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Abstract

Over the last decades, an expansion of the underground network has been taking place to cope with the increasing amount of moving
people and freight. As a consequence, it is of vital importance to guarantee the full functionality of the tunnel network by means of pre-
ventive maintenance and the monitoring of the tunnel lining state over time. A new method has been developed for the real-time pre-
diction of the utilization level in tunnel segmental linings based on input monitoring data. The new concept is founded on a
framework, which encompasses an offline and an online stage. In the former, the generation of feedforward neural networks is accom-
plished by employing synthetically produced data. Finite element simulations of the lining structure are conducted to analyze the struc-
tural response under multiple loading conditions. The scenarios are generated by assuming ranges of variation of the model input
parameters to account for the uncertainty due to the not fully determined in situ conditions. Input and target quantities are identified
to better assess the structural utilization of the lining. The latter phase consists in the application of the methodological framework on
input monitored data, which allows for a real-time prediction of the physical quantities deployed for the estimation of the lining utiliza-
tion. The approach is validated on a full-scale test of segmental lining, where the predicted quantities are compared with the actual mea-
surements. Finally, it is investigated the influence of artificial noise added to the training data on the overall prediction performances and
the benefits along with the limits of the concept are set out.
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1 Introduction

The continuous expansion of the underground network
and the necessity of maintaining the already existing tun-
nels in operation require the deployment of strategies to
guarantee that the safety and the operability of the under-
ground structures are guaranteed. Concerning deep and
long tunnels realized with segmental lining, monitoring
measurements play an important role in providing contin-
uous information about the state of the tunnel in terms of
structural integrity. However, the capability of interpreting
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the measurements is crucial to extract valuable information
to infer the conditions of the lining structure.

The back analysis is one possible approach for the esti-
mation of the utilization level of the structure since it can
be used to reconstruct the stress–strain conditions in the
segments starting from available monitored data to detect
possible anomalies, as it is explained in (Do et al., 2014;
Fabozzi, Bilotta, & Russo, 2017). In the performed study,
stresses and radial displacements at specific locations are
used as input parameters for the estimation of the lining
utilization level. Back analyses are often addressed in
geotechnics and geomechanics by different approaches,
see Cividini et al. (1981). A pioneering work in this direc-
tion is reported in Gioda and Maier (1980), where an
inverse problem consisting in the identification of the
ehalf of KeAi Communications Co. Ltd.
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parameters of an elastoplastic ground using search algo-
rithms is worked out. In Sakurai (2017), four main levels
of back analyses are identified for tunnels in rock for the
estimation of the rock mass parameters. The first is based
on the pure inversion of the analytical formulations
describing the behavior of the rock mass and its interaction
with the tunnel lining. However, this approach is feasible
only for simple engineering problems, for which analytical
solutions exist. A second and simpler effective approach is
the direct method, which is based on the solution of a min-
imization problem. This consists in minimizing the discrep-
ancy between the recorded measurements and their
respective values in the numerical analyses, to obtain the
optimal match for the given measured data (for more
details see Sakurai (2017)). Another method encompasses
probabilistic approaches, which include uncertainty and
provide an estimation of the sought parameters in terms
of mean and variance. An example is the Bayesian
approach, wherein a priori knowledge is introduced to
restrict the input space of the rock mass parameters.
Finally, inverse problems can be addressed also using the
Fuzzy Set Theory, since a priori knowledge can be intro-
duced to help to construct a probability density function
for the rock mass parameters, or using machine learning
algorithms, like artificial neural networks, which can deal
with many input parameters.

A further interesting approach for the structural analy-
sis of segmental tunnel lining based on analytical solutions
of the curved beam is the hybrid method proposed by
Zhang et al. (2017), where deformations and stress resul-
tants can be computed given a certain load. Applications
of the method to a bridge and an arched-like structure
are presented in Zhang et al. (2020), while extensions of
the method to account for a load due to the in situ stress,
the nonlinear behavior at the joints and the long-term creep
effects of a tunnel lining are set out (Zhang et al., 2019;
Hellmich et al., 2020).

The deployment of machine learning tools in under-
ground constructions, such as artificial neural networks
(ANN), represents a flexible way that permits to identify
relationships between input quantities and the ones desig-
nated as targets, i.e., the quantities which need to be iden-
tified. Applications of machine learning in underground
construction for the analyses of surface settlements and
building damage induced by mechanized tunneling are
illustrated (Cao et al., 2022; Saadallah et al., 2019;
Erharter et al., 2019). While radial displacements and cir-
cumferential stresses at specific monitoring locations in
the lining are chosen as input variables in this work, stres-
ses at positions where no sensors were applied are selected
as outputs. ANNs are inspired by the biological brain and
are considered universal approximators capable of dealing
with highly nonlinear problems (Bishop, 2006; Haykin,
1999; Basheer & Hajmeer, 2000). They have been applied
successfully in many fields of structural mechanics
(Freitag, 2015), both for system identification and struc-
tural health monitoring. An overview of the application
of ANNs in civil engineering problems is given also in
Adeli (2001), where applications for structural control
and monitoring of structures are presented.

In this study, it is investigated the deployment of ANNs
to achieve real-time predictions of the utilization level of
the lining based on given input measurements. For the con-
struction of the machine learning algorithm, synthetic data
generated using finite element models are employed. A sim-
ilar approach for the real-time estimation of the maximum
bending moment in a beam structure based on monitored
displacements at three locations is presented in Gottardi
et al. (2023b), where the focus is on the correlation between
input parameters resulting from an analytical model used
to train the ANN. In this case, artificial noise is added to
the synthetic ANN training data to bridge the discrepancy
between the real system and the simulation model.

Here, the methodological approach developed for seg-
mental tunnel lining is validated on a full-scale ring test
(Blom & van Oosterhout, 2001; Blom, 2002), where the
predictions of the ANNs are compared with additional
monitored values in the lining. To explore the influence
of white noise on the prediction performances of the
ANNs, a similar approach as used in Gottardi et al.
(2023b) is applied for the tunnel lining stress prediction.

2 Concept for the stress–strain state assessment in segmental

tunnel linings

To cope with the necessity of dealing with the great
number of underground infrastructures, where safety and
serviceability conditions need to be constantly guaranteed,
a new concept which considers monitored quantities in the
tunnel for the estimation of the utilization level is devel-
oped. The main goal consists in exploiting available mea-
surements from the tunnel lining, e.g., displacement or
strain measurements, by means of a method, which is cap-
able of providing in real-time the assessment of the target
quantities, such as the maximum stress state reached in
the structure, to estimate the structural utilization of the
lining. To generalize the applicability of the method, it is
developed by taking into account multiple kinds of possible
input measurements, which depend on the configuration of
the monitoring section installed in the lining.

The method consists of two main steps, an online and an
offline phase (see Fig. 1). While in the former the moni-
tored data are given as input to the algorithm for the esti-
mation of the target quantities, the latter includes the
construction of the algorithm itself through FE analyses
of the structure and the selection of the most suitable
machine learning model. A pivotal role is played by the
FE models, which are employed for the analyses of mani-
fold scenarios and are required to produce the synthetic
data needed for the training of the ANNs. In this study,
only synthetic data are used during training, in order to
develop a framework based exclusively on the physics
reproduced by the FE analyses. If abundant measurements
are available, they can also be included in the training



Fig. 1. Diagram representing the methodological approach with offline and online phase.
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process, but these could not be applied to the case at hand.
The type of neural networks used here are feedforward
neural networks (FNNs). These metamodels are valuable
tools for data mining and for real-time predictions of the
target quantities to be determined for the structural health
evaluation of the tunnel lining.

The advantage of this methodological approach is the
use of the available measured data to acquire information
about the system object of investigation and to increase
therefore our knowledge about its integrity. Using the esti-
mation of the maximum stress–strain state in the lining, it
is possible to plan in advance maintenance interventions
and detect anomalies over the life of the structure, if con-
tinuous monitoring is performed. This digital approach
for structural health monitoring of underground structures
allows for a safer and more sustainable manner to monitor
the state of the segmental lining, since the monitored data
can be analyzed off-site.

The presented concept is validated with a full-scale
experiment consisting of three segmental lining rings sub-
ject to non-uniform radial loads, where the stresses pre-
dicted by the algorithm are compared with the ones
measured in a real lab test.
3 Full-scale lining test

The developed approach for the structural utilization level
assessment of the lining is validated on a full-scale test (Blom
& van Oosterhout, 2001; Blom, 2002) performed at the Stevin
laboratory in Delft. It consists of three segmental rings of the
type of the ones employed in the Botlek Rail Tunnel (BRT),
see Fig. 2. The seven reinforced concrete (RC) segments are
assembled vertically one upon the other in a staggered way
so that the self-weight can be neglected when evaluating its
behavior under radial loads. The base ring is placed on
Teflon layers, to reduce the friction, and it is additionally
restrained with four tangential guided slides every 90� to
avoid rigid body motions. Rigid motions of the ensemble
might happen due to slight misalignments of the radial jacks.

The ring is loaded by the jacks in three steps. First, con-
finement in the vertical direction is performed by an axial
load acting on the uppermost ring. Afterward, a second
confinement is applied by radial pressure to achieve a full
contact state for the segments, while finally, the lining is
subject to a deviatoric load inducing an ovalization of the
ring. The parameters of the experimental setup are
reported in Table 1. Regarding the measurements taken
during the test, the lining inner radial displacements were
densely recorded, while the stresses were measured at posi-
tions u ¼ 26�; 77�; 129�; 179�; 231�; 276� and 289� in the
segments (see Fig. 4).

The strain gauges are attached to the upper and lower
reinforcement layers and measure the strains in the circum-
ferential direction. The concrete cover of the rebars is
c0 ¼ 50 mm, therefore knowing the cross-section height t

and assuming a linear elastic behavior, it is possible to
compute the equivalent stress at the segment surface (see
Fig. 4). All the readings were carried out at the final stage
of the loading process.
4 Finite element model

For the training of FNNs, a data set is required, which
can be either constituted by monitored data or by synthetic



Fig. 2. Full-scale test setup. (a) Image of the test, and (b) load scheme of the test setup.

Table 1
Parameters of the full-scale test on the segmental lining conducted at TU
Delft (Blom & van Oosterhout, 2001; Blom, 2002).

Parameter Value Unit

RC Young’s modulus E 40.0 GPa
Poisson’s ratio m 0.2 –
Thickness t 0.4 m
Concrete cover c0 0.05 m
Inner radius rinn 4.325 m
Outer radius rout 4.725 m
Ring width b 1.5 m

Load hydrostatic load p0 429.5 kPa
deviatoric load q0 18.5 kPa

Table 2
Parameters of the joints between the lining segments and the interfaces
between the lining and the bedding material used in the FE model (Blom &
van Oosterhout, 2001).

Interface Parameter Value Unit

Inter segment Friction coefficient l 0.4 –
Contact width wc 170 mm

Lining-ground Friction coefficient l 0.0 –
Tensile strength f t 10�5 MPa

N. Gottardi et al. / Underground Space 17 (2024) 132–145 135
data. Within the scope of the developed method, the data
set used for the generation of the FNN is obtained by finite
element (FE) analyses of the tunnel lining under
consideration.

In the FE model, the segmental lining is embedded in an
elastic continuum representing the hosting rock mass and
assuming a plane strain state (see Fig. 4). The actual
boundary conditions of the experiment are not replicated
in the model since the aim is to create scenarios that are
not covered by the experiment, to make the approach more
general and to increase the complexity of the problem to be
solved, e.g., unknown loading conditions.

The model is generated in the finite element software for
multiphysics analyses KRATOS (Dadvand et al., 2010). The
lining is featured with an elastic material and it is repre-
sented by considering both the segment geometry and the
mutual interaction among them and the surrounding
ground. The joints between the segments are accurately
reproduced by deploying interface elements, which allow
for relative rotations between the segments and, as a conse-
quence, the structural kinematics. This particular kind of
elements, which are zero-thickness elements, are capable
of modeling the interaction between model parts according
to user-defined constitutive laws (Snozzi & Molinari, 2013;
Schäfer et al., 2021; Gudzulic et al., 2020). For the case at
hand, a non-cohesive simple frictional law has been chosen
to characterize the lining joints, where the term non-
cohesive is to be intended so that no tensile stresses occur
when the joints open. Since among the segment joints,
the interaction is between concrete to concrete surfaces,
the corresponding friction coefficient l is used to character-
ize the Coulomb friction law, defined as

s ¼ l � krnk; ð1Þ

with rn being the normal stress component to the surface
and s the tangential one. Conversely, the interaction
between the lining and the elastic bedding is modeled using
a simple-cohesive law, where the cohesion (i.e., the inter-
face tensile strength) is set to a very small value to stabilize
the numerical model. For more details on the parameters
used in the model see Table 2. The segments are modeled
with elastic material since the stresses remain in the elastic
range in the experiment and the tensile strength of the con-
crete is not reached.

The model domain is constrained along its boundaries,
according to the hypothesis of deep tunnels, and is charac-
terized by a geostatic stress applied in the form of prestress
directly in the hosting continuum (see Fig. 3). A further



Fig. 3. FE model used for the generation of the synthetic data set.

Table 3
Ranges of variation of the FE input parameters used during the sampling
of the different scenarios.

Parameter Range Unit

Ground Young’s modulus Erm 5:0; 105:0½ � MPa
In-situ stress Vertical component pv 0:2; 1:5½ � MPa

Stress ratio k0 0:5; 1:1½ � –
Stress orientation b 0; 180:0½ � �

Load Amplitude plocal 0; 300:0½ � kPa
Extension D# 10:0; 80:0½ � �

Position #init 0; 360:0½ � �
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assumption in the analysis of deep tunnels is that the litho-
static stress state can be assumed to be constant in the
domain, as its variation with changing depth is usually neg-
ligible. The use of elastic behavior for the ground makes
this model very similar to the representation of the system
by means of a bedded beam model, in which springs
replace the surrounding ground. However, in bedded beam
models, the accurate load transfer between ground and
structure is not reproduced, since their interaction is taken
into account in a simplified manner.

To consider different loading conditions on the tunnel,
another source of load is introduced in the model. Besides
the in situ stress, which is governed by the tunnel depth, the
rock density and ko, a localized load acting along some
portions of the tunnel lining is added, to take into account
possible rock wedge detachments, activations of faults or
localized swelling phenomena.

In the FE models, the lining is embedded in the hosting
rock mass, while in the full-scale lining test, which is used
to validate the approach, no actual ground is present as
the load is applied to the structure via radial hydraulic
jacks in a load-controlled fashion. The reason for modeling
the bedding is that in reality, the boundary conditions of
the lining are uncertain, since the actual interaction among
rock mass, pea gravel and segments cannot be precisely
determined. In light of this, the modeling of the bedding
is deployed to prove the generality of the method and a real
situation where the specific boundary conditions remain
partially unknown.
5 Sampling procedure

The FE model is being used for the generation of the
synthetic data, which are required for the training of the
neural networks. To generate such data set, the main input
parameters that most affect the FE model response are
detected by a sensitivity study and a range of variation
for each of them is defined (see Table 3). The Young’s
modulus of the bedding ground, the vertical component
of the geostatic stress, the k0 value and the inclination of
the vertical geostatic stress with respect to the vertical
direction are firstly listed in Table 3, while the amplitude,
the extension and the location of the localized load applied
on the lining are shown underneath (see Fig. 3).

In general applications, analyses of the project reports
or engineering judgment can aid in the identification of
the parameter intervals. A remarkable source of uncer-
tainty is also related to the load conditions on the seg-
ments. For this reason, two kinds of loads are considered
in the ground simultaneously, both an in situ stress and a
localized load. For the last load type, a range of variation
of its amplitude and extension is defined and furthermore,
it is assumed that this localized load can act at different
positions along the lining.

A Monte Carlo procedure is carried out for the genera-
tion of the input parameter sets for the FE analyses, and
specifically the Latin hypercube sampling is deployed in
the experimental design of the 7-dimensional input space.
For the case here investigated, 4000 samples are generated
and analyzed with the FE model. The FE results are finally
reorganized to build up the training data set for the cre-
ation of the FNNs.
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6 Feedforward neural networks for structural utilization

assessment

The approach for the structural utilization estimation of
the lining has been developed within a framework, which
includes machine learning tools to accomplish the predic-
tion in real-time of the target quantities. Specifically, feed-
forward neural networks (FNNs) are employed in this
study. Multilayer neural networks are universal approxi-
mators of any arbitrary function, which find useful applica-
tion either when no mathematical models are available to
describe a phenomenon, but only measured data of it, or
when the analytical models are too complex to be solved
(Basheer & Hajmeer, 2000).

FNNs are a particular type of neural networks, which
are made of multiple layers, where each layer contains mul-
tiple neurons. The network is featured with an input layer,
some hidden layers and an output layer. The input data are
presented to the first FNN layer, where they are normal-
ized in the range ½�1; 1� and passed to the neurons of the
first hidden layer. Each neuron is linked with the ones of
the previous and the following layer. When the signals
from the previous layer reach a neuron, these are multi-
plied each by the synaptic weights, are all summed up
and a bias value is added. Afterward, the result is fed to
the activation function, which transforms the signal within
a certain range. A neuron k is the fundamental processing
unit of the network, which transforms the given input sig-
nals xj into a new signal yk, according to the following
relation:

yk ¼ /
Xm
j¼1

wkjxj þ bk

 !
; ð2Þ

where wkj are the weights used to multiply each input signal
xj; bk is a bias value, and / is the activation function used
to transform the signal into a specific range. In this work,
the hyperbolic tangent function is chosen as activation
function, obtaining:

yk ¼ tanh
Xm
j¼1

wkjxj þ bk

 !
: ð3Þ

After the signal has traveled through the network, it is
passed to the output layer where it is scaled back to the
physical range.

In the proposed method, fully connected FNNs are
deployed to learn dependencies among stresses and dis-
placements at monitoring points (input) and stresses at
other positions (output). For this study, MATLAB pro-
gramming environment has been used. The FNN training
optimization algorithm selected is Levenberg–Marquardt,
where the mean square error on the normalized output is
employed as a loss function. The learning rate has been
fixed to 0.001. An early-stopping criterion is deployed to
avoid overfitting, based on tracking the reduction rate of
the loss function both for the training and validation data-
sets. All the network weights and biases are initiated ran-
domly at the beginning of the training process, therefore
multiple networks need to be trained to ensure the repeata-
bility of the generation of metamodels with specific
performances.

7 Applications and results

For the evaluation of the quantities of interest in the lin-
ing, manifold architectures and configurations for the feed-
forward neural networks are investigated. For the case at
hand, the following input–output patterns are considered:

(1) The circumferential stresses at the extrados at the
middle cross-section of 5 designated segments (see
Fig. 4) are considered as input of the FNN, while
the stresses at positions u ¼ 77� and 231� represent
the quantities to be predicted.

(2) The inner radial displacements of the lining at 6
points (u ¼ 26�; 77�; 129�; 232�; 289�; and 340�) are
assumed as input of the FNN, while the circumferen-
tial stresses at positions u ¼ 77� and 231� are selected
as output (see Fig. 4).

The circumferential stresses are adjusted to take into
account only the bending contribution. This is carried
out by removing from the stresses the component related
to axial compression, by assuming a linear distribution of
the strains along the cross-section and by the superposition
principle.

The choice of the input quantities is based on the feasi-
bility of recording specific measurements on-site in the tun-
nel, taking into account possible obstacles, which might
prevent the monitoring of certain quantities. As for the
output, since tensile stresses due to bending can provoke
cracking in the lining, the bending stresses are selected as
target quantity. However, given the reduced number of
stress measurements provided by the test, two positions,
wherein the measured bending stresses are the highest,
are defined as the locations for the output stresses. Using
exclusively the stresses at the positions where they are mea-
sured in the real-scale test, enables us to validate the devel-
oped method.

If standard-equipped monitoring sections are assumed,
the choice of the former configurations is achieved, as it
can be seen in Fig. 4. An aspect to be addressed is that
the input data, namely the radial displacements as well as
the tangential stresses at specific locations of the lining,
are correlated with each other. This influences the shape
of the training space of the FNN, since the input data
(which are results of FE simulations) do not homoge-
neously distribute in the input space but tend to locate
according to certain patterns. For this reason, while apply-
ing the model it does not suffice to merely check that the
real measurements fall within the boundaries of the train-
ing domain, made of the synthetic data, but that the mea-
surements also reflect a similar degree of correlation of the



Fig. 4. Input and output of the framework. (a) Zoom of the segment structure, (b) input bending stresses and radial displacements, and (c) predicted
stresses.

138 N. Gottardi et al. / Underground Space 17 (2024) 132–145
one of the synthetic data (Gottardi et al., 2023b). With a
multidimensional input, it is possible to analyze 2D projec-
tions of the input space to visualize the type of correlations
among the inputs, as it can be observed in Fig. 5, where an
example of the interaction between 3 of the input displace-
ments is shown.

The accuracy of the approach on the synthetic data by
using the circumferential stresses as input quantities is
firstly addressed. A batch of 10 FNNs is trained and the
performances in terms of the mean and standard deviation
of the predictions of the networks on the synthetic data, in
terms of normalized mean squared error MSE, are analyzed.
These indicators are computed for both the training and
testing stages. A scheme of the network architecture is pro-
vided in Fig. 6, in which inputs, outputs and hidden layers
with respective activation functions are depicted, along
with the loss function trend over the training epochs
obtained for one network of the batch. Of the overall sam-
ples, 60% of them were used for the training of the FNNs,
while the other 40% for testing, i.e., to verify the perfor-
mances of the neural network on data not used for the tun-
ing of its hyperparameters. Subsequently, to verify the
prediction accuracy in the real scenario of the full-scale
Fig. 5. Correlation between input displacements. (a) Relation between u u ¼ 2ð
test, the average and the standard deviation of the batch
network predictions, fed with the real input data, are calcu-
lated and compared with the actual measured values of the
stresses. To quantitatively determine the quality of the pre-
dictions in an average sense, the following relative error
estimator e%;i is computed for both predicted stresses:

e%;i ¼
1
N

XN
k¼1

rpred
k;i

 !
� rmeas

i

rmeas
i

� 100; ð4Þ

where N is the number of FNNs trained, in this study equal

to 10, rpred
k;i is the predicted bending stress ri by the neural

network k; rmeas
i is the measured bending stress in the lab

test and e%;i is the error expressed in percentage. It is worth
noting the good accuracy of the network predictions, which
achieve on average an error e%;77 of �0:5% and e%;231 of
3:3% in the estimation of the real stress values, respectively.

The analogous procedure is conducted also for the pre-
diction of the bending stresses at the same locations as
before, but employing radial displacements at the positions
defined in Fig. 4. Batches of 10 neural networks are gener-
ated and the average performances of the network groups
7�Þ and u u ¼ 129�ð Þ, and (b) relation between u u ¼ 27�ð Þ and u u ¼ 232�ð Þ.



Fig. 6. FNN developed for the framework. (a) Architecture used for pattern 1, and (b) loss function over the training epochs for one network and optimal
point.
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both on the synthetic scenarios and for the real testing case
are computed. The results of the training, validation and
testing process of one of the batch network for pattern 2
are illustrated in Fig. 7. The normalized target and network
output are plotted against each other in order to verify the
success of the training process in its substages, i.e. training,
validation and testing. As it can be observed from Fig. 7,
the predictions on the synthetic samples are distributed in
all three charts nearby the diagonal of the quadrant, which
represents a perfect match between predicted and target
outputs. The small dispersion of the data signifies a good
accuracy of the trained model. Likewise to beforehand,
very good accuracy of the predictions for the neural net-
works are to be observed when they are tested on the mea-
surements of the full-scale test, with errors of �6:5% and
1:5%. The motivation behind the training of multiple neu-
ral networks lies in avoiding that models with good perfor-
Fig. 7. Performances of one of the neural networks of p
mances are obtained by chance, i.e., to get robust FNN
models.

The FNN characteristics, their architecture and their per-
formances are summarized in Tables 4 and 5. In the first
table, the specific input and output quantities for each pat-
tern are listed in the upper table section, while the average
of the normalized MSE and its standard deviation achieved
during the training and testing phase on the synthetic scenar-
ios are reported below. Finally, in Table 5, the prediction
accuracy of the networks with respect to the measured tar-
gets are presented for the patterns 1 and 2. It can be observed
that by using stress measurements obtained from the strain
gaugesmore accurate predictions are achieved from the neu-
ral networks, than using the displacements as input. This has
an advantage from the practical perspective, as strain mea-
surements are more frequently recorded in segmental linings
rather than radial displacements.
attern 2. (a) Training, (b) validation, and (c) testing.



Table 4
Performances exhibited by the FNNs for both patterns 1 and 2 on the synthetic data.

Pattern Samples Arch.a Input b Output ltrain
c rtrain

c ltest
c rtest

c

Pattern 1 4000 9–3 rb @ 26�; 129�,
179�; 276�; 289�

rb @ 77�,
231�

2.04 �10�3 8.05 �10�5 2.18 �10�3 1.61 �10�4

Pattern 2 4000 10–3 ur @ 27�; 77�,
129�; 232�; 286�

340�

rb @ 77�,
231�

4.31 �10�3 3.47 �10�4 6.13 �10�3 1.04 �10�3

a Architecture: neurons in the hidden layers. Each hidden layer is separated by - sign.
b The positions of the input data are specified by the angles u following the @ symbol.
c Mean and standard deviation of the normalized MSE during training and testing of the FNNs on the synthetic data.

Table 5
Comparison between the mean predicted values and the target bending stresses.

Pattern lpr rpr eabs e% Target (MPa)

(MPa) (MPa) (MPa) (%) rb;77 rb;231

Pattern 1 4.894 1.60 �10�1 �2.80 �10�2 �5.63 �10�1 4.921
4.834 1.38 �10�1 1.56 �10�1 3.328 4.678

Pattern 2 4.601 1.41 �10�1 �3.20 �10�1 �6.501 4.921
4.747 1.66 �10�1 6.91 �10�2 1.468 4.678
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7.1 FNN prediction capabilities with reduced input

measurements

On the field, it might happen that obstacles arise and orig-
inally planned measurements cannot be taken or that some
sensors fail over time. In this regard, it is of interest to com-
prehend if the presented approach can still provide a reliable
assessment of the sought quantities rb;77 and rb;231. A para-
metric study is undertaken and the prediction capabilities
of themodels are investigated for a different number of input
measurements, considering both patterns 1 and 2. As it can
be observed fromFig. 8, when bending stresses are employed
as input for the FNN still satisfactory predictions can be
obtained with fewer input measurements. Conversely, when
rb;77 and rb;231 are predicted starting from displacements, a
reduction of the input measurements for the neural network
produces a swift decline in its prediction quality. However,
for both patterns, when 2 or fewer input measurements are
used, poor training of the neural network is achieved
(R ¼ 0:83 with 2 inputs, R ¼ 0:2 with 1 input), meaning that
the models generated are unreliable. It is worth mentioning,
thatwhen the input of aFNN is not sufficient for the solution
of the problem at hand, this can be reflected by the impossi-
bility of achieving a good training of themodel. On the other
hand, a good training of the FNN does not necessarily guar-
antee its goodness. Further details on the measurements
used are given in Appendix A.

7.2 Artificial noise added to the training data

The input quantities considered in the method per-
formed can be partially correlated with each other. This
translates into a non–homogeneous distribution of the
sample points within the training space, since they dis-
tribute according to a certain shape in the space due to
their correlation. To avoid extrapolation during the appli-
cation of the neural networks to measured data, it is not
sufficient to merely consider the ranges of the training
space, and yet it is necessary to compare the correlation
of the input measurements with the ones of the training
data. In reality, it is difficult to achieve a perfect match in
the degree of correlation between the FE model results
and the actual measurements due to different types of
uncertainty involved, which also regard the intrinsic
definition of the employed models (French, 1995).

An innovative method to deal with extrapolation is pre-
sented in Gottardi et al. (2023b) where artificial noise is
added to the input synthetic data before the training of
FNNs, as a strategy toweaken the perfect correlation among
the data. The approach was applied to a simple beam and
validated with a 4-point bending test. The method was then
extended and applied to a tunnel segmental lining and veri-
fied using an artificial scenario (Gottardi et al., 2023a).

The aim is to investigate whether the application of
noise to the input synthetic data improves the neural net-
work predictions also for the investigated tunnel lining
when these data are used for training. The input–output
configurations for the FNNs analyzed are the same as
reported in Table 4. Several noise levels with a uniform dis-
tribution over the determined ranges are defined. Likewise
to Section 7, groups of 10 FNNs are generated with similar
architecture and layout as beforehand and the mean along
with the standard deviation of the predictions of the neural
networks of each batch are computed. The results obtained
when stresses are employed as input (pattern 1) to predict
the bending stress at position u ¼ 77� and u ¼ 231� are
visualized in Fig. 9, while for radial displacements as input
(pattern 2), the results are depicted in Fig. 10. The mean
and the standard deviation of the predicted
rb;77 and rb;231 for the batch corresponding to each noise
level are drawn (red and orange lines) against the measured
reference value (blue broken line). The noise amplitude is



Fig. 8. Predictions of the FNNs of rb;77 and rb;231 with respect to used input measurements. (a) Results for pattern 1, and (b) for pattern 2.
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determined by the value of the maximum Dr applied to the
the synthetic input data with respect to the average mea-
sured stress �r in the full-scale test.

The stress predictions obtained by batches of FNNs
trained with manifold noise levels are not much improved,
showing a steady trend for the several noise amplitudes
investigated. Also, the standard deviation does not vary
significantly and remains narrow, which means that multi-
ple neural networks in each group present similar perfor-
mances. Such behavior suggests that the original data
already provide a good platform for the generation of the
FNNs since extrapolation seems not to occur. It is not
obtrusive to verify a priori if extrapolation happens in a
multidimensional problem, since a visualization of the
input space is not possible for more than 3 input dimen-
sions. For this reason, the analysis of the trends of the pre-
dicted quantities can provide valuable insight on this issue.

7.3 Plausibility checks of the FE model

The FE model used for the generation of the synthetic
data is characterized by plane strain conditions and the
presence of a bedding material around the tunnel. In the
real experimental setup, however, these assumptions are
not completely fulfilled, therefore a plausibility check of
Fig. 9. Performances of the FNN batches for different noise levels. (a) P
the response obtained in the FE model for the lining is car-
ried out. Specifically, it is investigated if the numerical anal-
yses under the former hypotheses can reproduce, for a
specific set of input parameters, the behavior of the real
system within a certain accuracy. In the experiment, the
radial load was applied by radial jacks directly to the lining
(in load control), while in the FE models the acting load on
the lining results automatically from the lining-bedding
interaction. As it is explained in Section 4, the in situ stress
is inserted directly into the bedding ground, which deforms
exerting a reaction load on the lining. Furthermore, axial
jacks were used to apply axial confinement to the three-
ring full-scale test. Since in a 2D model, it is not possible
to apply a load perpendicularly to its plane, the hypothesis
of plane strain conditions is made to take into account the
axial imposed load. It is obtrusive that the real test is not in
perfect plane strain conditions and therefore this assump-
tion needs also to be verified. The ground parameters of
the FE model are tweaked until the radial load transferred
from the bedding to the segments is similar in magnitude to
the one applied by the hydraulic jacks in the experiment.

The comparison between the results obtained by the FE
model and the measured data in the experiment are
depicted in Figs. 11 and 12, where both the circumferential
bending stresses along the outer surface of the lining and
redicted bending stress rb;77, and (b) predicted bending stress rb;231.



Fig. 10. Performances of the FNN batches for different noise levels. (a) Predicted bending stress rb;77, and (b) predicted bending stress rb;231.

Fig. 12. Comparison between the measurements of the inner radial
displacements obtained in the full-scale test (markers in blue) and the ones
obtained by the FE analysis (line in red).
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the radial inner displacements are depicted. The stresses in
the vicinity of the joints are not plotted since in these
regions concentrations and localizations of stresses take
place, and therefore the bending stresses become meaning-
less. A good agreement in both cases is obtained, achieving
a root mean squared error (RMSE) between the FE pre-
dicted stresses and the measured ones equal to
0:346 MPa, while for the displacements RMSE is equal
to 0:461 mm. The good match between the measurements
recorded during the test and the results gained from the
FE analysis reveals that the assumptions introduced in
the FE analyses are acceptable.

A further plausibility check is performed by feeding the
FNNs trained on the synthetic data for both patterns 1 and
2, with the input values retrieved by the FE analysis here
performed. As we can see from the results reported in
Table 6, the stresses at the sought locations can be pre-
dicted, even though a non-negligible error is obtained. This
is caused by the slight deviation between the FE model
results and the lining response in the real test.

As final remark, a great advantage of carrying out FE
analyses is the possibility to retrieve other kinds of informa-
tion by querying the FE model for the physical quantities
Fig. 11. Comparison between the measurements of the bending stresses
along the outer lining surface obtained in the full-scale test (markers in
blue) and the ones obtained by the FE analysis (red points).
one might be interested in, e.g., maximum stresses recorded
in the structure or the stress distributions close to the joints.
8 Structural utilization level assessment

For the estimation of the structural utilization level of
the lining, it is necessary to designate a physical quantity
capable of representing the global structure state. Here,
the maximum positive (and negative) bending stresses are
selected for the assessment of the lining structural condi-
tions. In fact, the stress state at a certain cross-section in
the lining is governed by the combination of the bending
and axial components of the stresses. However, since the
axial stress component was cleared from the measurements
in this study, in order to be able to apply the FNNs to the
real input data, the axial components are here neglected.
During the experiment, the axial contribution to the mea-
sured stresses was removed and only the bending compo-
nent was provided. However, the approach might be used
to predict both the maximum bending action and the cor-
responding axial force, when the original stress measure-
ment is used (Gottardi et al., 2023a). Similarly to what
has been carried out in Section 7, a group of 10 FNNs



Table 6
Performances exhibited by the FNNs on the input data obtained from the FE simulation for both patterns 1 and 2.

Pattern Input Output rb;77 rb;231 rb;max;pos rb;max;neg

Pattern 1 rb @ 26�; 129�, value (MPa) 5.387 5.738 6.339 �5.651
179�; 276�; 289� e% (%) 9.46 22.64 19.83 11.24

Pattern 2 ur @ 27�; 77�; 129�, value (MPa) 4.926 5.151 5.943 �5.828
232�; 286�; 340� e% (%) 0.09 10.09 12.35 14.72
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has been trained using the same patterns as before, but this
time both the maximum positive and negative bending
stresses in the structure are predicted. The results of the
analysis are shown in Tables 7 and 8.

For a satisfactory accuracy of the network predictions, a
more complex architecture has to be employed with respect
to the foregoing cases. The mean and standard deviation of
the normalized MSE of the networks trained and applied
on the synthetic data are computed both for training and
testing stage, as it is summarized in Table 7. Additionally,
in Table 8, the average predicted maximum (and minimum)
bending stresses of the networks along with the standard
deviation of the predictions are shown and the absolute
and percentage errors with respect to the reference values
are calculated. Specifically, the percentage errors for the
predictions of the maximum (and minimum) bending stress
are computed according to the expression:

e%;maxðminÞ ¼
1
10

X10
k¼1

rpred
k;maxðminÞ

 !
� rFE

maxðminÞ

rFE
maxðminÞ

� 100; ð5Þ

where the predicted values are compared with the maximum
positive and negative bending stresses obtained in the struc-
ture in the FE simulation. For both types of input configu-
rations, the errors in the predicted quantities e%;maxðminÞ is less
than 10%, achieving acceptable performances especially for
the case when the stresses are employed as input, where an
Table 7
Performances exhibited by the FNNs for both patterns 1 and 2 on the synthe

Pattern Samples Arch.a Input b Output

Pattern 1 4000 12–3 rb @ 26�; 129�,
179�; 276�; 289�

rb;max;pos

rb;min;neg

Pattern 2 4000 12–3 ur @ 27�; 77�,
129�; 232�; 286�

340�

rb;max;pos

rb;min;neg

a Architecture: neurons in the hidden layers. Each hidden layer is separated
b The positions of the input data are specified by the angles u following the
c Mean and standard deviation of the normalized MSE during training and t

Table 8
Comparison between the mean predicted values and the actual maximum ben

Pattern lpr rpr eabs

(MPa) (MPa) (MPa)

Pattern 1 5.413 1.83 �10�1 1.22 �
�4.899 1.97 �10�1 1.81 �

Pattern 2 5.571 5.10 �10�1 2.81 �
�5.559 4.33 �10�1 �4.79
error of less than 4% is obtained. It is worth noting that
no experimental measurements of the maximum bending
stresses were recorded, therefore the network predictions
are compared with inferred values obtained from the FE
analysis of the plausibility check.
9 Conclusions

An innovative method for the structural utilization level
assessment of segmental lining based on monitoring data
has been presented. The aim was to use monitored data,
which are routinely recorded in equipped-monitoring sec-
tions and in standard monitoring configurations to avoid
loss of generality. The methodological approach is based
on a framework, which combines FE analyses and machine
learning tools to achieve a real-time prediction of the target
quantities. In the study, two main architectures of feed-
forward neural networks were examined. In the former,
the tangential stresses at specific locations are employed
as input data, while in the latter radial displacements are
used. A batch of 10 FNNs is created, and by comparing
the performances of the neural networks on the synthetic
data during training and testing a good accuracy of the pre-
dicted stresses at the sought locations has been observed
for both neural network configurations.

The results from a full-scale test on segmental lining
were employed for the validation of the method. To repli-
cate real application conditions, it was assumed not to
tic data.

ltrain
c rtrain

c ltest
c rtest

c

5.23 �10�3 3.49 �10�4 5.59 �10�3 4.22 �10�4

2.78 �10�2 1.50 �10�3 3.61 �10�2 4.98 �10�3

by - sign.
@ symbol.
esting of the FNNs on the synthetic data.

ding stresses.

e% Target (MPa)

(%) rb;max;pos rb;min;neg

10�1 2.32 5.29
10�1 �3.57 �5.08
10�1 5.31 5.29
�10�1 9.42 �5.08
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know completely the boundary conditions of the experi-
mental test during the definition of the FE model. For this
reason, the lining was assumed to be embedded in the
ground while the load was applied as a geostatic stress,
instead of directly on the lining. That way, it was possible
to test the generality of the developed approach.

The method has been validated with the experiment by
employing the measurements as input and by comparing
the predicted stresses in the lining with the measured ones.
A very good match was obtained both when the stresses
were employed as input and when the radial displacements
were used. However, when stresses were selected as input
better predictions were recorded of rb;77 and rb;231 than
by using the radial displacements, with prediction errors
of 0:5% and 3:3% in the former case, and 1:5% and 6:5%
in the latter. Another interesting aspect was that the stan-
dard deviation of the predicted values of the neural net-
works in the batch was small, meaning that similar
performances for the trained FNNs were achieved. This
shows the robustness and the repeatability of the proposed
method. In general, FNNs can be trained employing both
stresses and displacements as input. However, in this case
we need both stress and displacement measurements to pre-
dict the stresses at the two sought positions, which is more
restrictive. Specifically, the purpose of this manuscript was
to investigate the performance of two network patterns,
which considered different physical input quantities.

A plausibility analysis of the FE model was also carried
out to further verify that the assumptions made in the
model are acceptable. The good agreement in the compar-
ison of the radial displacements and the bending stresses
obtained in the FE model with the ones measured in the
test revealed how the hypotheses assumed could be plausi-
ble within a good degree of approximation.

For the actual estimation of the utilization level of the
structure, the maximum magnitudes of the bending stress
in the lining were designated as suitable indicators. FNNs
were trained to predict this quantity starting either from
input stresses at certain locations or input radial displace-
ments. The predicted values have been compared with sim-
ulated data since no actual maximum stress measurements
were recorded in the structure experiment. Satisfactory
results were achieved with regard to the predicted maxi-
mum bending stresses reached in the lining, showing the
possibility of deploying the developed concept for the lin-
ing utilization assessment.
Table A1
Sets of input parameters used for each of the two patterns analyzed in the pa

Number of inputs Pattern 1

1 rb @ 26�

2 rb @ 26�; 129�

3 rb @ 26�; 129�; 17
4 rb @ 26�; 129�; 179�;
5 –
A future extension of the method foresees the prediction
of the complete stress distribution along the full lining ring
to assess the structural safety and reliability, and more
advanced FE models to take into account, besides the
already considered nonlinear kinematics and the nonlinear
behavior of reinforced concrete due to cracks formation.
The study presented in this manuscript focused on a new
method developed within a research center to help the
assessment of the integrity of lining structures in deep tun-
nels based on a reduced amount of measurements. The
framework itself spans over multiple fields, from structural
analyses to tunneling and machine learning. Against this
background, the authors attempted to create a balanced
manuscript among all these fields, providing the necessary
information of the main topics addressed to be able to
reach a vast community of not only researchers, but also
practitioners active in the field of underground construc-
tions. A more specialized study focused on the optimiza-
tion of the FNN models considering multiple topologies
and input–output patterns will be considered for future
work.
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Appendix A

The combinations of input measurements used for the
parametric study on the investigation of the influence of
a reduced number of input information on the model pre-
dictions is given in Table A1.
rametric study.

Pattern 2

ur @ 27�

ur @ 27�; 77�

9� ur @ 27�; 77�; 129�

276� ur @ 27�; 77�; 129�; 232�

ur @ 27�; 77�; 129�; 232�; 286�
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