www.itep.kit.edu

Design of a 110 kV 2.0 kA SmartCoil SFCL

Wescley Tiago B. de Sousa

(sousa@kit.edu)

Stefan Huwer

Wolfgang Reiser

Mathias Noe

Outlook

- Fault current limitation is of the utmost interest in electrical networks
- Superconducting Fault Current Limiters (SFCLs) have been developed to such an extent in recent years

that a use in the high-voltage level appears possible

EU Project FastGrid

SFCL for HVDC Networks

P. Tixador et al., "Some Results of the EU Project FASTGRID," in IEEE Transactions on Applied Superconductivity, vol. 32, no. 4, pp. 1-6, June 2022, Art no. 560100.

- SuperOx AC SFCL
 - 220 kV/300 MVA

M. Moyzykh et al., "First Russian 220 kV Superconducting Fault Current Limiter (SFCL) For Application in City Grid," in IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-7, Aug. 2021, Art no. 5601707.

SmartCoil Concept

SmartCoil Concept

• The SmartCoil SFCL consists of an air-core reactor shielded with short-circuited HTS rings

SmartCoil Concept

- TS ringo
- The SmartCoil SFCL consists of an air-core reactor shielded with short-circuited HTS rings

SmartCoil SFCL

• In 2018 a SmartCoil SFCL was tested in a medium voltage network in Germany

SmartCoil SFCL				
Nominal Voltage	10 kV			
Nominal Current	600 A			
Nominal Power	10 MVA			
Height	1.2 m			
HTS Rings	80			
Limitation time	80 ms			

O. Naeckel and M. Noe, "Design and Test of an Air Coil Superconducting Fault Current Limiter Demonstrator," in IEEE Transactions on Applied Superconductivity, vol. 24, no. 3, pp. 1-5, June 2014, Art no. 5601605.

A. Kudymow et. al., "Smartcoil—design, assembly and test of a 10 MVA superconducting air coil fault current limiter," in Supercond. Sci. Technol, vol. 32, no. 065002, 2019.

SIEMENS

SmartCoil SFCL for HV Networks

 Due the challenges regarding fault current limitation in 110 kV lines, an study conducted by KIT in cooperation with Vision Electric Super Conductors GmbH (VESC) and German distribution system operators has been conducted to adress the study of a SmartCoil SFCL in high voltage systems

Vergleichende Studie zwischen supraleitendem resistivem Fehlerstrombegrenzer "SSB" und supraleitendem induktivem Fehlerstrombegrenzer "SmartCoil" – Technische und wirtschaftliche Machbarkeit, 2022

Carlsruhe Institute of Technolog

Network Requirements

• Requirements were defined by the network operators

Network Requirements

• Requirements were defined by the network operators

Parameter	Symbol	Value
Nominal Voltage	<i>V_N</i> 110 kV	
Nominal Current	I _N	2.1 kA
Line frequency	f _N	50 Hz
Fault Current	I _K	13 kA
Limited Current	I _L (rms)	4.5 kA
	I _L (peak)	12.7 kA
Fault Duration	<i>t</i> ₁	0.55 s
	<i>t</i> ₂	0.3 s
	<i>t</i> ₃	0.2 s

Design Procedures

- Determination of the design Area
- Appropriate design:
 - $1\% < X_{\sigma p} < 5\%$ (0.01 p.u. $< X_{\sigma p} < 0.05$ p.u.)
 - 20% < X_m < 40% (0.2 p.u. < X_m < 0.4 p.u.)
- Inside of the design area:
 - Number of HTS rings
 - Total amount (lenght) of HTS tapes
 - AC Losses
 - First peak of the limited current
 - < 12.7 kA
 - Maximum value of temperature
 - T_{MAX} < 360 K

Prelimary Designs

Prelimary Designs

Prelimary Designs

Design [D]

- For each phase, 3 modules in series are needed
 - Parameters of chosen design [D]

Parameter	Symbol	per module	per phase
Radius primary winding	r _p	1.0 m	
Turns primary winding	n _p	110	
Height (coil)	h	4.0 m	
Number of HTS rings	n _{HTS}	653	1959
Total lenght HTS tapes	L _{HTS}	3.74 km	11.22 km
AC Losses	$Q_{\mathcal{T}}$	0.2 kW	0.6 kW

Transient Behaviour design [D]

 R_p

 $X_{\sigma p}$

 $X'_{\sigma s}$

Conclusions

- The SmartCoil SFCL appears as an update option for convention air-core reactors
- Based on the network operator requirements, several designs have been found.
- A design [D] was chosen
 - With small AC losses
 - Low amount of HTS tapes
 - Neither the limited current threshold (12.7 kA) and maximum temperature value (360 K) were exceeded.

THANK YOU VERY MUCH FOR YOUR ATTENTION

sousa@kit.edu