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Abstract. We propose a new upper bounding procedure for global minimization pro
blems with continuous variables and possibly nonconvex inequality and equality con
straints. Upper bounds are crucial for standard termination criteria of spatial branch- 
and-bound (SBB) algorithms to ensure that they can enclose globally minimal values 
sufficiently well. However, whereas for most lower bounding procedures from the liter
ature, convergence on smaller boxes is established, this does not hold for several meth
ods to compute upper bounds even though they often perform well in practice. In 
contrast, our emphasis is on the convergence. We present a new approach to verify the 
existence of feasible points on boxes, on which upper bounds can then be determined. 
To this end, we resort to existing convergent feasibility verification approaches for 
purely equality and box constrained problems. By considering carefully designed modi
fications of subproblems based on the approximation of active index sets, we enhance 
such methods to problems with additional inequality constraints. We prove that our 
new upper bounding procedure finds sufficiently good upper bounds so that termina
tion of SBB algorithms is guaranteed after a finite number of iterations. Our theoretical 
findings are illustrated by computational results on a large number of standard test pro
blems. These results show that compared with interval Newton methods from the litera
ture, our proposed method is more successful in feasibility verification for both, a full 
SBB implementation (42 instead of 26 test problems) and exhaustive sequences of boxes 
around known feasible points (120 instead of 29 test problems).
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1. Introduction
In this article, we propose a new method to determine valid upper bounds for the globally optimal value v∗ of non
convex minimization problems:

P(B) : v∗ :�min
x∈Rn

f (x)

s:t: gi(x) ≤ 0, ∀i ∈ I,

hj(x) � 0, ∀j ∈ J,

x ∈ B:
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We assume that all functions f, gi, i ∈ I, and hj, j ∈ J, are continuously differentiable on an open set containing the 
box B, but we do not require f and gi to be convex or hj to be linear. Therefore, the feasible set

M(B) :� {x ∈ B |gi(x) ≤ 0, i ∈ I, hj(x) � 0, j ∈ J}

is possibly nonconvex. We assume M(B) ≠ ∅. The box B is defined by B � {x ∈ Rn |b ≤ x ≤ b} with b, b ∈ Rn, b < b 
and with all inequalities being defined componentwise. We denote the cardinality of the constraint sets by p :� |I |
and q :� |J | .

Furthermore, we assume that the linear independence constraint qualification (LICQ) is satisfied at least in all 
globally minimal points x∗ of P(B). LICQ is considered to be a mild assumption (Jongen et al. 1986), even if it may 
not be satisfied for some degenerate problems of practical interest. Moreover, in nonlinear optimization, the 
assumption of LICQ even in all locally minimal points is standard for convergence proofs.

Determining upper bounds to v∗ is an essential component of many algorithms in global nonlinear optimization, 
especially in spatial branch-and-bound (SBB) algorithms, which iteratively branch the original box B into smaller 
subboxes X, on which then subproblems P(X) are solved and bounds are computed. SBB algorithms are the state- 
of-the-art approach to solve problems of the form P(B) to global optimality. Their application goes back to Falk and 
Soland (1969). Since then, various extensions and related methods have been proposed, such as branch-and-reduce 
(Ryoo and Sahinidis 1995, 1996), symbolic branch-and-bound (Smith and Pantelides 1997, 1999), and branch-and- 
cut (Tawarmalani and Sahinidis 2005) methods. For extensive surveys on deterministic global optimization, we 
refer to reviews (Floudas and Gounaris 2009, Tuy et al. 2013) and monographs (Horst and Tuy 1996, Floudas 2000, 
Tawarmalani and Sahinidis 2002b, Locatelli and Schoen 2013). A recent review on domain reduction techniques is 
provided in Puranik and Sahinidis (2017). Well-known implementations of state-of-the-art SBB solvers are ANTIG
ONE (Misener and Floudas 2014), BARON (Sahinidis 1996, Tawarmalani and Sahinidis 2004), Couenne (Belotti et al. 
2009), LINDOGlobal (Lin and Schrage 2009), and SCIP (Achterberg 2009, Vigerske and Gleixner 2018).

In fact, computing valid upper and lower bounds to v∗ is crucial for the convergence of such algorithms, as they 
iteratively approximate v∗ by such bounds and terminate if the gap is sufficiently close. Therefore, they rely on 
bounds that are valid and improve with smaller box sizes.

However, although there has been substantial research in global optimization on developing efficient lower 
bounding procedures that yield converging bounds on smaller boxes (Adjiman et al. 1998a, b; Tawarmalani and 
Sahinidis 2005), much less focus has been on (convergent) upper bounding procedures.

Upper bounds to the globally minimal value v∗ are often constructed by explicitly evaluating the objective func
tion in feasible points of P(B) or by applying local solvers, which implicitly make use of such evaluation. In this con
text, most articles from the literature either address the problem of accelerating global solvers by finding good 
feasible points early in the solution process without the aim of yielding a proven deterministic global solver, or they 
propose upper bounding techniques which provide sufficiently good upper bounds for many practical applications 
but are not guaranteed to ensure convergence (Bonami et al. 2009, Berthold and Gleixner 2014). One such approach 
is solving the nonconvex problem P(B), or some subproblem P(X), locally (Androulakis et al. 1995).

Because exact feasibility is hard to ensure, a common and related concept is to accept so-called εf -feasible points, 
that is, points x ∈ B with gi(x) ≤ εf , i ∈ I, and |hj(x) | ≤ εf , j ∈ J, with εf > 0. However, this concept does not work in 
general to obtain upper bounds, even for εf close to zero, as discussed by Tuy (2010) and Kirst et al. (2015).

Alternatively, in some algorithms, to obtain upper bounds for v∗, the strategy is to compute upper bounds v(X)
for the objective function over whole subboxes X of B, for instance by using interval arithmetic (Neumaier 1990, 
Moore et al. 2009). Such a bound v(X) is only a valid upper bound for v∗ if the associated box X contains a feasible 
point, though. Otherwise, we cannot rule out the case f (x) ≤ v(X) < v∗ for all x ∈ X. Consequently, this approach is 
closely related to feasibility verification.

For nonconvex problems, determining feasible points, or at least verifying their existence, is an NP-hard problem. 
As mentioned, conventional solution methods may fail to detect feasible points and thus fail to construct valid 
upper bounds. Given the previous arguments, such solvers are not guaranteed to terminate for arbitrary nonconvex 
problems of type P(B). In particular, this is true for obtaining upper bounds by solving the nonconvex problem 
locally, even though this approach provides sufficiently good upper bounds on many practical applications.

For this reason, to ensure convergence of SBB methods, more sophisticated approaches are required to verify the 
existence of feasible points and to compute valid upper bounds. In the context of rigorous upper bound determina
tion and constraint satisfaction, such feasibility verification approaches are proposed in Domes and Neumaier 
(2015) and Kearfott (1998, 2014). They are based on computing approximately feasible points, for example, by using 
conventional nonlinear solvers and then verifying the existence of feasible points in specifically constructed boxes 
around such points using interval Newton methods. Those approaches are not guaranteed to identify feasible 
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points, however, as they rely on heuristics to construct appropriate boxes, which need to be sufficiently small to 
allow for feasibility verification but at the same time sufficiently large to cover feasible points. In our emphasis on 
the convergence of the upper bounding procedure, our work clearly differs from these methods.

For the case of purely inequality and box constrained problems, a convergent upper bounding procedure is 
presented in Kirst et al. (2015) based on perturbing infeasible iterates along Mangasarian-Fromovitz directions. 
Because reformulating equality constraints by two reverse inequality constraints destroys the Mangasarian- 
Fromovitz constraint qualification (MFCQ), it is not straightforward to extend this approach to equality con
strained problems.

For solely equality and box constrained problems, a convergent upper bounding procedure is proposed by 
Füllner et al. (2021) based on a generalization of Miranda’s theorem (Miranda 1940). For convenience, in the remain
der of this article, we refer to this method as the Miranda-based method. Its main idea is to verify the existence of feasi
ble points in boxes X ⊆ B based on sign conditions on facets of the boxes and then to compute upper bounds for v∗
by means of established upper bounding procedures on such boxes.

This method, however, does not allow for inequality constraints in problems P(B). Additionally, for proven con
vergence, it requires that the constraints of the original box B are strictly satisfied in all feasible points. This is not 
guaranteed to be true for all problems P(B) in general. In Füllner et al. (2021), it is therefore suggested to represent 
the original box constraints as inequality constraints gi(x) ≤ 0 and to introduce additional, less strict box constraints 
x ∈ eB with B ⊂ eB. This reformulation ensures that the strict feasibility assumption is satisfied. However, with such 
reformulation, it is all the more required to apply a feasibility verification method that can handle problems with 
not only box and equality constraints but also inequality constraints.

A natural approach to apply feasibility verification procedures, such as the one from Füllner et al. (2021), to pro
blems with inequality constraints is to reformulate those constraints as equality constraints. This can be achieved 
by introducing slack variables yi, i ∈ I and then replacing inequality constraints gi(x) ≤ 0 with gi(x) + y2

i � 0 for all 
i ∈ I (Jongen and Stein 2003). However, this slack variable approach has some huge computational drawbacks, in 
particular if incorporated into a branch-and-bound algorithm, which we thoroughly discuss in this article.

Therefore, in this article, we present a different approach of feasibility verification for general nonconvex pro
blems P(B). For this approach, we draw on existing convergent feasibility verification methods for solely equality 
and box constrained problems, such as the one presented in Füllner et al. (2021) but enhance them to problems P(B) 
with additional inequality constraints. To this end, we consider some carefully designed approximations P(X) of 
the subproblems P(X), containing only equality and box constraints. Such problems are then accessible to existing 
feasibility verification methods.

The main idea of our approximation is to consider inequality constraints as equality constraints as long as they 
are possibly active within a given box X. This is determined by using so-called approximate active index sets (Kirst 
et al. 2015). Because these sets converge to the actual active index set of feasible points x ∈ X for sufficiently small 
boxes X, it is possible to verify the existence of feasible points also for the original problem. Moreover, we show that 
even with using approximating problems P(X), the case of false positive feasibility verification for P(B) can be ruled 
out. Thus, valid upper bounds for v∗ can be computed.

We prove that standard SBB algorithms from global optimization terminate under mild assumptions if our 
new upper bounding procedure is applied. This is what we mean by the term convergent upper bounding proce
dure. To our best knowledge, our proposed method is the first proven convergent upper bounding procedure 
in this context.

1.1. Contribution
Summarizing, the main contributions of this article are as follows: 

1. We present a deterministic method that verifies the existence of feasible points of continuous nonconvex pro
blems P(B) on sufficiently small boxes X ⊆ B, presuming a known approach to verify such existence for solely 
equality and box constrained problems. For this method, a reformulation based on the concept of approximate 
active index sets is crucial.

2. Although our proposed approach can incorporate different feasibility verification methods for equality and 
box constrained problems, in particular, it can be used to generalize the Miranda-based method by Füllner et al. 
(2021) to the case with additional inequality constraints.

3. By applying established upper bounding techniques to boxes X that are proven to contain feasible points, 
valid upper bounds for the globally minimal value v∗ of P(B) can be computed. We prove that this upper bounding 
procedure yields convergent upper bounds in the sense that convergence of standard SBB algorithms from global 
optimization is ensured, if our new method is incorporated.

4. Our theoretical findings are confirmed by computational results on standard test problems. 
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• Our proposed reformulation approach for inequality constraints performs significantly better than the 
alternative approach to use slack variables. Feasibility verification and termination of a standard SBB algo
rithm are successful for 42 of 70 test problems within two hours in contrast to only one test problem for the 
slack variable approach.
• Applying the convergent Miranda-based method from Füllner et al. (2021) for feasibility verification of 

equality and box constrained problems within our framework performs superior to interval Newton-based 
approaches from the literature without proven convergence. For a full SBB algorithm, 42 instead of 26 pro
blems (of 70 test problems) terminate successfully. Applied to an exhaustive sequence of boxes around an 
optimal point of the respective test problem, the Miranda-based method verifies feasibility for 106 (or with 
some modification 120) of 130 test problems, whereas interval Newton methods are only successful in 29 
cases.

1.2. Structure
The remainder of this article is structured as follows. In Section 2, we present some general assumptions and 
some results on feasibility verification for solely equality and box constrained problems, which provide the basis 
for our enhanced method. Moreover, we discuss the Miranda-based method from Füllner et al. (2021) as one spe
cific feasibility verification method that satisfies our requirements. In Section 3, we present our extended 
method, which can additionally handle inequality constraints and give a proof of convergence. Afterward, we 
discuss its incorporation into the SBB framework in Section 4, with special focus on determining upper bounds 
and proving convergence. In Section 5, our computational results are presented, with additional material pro
vided in an Online Appendix. We conclude this article with a brief summary and an outlook on future research 
topics in Section 6.

The notation in this article is as follows. The gradient of a function fj, j ∈ J, is denoted by ∇fj. For boxes 
X � [x1, x1] ×⋯× [xn, xn], the midpoint of X is denoted by mid(X) :� (x + x)=2, while w(X) :� ‖x� x‖2 denotes the 
diagonal length of X. By Xi :� {x ∈ X |xi � xi} and Xi :� {x ∈ X |xi � xi} for i � 1, : : : , n, we denote the lower and 
upper facets of X, respectively. The interior of some set S is denoted by int(S).

2. Feasibility Verification for Purely Equality and Box Constrained Problems
One key idea of our upper bounding procedure for general continuous nonconvex problems P(B) is to rely on fea
sibility verification techniques for purely equality and box constrained problems, for example, the Miranda- 
based method from Füllner et al. (2021). The only requirements for such technique are formally described in the 
following.

A sequence of boxes (Xk)k∈N is called an exhaustive sequence of boxes, if for all k ∈ N we have Xk ⊂ Xk�1, Xk ≠ ∅ and 
limk→∞ w(Xk) � 0 (Horst and Tuy 1996). With this concept, we are ready to state our main assumption.

Assumption 1 (Algorithm (VER)). We assume the existence of an Algorithm (VER) such that 
• For all problems P(B) with only equality and box constraints,
• For all exhaustive sequences of boxes (Xk)k∈N such that a globally minimal point x∗ ∈ Xk for all k ∈ N
There exists some sequence of positive values (δk)k∈N with limk→∞δk � 0 and some k̂ ∈ N such that for all k ≥ k̂ the exis

tence of a feasible point ex with ‖x∗ � ex‖2 ≤ δk is verified by Algorithm (VER).
Moreover, in case that the existence of a feasible point is verified for some index k, we assume Algorithm (VER) to 

return δk.

In principle, Assumption 1 allows for general choices of Algorithm (VER). However, to the best of our knowl
edge, the only existing procedure that is proven to fulfill this requirement is the Miranda-based method proposed in 
Füllner et al. (2021). However, even for this procedure, thus far no rigorous implementation is available. By rigorous 
we mean an implementation that takes rounding errors due to finite precision of floating point arithmetic into 
account, for example, by means of interval arithmetic or infinite precision toolboxes.

Because the Miranda-based method is a reasonable choice for Algorithm (VER) and also applied in our compu
tational experiments in Section 5, we briefly outline some of its main ideas in this section. It is based on Miranda’s 
theorem, which is introduced and proven in Miranda (1940). The theorem provides a sufficient condition for the 
existence of zeros of nonlinear equality systems inside some box X based on signs of the involved functions on 
facets of X.

As the theorem is directly applicable only to systems of equations and thus problems satisfying q � n, an exten
sion to the more general case q ≤ n is formulated and proven in Füllner et al. (2021). This is stated in Theorem 1.
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Theorem 1 (Theorem 3.2 in F€ullner et al. 2021). Let X ⊆ Rn be a box and let function h � (h1, : : : , hq) be continuous on X 
with q ≤ n. Let there exist a set of indices S :� {s1, : : : , sq} with S ⊆ {1, : : : , n} so that h satisfies the conditions

hj(x) ≤ 0, ∀x ∈ Xsj ,

hj(x) ≥ 0, ∀x ∈ Xsj 

for all j ∈ J. Then h(x) � 0 has a solution in X.

Remark 1. The Miranda-based method cannot be applied to systems of equations with q > n. In such a case, how
ever, LICQ is violated in all feasible points.

However, even the extension in Theorem 1 provides only a sufficient, but not necessary, condition for the exis
tence of a feasible point inside a box X. In Füllner et al. (2021), three cases are identified, in which the box X con
tains a feasible point x̂, but the conditions of Theorem 1 are not satisfied. These cases are illustrated in Figure 1. 
In the following, we briefly discuss each one. 

(C1) The box X is too large. Even if the considered box X contains a feasible point, if it is too large, Theorem 1
may not be applicable to verify the existence of such a point. This case is displayed in Figure 1 (C1), which shows 
the box X and the level curves of h1 and h2 to level 0. Although

max
x∈X2

h2(x) < 0 and min
x∈X2

h2(x) > 0, 

the function h1 intersects with both facets X1 and X1. Thus, the conditions of Theorem 1 are not satisfied. In contrast, 
in the case that the box X is of less width in x2-direction, the conditions are fulfilled.

(C2) The feasible point x̂ is located on a facet. If x̂ is located on a facet of X, Theorem 1 may not be satisfied 
either. This case is displayed in Figure 1 (C2), where x̂ is located on X2. As constraint h2 solely takes nonnegative 
values on both facets, the existence of a feasible point cannot be deduced by Theorem 1. In contrast to case (C1), 
this issue persists for smaller subboxes as long as x̂ remains located on a facet.

Figure 1. Cases Where a Feasible Point Cannot Be Verified Using Theorem 1 (Füllner et al. 2021) 

(a) (b)

(c)

Notes. (a) Box X is to too large. (b) Feasible point on facet X2. (c) Gradients not directed toward facets.
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(C3) Gradients in feasible point x̂ are not directed toward the facets. Miranda’s theorem exploits that the func
tions hj, j ∈ J, take different signs on the associated opposing facets of X. The simplest setting for which this prop
erty is satisfied, requires sufficiently small boxes X (see (C1)), a feasible point x̂ in the interior of X (see (C2)) and 
the gradients ∇hj(x̂) directed toward the facets (i.e., ∇hj(x̂) � λej with λ > 0 and ej a unit vector with only zero 
entries except for a one at the j-th component), thus causing opposing signs on those facets. In contrast, if some of 
the constraint gradients ∇hj(x) do not have unit direction in x̂, the conditions of Theorem 1 may not be satisfied, 
even independent of the size of X. This case is displayed in Figure 1 (C3). In this example, ∇h1(x̂) does not have 
unit direction, and thus h1 intersects with the facets X1 and X1. As a result, Theorem 1 is not applicable.

The Miranda-based method deals with all three cases by appropriate transformations. Briefly summarized, 
(C1) is ruled out for sufficiently small boxes X, (C2) is taken care of by artificially enlarging the boxes X before 
checking if Theorem 1 is satisfied, and (C3) is taken care of by a coordinate transformation. For details, see 
Füllner et al. (2021). These transformations ensure that under certain assumptions, the conditions of Theorem 1
are satisfied for sufficiently small boxes X and that the existence of feasible points can be proven by applying 
Theorem 1.

For this result to hold, certain assumptions have to be satisfied (Füllner et al. 2021). The box constraints x ∈ B 
are required to be strictly satisfied by all feasible points, and as already discussed in Section 1, LICQ is assumed 
to be satisfied in all globally minimal points. This LICQ requirement rules out the occurrence of case (C2) for 
globally minimal points x∗, as in case (C2) LICQ is always violated. However, it is still reasonable to take care of 
(C2) algorithmically, because, when integrated into a spatial branch-and-bound algorithm, this allows us to ver
ify the existence of suboptimal feasible points x̂ using Theorem 1, for which LICQ is not presumed to hold.

Another requirement is that the sequence of boxes in Assumption 1 is not only exhaustive but also nonde
formed in the sense of the following definition.

Definition 1 (From F€ullner et al. 2021). Let (Xk)k∈N be a sequence of boxes with the maximum ratio of the length of 
box edges

tk :�
maxi�1, : : : , n(xk

i � xk
i )

mini�1, : : : , n(xk
i � xk

i )
, 

bounded above by a constant t < ∞. Then we call (Xk)k∈N a nondeformed sequence of boxes.
This can be regarded to be a mild assumption. For example, using the standard branching technique within 

spatial branch-and-bound algorithms, dividing along a longest edge, it is naturally satisfied (Füllner et al. 2021).
Summarized, we obtain the following result.

Proposition 1. The Miranda-based method from Füllner et al. (2021) satisfies Assumption 1 provided that the following 
additional assumptions hold: 

(A1) The box constraints of problem P(B) are strictly satisfied.
(A2) LICQ is satisfied in all globally minimal points.
(A3) All exhaustive sequences of boxes are nondeformed.

Proof. The assertion follows immediately from lemma 4.10, theorem 4.11, and corollary 4.12 in Füllner et al. 
(2021). w

It is worth mentioning that the last part of Assumption 1 regarding the return of some valid δk > 0 is not actually 
required for feasibility verification itself, but turns out to be crucial later in the branch-and-bound context when 
upper bounds for the globally minimal value v∗ are computed. Such upper bounds can be computed on boxes 
Yk ⊆ B, in which the existence of a feasible point is verified. These boxes Yk can, but must not necessarily, coincide 
with the boxes Xk, which are the input of Algorithm (VER). Using the returned δk > 0, an appropriate such box can 
be constructed by

Yk � [x1 � δk, x1 + δk] ×⋯× [xn� δk, xn + δk]: (1) 

This follows directly from Assumption 1.
In fact, the Miranda-based method from Füllner et al. (2021) does not return δk explicitly. Instead, it directly 

returns a box Yk, which is guaranteed to contain a feasible point. However, by relation (1), for different choices of 
Algorithm (VER), the weaker requirement in Assumption 1 is sufficient.
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3. Extension to Problems with Inequality Constraints
To extend Algorithm (VER) to problems P(B) with additional inequality constraints, we aim at reducing this case to 
the purely equality and box constrained one from the previous section. Two different approaches to achieve this 
are proposed in the following two sections. We show that both techniques verify the existence of feasible points for 
sufficiently small boxes and thus can be applied to obtain upper bounds for v∗. This yields a convergent upper 
bounding procedure in the sense that sufficiently good upper bounds are found within a finite number of iterations 
when inserted into a branch-and-bound framework, as we show in Section 4.

3.1. Slack Variable Approach
One way to transform P(B) into a problem that is only constrained by equality constraints is to replace all inequality 
constraints gi(x) ≤ 0, i ∈ I, by equality constraints using a slack variable reformulation.

This is done by introducing additional free variables yi, i ∈ I, and replacing the constraints gi(x) ≤ 0 by equality 
constraints of the form gi(x) + y2

i � 0 for all i ∈ I, as discussed in Jongen and Stein (2003). Then, for every globally 
minimal point x∗ of P(B), there exist globally minimal points (x∗, y∗) of the transformed problem with the same opti
mal value v∗. As both y∗i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gi(x∗)

p
and y∗i ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gi(x∗)

p
are possible solutions for each y∗i , i ∈ I, the number of glob

ally minimal points of the reformulated problem may increase exponentially with the number of introduced slack 
variables and thus with the number of inequality constraints in P(B) (Jongen and Stein 2003). It also grows exponen
tially in the number of globally minimal points of the original formulation. This is computationally unfavorable, in 
particular for a branch-and-bound algorithm. First, the dimension n of the problem is increased. Second, multiple 
globally minimal points may lead to long execution times of the algorithm, as they prevent boxes from being 
pruned and thus counteract a confined and deep search. These theoretical observations are supported by computa
tional tests in Section 5.

To apply some Algorithm (VER) satisfying Assumption 1 to the reformulated problem with slack variables, the 
box B has to be extended to include components associated with the slack variables yi. As these variables are free, 
bounds have to be derived for such extension. This is possible by computing a lower bound ℓgi(B) for the values of 
gi on B, for example, by interval arithmetic. Then, yi has to satisfy the box constraint yi ∈ [�ℓgi(B), ℓgi(B)].

Finally, let us stress that at least in theory it is also possible to use linear slack variables of the form gi(x) + yi � 0 
with the additional requirement yi ≥ 0 for all i ∈ I. This, however, contradicts Assumption 1. Therefore, the box con
straints for the slack variables need to be slightly relaxed such that we also allow for negative values of y1 close to 
zero. Unfortunately, this is equivalent to accepting εf -feasible points. In addition, this may easily lead to a situation 
similar to case (C2) in Figure 1 and may introduce comparable difficulties.

3.2. Using Approximate Active Index Sets
In this section, we propose an alternative reformulation approach to obtain purely equality and box constrained 
problems without the requirement of slack variables. Our approach is based on the concept of active indices and 
certain approximations that are described in Section 3.2.1. Using this, we state our extended feasibility verification 
method enhancing Algorithm (VER) in Section 3.2.2 together with a proof of convergence.

3.2.1. Approximating Active Index Sets. In a given feasible point x̂ ∈M(B), inequality constraints gi(x) ≤ 0 can 
either hold with equality, that is, gi(x̂) � 0, or with strict inequality, that is, gi(x̂) < 0. The former constraints are 
called active in x̂, whereas the latter are called inactive in x̂. The indices i ∈ I of all inequality constraints that are 
active in x̂ are contained in the active index set in that point, which is defined as follows.

Definition 2 (Active Index Set). Let x̂ ∈M be a feasible point of P(B). Then the active index set (or set of active indi
ces) I0 in x̂ is defined as

I0(x̂) :� {i ∈ I |gi(x̂) � 0}:

A key element of our approach is the observation that a problem with inequality constraints can locally be viewed 
as a purely equality constrained optimization problem where the inequality constraints that are active at the opti
mal point x∗ are treated as equality constraints (and those that are not active at x∗ are omitted). This interpretation 
does only work locally, however, for instance on small boxes.

Unfortunately, the active index sets for different points in a box might differ and are not known in advance. 
To circumvent this difficulty, we consider certain approximations of the set of active indices that turn out to be 
helpful for our purpose. To achieve this, again, we consider exhaustive sequences (Xk)k∈N of boxes with x∗ ∈ Xk 
for all k ∈ N and x∗ a globally minimal point of P(B). Additionally, we make use of bounds to the function values 
of all constraints on a given box Xk. In this context, we need the following concepts.
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Definition 3 (M-Independent Bounding Procedures from Kirst et al. 2015). A function ℓf (·) on an exhaustive sequence 
of boxes (Xk)k∈N is called an M-independent lower bounding procedure for the function f, if it satisfies

ℓf (Xk) ≤ min
x∈Xk

f (x)

for all subboxes Xk ⊂ B. Analogously, a function uf (·) on an exhaustive sequence of boxes (Xk)k∈N is called an M- 
independent upper bounding procedure for the function f, if it satisfies

uf (Xk) ≥max
x∈Xk

f (x)

for all subboxes Xk ⊂ B.
Furthermore, such a procedure is called convergent if it satisfies

lim
k→∞

ℓf (Xk) � lim
k→∞

min
x∈Xk

f (x) or lim
k→∞

uf (Xk) � lim
k→∞

max
x∈Xk

f (x), 

respectively.
With these concepts, we are ready to describe the following approximation of the set of active indices, which is 

crucial for our proposed method.

Definition 4 (Approximate Active Index Set Based on Kirst et al. 2015). Let Xk ⊂ Rn be a box and P(Xk) the problem 
P(B) restricted to Xk. Let ℓgi(Xk) and ugi(Xk), i ∈ I, denote convergent M-independent lower and upper bounding 
procedures of gi, i ∈ I, applied to Xk. Then the set

I0(Xk) :� {i ∈ I |ℓgi(Xk) ≤ 0 ≤ ugi(Xk)}

is called an approximate active index set on Xk.
The set I0(Xk) contains the indices of all inequality constraints that could be satisfied with equality in a feasible 

point in Xk. It is determined by constructing lower and upper bounds to the values of all inequality constraints.
Those lower and upper bounds for the values of gi(x), i ∈ I, on a given box Xk ⊂ B allow conclusions regarding 

the satisfiability of the constraints. If ugi(Xk) < 0 for some constraint i ∈ I, the constraint can be omitted from the 
problem P(Xk), as it is strictly satisfied for all x ∈ Xk and thus obsolete. Furthermore, if ℓgi(Xk) > 0 for at least one 
i ∈ I, the problem P(Xk) has no feasible point, because at least one inequality constraint is violated for all x ∈ Xk. 
The remaining constraints i ∈ I with ℓgi(Xk) ≤ 0 ≤ ugi(Xk) are contained in the approximate active index set 
I0(Xk).

Our approach to extend Algorithm (VER) to inequality constraints is based on locally treating the constraints 
gi(x) ≤ 0 with i ∈ I0(Xk) as equality constraints gi(x) � 0 for a given problem P(Xk). As the resulting problem is 
only equality and box constrained, Algorithm (VER) can be applied to verify the existence of feasible points.

The active index set I0(x̂) in a feasible point x̂ ∈ Xk is a subset of the approximate active index set I0(Xk), but 
both sets do not have to coincide. However, in exhaustive sequences of boxes, the approximation becomes better 
with smaller boxes, such that for sufficiently small boxes Xk with x̂ ∈ Xk both sets are equal. This is stated in 
Lemma 1.

Lemma 1 (Lemma 4.9 in Kirst et al. 2015). Let (Xk)k∈N be an exhaustive sequence of boxes and let x̂ ∈ Xk for all k ∈ N. Then 
there exists some k̂ ∈ N, such that I0(Xk) � I0(x̂) for all k ≥ k̂.

Using these techniques we are ready to state our extended feasibility verification method.

3.2.2. Verifying Feasible Points. Our proposed method is described formally in Algorithm 1, where for notational 
convenience we omit the index k.

Algorithm 1 (Feasibility Verification for Problems P(B) Including Inequality Constraints)
Input: Problem P(X) with X ⊆ B 
1: Determine lower bounds ℓgi(X) for all i ∈ I and ℓhj(X) for all j ∈ J on the box X using some convergent M-inde

pendent lower bounding procedure.
2: Determine upper bounds ugi(X) for all i ∈ I and uhj(X) for all j ∈ J on the box X using some convergent M-inde

pendent upper bounding procedure.
3: if ∃ i ∈ I with ℓgi(X) > 0 or ∃ j ∈ J with (ℓhj(X) > 0 or uhj(X) < 0) then
4: Set flag � no feasible point possible in X.
5: else
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6: Determine the approximate active index set

I0(X) :� {i ∈ I |ℓgi(X) ≤ 0 ≤ ugi(X)}

with |I0(X) | � p0.
7: Determine problem P(X) based on I0(X).
8: Apply Algorithm (VER) to problem P(X).
9: if existence of a feasible point is verified then

10: With δ > 0 returned by Algorithm (VER) construct a box

Y � [x1 � δ, x1 + δ] ×⋯× [xn � δ, xn + δ]:

11: Set flag � existence of feasible point verified.
12: else
13: Set flag � no successful verification.

Ensure: flag and, if verification successful, box Y containing a feasible point.

First, for a given box Xk, some convergent M-independent lower and upper bounding procedures, for example, 
interval arithmetic (Neumaier 1990) or centered forms (Krawczyk and Nickel 1982), are applied to the functions 
gi, i ∈ I, and hj, j ∈ J. This way, it is checked whether the existence of a feasible point in Xk can be directly ruled out 
(steps 1–4).

If this is not the case, the approximate active index set I0(Xk) is determined and the corresponding inequality con
straints gi(x) ≤ 0, i ∈ I0(Xk), are treated as equality constraints (steps 6 and 7). This yields the new constraint system 
hj(x) � 0, j ∈ J(Xk). By reindexing, the index set can be defined as J(Xk) � {1, : : : , q, q+ 1, : : : , q+ pk

0}with pk
0 :� |I0(Xk) |

the number of approximately active equality constraints. We then have hq+ℓ � giℓ , where the subscript ℓ � 1, : : : , pk
0 

indicates the approximately active equality constraints.
In this way, the subproblem P(Xk) is transformed to the problem

P(Xk) : min
x∈Rn

f (x)

s:t: hj(x) � 0, ∀j ∈ J(Xk),

x ∈ Xk:

After this transformation, Algorithm (VER) can be applied because no inequality constraints, except for box con
straints, are present anymore (step 8).

By Assumption 1, Algorithm (VER) returns a valid value δk in the case of successful feasibility verification. Using 
Relation (1), a box Yk can then be constructed, which is guaranteed to contain a feasible point (steps 9–14).

In the remainder of this section, we discuss the implications of this transformation and prove that feasibility veri
fication is guaranteed to be achieved for sufficiently small boxes. To this end, let M(Xk) denote the feasible set and 
v(Xk) the optimal value of the transformed problem P(Xk), and M(Xk) and v(Xk) those of the original problem 
restricted to Xk.

First of all, we can conclude that M(Xk) is a subset of M(Xk) by construction of J . This implies that all feasible 
points of P(Xk) are also feasible for P(Xk) and for P(B).

Lemma 2. The feasible set M(Xk) of P(Xk) is a subset of the feasible set M(Xk) of P(Xk).

Considering some exhaustive sequence of boxes (Xk)k∈N with x∗ ∈ Xk for all k ∈ N, in case that k is not sufficiently 
large, the approximate active index set I0(Xk) and the active index set I0(x∗) do not necessarily coincide. This means 
that some inequality constraints are treated as active inequality constraints, that is, as equality constraints, on the 
box Xk, although they are not actually active in the globally minimal point x∗ ∈ Xk. For I0(Xk)≠ I0(x∗), the feasible 
set M(Xk)might even be empty.

However, as we have M(Xk) ⊆M(Xk) by Lemma 2, it is ruled out that Algorithm 1 verifies the existence of a feasi
ble point of P(Xk) that is not feasible for the original problem P(Xk) (no false positives). Therefore, treating nonactive 
inequality constraints as active may only prevent feasible points of P(Xk), such as x∗, to be detected if they are not 
feasible for P(Xk). For sufficiently large k, that is, for sufficiently small boxes Xk, this cannot happen, as we show 
now (no false negatives for sufficiently large k).

In Assumption 1, we assume an exhaustive sequence of boxes (Xk)k∈N with x∗ ∈ Xk for all k ∈ N and x∗ a globally 
minimal point of P(B). This is crucial to ensure verification of the existence of feasible points of P(B) sufficiently close 
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to x∗ for sufficiently large k. Considering P(Xk) instead of P(Xk) in each iteration, for sufficiently large k, such verifi
cation is possible because the approximate active index set I0(Xk) converges to I0(x∗).

Lemma 3. Let (Xk)k∈N be an exhaustive sequence of boxes with Xk ⊆ B for all k ∈ N. Furthermore, let x∗ be a globally mini
mal point of P(Xk) with x∗ ∈ Xk for all k ∈ N. Then there exists some k̂ ∈ N so that for all k ≥ k̂, x∗ is also a globally minimal 
point of P(Xk).

Proof. With Lemma 2, we have M(Xk) ⊆M(Xk). Because P(Xk) and P(Xk) share the same objective function f(x), 
this implies v(Xk) ≥ v(Xk) � f (x∗) for all k ∈ N.

With Lemma 1, there exists some k̂ ∈ N such that I0(Xk) � I0(x∗) for all k ≥ k̂. Thus, we have x∗ ∈M(Xk) for all 
k ≥ k̂. It follows f (x∗) ≥ v(Xk) for all k ≥ k̂. Combining this with v(Xk) ≥ f (x∗), we obtain v(Xk) � v(Xk) for all k ≥ k̂ 
and the assertion follows. w

With Lemma 3, we can now state the main result of this section.

Theorem 2. Applying Algorithm 1 to some problem P(B), for all exhaustive sequences of boxes (Xk)k∈N with a globally min
imal point x∗ ∈ Xk for all k ∈ N, there exists some sequence of positive values (δk)k∈N with limk→∞ δk � 0 and some ek ∈ N 
such that for all k ≥ ek the existence of a feasible point ex with ‖x∗� ex‖2 ≤ δk is verified.

Proof. Following from Lemma 2, it is impossible that Algorithm 1 verifies the existence of a feasible point of 
P(Xk) that is not feasible for P(Xk). Moreover, by Lemma 3, there exists some k̂ ∈ N such that x∗ is also a globally 
minimal point of P(Xk) for all k ∈ N with k ≥ k̂. Thus, the exhaustive sequence of boxes (Xk)k∈N also contracts 
around a globally minimal point of P(Xk).

As the transformed problem P(Xk) is only constrained by equality and box constraints, Algorithm (VER) can 
be applied to it. All components of Assumption 1 with P(Xk̂) in the role of P(B) are fulfilled. With this, the exis
tence of some ek ∈ N as stated in the assertion follows. w

Theorem 2 states that Algorithm 1 verifies the existence of a feasible point of P(B) for some sufficiently small sub
box Xk ⊆ B. In particular, the Miranda-based method from Füllner et al. (2021) can be applied as Algorithm (VER) 
in Algorithm 1 to ensure feasibility verification for sufficiently small boxes.

Corollary 1. If Assumption 1, (A1)–(A3), is satisfied, then the Miranda-based method from Füllner et al. (2021) can be 
used as Algorithm (VER) in Algorithm 1 to verify the existence of feasible points of problem P(B). Then, considering some 
exhaustive sequence of boxes with x∗ ∈ Xk for all k ∈ N and x∗ a globally minimal point, there exists some k̂ ∈ N such that for 
all k ≥ k̂ the existence of a feasible point ex with ‖x∗ � ex‖2 ≤ δk is verified.

Proof. This directly follows from Proposition 1 and Theorem 2. w

3.3. On Strict Satisfaction of Box Constraints
We should point out again that choosing the Miranda-based method from Füllner et al. (2021) as Algorithm (VER) in 
Algorithm 1 requires all box constraints to be strictly satisfied by feasible points to allow for their verification; see (A1) 
in Proposition 1 (this is a sufficient condition for its convergence, but not necessary for feasibility verification in every 
case). Usually, for some arbitrary problem P(B), it is not known in advance if this assumption is satisfied. However, it 
can always be guaranteed to be satisfied by adapting problem P(B) appropriately. More precisely, the initial box con
straints x ∈ B can be considered as standard inequality constraints gi(x) ≤ 0. To retain the structure of the original prob
lem, then additional, but less strict, box constraints x ∈ eB can be introduced. As Corollary 1 shows, Algorithm 1 can 
then be applied for feasibility verification. In this sense, (A1) in Proposition 1 can be considered a weak assumption.

However, it is important to mention that in some cases, the proposed reformulation of the original box con
straints comes with the drawback that active box constraints, if interpreted as standard inequality constraints, 
increase the size of I0(Xk), and thus may favor that |I0(Xk) | + q > n, which in the light of Remark 1 rules out feasibil
ity verification using the Miranda-based method. We take up on this observation in Section 5.

Finally, from this reformulation perspective, our proposed feasibility verification method Algorithm 1 is not only 
suited for problems of form P(B), which naturally contain inequality constraints. It is also suited for purely equality 
and box constrained problems, for which inequality constraints are artificially introduced by some reformulation, for 
example, to ensure strict satisfaction of box constraints. We also address this in our computational tests in Section 5.

4. Computing Upper Bounds Within an SBB Framework
In this section, we use our presented feasibility verification method to determine upper bounds on the returned box 
Y, in which the existence of a feasible point is verified. This upper bounding procedure is incorporated into an SBB 
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algorithm. As we show, the upper bounds are convergent in the sense that sufficiently good upper bounds are 
found within a finite number of iterations and convergence of the SBB method is guaranteed.

As noted earlier, if the considered problem is nonconvex, convergence of these methods from the literature often 
cannot be guaranteed, as they might fail to determine valid upper bounds for the globally minimal value v∗. How
ever, incorporating our proposed Algorithm 1 into the SBB framework can guarantee (the determination of) suffi
ciently good upper bounds, and thus the algorithm converges. Convergence of lower bounds ℓ(Xk) commonly 
used in the literature is usually ensured in the sense that it satisfies

lim
k→∞

ℓ(Xk) � lim
k→∞

min
x∈M(Xk)

f (x): (2) 

A standard SBB framework is formally stated in Algorithm 2. It is primarily designed to approximate the minimal 
value v∗ of P(B). In the remainder of this section, we briefly explain each step of the algorithm and give a proof of 
convergence.

Algorithm 2 (Convergent SBB Algorithm)
Input: Problem P(B) 
1: Initialize
2: Set the iteration counter to k � 0.
3: Choose a tolerance ε > 0.
4: Set the lower bound for v∗ to ℓ0 ��∞.
5: Set the upper bound for v∗ to u0 � +∞.
6: Set L � {(B, l0)}.
7: while uk� ℓk ≤ ε or L � ∅ do
8: Increase the iteration counter k by one.
9: Choose a pair (Xk,ℓ(Xk)) from L with the smallest ℓ(Xk) and remove it.

10: Divide Xk along its longest edge into subboxes X1
k and X2

k .
11: for l � 1, 2 do
12: Determine a lower bound ℓf (Xl

k) for the minimal value of P(B) on Xl
k using some lower bounding proce

dure, with ℓ(Xl
k) � +∞ for an infeasible problem.

13: If ℓ(Xl
k) < +∞ and ℓ(Xl

k) ≤ uk�1, add the pair (Xl
k, ℓ(Xl

k)) to L. Otherwise, continue with step 11.
14: Apply Algorithm 1 to P(Xl

k) to verify the existence of feasible points.
15: if Feasibility verification successful then
16: Compute an upper bound ul

k :� uf (Yl
k) for f over box Yl

k, which is returned by Algorithm 1.
17: else
18: Set ul

k :� +∞.
19: Compute the best upper bound for v∗ as uk �min{uk�1, ul

k}.
20: Save the box Yk related to uk as best known box X∗k.
21: Remove all pairs (eX, ℓ(eX))with ℓ(eX) > uk from L.
22: if L ≠ ∅ then
23: Update the lower bound for v∗ to ℓk �min{ℓ(eX) | (eX,ℓ(eX)) ∈ L}.

Output: Bounds ℓk and uk approximating v∗. Box X∗k containing a feasible point and corresponding to the best 
known upper bound uk.

After initialization, in a first step, the box with the smallest corresponding lower bound ℓf (Xk) is chosen and 
removed from L, as it is the most promising box from a minimization perspective (step 9). This box is then divided 
along its longest edge into two subboxes X1

k and X2
k (step 10). In general, more sophisticated box division strategies 

are possible as well, as long as they yield nondeformed exhaustive sequences of boxes.
Next, both boxes X1

k and X2
k are examined one after another (step 11). First, a lower bound ℓf (Xl

k) for the minimal 
value of the objective function on Xl

k is determined (step 12). Typically, this is considered the crucial step within an 
SBB method. Most commonly, the lower bound ℓf (Xl

k) is computed by solving special convex relaxations of P(Xl
k), 

which are obtained by replacing the functions in P(Xl
k)with convex envelopes (Tawarmalani and Sahinidis 2002a), 

convex underestimators (Adjiman et al. 1998a, b) or LP relaxations (Tawarmalani and Sahinidis 2002b). The tuple 
(Xl

k,ℓf (Xl
k)) is then appended to L, if it cannot be ruled out immediately (step 13).

Following that, it is attempted to determine an upper bound uf (Xl
k). Upper bounds are usually determined by 

evaluating the objective function f of P(B) in a feasible point. If such a feasible point xl
k is known inside Xl

k, then f (xl
k)

serves as a valid upper bound for the minimal value of P. As opposed to standard approaches, in this article we 
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propose to apply our feasibility verification method Algorithm 1 as a basis to determine valid upper bounds uf (Xl
k)

for v∗ (step 14). In case the existence of a feasible point can be verified in some box Yk returned by Algorithm 1, such 
an upper bound can be computed by applying standard convergent upper bounding methods, for instance, interval 
arithmetic in the simplest case, over the entire box Yk (steps 15–18). After this, the best known upper bound uk and 
the corresponding box X∗k are updated if possible (steps 19 and 20).

Once the upper bound is updated, all elements (eX,ℓ(eX)) in L with ℓ(eX) > uk are removed from L as the corre
sponding boxes cannot contain a globally minimal point of P (step 21). This is called fathoming or pruning and is cru
cial to limit the size of the branching tree.

As a last step (steps 22 and 23), the best known lower bound is updated to

ℓk � min{ℓ(eX) | (eX, ℓ(eX)) ∈ L}:

Using Equation (2), it can be ensured that the overall lower bound ℓk in Algorithm 2 converges to the globally mini
mal value of P(B). The algorithm terminates if uk � ℓk ≤ ε (step 24); otherwise, the iteration counter is increased to 
k � k+ 1 and the next iteration starts (step 8).

In SBB methods, a single point is usually stored as the currently best known solution. In contrast, here we adapt 
this by saving the whole box X∗k because it is guaranteed to contain a feasible point.

We can prove now that Algorithm 2 terminates after a finite number of iterations. We start with a feasibility veri
fication result.

Theorem 3 (Feasibility Verification). Assume that in Algorithm 2 some convergent lower bounding procedure in the sense 
of Equation (2) is used. Moreover, for two boxes X and Y with X ⊂ Y, we assume ℓ(X) ≥ ℓ(Y).

Then, if the infinite branch-and-bound procedure corresponding to ε � 0 does not terminate, the existence of feasible 
points in arbitrary small boxes around globally minimal point x∗ is verified.

Proof. The proof is by contradiction. Assuming ℓ(X) ≥ ℓ(Y) for two boxes X and Y with X ⊂ Y, it holds that 
limk→∞ ℓk � v∗ (Horst and Tuy 1996).

Next, we consider an exhaustive sequence of boxes (Xkν )ν∈N with x∗ ∈ Xkν for all ν ∈ N generated by Algorithm 2. 
Then, according to Theorem 2, there exists some ν so that for every ν > ν̂, a feasible point in some box Yk is verified 
in Algorithm 1 that is called by Algorithm 2.

With limν→∞ δkν � 0, we also have limν→∞ w(Ykν ) � 0 for such boxes Ykν . This proves that if the infinite branch- 
and-bound procedure does not terminate, the existence of feasible points is verified in arbitrary small boxes 
around x∗. w

Based on this result, convergence of Algorithm 2 can be proven.

Theorem 4 (Convergence of Algorithm 2). Let the assumptions of Theorem 3 hold. Moreover, assume that some convergent 
upper bounding procedure is used to compute upper bounds at the objective function in step 16 of Algorithm 2 if a feasible 
point is verified. Then, if the infinite branch-and-bound procedure corresponding to ε � 0 does not terminate, we have 
limk→∞ ℓk � limk→∞ uk � v∗.

Proof. As in the proof of Theorem 3, it follows that limk→∞ ℓk � v∗. Additionally, from Theorem 3, by considering 
the exhaustive sequence of boxes (Xkν )ν∈N with x∗ ∈ Xkν for all ν ∈ N generated by Algorithm 2, we have limν→∞
w(Ykν ) � 0 for boxes Ykν , in which the existence of feasible points is verified.

Because some convergent upper bounding procedure is used in Algorithm 2, it follows that limν→∞ uf (Xkν) �

limν→∞ maxx∈Xkν
f (x). As the sequence (Xkν )ν∈N is exhaustive, with x∗ ∈ Xkν for all ν ∈ N, this proves the assertion. w

With the same reasoning as before, the following result can be derived with respect to the finite termination of 
Algorithm 2 for some ε > 0.

Corollary 2 (Finite Termination of Algorithm 2). Let the assumptions of Theorem 3 hold. Moreover, assume that some con
vergent upper bounding procedure is used to compute upper bounds at the objective function in step 16 of Algorithm 2 if a 
feasible point is verified. Then, for any ε > 0, Algorithm 2 terminates after finitely many iterations.

Recall that the Miranda-based method from Füllner et al. (2021) satisfies all required assumptions for Algorithm 
(VER) in Algorithm 1. Therefore, in particular for this specific choice, convergence of the branch-and-bound 
method Algorithm 2 is assured.

Corollary 3. Assume that the Miranda-based method from Füllner et al. (2021) is used as Algorithm (VER) within Algo
rithm 1 to verify the existence of feasible points of problem P(B) and that (A1)–(A3) are satisfied. Moreover, let all assump
tions from Theorem 3 and Theorem 4 be satisfied. Then, 
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(a) If the infinite branch-and-bound procedure corresponding to ε � 0 in Algorithm 2 does not terminate, we have 
limk→∞ ℓk � limk→∞ uk � v∗.

(b) For any ε > 0, Algorithm 2 terminates after finitely many iterations.

5. Computational Tests
In this section, we present computational results for applying the proposed feasibility verification method, Algo
rithm 1, both as a standalone method and incorporated into a convergent SBB method (presented in Algorithm 2) 
to several test problems from the COCONUT benchmark library (Shcherbina et al. 2003). We compare our proposed 
method with existing feasibility verification ideas from the literature, which we discuss now.

5.1. Test Setting and Applied Methods
As discussed in Section 3.1, it is also possible to use slack variables to transform an inequality constrained problem 
to one with only equality and box constraints. To analyze the performance of Algorithm 1, for comparison, we also 
apply this approach in our computational tests. In this case, we directly use Algorithm (VER) for feasibility verifica
tion within Algorithm 2 instead of Algorithm 1. This means that Algorithm 1 is replaced by Algorithm (VER) in 
steps 14 and 16 of Algorithm 2. To further emphasize the differences of both approaches, their main components 
are illustrated in Figure 2.

For both approaches, we consider different choices for the role of Algorithm (VER) to verify the existence of feasi
ble points in the obtained systems with only equality and box constraints: 
• MIR: The Miranda-based method from Füllner et al. (2021); see Section 2.
• MIR_H: The Miranda-based method from Füllner et al. (2021) but without the computationally costly matrix 

inversion step. Without this step, the method loses its convergence guarantees, but as a feasibility verification heu
ristic can be applied much faster.
• KRAW: The Krawczyk operator (Krawczyk 1969), an interval Newton operator, is applied to the equation sys

tem on the current box Xk and its midpoint mid(Xk). If its image K(Xk, mid(Xk)) is contained in the box interior 
int(Xk), then the existence of a feasible point in Xk is verified. As the Krawczyk operator can only be applied to sys
tems with an equal number of variables and equations, it can be required to transform the system first. To do this, 
we fix variables based on a heuristic by Kearfott, which uses the null space of the Jacobian of the equality con
straints and is described in Domes and Neumaier (2015).
• NARR: This approach is similar to the one proposed by Kearfott (1998) and also described in Domes and Neu

maier (2015). The problem is solved locally on Xk using a nonlinear solver. Then, using deviations of 10�5 around 
this local solution, a narrow box is constructed. As for KRAW, the Krawczyk operator is applied to this artificial box 
to verify the existence of feasible points. We use both an SLSQP solver (Kraft 1988) and Ipopt (Wächter and Biegler 
2006) as local solvers in this context and indicate this by NARR_S and NARR_I.

Figure 2. Proposed Algorithm 2 (Left) and Its Modification Using the Slack Variable Approach (Right) 
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With respect to these choices, we should make some important remarks. First, even if local solutions are used in 
NARR, this approach is not equal to the common approach to obtain upper bounds by evaluating a local solution in 
the objective function. As explained in detail in Section 1, a local solution may only be approximately feasible and 
therefore is not guaranteed to yield valid upper bounds for v∗. In NARR, the idea is to verify the existence of a true 
feasible point in a neighborhood of a local solution and to then compute an upper bound on this neighborhood.

Second, recall that MIR requires the box constraints of the test problems to be strictly satisfied, see (A1) in Proposi
tion 1. As discussed in Section 3.3, for this reason, test problems with initial box constraints are adapted appropri
ately. More precisely, the original box constraints [x, x] are replaced by the slightly larger boxes [x� 1, x + 1] and 
instead considered standard inequality constraints gi(x) ≤ 0. Similar to MIR, interval Newton methods such as 
KRAW are not guaranteed to successfully verify the existence of feasible points that are located on the boundary of 
some box X. Therefore, we use the same reformulation approach for all choices of Algorithm (VER).

Third, we should emphasize that MIR is the only choice for Algorithm (VER) that provably satisfies the condi
tions in Assumption 1 and thus may be used to obtain a guaranteed convergent branch-and-bound algorithm. The 
other choices are used for comparison with illustrate the efficacy and efficiency of using such a feasibility verifica
tion method.

Finally, in addition to KRAW and NARR, more sophisticated feasibility verification methods have been proposed in 
the literature (Domes and Neumaier 2015). However, these methods are still heuristic and require a lot of imple
mentation effort. We can also not draw on computational results from Domes and Neumaier (2015) for comparison 
because there the feasibility verification methods are not incorporated into an SBB method. Instead, the authors use 
a complex framework to first compute a larger set of approximately feasible points for problems P(B). Then, similar 
to NARR, they construct narrow boxes around these approximately feasible points to verify the existence of true fea
sible points. However, this is not done iteratively on boxes Xk as they occur in Algorithm 2.

Importantly, although we do not present a branch-and-bound implementation competitive to state-of-the-art 
software, such as BARON (Sahinidis 1996), our computational results serve mainly illustrative purposes and as a 
proof of concept. Thus, for most test problems and applications, state-of-the-art SBB implementations should be sig
nificantly superior in performance. The difference is that our focus is on theoretical convergence guarantees, which 
are not provided by such solvers in general.

Our implementation is kept as simple as possible to focus on the effects of our proposed new techniques. How
ever, for this reason, it only allows for the solution of low-dimensional problems in reasonable time without further 
tuning. Therefore, we complement our computational analysis by a second batch of tests, containing also some pro
blems of higher dimension. Here, to illustrate the efficacy of our proposed method, we do not consider the complete 
branch-and-bound tree, but limit the search space to an exhaustive sequence of boxes which provably contains a 
globally minimal point of the respective test problem.

5.2. Implementation Details
The SBB framework consisting of the Miranda-based method, Algorithms 1 and 2, and the Krawczyk operator is 
implemented in Python 3.7. For numeric operations, both Numpy and Scipy are used. For interval arithmetic opera
tions, we use the IntvalPy package (Androsov 2021). To solve nonlinear problems locally, we use both an SLSQP 
solver from the scipy.minimize package and Ipopt. Our implementation is executed on a Windows machine with a 
3.2-GHz Intel Xeon CPU and 64 GB of RAM.

Because SBB algorithms require the problems to be box constrained, the initial starting box B is set to [�10,000, 
10,000]n for problems where no box constraints are specified in the problem definition. Before the first iteration of 
Algorithm 2, a standard optimality-based bounds tightening (OBBT) is used to decrease the size of the starting box 
(Gleixner et al. 2017).

The termination criterion of Algorithm 2 is set to uk� ℓk ≤ 0:1. Moreover, the computation is stopped if conver
gence is not reached after 10,000 iterations or two hours of computation time (excluding the time for OBBT). Setting 
a time limit is standard in computational tests for SBB methods and allows us to assess the performance in terms of 
both the convergence behavior of Algorithm 2 and the computational cost of the compared feasibility verification 
methods. Setting an iteration limit allows us to filter out instances for which no successful feasibility verification is 
possible after a reasonable amount of branching. This may provide insight on the convergence behavior and the 
guarantees of the chosen verification approach.

Further implementation details specific to approach MIR can be found in the computational section of Füllner 
et al. (2021).

The data, code, and results of the computational experiments are available in the IJOC GitHub repository (Füllner 
et al. 2024).
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5.3. Test Problems
We perform our computational tests on a set of global optimization problems from the COCONUT benchmark 
library (Shcherbina et al. 2003). These problems are constrained by a combination of equality, inequality, and box 
constraints.

Recall that by reformulating the original box constraints to satisfy (A1) in Proposition 1, inequality constraints are 
artificially introduced to all test problems. Because this already ensures I ≠ ∅, we are able to test our proposed Algo
rithm 2 even for instances from the COCONUT library that do not contain inequality constraints in the first place.

A complete list of all test problems including their dimension and constraint numbers, is presented in the Online 
Appendix.

5.4. Tests for the SBB Method
As addressed previously, we first test an SBB method (Algorithm 2) for problems of moderate dimension. We con
sider a subset of 70 problem instances from the complete problem set, with a maximum dimension of n � 6. The 
results for these tests are summarized in Table 1 and illustrated in Figures 3 and 4. The full results are available in 
the Online Appendix.

Overall, with our proposed method MIR, the existence of feasible points is verified in 46 of 70 test cases during 
10,000 iterations or two hours. In most of these cases, computing a valid upper bound causes termination of Algo
rithm 2 soon after. In contrast, using the slack variable approach for MIR yields no successful feasibility verification. 
Similar observations can be made for MIR_I, KRAW, and NARR_I, where our proposal of exploiting approximate 
active index sets performs much better than the slack variable approach. In total, we observe only one successful 
experiment using the latter approach. This observation is consistent with our theoretical conjecture in Section 3.1
that our new method of reformulating inequality constrained problems has several computational advantages com
pared with the slack variable approach.

Furthermore, looking at the total number of successful verifications and terminations of Algorithm 2, we can see 
that MIR performs better than all the alternatives that we tested, with NARR_I performing worst (it is also for this 
reason that we only consider NARR_S for the slack variable approach). This shows that in addition to its theoretical 
convergence guarantees under certain assumptions, MIR also performs well computationally compared with simi
lar approaches from the literature. However, in a few cases, KRAW and NARR_S are successful, whereas MIR is not.

One drawback is that MIR requires considerable computational effort, especially for high dimensions, as it 
requires the inversion of Jacobian matrices. Therefore, the iterations take much longer than for KRAW. We can see, 
however, that the related heuristic MIR_H is only slightly less successful than MIR in feasibility verification while 
reducing the average computation time to a level similar to KRAW. Finally, we observe that also NARR_S and 
NARR_I have significant computational overhead compared with KRAW and MIR_H, as here the time limit is way 
more often reached before the iteration limit, implying that the feasibility verification approach slows down the 
overall solution process.

Another observation is, that with increasing dimension, our proposed approach becomes less successful. There 
are different possible explanations for this behavior. First, we assume that LICQ is satisfied at least in the globally 
minimal points of the considered test problems. This might not be the case for some instances in our test set, and 
thus feasibility verification may be prevented.

Second, it is possible that 10,000 iterations are simply not enough to verify the existence of feasible points for 
these instances due to slow convergence of our simple SBB implementation. This is also why we limited our compu
tational tests to low-dimensional test instances. According to our theoretical results, Algorithm 1 should manage to 
verify the existence of feasible points, and Algorithm 2 should terminate after an unknown, but finite number of 
iterations also for the test instances where no success is reported in our previous tests. To identify whether this is 

Table 1. Summary of Computational Results for SBB Tests

Criterion Algorithm 2 Modified Algorithm 2

MIR MIR_H KRAW NARR_S NARR_I MIR MIR_H KRAW NARR_S

Total number of instances 70 70 70 70 70 70 70 70 70
Successful feasibility verification 46 44 29 29 23 0 0 0 1
Successful termination 42 41 26 26 23 0 0 0 1
Iteration limit reached 23 29 44 18 11 48 70 70 16
Time limit reached 5 0 0 26 35 32 0 0 53
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the case, we perform a second batch of tests, where we decouple our analysis from the general performance of the 
SBB implementation. We discuss this in detail in the following section.

5.5. Tests for Exhaustive Sequences of Boxes
In the second batch of computational tests, we artificially limit the search space of Algorithm 2 to only examine sub
problems of the considered test instance that contain a globally minimal point. This is possible, as (approximate) 
globally minimal points of all test problems are documented in the COCONUT benchmark library. This means that 
we restrict the search space to exhaustive sequences of boxes (Xk)k∈N with x∗ ∈ Xk for all k ∈ N and x∗ a globally mini
mal point, which we already used for our theoretical results in Sections 2 and 3. This is achieved by modifying 
Algorithm 2 in such a way that the branching step (step 10) remains the same, but only boxes are examined and cho
sen for further branching that contain x∗. By doing this, we consider only one single path through the branch-and- 
bound tree and avoid its exponential growth. Thus, the number of considered boxes and subproblems is reduced 
significantly. This allows us to examine the convergence behavior of our proposed feasibility verification method 
(Algorithm 1) more specifically, without further tuning of our branch-and-bound method. Moreover, it allows us to 
test Algorithm 2 for instances of higher dimension. Thus, in this case, we consider 131 test problems up to dimen
sion n � 75.

The obtained results for this second batch of tests are summarized in Table 2 and illustrated in Figures 3 and 4. 
The full results are available in the Online Appendix.

For 106 of 131 test problems, MIR terminates and the existence of a feasible point is verified, confirming the effi
cacy of our proposed approach. Because of the speedup per iteration, MIR_H even performs slightly better. All 

Figure 3. (Color online) Iteration Numbers for Algorithm 2 for All 70 Test Instances 

(a) (b)

(c) (d)

Notes. Squares signify feasibility verification, and dots signify successful termination. × denotes that termination was not successful due to reach
ing the iteration limit (10,000 iterations) or the time limit (two hours). (a) MIR. (b) MIR_H. (c) KRAW. (d) NARR_S.
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methods from the literature perform significantly worse. In particular, NARR_S and NARR_I exhibit high computa
tional cost, often reaching the time limit, whereas KRAW reaches the iteration limit without successful feasibility ver
ification in most cases. This may be an indicator for no verification guarantees even for sufficiently small boxes in 
contrast to our proposed approach.

However, the number of instances for which MIR is not successful despite its theoretical properties is consider
able. The main reason for this behavior is that our approach to ensure strict feasibility of box constraints, shifting 
the original box constraints x ∈ B to the inequality constraints and introducing slightly larger box constraints x ∈ eB, 
may favor LICQ not being satisfied, and in particular the Miranda-based method not being applicable, as discussed 
in Remark 1 and Section 3.3. This is especially relevant in this case where we only consider one exhaustive sequence 
of boxes (Xk)k∈N around x∗ and do not take different boxes with less active indices into account.

To confirm this, we perform a last batch of experiments where we analyze all previously unsuccessful problems. 
The configuration is completely the same as before, with the only difference that the original box constraints x ∈ B 

Figure 4. (Color online) Solution Times for Algorithm 2 for All 70 Test Instances 

(a) (b)

(c) (d)

Notes. Squares signify feasibility verification, and dots signify successful termination. × denotes that termination was not successful due to reach
ing the iteration limit (10,000 iterations) or the time limit (two hours). (a) MIR. (b) MIR_H. (c) KRAW. (d) NARR_S.

Table 2. Summary of Computational Results for Exhaustive Sequences of Boxes

Criterion Algorithm 2

MIR MIR_H KRAW NARR_S NARR_I

Total number of instances 131 131 131 131 131
Successful feasibility verification 106 108 29 27 23
Successful termination 106 108 29 27 22
Iteration limit reached 21 22 101 58 44
Time limit reached 4 1 1 46 65
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are maintained. Recall that our reformulation is a sufficient condition to ensure convergence of the Miranda-based 
method, but not necessary for successful feasibility verification in every case.

The results for these experiments are summarized in Table 3. The full results are again available in the Online 
Appendix. In line with our hypothesis, MIR is successful for more than half of the previously unsuccessful 
instances. The remaining instances either still do not satisfy LICQ in x∗ in their original formulation, for example, 
ladders (in fact, it violates LICQ in all feasible points), or possibly require more than two hours for a successful feasi
bility verification, as the additional successful terminations for MIR_H indicate.

The computational results can be regarded as a proof of concept for our new feasibility verification and upper 
bounding procedure. They indicate that with a larger iteration limit, the SBB method (Algorithm 2) should also ter
minate with the verification of a feasible point after a finite number of iterations. Moreover, this implies that our 
proposed method may be used to enhance high-performing SBB implementations.

6. Conclusion
In this article, a convergent method for determining valid upper bounds for the globally minimal value v∗ of non
convex minimization problems P(B) with box constraints, equality constraints, and inequality constraints is pre
sented. This method is based on verifying the existence of feasible points in boxes and then computing upper 
bounds on such boxes. For this purpose, we provide an approach based on approximate active index sets, which 
transforms a subproblem P(X) with equality, inequality, and box constraints to a related problem with only equality 
and box constraints. For the obtained problem, feasibility verification can then be achieved by reasonable 
approaches for equality constrained problems and, in particular, the Miranda-based method laid out in Füllner et al. 
(2021). We prove that for sufficiently small boxes containing feasible points, feasibility verification for P(B) is 
assured under certain assumptions. Once the existence of feasible points is verified in some box X, upper bounds 
can be computed by standard approaches on such box.

Our method is incorporated into an SBB framework and tested on some standard nonconvex global minimiza
tion problems. The test results confirm our theoretical results that the proposed method yields convergent upper 
bounds and shows performance improvements compared with related methods from the literature, both for appli
cation in SBB algorithms (42 instead of 26 successful test problems) and on exhaustive sequences of boxes contain
ing a known feasible point (120 instead of 29 successful test problems). However, even using our method, common 
computational drawbacks of SBB methods, such as slow convergence, cannot be ruled out.

We also test our method against the slack variable approach laid out in Jongen and Stein (2003). Results on a sim
ple test instance indicate that our method performs significantly better than this alternative approach (termination 
of SBB in 42 instead of 1 of 70 cases).

However, it is worth noting that our method for determining valid and convergent upper bounds does not come 
without some drawbacks. Most of these drawbacks are related to the Miranda-based feasibility verification method 
proposed in Füllner et al. (2021). In this regard, our new feasibility verification method has the downside that it 
heavily relies on this method (or any other feasibility verification method for equality and box constrained pro
blems satisfying Assumption 1).

Additionally, our proposed reformulation to consider the original box constraints as standard inequality 
constraints and to replace them with less strict box constraints, which is required for our convergence results, 
may favor cases where more constraints are interpreted as (approximately) active than the dimension of the 
decision variables. In such a case, however, the Miranda-based method from Füllner et al. (2021) cannot be 
applied immediately for feasibility verification. This can be considered a potential drawback of this reformula
tion approach, even though our computational results show that for many instances this reformulation is not 
required.

Table 3. Summary of Computational Results for Exhaustive Sequences Without Box Reformulation

Criterion Algorithm 2

MIR MIR_H KRAW NARR_S NARR_I

Total number of instances 25 25 25 25 25
Successful feasibility verification 14 20 0 0 0
Successful termination 14 20 0 0 0
Iteration limit reached 1 5 23 10 1
Time limit reached 10 0 2 15 24
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