)) is (0.01∘, 0.02∘) and the uncertainty in the reflectance 𝑅 are (a)
𝑢(R) = 0, (b) 𝑢(R) = 0.001, (c) 𝑢(R) = 0.003 and (d) 𝑢(R) = 0.005.

To determine how the proposed method can be used for different materials,
simulated complex refractive indices (0 < 𝑛 < 10, 0 < 𝑘 < 10) are used
to calculate the RMSE for 𝑛 and 𝑘 at an angle of incidence of 60∘. The un-
certainty in the ellipsometric parameters (𝑢(Ψ ),𝑢(∆)) is (0.01∘, 0.02∘) and the
uncertainty in the reflectance is 𝑢(R) = 0.003.

Figure 5.9 shows the calculation result for the RMSE. The nominal values for
𝑁1 are shown as dots and the width and the height of the rectangles represent
the RMSEs for 𝑛 and 𝑘, respectively. If 𝑛 is fixed, the RMSE for 𝑛 and 𝑘
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Figure 5.8: The RMSE for 𝑘 between the angles of incidence of 40∘ and 80∘ for an aluminum
mirror (𝑁 = 1.4482 − 7.5367i). The uncertainty in the ellipsometric parameters
(𝑢(Ψ),𝑢(∆)) is (0.01∘, 0.02∘) and the uncertainty in the reflectance 𝑅 is (a) 𝑢(R) =
0, (b) 𝑢(R) = 0.001, (c) 𝑢(R) = 0.003 and (d) 𝑢(R) = 0.005.

increases as 𝑘 increases. Large errors (> 10%) in 𝑛 and 𝑘 occur in the region
of high 𝑘 (𝑘 > 6.5) and low 𝑛 (𝑛 < 1).

The simulated results show that the proposedmethod can be used for different
materials. For high-𝑘 and low-𝑛 materials, careful reflectance calibration and
measurements are necessary to achieve accurate results, e.g., noise reduction
can be used by averaging multiple measurements.
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Figure 5.9: The RMSE for the complex refractive indices (𝑛,𝑘) at an angle of incidence of 60∘.
The uncertainty in the ellipsometric parameters (𝑢(Ψ),𝑢(∆)) is (0.01∘, 0.02∘) and
the uncertainty in the reflectance 𝑅 is 𝑢(R) = 0.003.
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5.2 Numerical determination of the angle of
incidence and film thickness for a
three-phase system

An important case in ellipsometry involves reflection for a three-phase system
(ambient/ film/ substrate), as shown in Figure 3.5, where 𝑁0, 𝑁1 and 𝑁2 are
the complex refractive indices for the ambient, film and substrate. 𝜃0 is the
angle of incidence and 𝑑 is the film thickness. Usually, the ambient space is
air (𝑁0 = 1).

By substituting Equation 3.20 into Equation 3.46, 𝜌 is written as:

𝜌 = tanΨ𝑒i∆ =
𝑟𝑝
𝑟𝑠
=
𝑟012𝑝
𝑟012𝑠

=
𝑟01,p + 𝑟12,p exp (−i2𝛽)

1 + 𝑟01,p + 𝑟12,p exp (−i2𝛽)
⋅
1 + 𝑟01,s + 𝑟12,s exp (−i2𝛽)
𝑟01,s + 𝑟12,s exp (−i2𝛽)

.
(5.23)

Then 𝜌 can be written as a quadratic function of 𝑋 as [Azz87]

𝜌 = tanΨ𝑒𝑖∆ = 𝐴 + 𝐵𝑋 + 𝐶𝑋2

𝐷 + 𝐸𝑋 + 𝐹𝑋2 , (5.24)

where

𝐴 ∶= 𝑟01,p, 𝐵 ∶= 𝑟12,p + 𝑟01,p𝑟01,s𝑟12, s, 𝐶 ∶= 𝑟12,p𝑟01,s𝑟12,s,
𝐷 ∶= 𝑟01,s, 𝐸 ∶= 𝑟12,s + 𝑟01,p𝑟12,p𝑟01, s, 𝐹 ∶= 𝑟01,p𝑟12,p𝑟01,s,

(5.25)

and

𝑋 ∶= 𝑒−i2𝛽 = exp [−i4𝜋𝑑𝜆 √(𝑁2
1 −𝑁2

0 sin
2 𝜃0)]. (5.26)
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It can be seen that 𝑋 is a periodic function of the film thickness 𝑑 for a fixed
angle of incidence. The thickness cycle 𝐷𝜃 is defined as

𝐷𝜃 =
𝜆

2√(𝑁2
1 −𝑁2

0 sin
2 𝜃0)

. (5.27)

𝐷𝜃 is a monotonically increasing function of 𝜃0 and only depends on 𝑁0,
𝑁1, 𝜃0 and 𝜆.

In Equation 5.24, 𝜌, Ψ and ∆ are a function of 𝑁0, 𝑁1, 𝑁2, 𝑑, 𝜃0 and 𝜆. If the
refractive index (𝑁0, 𝑁1 and 𝑁2) and incident angle 𝜃0 are known, then the
thickness 𝑑 can be calculated using Ψ ,∆, 𝜃0 and 𝜆 by Equations 5.24 and 5.26.

For tilted samples, the ellipsometric parameters (Ψ and ∆) and the azimuthal
rotational angle 𝛼 are calculated by numerical fitting or by solving analytical
solution of the polarization model, which is described in Sections 4.3 and 4.4.
If the angle of incidence 𝜃0 is known, the nominal angle of incidence 𝜃′ and
the angle of tilt 𝜙 are calculated using Equations 4.21 and 4.31. The thickness
𝑑 is calculated using Ψ ,∆ and 𝜃0. The AOI is usually measured or calculated
using indirectmethods, such as using a calibrated rotary stage or a goniometer
[Liu16], and the spectroscopic data is fitted using a dispersion model [Li16,
Duw19]. This study uses the simple inversion method of Easwarakhanthan
and Ravelet [Eas96] to calculate the AOI because the calculation only requires
ellipsometric parameters (Ψ and ∆) if the refractive index of the three-phase
system is known.

In Equation 5.26, 𝑋 is a function of𝑁0,𝑁1,𝑁2, 𝑑 and 𝜆. If the film is transpar-
ent, 𝑁1 is a real number and 𝑋 becomes a unit complex number in Equation
5.26. Then the absolute value of 𝑋 can be written as:

|𝑋| = 1. (5.28)

The roots of Equation 5.24 are written as:

𝑋 = (𝜌𝐸 − 𝐵) ± √(𝐵 − 𝜌𝐸)2 − 4(𝐶 − 𝜌𝐹)(𝐴 − 𝜌)
2(𝐶 − 𝜌𝐹) . (5.29)
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The only unknown variable in the roots is the AOI 𝜃0 and 𝜃0 is solved using
Equation 5.28 and the film thickness 𝑑 is calculated using Equation 5.26. There
are two solutions for 𝜃0 and 𝑑. Usually, only one solution fulfills the physical
condition (𝑑 ∈ ℝ) and experimental setup (approximate range of 𝜃0).

To verify the proposed methods, a thickness sample (SiO2/Si) was measured
using a commercial spectroscopic ellipsometer (Smart SE, HORIBA).The nom-
inal thickness is 82.9 nm and the standard deviation for the thickness is 1.5 nm.
The respective refractive indices for the thin film and substrate at 635 nm are
1.457 and 3.868 − 0.016i. The AOI for the ellipsometer is 70∘. The measured
ellipsometric parameters (Ψ , ∆) are 33.99∘ and 80.80∘. Using the calculation
for transparent films, 𝜃0 and 𝑑 are solved sequentially. As previously noted,
there are two solutions for this numerical method and one solution fulfills the
physical condition (𝑑 ∈ ℝ and 90∘ ≥ 𝜃0 ≥ 0). The calculation results are
listed in Table 5.6. Solution 1 is wrong because the calculated angle of inci-
dence is greater than 90∘. Only solution 2 fulfills the physical condition and
gives a value that is very close to the nominal values for the AOI and thickness.

Table 5.6: Calculation results for the measurement data for a sample (SiO2/ Si) at an angle of
incidence of 70∘. The measured parameters for Ψ and ∆ are 33.99∘ and 80.80∘.
Solutions 1 and 2 show the calculated parameters using Equations 5.24, 5.28 and 5.26.

Sol. 1 Sol. 2
AOI 𝜃0 109.26∘ 69.98∘
Thickness 𝑑 - 84.5 nm

Table 5.7 lists the results for the nominal values, the spectroscopic data anal-
ysis and the proposed method. Spectral fitting gives the most accurate results
because 1276 different sets of ellipsometric parameters (between 440 nm and
1000 nm) from spectroscopic measurements are used to fit the AOI and the
thickness. Compared to the nominal values, the fitting values are in good
agreement, which proves that the ellipsometer is accurate. By the proposed
method, the calculated AOI is very close to the fitted AOI (Δ𝜃0 = 0.06∘). The
deviation in the thickness is 0.6 nm. The proposed method gives accurate re-
sults for the AOI and the thickness. Sources of error are the uncertainty in
the measured ellipsometric parameters and the refractive index for the thin
film and the substrate.
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5 Measurement methods and uncertainty analysis for nonplanar surfaces

Table 5.7: Results for the nominal values, the spectroscopic data analysis and the proposed
method.

Nominal values Spectral fitting Proposed method
AOI 𝜃0 70.00∘ 69.92∘ 69.98∘
Thickness 𝑑 82.9±1.5 nm 83.9 nm 84.5 nm

This method can be used for non-transparent films, i.e., absorbing films. For
absorbing films, 𝑁1 is a complex number. The condition for the unit complex
number does not hold. The division of the root in Equation 5.29 and Equation
5.26 is unity and can be decomposed into polar form 𝑌 as:

𝑌 = 𝑓(𝜃0,𝑑) = 𝑟𝑒𝑖𝛽 = 1, (𝑟, 𝛽) ∈ ℝ → { 𝑟(𝜃0,𝑑) = 1
𝛽(𝜃0,𝑑) = 2𝑚𝜋,𝑚 ∈ ℤ . (5.30)

The absolute value and the argument for 𝑌 are 1 and 2𝑚𝜋 (𝑚 ∈ ℤ). There
are two unknown parameters (𝜃0,𝑑) and two equations for Ψ , ∆, 𝑁0, 𝑁1 and
𝑁2, which are known or measured variables. Hence, it is possible to solve the
equations for 𝜃0 and 𝑑 numerically. Equation 5.30 can be rewritten in a more
convenient form to solve the non-linear equations as:

{ |𝑌| = 1
tan arg(𝑌) = 0 . (5.31)

5.2.1 Uncertainty analysis

By using the proposed method for transparent films, the film thickness is de-
termined using the angle of incidence and the ellipsometric parameters so
the accuracy of the angle of incidence and the ellipsometric parameters has a
significant effect on the film thickness. A Monte Carlo uncertainty analysis,
which is described in Section 5.1.3 is used to determine the uncertainty in the
angle of incidence and the film thickness. Only 103 Monte Carlo trials are
used because an optimization function is used to solve 𝑋. The time for each
trial is about 1 second. The probability density functions that are used for
the Monte Carlo analysis are Gaussian distributions. The uncertainty in the
amplitude ratio Ψ is between 0.01∘ and 0.1∘ and the uncertainty in the phase
difference ∆ is between 0.02∘ and 0.2∘ [Eas96]. Three different sets of Ψ and
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∆ are used, depending on the measurement uncertainty for conventional el-
lipsometry. The root-mean-squared error is used to show the uncertainty in
the angle of incidence and the thickness.

A three-phase system (air/SiO2/Si) that is used as a calibration sample for el-
lipsometry is simulated at a wavelength of 632.8 nm. The respective refractive
indices of air, SiO2 and Si are 1, 1.457 and 3.871 − 0.016i, respectively. Figure
5.10 shows the variation in the RMSE for the AOI with the film thickness
of 82.9 nm. The uncertainty in the AOI decreases as the angle of incidence
increases. The maximum uncertainty in the AOI for the three different sets
of ellipsometric parameters is better than 0.003∘ and the NRMSE is less than
0.01%. The simulated RMSE is muchmore accurate than if conventional rotary
stages were used (±0.01∘) so this method can be used to calculate or calibrate
the angle of incidence.
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Figure 5.10: The RMSE for 𝜃0 between angles of incidence of 40∘ and 80∘ for a sample (SiO2/Si)
with a thickness of 82.9 nm. The uncertainty in the ellipsometric parameters
(𝑢(Ψ),𝑢(∆)) is (a) (0.01∘, 0.02∘), (b) (0.05∘, 0.10∘) and (c) (0.10∘, 0.20∘).
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5 Measurement methods and uncertainty analysis for nonplanar surfaces

Figure 5.11 shows the variation in the RMSE for the thickness for Figure 5.10.
There are large deviations at both ends. The maximum RMSE is 0.51 for curve
(c) and the NRMSE is only 0.6%. These two plots show that the uncertainty in
the ellipsometric parameters has a more significant effect on thickness than
on the AOI.
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Figure 5.11: The RMSE for 𝑑 between angles of incidence of 40∘ and 80∘ for a sample (SiO2/Si).
The uncertainty in the ellipsometric parameters (𝑢(Ψ),𝑢(∆)) is (a) (0.01∘, 0.02∘),
(b) (0.05∘, 0.10∘) and (c) (0.10∘, 0.20∘).

The film thickness for the sample also affects the uncertainty in the AOI and
the thickness. For a fixed angle of incidence, 𝑋 in Equation 5.26 is a periodic
function of the thickness 𝑑. Substituting the same simulated parameters at
an angle of incidence of 70∘ gives the thickness cycle 𝐷𝜃 as 284.1 nm. Figure
5.12 shows the trajectory up to a thickness of 280 nm. If the film thickness is
greater than the thickness cycle, the trajectory follows the same path so the
uncertainty analysis only considers thicknesses that are less than the thick-
ness cycle.
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Figure 5.12: The trajectory (Ψ and ∆) for a sample (SiO2/Si) at an incident angle of 70∘ and
a wavelength of 632.8 nm. The range of thicknesses is from 0 to 280 nm with a
interval of 10 nm. The thickness of the solid dots is shown in the text labels.

A range of thicknesses from 25 nm to 275 nm and an interval of 25 nm is used
for the uncertainty analysis. The uncertainty in ellipsometric parameters (Ψ ,
∆) is 0.1∘ and 0.2∘. Figure 5.13 shows the variation in the RMSE uncertainty
in the AOI and the thickness at an angle of incidence of 70∘. The lowest value
for the RMSE for the AOI and the thickness is achieved for a film thickness
of 150 nm.

Figure 5.14 plots associated values of |𝜌| in Figure 5.13 versus thickness 𝑑.
The peak value in Figure 5.14 is close to 150 nm. The curves in Figures 5.13
and 5.14 are highly Correlated. It is assumed that the uncertainty decreases
if the value of |𝜌| is large.
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Figure 5.13: Variation in the RMSE uncertainty for the AOI and the thickness at an angle of
incidence at 70∘ for a film thickness ranging between 25 nm to 275 nm.
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Figure 5.14: Associated values for |𝜌| in Figure 5.13 versus thickness 𝑑.
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5.3 Analysis of ellipsometric measurements
for nonplanar surfaces

From amicro perspective, a curved surface can be seen as a rotated flat surface
if the illumination spot is a point, so the spot is infinitely small. However, the
curvature of the surface has a significant effect on the measurement results,
as shown in previous studies [Zha10, Kre11]. Kr̂epelka analyzed ellipsometric
data for a convex spherical surface using numerical simulation and geometri-
cal and wave optics. Zhang et al. compared the experimental deviation with
and without the aperture-filtering method. The simulation and experimental
results showed that any deviation in the measurement is significantly cor-
related with the spot size of the light source and the shape of the surface.
Therefore, the spot size should be taken into account in the calculation. This
section analyzes a convex spherical surface using polarization ray tracing to
determine the effect of the curved surface on retroreflex ellipsometry.

Figure 5.15 shows a spherical surface with a radius 𝑟 and the center of the
sphere is at (0, 0, 𝑟)T. An incident collimated beam 𝐤0 is reflected by the sam-
ple, where 𝐤0 is (0, sin 𝜃0, − cos 𝜃0)T. The spot size for the incident beams
is defined as 2𝑟i. The central ray of the incident beams hits the origin point
O and the angle of incidence for the ray is 𝜃0. To determine the effect of
the curvature, the intersection points on the surface must be calculated. This
problem can be redefined as the intersection of a sphere and a cylinder.

The function for a spherical surface and the surface normal 𝜼 is written as:

𝑥2 + 𝑦2 + (𝑧 − 𝑟)2 = 𝑟2, (5.32)

𝜼 = (𝑥, 𝑦, 𝑧 − 𝑟)T. (5.33)
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Figure 5.15: Schematic diagram of a concave spherical sample. The incident beam follows the
direction 𝐤0 when it is reflected by the sample.

The incident beams 𝐤0 can be seen as a cylinder rotates 𝜃0 around 𝑥 axis,
which is described using a parametric equation as:

[
𝑥
𝑦
𝑧
] = [

cos 𝜃0 0 sin 𝜃0
0 1 0

− sin 𝜃0 0 cos 𝜃0
] ⋅ [

𝑟𝑐 cos𝜑
𝑟𝑐 sin𝜑
𝐿

]

= [
𝑟𝑐 cos𝜑 cos𝛼 + 𝐿 sin𝛼

𝑟𝑐 sin𝜑
𝐿 cos𝛼 − 𝑟𝑐 cos𝜑 sin𝛼

] ,

(5.34)

where 𝑟i ≥ 𝑟𝑐 ≥ 0, 360∘ > 𝜑 ≥ 0 and 𝐿 ≥ 𝑟. By substituting Equation 5.34 into
Equation 5.32, the parametric parameter 𝐿 in Equation 5.34 can be solved as:

𝐿 = 2𝑟i cos 𝜃0 ±
√𝑟2i − 2𝑟2𝑐 + 𝑟2i cos 2𝜃0 − 4𝑟i𝑟𝑐 cos𝜑 sin 𝜃0

√2
. (5.35)

In Equation 5.35, there are two solutions (𝐿1 and 𝐿2), where 𝐿1 is greater than
or equal to 𝐿2. 𝐿1 represents the intersection with the concave surface and
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𝐿2 represents the intersection with the convex surface. The surface is convex
so the intersection points are calculated by substituting 𝐿1 into Equation 5.34.
Figure 5.16 shows an incident beam with a radius of 1 mm at an angle of
incidence of 70∘ and its projection on a spherical concave surface with a radius
of 175 mm. The center of the beam coincides with the origin point O.The area
of the input beam is 3.14 mm2 and the projection area on the 𝑥𝑦- plane is
9.19 mm2.
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Figure 5.16: (a) An incident beam with a radius of 1 mm. (b)The projection of the incident beam
at an incident angle of 70∘ on the spherical concave surface with a radius of 175
mm.

The local angle of incidence 𝜃0 and the tilt angle 𝜙, which are defined in Sec-
tion 4.3, are calculated using the surface normal 𝜼 in Equation 5.33 and 𝐤0.
Figure 5.17 shows the local distribution of 𝜃0 and𝜙. TheAOI is between 69.06∘
and 70.98∘ and the maximum tilt angle is 0.33∘. If the refractive index of the
surface is 1.4482 − 7.5367i, the local ellipsometric parameters (Ψ and∆) and
the reflectance 𝑅 can be calculated using Fresnel’s equations in Equation 3.11.
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Figure 5.17: Local angle of incidence (a) and tilt angle (b) for a collimated beam with a radius of
1 mm that impinges on a sphere with a radius 175 mm.

Figure 5.18 plots the local distribution of Ψ ,∆ and 𝑅. The local change in the
ellipsometric parameters and reflectance is symmetrical with respect to the
𝑦 axis. The value of Ψ ranges between 41.63∘ and 41.93∘ and the value of ∆
ranges between 141.42∘ and 145.41∘. The deviation in∆ is 3.99∘ and the devi-
ation inΨ is only 0.3∘. The reflectance is the average of themagnitude squared
of the amplitude reflection coefficients so any change in the reflectance 𝑅 is
very slight. The simulation shows that the range for 𝑅 is between 0.8675 and
0.8729 and the deviation is 0.0054.

This analysis shows that the spot size and the angle of incidence are strongly
correlated with the distribution of the local quantities (Ψ , ∆ and 𝑅). Figure
5.19 shows the deviation and the standard deviation for local quantities for
different spot sizes. Figure 5.20 presents the deviation and the standard devi-
ation for the local quantities for different angle of incidence. The subscripts
for average and center denote the average value and the center value. The
length of the error bars is the standard deviation for the local quantities.
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Figure 5.18: Local Ψ (a),∆ (b) and 𝑅 (c) values for a collimated beam with a radius of 1 mm that
impinges on a sphere with a radius 175 mm. The refractive index of the surface is
1.4482 − 7.5367i.

If there is an increase in the spot size or the angle of incidence arise, the de-
viation from the center value and the standard deviation for of Ψ , ∆ and 𝑅
increase. The plots show that the average value is less than the center value,
so the real measurement value must be less than the nominal value at the
center point of the incident beam because the surface is concave. An incident
beam with a small spot size that impinges at a small angle of incidence gives
more accurate measurement results. This calculation uses the local coordi-
nate so the average value only has a statistical meaning because a polarimeter
measures the average intensity and then transforms the measured values to
Stokes vectors. Therefore, a direct average value for Ψ and∆ has no physical
meaning but the local distribution of Ψ and ∆ shows the effect of the shape
of the surface.
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Figure 5.19: Deviation in the local Ψ (a),∆ (b), 𝑅 (c) and projection area (d) values for different
spot sizes.
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Figure 5.20: Deviation in the local Ψ (a),∆ (b), 𝑅 (c) and projection area (d) values for different
angles of incidence.
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In terms of ellipsometry, the detector in the PSA measures only the light in-
tensity. The average electric field 𝐄 for the reflected beam is calculated as:

𝐄Measured =
∑𝑀

𝑖=1 𝐏Total,𝑖𝐄Input

𝑀 , (5.36)

where 𝐏Total,𝑖 is the net polarization transfer matrix for the measurement of
the curved surface at the 𝑖th position and 𝐄Input is the field for the input po-
larized light. The intensity is then calculated using Equation 3.5. From the
definition of the 3D Jones matrix of the sample in Equation 4.24, 𝑗(3)11 and 𝑗(3)22
are measured using linear polarized light at 90∘ and 0∘. The Ψ and ∆ are
calculated as:

Ψ = tan−1 | 𝑗
(3)
22

𝑗(3)11
|,

∆ = arg( 𝑗
(3)
22

𝑗(3)11
).

(5.37)

Using the simulation parameters for the previous analysis (𝑟 = 175 mm, 𝑟i =
1 mm and 𝑁1 = 1.4482 − 7.5367i), the measured values for Ψ and ∆ are
calculated using Equation 5.37. Figures 5.21 and 5.22 show the deviation in
the measured values for Ψ and∆ from the center values. Themeasured values
exhibit a greater deviation than the average values for the local distribution.
The deviation in the value of Ψ and∆ increases dramatically with the angle of
incidence so a small angle of incidence gives more accurate measured values.

Figure 5.23 shows the simulated raster scan for a concave mirror using uni-
form steps. The center incident collimated beam is on the 𝑦𝑧 plane, as shown
in Figure 5.15. The angle of incidence for the center beam is 45∘ and the ratio
of the spot size to the mirror’s diameter is 1:20 to allow better visualization.
Figure 5.24 plots the top view of the simulated spot distribution and the black
point represents the centroid of the spot. The shape of the projection is irreg-
ular, especially if the spot is far from the origin. The spots are symmetrical
along the 𝑦 axis. The spot size decreases from the −𝑦 to 𝑦 direction because
the angle of incidence decreases. The spot size increases from the origin along
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Figure 5.21: The deviation in the measured Ψ and∆ values for different spot sizes.

50 60 70
-0.03

-0.02

-0.01

0

50 60 70

-0.08

-0.06

-0.04

-0.02

0

Figure 5.22: Deviation in the measured Ψ and∆ values for different angles of incidence.
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5 Measurement methods and uncertainty analysis for nonplanar surfaces

the 𝑥 direction and the −𝑥 direction because increasing the angle of tilt in-
creases the angle of incidence.

y
x

z

Figure 5.23: Simulated raster scan for a concave mirror using a uniform step. The center angle
of incidence is 45∘ and the ratio of the spot size to the mirror’s diameter is 1:20.
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Figure 5.24: Top view of the simulated spot distribution on a concave mirror using 𝑥𝑦 scanning
with a uniform step. The center angle of incidence is 45∘ and the ratio of the spot
size to the mirror’s diameter is 1:20. The black dot is the centroid of the spot.
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Figure 5.25 shows a simulated 𝑥𝑦 scan for a sample that moves along the 𝑥
and 𝑦 axes in uniform steps 0.2𝑟. If the surface is flat, the centroid of the
spot lies at the intersections of the scanning lines. For a curved surface, the
measured points are distorted geometrically. The 𝑥 and 𝑦 offsets for the cen-
troid can be observed because the surface is concave spherical. If the sample
moves along the 𝑦 axis, the distance between each spot decreases. The surface
inclination is calculated using the measurement results (𝜃0, 𝜙) so the surface
can be reconstructed. Any distortion induces a reconstruction error so using
a small region (e.g., −0.2𝑟 < 𝑥,𝑦 < 0.2𝑟) or using a compensation method
[Pil21] increases the accuracy of the surface reconstruction.
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Figure 5.25: Centroid of spots on a spherical mirror using 𝑥𝑦 scanning.

5.4 Summary

This chapter proposes two simple methods used to obtain geometric infor-
mation about two-phase and three-phase systems without the need for extra
hardware. For a two-phase system, the direct relationship between the p- and
s- polarizations and the angle of incidence is used to recover the phases of
the p- and s- polarizations using the reflectance. If the detector is calibrated
for reflectance measurements, the angle of incidence and the refractive index
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5 Measurement methods and uncertainty analysis for nonplanar surfaces

for the substrate are calculated using reflectance and ellipsometric data. The
uncertainty analysis for two-phase systems uses a Monte Carlo analysis. For
transparent substrates, the uncertainty analysis shows a satisfactory result.
The normalized RMSE for 𝑛 is 0.9% for differentmaterials (1.5 ≤ 𝑛 ≤ 2.0) if the
uncertainty in the ellipsometric parameters (𝑢(Ψ ), 𝑢(∆)) is (0.01∘, 0.02∘) and
the uncertainty in the reflectance is 0.003. For non-transparent substrates, the
simulation results show that the RMSEs for 𝑛 and 𝑘 are greater than 10% if the
AOI is appropriate. For high-𝑘 and low-𝑛materials, careful measurements are
necessary to ensure accurate results. The advantages of this method are:

1 The angle of incidence and the refractive index are determined using a
single measurement of a set of reflectance and the ellipsometric data
with closed form solutions.

2 The proposed method is suitable for high-speed measurements
because the reflectance and the ellipsometric parameters can be
measured by the same sensor. The AOI and the refractive index can be
calculated without numerical fitting. It is fast to calculate the result
and easy to analyze the uncertainty of the method.

3 An absolute intensity calibration is sufficient for the proposed method
using an ellipsometer, without the need for extra hardware or
modification.

For a three-phase system, the proposed method uses the properties of a com-
plex exponential function 𝑋. If the thin film is transparent (𝑘 = 0), the angle
of incidence is calculated using the refractive indices of the thin film and sub-
strate and ellipsometric parameters so the film thickness can be calculated.
If the thin film is not transparent (𝑘 ≠ 0), the angle of incidence and the
thickness are calculated by numerical optimization. The uncertainty analy-
sis shows that the proposed method gives a highly accurate value for the AOI
and the thickness for different AOIs and film thicknesses. For this method, the
calculation for the AOI and thickness only requires ellipsometric parameters
(Ψ , ∆), without the need for extra hardware, if the optical properties of the
three-phase system are known. The proposed method gives a highly accurate
result (better than 0.003∘) for the angle of incidence. The method can also be
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5.4 Summary

used for alignment or calibration, which is particularly important for in-situ
and inline measurements. The proposed method can also be used as an initial
solution for the AOI and film thickness to increase the speed of convergence
and the accuracy of results.

Another important factor that affects the measurement result is the shape of
the surface and the spot size. The local distribution for the measurement pa-
rameters is calculated and visualized. A small spot size and AOI reduces the
measurement deviation in the Ψ ,∆ and 𝑅 values. When scanning a large sur-
face, there is geometrical distortion. This distortion affects the result for the
surface reconstruction so positional compensation or a small measurement
region is necessary.
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6 Results and discussion

The prototype retroreflex ellipsometry and calculation methods for two
and three-phase systems are explained in Chapters 4 and 5. This chapter
presents the system calibration and measurement results for planar and
nonplanar samples. Section 6.1 provides the calibration result and the re-
sults of straight-through measurements. An uncoated gold mirror and an
uncoated gold parabolic mirror are then measured and analyzed in Section
6.2. Section 6.3 gives the measurement results for a thickness sample and
a coated spherical gold mirror.

6.1 System calibration

As described in Section 4.4, the NPBS must be calibrated first because it has
non-ideal polarization properties. Figure 6.1 shows the normalized Stokes pa-
rameters that are generated by the PSG. The QWP rotates from 0∘ to 350∘
in steps of 10∘. Each point represents the average for 100 measurements us-
ing a polarimeter. Figure 6.2 plots the corresponding standard deviation (SD)
for the Stokes parameters in Figure 6.1. The average SD for the normalized
Stokes parameters is 0.004 and the maximum SD is 0.005 for 𝑠2 at a fast axis
angle of 140∘.

Using the procedure that is described in Figure 4.13, the normalized Mueller
matrix for the NPBS for reflection is calculated as:

�̂�NPBS,R =
⎡⎢⎢⎢
⎣

1. −0.177 −0.003 0.002
−0.128 0.953 −0.015 0.005
−0.001 −0.014 −0.949 −0.247
−0.0.01 0.008 0.249 −0.940

⎤⎥⎥⎥
⎦
. (6.1)
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Figure 6.1: Normalized Stokes parameters that are generated by the PSG.
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Figure 6.2: Standard deviation for the normalized Stokes parameters that are generated by the
PSG.
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6.1 System calibration

The values for 𝑚12, 𝑚21, 𝑚34 and 𝑚43 exhibit large deviations (> 0.1), which
shows that the NPBS is not an ideal optical element. The values for 𝑚12 and
𝑚21 represent diattenuation and polarizance and 𝑚34 and 𝑚43 correspond to
retardation [Chi18]. These deviations distort polarization states when light
travels through the NPBS.

After system calibration, a straight-through measurement (i.e., no sample)
with the retroreflector was performed to verify the calibration. In this con-
figuration, the Mueller matrix for the ideal straight-through measurement is
the same as the Mueller matrix for an ideal mirror, which is a diagonal matrix
that is given by diag(1, 1, -1, -1). The measurement results are:

�̂�Air,mean =
⎡⎢⎢⎢
⎣

1. −0.013 −0.001 −0.001
−0.012 1. 0. −0.003
−0.004 0.002 −0.987 0.003
0. −0.001 0.007 −1.

⎤⎥⎥⎥
⎦
, (6.2)

�̂�Air,𝜎 =
⎡⎢⎢⎢
⎣

0. 0.001 0.001 0.002
0.004 0.005 0.003 0.001
0.002 0.003 0.005 0.003
0.001 0.001 0.005 0.002

⎤⎥⎥⎥
⎦
, (6.3)

where �̂�Air,mean indicates the mean normalized Mueller matrix for ten dif-
ferent measurements and �̂�Air,𝜎 denotes the standard deviations for each el-
ement. In Equations 6.2 and 6.3, the systematic deviations (errors) for the
elements of the Mueller matrix from the arithmetic mean are less than 0.013
and the standard deviation is less than 0.005.

The result for straight-through measurements also demonstrates the polar-
ization properties of the retroreflector. The ellipsometric parameters Ψ and
∆ are transformed from the Mueller matrix. The average Ψ and ∆ values for
the retroreflector are 44.82∘ and 180.04∘, which is in good agreement with the
simulation result for the retroreflector in Section 4.2.

The main source of error is the deviation in the intensity due to the laser, the
polarimeter and the system alignment. The accuracy of the polarimeter in

121



6 Results and discussion

the prototype is better than 0.009 for Stokes parameters. Figure 6.3 shows the
average intensity (𝑆0) and the standard deviation when the QWP is rotated.
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Figure 6.3: Average and standard deviation of the Stokes parameter 𝑆0 that are generated by the
PSG. The fast axis of the QWP is rotated from 0∘ to 350∘ in steps of 10∘.

Themaximum normalized SD is 1.0% and there is a ripple effect because there
may be misalignment or multiple internal reflections in the QWP [Ait01].
Misalignment results in non-linear polarization properties for the QWP and
multiple reflections lead to intensity modulation. If the uncertainty in the in-
tensity (1.0%) is used for the calculation, the simulated standard deviation for
the straight-through measurement is:

�̂�Sim
Air,𝜎 =

⎡⎢⎢⎢
⎣

0. 0.001 0.001 0.003
0.005 0.005 0.001 0.003
0.005 0.003 0.003 0.003
0.002 0.001 0.001 0.001

⎤⎥⎥⎥
⎦
. (6.4)
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6.2 Two-phase systems

The simulated standard deviation is in good agreement with the experimental
result. The uncertainty is reduced by better aligning the QWP and by increas-
ing the stability of the laser and the polarimeter.

6.2 Two-phase systems

To validate the retroreflex ellipsometry, measurements for an unprotected
gold mirror (PF10-03-M03, Thorlabs Inc.) were made and these are compared
with the results for a commercial spectroscopic ellipsometer (HORIBA Smart
SE) with a straight-through air accuracy for Ψ = 45∘±0.05∘ and∆ = 0∘±0.2∘.
The gold mirror was rotated using a motorized stage. The angle of incidence
for the gold mirror was varied from 51∘ to 61∘ in steps of 1∘. The Mueller ma-
trix was measured and the ellipsometric data (Ψ , ∆) and azimuthal rotation
angle 𝛼 were calculated by fitting. The compensated values for Ψ and ∆ are
applied to the experimental ellipsometric parameters.

Figure 6.4 shows the experimental results and the calculated results using the
refractive index that is measured using the HORIBA Smart SE. The results
show good agreement between the measured and calculated values, with re-
spectivemean absolute errors forΨ and∆ of 0.14∘ and 0.02∘. The experiments
show that the retroreflex ellipsometer measures changes in the tilt angle and
the angle of incidence and the results show that this prototype is highly accu-
rate and stable. There is a systematic error in the amplitude ratio Ψ , possibly
because of the effect of the spot size. This error increase as the AOI increases.
The systemwas calibrated using the transmission configurationwith the beam
perpendicular to the mirror. In the reflection configuration, the projection
area for the input beam increases as the angle of incidence increases.
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Figure 6.4: Experimental results for an uncoated gold mirror as the angle of incidence varies
from 51∘ to 61∘. The refractive index for the gold mirror is 0.1295 − 3.5323i, as
measured by HORIBA Smart SE.

Another experiment used an off-axis parabolic mirror (MPD249-M03, Thor-
labs Inc.). The refractive index for the parabolic mirror was measured as
0.241−3.239i by HORIBA Smart SE. Figure 6.5 shows the measurement setup.
The incident beam on the retroreflex ellipsometer is parallel to the mechan-
ical axis of the mirror and the parabolic mirror moves perpendicular to its
mechanical axis from -3 to 3 mm. The angle of incidence angle changes from
44.14∘ to 45.83∘. When the parabolic mirror and the retroreflector were fixed,
there was no need to adjust the relative distance or the angle during the mea-
surement because the retroreflector has an acceptable angular range of ±30∘.
This feature allows themeasurement of curved surfaces and increases the ease
of alignment so the installation of the retroreflector and the sample is flexible.
The angle of incidence 𝜃0 and the complex refractive index 𝑁 are calculated
by Equations 5.18 and 5.5, and the measurement results are shown in Fig-
ure 6.6 and Table 6.1. The average complex refractive index (𝑁 = 𝑛 − i𝑘) is
0.207−3.192i and the standard deviation is 0.006 and 0.008, respectively. The
average errors are 0.034 and 0.047 for 𝑛 and 𝑘. This experiment demonstrates
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6.2 Two-phase systems

that the method can be used to measure complex refractive indices at curved
surfaces. The value of 𝑛 has a higher relative error (14%) than that of 𝑘 (1%)
because the angle of incidence is close to 45∘. The amplitude ratio Ψ and the
reflectance 𝑅 are relatively insensitive to the angle of incidence so a slight
measurement error in the system induces a large error in the real part of the
refractive index during the calculation process.

Mirror moving direction

Parabolic mirror

Retroreflector

Incident beam

Mirror mechanical axis

o

Figure 6.5: Schematic illustration showing the parabolic mirror and the scanning direction: O is
the center of the parabolic mirror.

Although experimental errors remain in the experiment, the result obtained is
sufficient for many industrial applications such as distinguishing between the
materials silver and aluminum and between gold and pyrite. Several sources
of error exist in the experiments, such as the surface roughness of the sam-
ple and the stability of the laser. The sample surface roughness may cause a
diffuse reflection on the surface, thus nullifying the assumption of pure spec-
ular reflection.
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Figure 6.6: Experimental result of the parabolic mirror moving along its mechanical axis. Am-
plitude ratio Ψ , phase difference∆ and tilt angle 𝜙 are obtained from the measured
Mueller matrices. Angles of incidence 𝜃 and complex refractive index (𝑁 = 𝑛− i𝑘)
are calculated using Ψ , ∆ and reflectance R.

Table 6.1: Experimental refractive indices of the parabolic mirror calculated by the proposed
method, showing the standard deviation (SD), and the differences (Δ𝑛 and Δ𝑘) from
the reference value 0.241 − 3.239i (as measured by the HORIBA Smart SE).

Position (mm) 𝑛 Δ𝑛 𝑘 Δ𝑘
-3 0.203 0.038 3.171 0.068
-2 0.197 0.044 3.070 0.169
-1 0.205 0.036 3.136 0.103
0 0.208 0.033 3.235 0.004
1 0.208 0.033 3.163 0.076
2 0.213 0.028 3.292 -0.053
3 0.214 0.027 3.278 -0.039

Average 0.207 0.034 3.192 0.047
SD 0.006 - 0.008 -
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6.3 Three-phase systems

6.3 Three-phase systems

To validate the polarization model for curved surfaces and inverse calcula-
tion, a flat sample and a spherical mirror are measured and analyzed by the
retroreflex ellipsometer. The wavelength of the light source was 635 nm and
a flat sample was rotated using a rotary stage (LMG40T4, Zaber Technologies
Inc.), which has a repeatability of 0.005∘. The unidirectional accuracy is not
listed in the specification and the stage is discontinued but for the replacement
product (GSM40-T4, Zaber Technologies Inc.), the unidirectional accuracy is
0.06∘, which is used for the rotary stage in the experiments. The Mueller ma-
trix was measured and the ellipsometric data (Ψ , ∆) and azimuthal rotation
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Figure 6.7: Measurement results for a flat sample (SiO2/ C-Si). The tilt angle 𝜙 varies from 0∘ to
10∘ in steps of 1∘.
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angle 𝛼 are calculated using the numerical fitting, which is described in Sec-
tion 4.3. The angle of incidence 𝜃0 and the tilt angle 𝜙 and film thickness 𝑑
are calculated using the proposed method.

The flat sample was SiO2/c-Si with a nominal film thickness 𝑑 of 82.9 ± 1.5
nm, where c-Si is crystalline silicon. Figure 6.7 shows the results for a tilt
angle 𝜙 from 0∘ to 10∘ using steps of 1∘ at an angle of incidence of 70∘. The
mean absolute error in the tilt angle is 0.09∘. The measured values are in good
agreement with the reading for the rotation stage.
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Figure 6.8: Measurement results for a flat sample (SiO2/ C-Si). The angle of incidence 𝜃0 varies
from 65∘ to 75∘ in steps of 1∘.

The second experiment varied the angle of incidence of the flat sample from
65∘ to 75∘ in steps of 1∘. The results are shown in Figure 6.8. The mean abso-
lute error in the measured and calculated values for the AOI is 0.13∘, whose
values are very similar. The results for the thickness measurements for both
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6.3 Three-phase systems

experiments are within the range of the nominal thickness (82.9 ± 1.5 nm),
which verifies the proposed method.

The first and the second experiments show that the retroreflex ellipsometer
measures the film thickness and changes in the angle of incidence and the tilt
angle. Themeasurement results show that the retroreflex ellipsometer and the
proposed method are very accurate and stable. There are several sources of
error in the experiments, such as the alignment and the accuracy of the rotary
stage. The sample was not placed at the center of rotation so there is a slight
change in the beam occurred during the measurements due to variation in the
film thickness. The stage also has no encoder and the unidirectional accuracy
of the stage is about 0.06∘. The accumulated error of the stage can increase
the error in the tilt and angle of incidence.

Another experiment measured a protected gold-coated concave mirror
(CM508-150M01, Thorlabs Inc.). The diameter of the concave mirror is 50.4
mm but the refractive indices for the thin film and substrate are not provided
by the vendor so the refractive index for an unprotected gold mirror (PF10-
03-M03, Thorlabs Inc.) was measured as 0.130 − 3.532i using a commercial
ellipsometer (HORIBA Smart SE) and this value is used as the refractive index
for the substrate for the spherical mirror. The center of the concave mirror
was measured using the ellipsometer. Data analysis was used to determine
the refractive index for the film (1.405 − 0.004i) at a wavelength of 635 nm
and the film thickness (138.5 nm). The concave mirror was then measured
using the retroreflex ellipsometer with a 𝑥𝑦 linear stage. The steps for the 𝑥-
and 𝑦- axes were 5 mm. Figure 6.9 shows the measurement results for Ψ and
∆. The AOI and the angle of tilt are calculated as shown in Figure 6.10.
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Figure 6.9: Contour plots for the measurement results for (a) Ψ and (b)∆. The circle represents
the diameter of the concave mirror.
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Figure 6.10: Contour plots for themeasurement results for (a) 𝜃0 and (b)𝜙. The circle represents
the diameter of the concave mirror.

The measurement setup and the thickness distribution are shown in Figures
6.11 and 6.12. The center thickness is 138.0 nm and the average thickness is
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138.2 nm. These values are in agreement with the value obtained using the
commercial ellipsometer. This experiment demonstrates that film thickness
can be measured for curved surfaces. The measurement results show that
the distribution of the film thickness is not uniform: the thickness increases
along the direction of 45∘ in Figure 6.12. The reason for the non-uniformity
may be the coating process. Samples that are placed on a holder rotate about
the optical axis of a rotary stage during deposition [Ris02]. The tangential
speed affects the deposition thickness.

It is worth mentioning that If the concave mirror and the retroreflector are
fixed, there is no need to readjust the relative distance or the angle during a
measurement and the measurement range depends on the size of the retrore-
flective sheet. Therefore, nonplanar surfaces on large samples can be mea-
sured and alignment is easy the installation of the retroreflector and the sam-
ple is flexible.

Figure 6.11: (a) Measurement setup for a protected gold-coated concave mirror.
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Figure 6.12: Contour plot for the measurement results for the concave mirror. The circle repre-
sents the diameter of the mirror.

The surface orientation (𝜃0 and 𝜙) is known so the surface can be recon-
structed by numerical gradient integration. The calculation procedures are
described in [Har13]. Figure 6.13 shows the reconstruction result. When the
reconstruction data is fitted with the nominal radius of 150 mm, the center
point can be determined. The RMSE for the surface height is 33.3 µm and the
coefficient of determination for the fitting 𝑅2 is 0.98. The main source of er-
ror is the distortion due to the curvature of the surface, which is detailed in
Section 5.3. Distortion can be reduced by using a small angle of incidence or
by compensating the 𝑥 and 𝑦 coordinates.
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Figure 6.13: Surface reconstruction of the spherical mirror using measured data.
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7 Conclusion and outlook

This dissertation develops a holistic solution for ellipsometric measurement
of nonplanar surfaces. In this final chapter, the results and contribution of
this thesis are summarized and improvements in the prototype and analysis
methods are postulated. Opportunities for future study and application are
also presented.

7.1 Conclusion

Conventional ellipsometry is only suitable for planar or near-planar surfaces.
Measurement of nonplanar surfaces involves time-consuming alignment of
the sample and only several sampling points are measured. In the worst case,
the sample cannot be measured using conventional ellipsometry due to high
curvature. This constraint limits the use of ellipsometry in industrial applica-
tions. However, quality monitoring or characterization of nonplanar surfaces
is required for different applications, such as the uniformity of metallic coat-
ings and functional coatings on lenses for anti-reflection coatings and self-
cleaning properties.

A holistic approach is proposed to resolve this problem: retroreflex ellipsom-
etry. Retroreflex ellipsometry uses a retroreflective sheet that returns a light
beam from the sample back along the same beam path. The polarization prop-
erties of the retroreflector are also nearly the same as those for an ideal mirror
at an angle deviation of±30∘. The alignment condition for the sample and the
detector is automatically fulfilled, so retroreflex ellipsometry can be used to
measure nonplanar surfaces without the need for manual adjustment.
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This study determines the polarization characteristics of the retroreflector us-
ing simulation and experimental results, which are in good agreement. A
polarization model for the measurements of nonplanar surfaces is developed
using polarization ray tracing. The relationship between the angle of inci-
dence 𝜃0, the tilt angle 𝜙 and the azimuthal rotation angle 𝛼 is determined
mathematically with no need for local coordinate transformation. A proto-
type that uses a dual rotating-compensator configuration with a single wave-
length laser (635 nm) is constructed to verify the concept. After alignment
and calibration, the accuracy of the elements of the Mueller matrix for the
straight-through measurement (air) is better than 1.3% and the uncertainties
in Mueller matrix elements are less than 0.5%. The deviation in the amplitude
ratio Ψ and the phase difference∆ are 0.18∘ and 0.04∘ for the straight-through
measurements. This result also shows that the polarization properties of the
retroreflector are similar to an ideal mirror.

Based on retroreflex ellipsometry, two methods for two- and three-phase sys-
tems are proposed to determine the angle of incidence. For transparent (𝑘 =
0) and non-transparent (𝑘 ≠ 0) two-phase systems (ambient/ substrate), two
solutions are derived using the direct relationship between the p- and s- po-
larizations and the angle of incidence to determine the phases of the p- and s-
polarizations using reflectance and ellipsometric parameters. These methods
are used to determine the optical properties of isotropic substrates with non-
planar surfaces with no prior information about materials or the angle of inci-
dence. For a three-phase system (ambient/ film/ substrate) with a transparent
film, the angle of incidence is calculated using only ellipsometric parameters
and the refractive index for the film and the substrate to determine the film
thickness. The method can also be used for non-transparent films via numer-
ical inversion of the AOI and the film thickness. The uncertainty for these
methods is determined using a Monte Carlo simulation and the measurement
deviations due to the curvature of the surface is evaluated.

The prototype ellipsometer achieved accordance of 0.14∘ for the amplitude ra-
tio Ψ and 0.02∘ for the phase difference∆ to the measurements of a commer-
cial ellipsometer at a gold plane mirror (two-phase system). The device can
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determine the optical properties of isotropic substrates with nonplanar sur-
faces by measurements of reflectance 𝑅 and ellipsometric data (Ψ ,∆) without
a priori information about materials and angle of incidences. For the experi-
ment with a parabolic mirror, the average respective measurement errors in
the complex refractive index (𝑛, 𝑘) are 0.034 and 0.047. For the experiments
using a three-phase system (SiO2/ C-Si), the mean absolute error in the an-
gle of incidence is 0.09∘ and in the angle of tilt is 0.13∘. For the experiment
using a protected gold concave mirror, the deviation in the center thickness
between the commercial and the retroreflex ellipsometer is 0.5 nm. The sur-
face of the mirror is reconstructed using the surface orientation. The RMSE
for the surface height is 33.3 µm.

Retroreflex ellipsometry addresses the geometric restrictions of conventional
ellipsometry because samples need not have flat surfaces so ellipsometric
measurements can be used for many industrial production processes for the
characterization of optical properties of freeform optics or to inspect for de-
fects in a sample with an arbitrary shape. The retroreflex ellipsometer can
be used for differently shaped surfaces and the complexity of the system is
simple. It can also be used for inline and in situ quality control systems be-
cause the maximum acceptable angular range for the reflection or refraction
of beams at the sample is ±30∘. so it can be used for free-form optics, flexible
LED display modules and to monitor the coatings on lenses and mirrors.

7.2 Outlook

The retroreflex ellipsometer canmeasure nonplanar surfaces with satisfactory
results. Nevertheless, there is still room for improvements in the prototype,
e.g., optimizing optical elements and reducing the measurement time. In ad-
dition, potential research directions and applications are also presented and
discussed in this section.
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Improvements in hardware

Currently, only a single wavelength light source is used in the retroreflex el-
lipsometer so only two unknown variables can be solved. It is also possible to
use multi-wavelength light sources for the retroreflex ellipsometer, such as a
supercontinuum white light laser [Zim19] or a laser diode combiner [Sta08].
Multiple wavelengths give more information to determine the material prop-
erties of samples and allow a more robust calculation. The refractive index for
the film is determined using a dispersion model. The methods that are pro-
posed by this study can be used to determine an initial solution for theAOI and
film thickness to improve the speed of convergence and accuracy of results.

The prototype for this study uses a dual rotating-compensator configuration,
which features two mechanical rotary stages that rotate two quarter-
waveplates. However, the optimum retardance for the PSG and PSA is
127∘, which achieves the minimum condition number for the Mueller matrix
calculation [Smi02]. Dual rotating-compensator ellipsometry is a simple and
cost-effective configuration but the mechanical rotation stages can cause
the beam wandering, vibration, a non-uniform rotation speed and posi-
tional errors, which induce measurement errors in the calibration and the
determination of the Mueller matrix. The rotational speed also limits the
measurement time because there are mechanical constraints. For large sam-
ples, measurements must be fast. Liquid crystal variable retarders (LCVRs)
and photoelastic modulators (PEMs) allow fast phase-modulation for the
polarization state generator and polarization state analyzer without the need
for mechanical components. The temporal resolution of the Mueller matrix
measurement is 2 s using LCVRs [Lóp14] and 11 µs using PEMs [Zha20].
However, LCVRs and PEMs require more complicated calibration and a
stable environment.

The retroreflector is a key component for retroreflex ellipsometry. The simu-
lation and experimental results show that the retroreflector is nearly ideal but
the intensity is low (< 5%). It is also possible to optimize the retroreflector to
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increase the intensity and the field of view [She22, Rib22]. Instead of tradi-
tional glass beads, metasurfaces can be used for a high-performance retrore-
flector [Arb17]. Metasurfaces can also be designed for many multi-functions,
such as beam deflection and phase control [Zha21].

Calibration, measurement and analysis methods

Current calibration procedures use a commercial polarimeter. The accuracy
of the polarimeter in the prototype is better than 0.009 for Stokes parameters.
To allow more accurate Stokes vectors measurements, every element in the
polarimeter must be calibrated to reduce the first- and second-order system
errors [Bro10]. Shot noise, thermal noise and dark noise can also be calibrated
to decrease the incidence of random errors [Jia22].

The proposed measurement methods use a single measurement but it is also
possible to measure samples at multiple angles. Measurement at multiple
angles gives more information about unknown parameters [Woo99]. For a
three-phase system, the reflectance is also used to calculate the film thick-
nesses [Kih92]. By using ellipsometric parameters and reflectance, three un-
known parameters can be determined.

The data analysis for Mueller matrices assumes no depolarization. However,
surface scattering, variation in the angle of incidence and backside reflection
induce depolarization, which increases the measurement error [Fuj07]. For
depolarization, decomposition methods for Mueller Matrices are then used
to derive the physical Mueller matrices or to evaluate the diattenuation, re-
tardation, depolarization and polarizance properties of the measured Mueller
Matrices [Gar13].

Opportunities for future research and applications

Section 5.3 determines the effect of the spot size. The prototype uses a col-
limated beam with a post size of 2 mm for measurements. Focusing optics
can be used to reduce the spot size to the submicron level. A smaller spot
size induces less uncertainty in the measurements but the angle of incidence
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of the focusing beam varies with the position of the objective lens. Varia-
tion in the angle of incidence causes depolarization so the focusing lens must
also be compensated, especially for a high NA objective lens [Liu23]. The
retroreflector can also be used for imaging ellipsometry [Neg20, Neg23]. The
imaging sensor acts as an array of photodiodes and multiple points can be
measured simultaneously so measurements are faster and the resolution is
significantly increased.

Only optically isotropic materials have been used for retroreflex ellipsometry.
Optically anisotropic materials are also important in many fields for the de-
tection of stress-induced birefringence in plastics and for the determination of
PET (Polyethylene Terephthalate) films. With the exception of refractive in-
dex or film thickness measurements, retroreflex ellipsometry can be used for
remote sensing [Che21c], biosensing [Che23b] and object tracking [Jeo21].
Polarization ray tracing can be used for inverse rendering [Sha22] or object
detection [Kal20] for transparent objects.
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