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Anomalous frozen evanescent phonons

Yi Chen 1,2,5 , Jonathan L. G. Schneider 2,5, Ke Wang2,3,5, Philip Scott2,
Sebastian Kalt 2, Muamer Kadic 4 & Martin Wegener 1,2

Evanescent Bloch waves are eigensolutions of spatially periodic problems for
complex-valued wavenumbers at finite frequencies, corresponding to solu-
tions that oscillate in time and space and that exponentially decay in space.
Such evanescent waves are ubiquitous in optics, plasmonics, elasticity, and
acoustics. In the limit of zero frequency, the wave “freezes” in time. We
introduce frozen evanescent waves as the eigensolutions of the Bloch periodic
problem at zero eigenfrequency. Elastic waves, i.e., phonons, inmetamaterials
serve as an example.We show that, in the complex plane, the Cauchy-Riemann
equations for analytical functions connect the minima of the phonon band
structure to frozen evanescent phonons. Their exponential decay length
becomes unusually large if a minimum in the band structure tends to zero and
thereby approaches a soft mode. This connection between unusual static and
dynamic behaviors allows to engineer large characteristic decay lengths in
static elasticity. For finite-size samples, the static solutions for given boundary
conditions are linear combinations of frozen evanescent phonons, leading to
interference effects. Theory and experiment are in excellent agreement.
Anomalous behavior includes the violation of Saint Venant’s principle, which
means that large decay-length frozen evanescent phonons can potentially be
applied in terms of remote mechanical sensing.

Bloch waves in natural as well as artificial periodic materials can be
described by their dispersion relation, i.e., by the dependence of the
wave angular frequency ωiðkÞ on the wavenumber k (or, more gen-
erally, on the wavevector)1–4. The integer subscript i= 1, 2, . . . is the
band index. In the vast majority of experimental situations, one
considers exciting the material in some form at a pre-described real-
valued frequency ω. Within the linear response, the driven system
reacts with real-valued frequency ωi =ω. For propagating waves, by
definition, the wavenumber k is always real-valued as well5. However,
for evanescent modes, i.e., for modes exponentially decaying (or
increasing) in amplitude along one or more directions, the wave-
number k is complex-valued. Its real part determines the wavelength
λ=2π=ReðkÞ, and its imaginary part determines the exponential
decay length l = 1=ImðkÞ.

Ordinarily, evanescent waves are associated with finite fre-
quencies inside frequency bandgaps6. A well-known example is the
Jackiw-Rebbi solution7–9 localized at a domain wall separating two
different topological phases. Jackiw-Rebbi states have been applied to
study static domain wall states and corner modes in mechanical
metamaterials10. Here, we apply the concept of evanescent waves in
single-domain samples to the static regime, in which the wave gets
“frozen” in time. These special Bloch modes allow for making a direct
connection between unusual static and dynamic properties, which has
previously been unclear, hampering the rational design of unusual
static behavior in metamaterials. The Bloch eigenmodes of elastic
waves in metamaterials, phonons, serve as an example. By a general
discussion based on the Cauchy-Riemann equations, treating the band
structure as an analytical function, we introduce the concept of frozen
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evanescent phonons. We show analytically that the frozen-phonon
decay length may diverge as a minimum in the band structure
approaching zero frequency at some wavenumber k = kmin in the
Brillouin zone. Taking nonlocalmechanical metamaterials11–13 as a class
of examples, we compare numerical simulations and calculations
based on a simplified mass-and-spring model with experiments on
finite microstructured three-dimensional (3D) metamaterial beams.
The resulting unusual static behavior shows commensurability effects
and interference effects and violates Saint Venant’s principle14,15. The
latter means that the reaction of the system far away from a point at
which a force is applied changes substantially even if one shifts this
point by only a single unit cell. Furthermore, we discuss the implica-
tions of anomalous frozen evanescent phonons for the lowest-
frequency eigenmodes of finite-size beams or plates. We find that
even the fundamental eigenmode of a guitar string or a drum mem-
brane made of an anomalous material can exhibit pronounced spatial
oscillations – in sharp contrast to ordinary behavior.

Results
Frozen evanescent phonons
Let us start our discussion from general principles, independent from
any particular experimental realization: The phonon band structure
ωiðkÞ results from a physical equation of motion of the system and is
thus an analytical function, at least in the vicinity of the real axis in the
complex plane16,17. Consider a minimum or maximum of the real fre-
quency ωi in the band structure of the band i at the real wavenumber
kmin =max illustrated in Fig. 1. In the vicinity of such anextremum,wecan
Taylor expand

ωi Re kð Þð Þ=ωmin =max +
1
2
ζ ReðkÞ � kmin =max

� �2
+ . . . ð1Þ

Mathematically, frequency ωi and wavenumber k =Re kð Þ+ i ImðkÞ
can be complex numbers. Thus, the function ωi kð Þ= f zð Þ=
u x + iyð Þ+ i vðx + iyÞ follows the Cauchy-Riemann equations18
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ðkmin =maxÞ= ζ : ð3Þ

Therefore, as illustrated in Fig. 1, aminimumwith ζ >0 (maximum
with ζ <0) leads to branches of evanescent modes toward lower
(higher) frequencies than the extremum. We are mainly interested in
the modes toward lower frequencies, which can arrive at zero fre-
quency. If the minimum in the band structure approaches zero,
ωmin ! 0, we can again Taylor expand, truncate, and compute the
point at which the evanescent branch hits the ω=0 plane in Fig. 1. In
this plane, the phonon wave gets frozen. A finite ReðkminÞ means that
the frozen-phonon oscillation has a spatial period (to avoid the notion
“wavelength”) of p=2π=ReðkminÞ. The corresponding imaginary part,
ImðkminÞ, means that the frozen-phonon oscillation decays exponen-
tially with exponential decay length l given by

l =
1

jImðkminÞj
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ

2ωmin

s
: ð4Þ

Clearly, this decay length diverges, l ! 1, as the frequency at the
minimum (with ζ >0) approaches zero, ωmin ! 0. Thus, this relation
connects unusual static and unusual dynamic phonon behavior in
materials and metamaterials. In terms of design, we take advantage of
the fact that minima in the dispersion relation with ωmin ! 0 have
recently been designed rationally along different lines11,19–21.

For finite-size materials subject to static boundary conditions
imposed from the outside, the solution of the frozen-phonon dis-
placement field is given by that superposition of the discussed eva-
nescent frozen-phonon eigensolutions that obey these boundary
conditions. In Fig. 1, for clarity, we depict only the two eigensolutions
with Re kð Þ>0. Assuming reciprocity (which is given for a linear passive
lossless problem obeying time-inversion symmetry), two further
eigensolutions with Re kð Þ<0 arise from flipping the sign, i.e., from
ωiðRe kð Þ,Im kð ÞÞ=ωið±Re kð Þ, ± Im kð ÞÞ. As a result, the actual solution
for the finite system depends not only on the discussed eigensolutions
for the infinite periodic system but also on the boundary conditions
and, hence, on the size of the specimen. For large decay length l this
means that, e.g., moving the point at which a force is applied by one

Fig. 1 | Complex-valued band structures and frozen evanescent Blochmodes.A
linear, passive, and lossless infinite periodic system is considered. a Two possible
scenarios of dispersion relations, exhibiting local extrema of the real part of the
eigenfrequency, Re ωð Þ>0, versus the real part of the wavenumber, Re kð Þ>0. The
green and yellow colors refer to panels b and c, respectively. b Real part of the
eigenfrequency versus real and imaginary part of the wavenumber for the scenario
highlighted in green in (a). The black curves correspond to Im ωð Þ=0. The ima-
ginary part of ω is false-color coded. Two evanescent branches with Im kð Þ≠0

emerge from the local minimum of ReðωÞ versus ReðkÞ (green plane) and touch the
ω=0 plane (gray plane). These static or frozen eigenmodes are highlighted by the
two black dots. For Re kð Þ<0, two further such modes occur. The characteristic
exponential decay length of these frozen modes is given by l = 1=jImðkÞj, their
spatial oscillation period by p= 2π=ReðkÞ. c Same as panel b, but for the
scenario highlighted in yellow in panel a. Here, no evanescent zero-frequency
Bloch modes result.
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unit cellmay substantially change the response of thematerial far away
from that point.

In the following example, we illustrate the concept and the
implications of frozen evanescent waves for phonons in nonlocal
metamaterials. For this example, theminima ofωi ReðkÞð Þ for i= 1 occur
at wavenumbers inside of the first Brillouin zone, 0 < ReðkÞ

�� ��<π=a,
leading to frozen real-space oscillations with l≫a and period p � N a,
where N is the integer order of nonlocal interactions that occur in
addition to the nearest-neighbor interactions. At the end of this paper,
we briefly address other examples.

Complex band structure and Bloch eigenmodes
Following our introduction, to achieve anomalous frozen evanescent
Bloch modes with decay lengths much larger than one metamaterial
unit cell, we can start from anymechanism leading to a local minimum
of the dispersion relation ω1 ReðkÞð Þ ! 0 that approaches zero fre-
quency. Several approaches to achieve such local minima have been
published22–25. Here, we choose nonlocal metamaterials with strong
beyond-nearest-neighbor interactions26–32. This approach has proven
to be particularly flexible33–36. In the limit that the beyond-nearest-
neighbor interactions are much stronger than the nearest-neighbor

interactions, a local minimum in the acoustical phonon dispersion
relation approaches zero frequency11. The 3Dmechanicalmetamaterial
suggested in Fig. 2 allows us to conceptually tailor the relative
strengths of local and nonlocal interactions over a large range, and in a
manner that is amenable to state-of-the-art 3D manufacturing. Fig-
ure 2a, b depicts and defines the unit cell. However, from inspecting
only a single unit cell, the role of the nonlocal interactions is difficult to
comprehend. Figure 2c shows a metamaterial beam that results from
repeating the unit cell along the z-direction with period az . The four
light-blue helical rods or “springs” with diameter 2R1 are responsible
for connecting the plates in two neighboring unit cells and thereby
constitute the local interactions. We note that these springs inten-
tionally have different handedness and are arranged in a manner that
leads tomirror symmetrywith respect to the xz- and the yz-planes. The
metamaterial is thus achiral, avoiding a twist behavior that can be
interesting in general37–40, but thatwould unnecessarily complicate the
behavior here. The yellow cylindersmerely fix the springs to the plates
in a well-defined manner. The red cylindrical rods with diameter 2RN

serve to couple the plates to their N-th neighbors. Thereby they con-
stitute the nonlocal interactions. In Fig. 2, N =3 is used as an example.
In our below calculations and experiments, we will consider N =2,

Fig. 2 | Blueprint of metamaterial supporting anomalous frozen evanescent
phonons. This nonlocal mechanical metamaterial composed of a single con-
stituent polymer material allows obtaining frozen evanescent Bloch modes with
large characteristic exponential decay length l (cf. Fig. 1b). a, b Two different views
onto a single unit cell. The geometrical parameters are defined. Two of the yellow
cylinders are rendered semi-transparent to indicate the height of blue helices. The
colors are for illustration only. c Beam composed of a one-dimensional periodic
arrangement of this unit cell along the z-direction with period az . Adjacent yellow
plates are connected by four blue helices (“springs”), fixed to the plates by yellow
cylinders. The handedness of the springs alternates, such that the overall structure
has two mirror planes, making it achiral. The strength of this nearest-neighbor
interaction can be tailored by the radius R1. The yellow plates are additionally

connected to their N-th neighbors by the red rods with radius RN . This radius
determines the strength of the N-th nearest neighbor interactions. The example
shown refers to N = 3. We will discuss N = 2, 3, 4 with different geometrical para-
meters. The geometric parameters for N = 2, 3, and 4 are chosen as 2R1=az =0:10,
2RN=az =0:156, 2R1=az =0:10, 2RN=az =0:16, and 2R1=az =0:072, 2RN=az =0:10,
respectively. All other geometrical parameters are fixed: az = 100μm,
2R1=az =0:10, 2RN=az =0:16, w=az = 2:0,h=az =0:34, h1=az =0:16, h2=az =0:34,
h3=az =0:50, D1=az =0:30, D2=az =0:60, L1=az =0:57, L2=az =0:30, and
L3=az =0:70. For the material parameters of the constituent polymer, we choose
mass density ρ= 1190kg=m3, Young’s modulus E =4:19GPa, and Poisson’s
ratio v =0:3.
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N = 3, and N =4: The different colors in Fig. 2 are for illustration only.
All parts actually correspond to the same constituent material. In our
experiments based on 3D lasermicroprinting, weuse a polymer, which
is well described by the following static elastic parameters: mass
density ρ = 1190 kg=m3, Young’s modulus E =4:19GPa, and Poisson’s
ratio v=0:3.

It is straightforward tomap themetamaterial beamshown in Fig. 2
onto a simple one-dimensional mass-and-spring model11 containing
local Hooke’s springs with spring constant K1 and nonlocal Hooke’s
springs with spring constant KN (for parameters, see “Methods”).
Below, we will compare the results of this simple approximation
with both finite-element continuum-mechanics calculations and
experiments.

In Fig. 3a, we show the complex-valued phonon band structure
ωiðkz Þ of the metamaterial beam in Fig. 2c, numerically calculated
using linear continuum mechanics (see “Methods”). The blue (red)
curve in the light-green plane refers to the usual longitudinal (twist)
propagating phonon Bloch mode with real phonon wavenumbers
(for clarity, other bands corresponding to flexural and bending
modes are plotted in gray). As discussed previously11, due to the
strong third-order nonlocal interactions (N =3), both bands exhibit
pronounced local minima at a wavenumber around kz =2π=ð3az Þ.
Evanescent modes with non-zero Imðkz Þ emerge from these minima
and reach down to zero frequency, ω=0, leading to frozen evanes-
cent Bloch modes. For the longitudinal frozen mode (blue dot), we
have kz � 0:666� 0:026 ið Þπ=az , leading a characteristic decay
length of l = 1=jImðkzÞj � 12:2az . For the twist mode (red dot), we
obtain kz � 0:659� 0:093 ið Þπ=az , thus l = 1=jImðkz Þj � 3:4az . If the
relative strength of the nonlocal interactions is further increased,

e.g., by decreasing 2R1 (cf. Fig. 2) while fixing all other parameters,
both minima decrease in frequency, and the decay lengths further
increase, as expected from our above discussion based on the
Cauchy-Riemann equations. We illustrate the two (blue and red dot
in Fig. 3a) frozen phonon Bloch modes in Fig. 3b, c. They exhibit the
expected oscillations versus z with period 2π=Reðkz Þ � Na=3a, with
an envelope decaying on a scale much larger than the unit-cell size.
Due to its smaller positive imaginary part of kz , the longitudinal
mode (blue) has a larger decay length. Due to reciprocity and time
inversion symmetry (cf. Fig. 2 and “Methods”), two further eigenso-
lutions with Re kz

� �
<0 arise from flipping the sign, i.e.,

from ωiðRe kz

� �
,Im kz

� �Þ=ωið±Re kz

� �
, ± Im kz

� �Þ.
In our below experiments and calculations on finite-length beams,

the solution is a linear superposition of these frozen phonon modes
(and a non-Bloch solution for a finite specimen, see below). The pre-
factors depend on the length of the beam and the boundary condi-
tions. Inside the sample, the different modes interfere, leading to
Fabry-Perot-resonator-like interference effects (see below) – in the
static regime.

Results similar to the ones shown in Fig. 3 for N =3, but for N =2
and N =4, are depicted in Supplementary Fig. 1. The number of local
minima increases with increasing N. Likewise, more frozen evanes-
cent phonons arise. More broadly, many different metamaterial
approaches can lead to local minima in the dispersion relation,
likewise leading to anomalous frozen evanescent phonon Bloch
modes. This includes mechanism-based metamaterials41 and
others42. However, the corresponding effects become only pro-
nounced for very low-frequency local minima, leading to large
characteristic exponential decay lengths.

Fig. 3 | Complex-valued phonon band structure and frozen evanescent
phonon modes. a Numerically calculated phonon band structure for elastic-wave
propagation in the metamaterial beam (N = 3) defined in Fig. 2 for wave propaga-
tion along the z-direction. The representation is as in Fig. 1b, except that only real-
valued frequencies are depicted, Im ωð Þ=0. Out of many modes (gray), two are
highlighted. The bluemodes correspond to longitudinal waves, and the redmodes
to twist waves. Out of the corresponding local minima in the green plane, eva-
nescentmodes emerge (cf. Fig. 1b) that touch theω=0 plane at the positions of the

colored dots. For the longitudinal mode (blue dot) relevant to the below experi-
ments, we find the complex-valued wavenumber kz � 0:666� 0:026 ið Þπ=az .
Similar band structures are shown in Supplementary Fig. 1 for N = 2 and N =4.
b Illustration of this frozenmode. The axial component of the displacement vector,
uz , is depicted in a false-color representation. The static spatial oscillationperiod of
p= 2π=Re kz

� � � Naz = 3az is clearly visible. The mode exponentially decays with
decay length l = 1=jImðkz Þj. c Same as panel (b), but for the zero-frequency twist
mode (red dot in a), with an azimuthal component of the displacement vector uθ.
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Experiment and theory for finite specimen
We have manufactured polymer samples following the blueprint
shown in Fig. 2 by standard 3D laser microprinting (see “Methods”). A
gallery of examples for the cases N = 2, 3, 4 is shown in Fig. 4. The
geometrical parameters of the derived continuum-mechanics model,
as well as of the simplified mass-and-spring model, are summarized in
the Methods section. The samples additionally contain cross-shaped
markers in each unit cell that serve for tracking the mechanical dis-
placement vectors by optical microscopy in a home-built setup, fol-
lowed by digital image cross-correlation analysis43,44. Example optical
side-view images for N =3 are shown in Fig. 4d–f and in Fig. 5a. For
illustration, Fig. 5b depicts the corresponding simplified mass-and-

springmodel. Furthermore, each sample is fixed to the glass substrate
at one end, while the other end contains an eyelet, to which a
mechanical manipulator can be applied for quasi-statically pulling on
the metamaterial beam with total length L along its axis (see Fig. 4,
Methods and Supplementary Movies 1–10). We refrain from pushing
onto the beams to avoid buckling effects.

Figure 5c summarizes experimental results (orange dots)
obtained on a large set of different samples, in which the nonlocal
order N and the relative length of the beam samples, L=az , are sys-
tematically varied. In all panels,weplot the z-displacement component
uz versus the normalized integer sample coordinate z=az . For all
cases, the total displacement of the beam is in the range of

Fig. 4 | Image gallery ofmanufactured samples. Following the blueprint shown in
Fig. 2 and for the experiments shown in Fig. 5, we have manufactured a total of 10
different polymer samples on glass substrates with different nonlocal orders of
interaction N = 2, 3, 4, different relative lengths L=az = 37, 38, 39, 40, and for

realizing two different loading conditions. a–c oblique-view scanning-electron
micrographs. A spring (rod) mediating the local (nonlocal) interactions is high-
lighted in blue (red). d–f optical micrographs. Panel (d) shows the overall sample
with length L, and panels (e) and (f) show the hook used for stretching the samples.
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uz ðz = LÞ=L= umax=L � 1%. Finite-element calculations (blue dots) and
solutions of the simple mass-and-spring model (red dots) are shown
for comparison. The general qualitative agreement is excellent.

Let us start our discussion of Fig. 5c by recalling that any ordinary
(Cauchy) elastic material15 would simply show a linear displacement
field uz zð Þ following uz zð Þ= umaxz=L. In sharp contrast, all panels of
Fig. 5c rather show additional pronounced large-amplitude spatial
oscillations of the displacement field uz ðzÞ with period p=Naz . This
behavior is expected on the basis of our above discussion on frozen

evanescent phonons. However, the envelope of the oscillations
depends on the relative length of the beam L=az as well as on the
loading condition. This behavior results from the fact that the static
solution is a linear superposition of all frozen-phonon Bloch eigen-
modes and of the general non-Bloch solution for a finite-size sample
unB
z zð Þ= c1 + c2z, with constants c1 and c2. The latter is always a solution

because the underlying equation of motion contains only up to the
second-order spatial derivative. The oscillations of uz ðzÞ versus z lead
to regions of negative slope. This means that the structure is locally

Fig. 5 | Anomalous displacement fields of stretched metamaterial beams.
a Side-view optical micrograph of a metamaterial beam sample (also see Fig. 2 and
Fig. 4) extending from z =0 (glass-substrate side) to z = L. b Simplified repre-
sentation in terms of a mass-and-spring model. c A force along the z-direction is
exerted at the last unit cell of the samples at z = L, leading to a stretching of the
samples along the z-direction by an engineering strain of umax=L � 1%. The
resulting displacement-vector component uz is recorded as a function of the site
number or relative position z=az . Orange dots refer to experimental

measurements, blue dots refer to finite-element numerical calculations, and red
dots to solutions of the mass-and-spring model. We note that the finite-element
results largely overlap with the other data within the symbol size, indicating
excellent agreement. The integer parameters N and Lz=a are indicated in the sub-
panels. For an ordinary elastic material, the displacement fieldwould simply follow
uz ðzÞ=umaxz=L. We rather find pronounced oscillations of uz ðzÞ that depend on the
parametersN and on L=az . d AsN = 2 and L=az in panel (c), but the force is applied
at the two last unit cells simultaneously.

Article https://doi.org/10.1038/s41467-024-52956-5

Nature Communications |         (2024) 15:8882 6

www.nature.com/naturecommunications


compressed in these regions – despite the fact that the structure is
elongated overall.

We start by discussing the dependenceon L=az . If the integer L=az

is commensurable with the integer N, which holds true for the three
cases L=az =40 and N =2,L=az = 39 and N =3, and L=az =40 and N =4
in Fig. 5c, the envelope of the oscillation exhibits a constriction in the
middle of the beam. In these cases, the frozen evanescent phonon
modes decaying from the left and from the right-hand side of the beam
have the same amplitude, yet opposite sign, leading to destructive
interference in the middle of the beam. For non-commensurable
combinations of the two integers L=az and N, the envelope of the
oscillations is distinctly different. Hence, one does not get destructive
interference. This behavior somewhat resembles Fabry-Perot reso-
nances, for which resonance occurs whenever the cavity length is an
integer multiple of half the wavelength. We emphasize, though, that
we here discuss the static regime. To support this interpretation, we
have decomposed the displacement field of the mass-and-spring
model into different parts, including a linear (affine) solution and
frozen evanescent phonon solutions (see “Methods”). As an example,
we show in Fig. 6 the results for N =2 corresponding to Fig. 5c, d. As
explained above, the two evanescent phonons (cf. green and purple
dots) decay toward the center of the system. They both exhibit an
oscillation period of Naz =2az . In addition, the two evanescent pho-
nons have the same amplitude, and they are out-of-phase due to the
mirror-reflection symmetry of the system. Therefore, for the com-
mensurable case (cf. Fig. 6b), the two evanescent phonons destruc-
tively interfere in the middle of the beam. For the incommensurable
case (cf. Fig. 6a), constructive interference occurs in the middle. Cor-
responding results for N = 3 and 4 are shown in Supplementary
Figs. 2 and 3.

The behavior would clearly be equivalent if, for a fixed sample
with L=az =40 and N =4, we had applied the force at the unit cell at
z=az =39 instead of z=az =40. This means that the observed behavior
is a violation of Saint Venant’s principle14, which essentially states that
moving the point at which a force is applied by a small amount should

lead to only small changes of the displacement field far away from this
point15. The reason for this violation lies in the anomalously large decay
length of frozen evanescent phonons that carries a change atonepoint
to remote points. This behavior could be used for remote sensing of
where in space a mechanical stimulus is applied.

We further study the influence on the loading conditions. For all
cases discussed thus far in Fig. 5c, the loading force (apart from the
fixed substrate side) has been applied only to one unit cell of the beam.
In Fig. 5d (highlighted in gray) results for applying the loading force to
the last aswell as to the second-last unit cell are shown.We accomplish
this situation bymechanically connecting these two cells during the 3D
manufacturing process (see inset). The displacement uz zð Þ shown in
Fig. 5d is distinctly different from the behavior right next to it on the
left in that no oscillations occur at that end of the beam at which the
force is applied to two unit cells at once. Here, the boundary condi-
tions simply lead to a negligibly small amplitude of the frozen eva-
nescent phonon mode decaying away from that end, as can be seen
from the decomposed displacement field shown in Fig. 6c.

The described dependencies on the integers L=az and N result
from different forces acting within the sample. One would therefore
expect, for example, that the effective Hooke’s spring constant of the
beam non-monotonously depends on L=az for fixed N = 2, 3, 4 rather
than only scaling like / 1=L for an ordinary elastic beam. Supplemen-
tary Fig. 4 shows that this is indeed the case.

Following our introduction (cf. Fig. 1), nonlocality is not the only
means to arrive at large-decay-length frozen evanescent phonons. In
Supplementary Fig. 5,wediscuss amechanism-basedmetamaterial41 as
another example. A local minimum of the dispersion band occurs at
the edge of the first Brillouin zone. This local minimum and the
resulting frozen evanescent phonons are connected to a floppy mode
of the mechanism-based metamaterial with ideal-hinge connections.
The authors41 described a route toward obtaining large characteristic
lengths in mechanics that did not involve band structures or (eva-
nescent) Bloch modes. Our approach shades a different light onto
these periodic metamaterials rather based on their Bloch eigenstates.

Fig. 6 | Decomposition of displacement field. a Result for the case of N = 2 and
L=az = 39 in Fig. 5c. The total displacement (cf. red dots) is the solution of themass-
and-springmodel shown in Fig. 5b. It is composed of a non-Bloch part unB

z = c1 + c2z
(cf. gray dots), a frozen evanescent phonon eigensolution localized to the left end
(cf. green dots), and a frozen evanescent phonon eigensolution localized to the
right end (cf. purple dots) of the finite-length beam, respectively. See Methods for
details on the decomposition. The two frozen evanescent phonon eigensolutions
exhibit in-phase displacement fields in the middle of the beam, leading to

constructive interference in themiddle (cf. red dots). The straight lines connecting
the dots are merely a guide to the eye. b Same as (a) but for N = 2, L=az =40. Here,
the total displacement (cf. red dots) in the middle shows a smaller oscillation
amplitude than in (a) due to the destructive interference of the two frozen eva-
nescent phonon eigensolutions. c Same as (a), but for N = 2, L=az =40 under the
two-site loading condition (cf. Fig. 5d). This boundary condition significantly sup-
presses the frozen evanescent phonon to the right end of the beam. See Supple-
mentary Figs. 2 and 3 for other examples (N = 3, 4) corresponding to Fig. 5c.
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Our discussion so far has been restricted to effectively one-
dimensional decay problems for which one local minimum in the
dispersion relation ωiðkÞ leads to four frozen evanescent phonon
modes per branch i (see Figs. 1b, 3a). In effectively two-dimensional
problems (see Supplementary Fig. 6), we find infinitely many frozen
evanescent eigensolutions at ω=0, forming an area within the plane
spanned by ReðkxÞ and ReðkyÞ (see Supplementary Fig. 7). For
example, when exerting a point-like force onto a two-dimensional
thin square-shaped membrane fixed at all of its four edges, the
membrane’s static out-of-plane displacement spatially oscillates
within the plane (cf. Supplementary Fig. 8). These pronounced spa-
tial oscillations also occur in the lowest-frequency eigenmodes of the
finite membrane (see Supplementary Figs. 6 and 7), including the
fundamental mode, which usually exhibits only a single maximum in
the middle of the membrane. Here, we move upwards on the eva-
nescent branch starting from the black dot at ω=0 in Fig. 1b. The
modes can be excited by time-harmonic excitation at frequencies
close to the membrane eigenfrequencies (cf. Supplementary Fig. 8).

Discussion
Frozen evanescent waves are the Bloch eigensolutions of any linear
and infinitely periodic problem for complex-valued wavenumbers at
zero frequency. Using the Cauchy-Riemann equations, we have
established a connection between the imaginary part of their wave-
number, which is the inverse of their characteristic exponential decay
length, and the frequency at a local minimum of the ordinary (real-
valued) wave’s dispersion relation. This approach allows us to connect
to the static behavior of finite-size samples and to systematically
determine all characteristic length scales of a problem. This has not
been possible previously for elastic waves (phonons), which we have
used as an example. Our results are also directly applicable to other
types of waves, including electromagnetic and acoustic waves.

Methods
Calculation of complex phonon band structures
We compute the phonon band structure for complex-valued wave-
numbers by solving the eigenvalue equation

�ρω2uα xτ

� �
= � kηkξCαξβηuβ xτ

� �
+

∂
∂xξ

Cαξβη

∂uβ xτ
� �

∂xη
+ ikηCαξβηuβ xτ

� � !

+ ikξCαξβη

∂uβ xτ

� �
∂xη

ð5Þ

together with the stress-free boundary condition

nξ Cαξβη

∂uβ xτ

� �
∂xη

+ ikηCαξβηuβ xτ

� � !
=0, ð6Þ

and the periodic boundary condition

uβ xτ
� �

=uβ xτ +aτ

� �
: ð7Þ

Herein, ρ and Cαξβη refer to the mass density and the fourth-rank
Cauchy elasticity tensor. For isotropic elastic materials, the elasticity
tensor can be expressed as Cαξβη = Evð =ðð1 + vÞð1� 2vÞÞ δαξδβη +
E= 2 + 2vð Þ δαβδξη + δαξδβξ

� �
, with E and v being the Young’s modulus

and the Poisson’s ratio, respectively. The above Eqs. (5) – (7) results
from the Bloch ansatz for the displacement, uβðxτ Þ exp i ωt � kξxξ

� �� �
with ulðxτ Þ being a periodic function. ulðxτÞ, ω and kξ are the eigen-
displacement, the eigenfrequency, and the Bloch wavenumber,
respectively. The spatial coordinate is denoted by xτ , and the lattice
vector is represented by aτ . All the indices, α,β,ξ , η, and τ run from 1 to
3 for the three-dimensional elasticity problem considered. For two-

dimensional problems, they run from 1 to 2. Repeated indices follow
the Einstein summation convention.

We implement Eqs. (5) – (7) within the commercial software
Comsol Multiphysics by using its partial differential equation (PDE)
module. To obtain the complex phonon band structures (cf. Fig. 3 and
Supplementary Figs. 1 and 5) in the main paper, we apply periodic
boundary conditions along the z-direction and treat all other bound-
aries as stress-free. Therefore, the Bloch wavevector is given by
k= ð0, 0, kzÞ. The unknown wavenumber, kz , is solved from the above
Eqs. (5) – (7) with pre-described real-valued frequencies. In all calcu-
lations, we assume the following elasticparameters for the constitutive
material: Young’s modulus E =4:19GPa, Poisson’s ratio v=0:3, and
mass density ρ= 1190kg=m3.

For a real-valuedmass density ρ and a real-valued elasticity tensor
Cαξβη, the calculated complex phonon bands show two mirror-
symmetry planes, i.e., Re ωð Þ-Reðkz Þ and Re ωð Þ-Imðkz Þ. As a result, for
clarity, we only plot that part of the bandswith Reðkz Þ>0 (cf. Fig. 3 and
Supplementary Figs. 1 and 5).

The above twomirror symmetries of the complex-valued phonon
bands result from the following two symmetry properties:
1ð Þω2 kξ

� �
=ω2 �kξ

� �
, 2ð Þω2 �kξ

� �
=ω2 kξ

� �
. Herein, ω2 kξ

� �
and kξ

denote the complex conjugate of ω2 kξ

� �
and kξ , respectively. The

symmetry property (1) simply follows from taking the complex con-
jugate of Eqs. (4) – (7) if the material parameters, as ρ and Cαξβη, are
real-valued. This condition also implies time-inversion symmetry15. We
remark that symmetry (2) becomes identical to symmetry (1) for real
wavenumbers. Next, we briefly show that symmetry (2) applies to
complex-valued wavenumbers as well.

Suppose that uαðxτ Þ, ω, and kξ correspond to a solution of the
above eigenvalue Eqs. (4) – (7) and that vαðxmÞ, ω0, and�kξ constitute
another solution. Therefore, vαðxτ Þ,ω0, and�kξ must satisfy the below
equation

�ρω02vα xτ
� �

= � kηkξCαξβηvβ xτ

� �
+

∂
∂xξ

Cαξβη

∂vβ xτ
� �

∂xη
� ikηCαξβηvβ xτ

� � !

� ikξCαξβη

∂vβ xτ

� �
∂xη

ð8Þ
together with the stress-free boundary condition

nξ Cαξβη

∂vβ xτ

� �
∂xη

� ikηCαξβηvβ xτ

� � !
=0, ð9Þ

and the periodic boundary condition

vβ xτ
� �

= vβ xτ +aτ

� �
: ð10Þ

We multiply both sides of Eq. (8) with uαðxτÞ and integrate over
the unit cell, and obtain

�ω02 R ρ vα xτ
� �

uα xτ

� �� �
dV=

R
Cαξβη �kηkξvβ xτ

� �
uα xτ
� �� ∂vβ xτð Þ

∂xη

∂uα xτð Þ
∂xξ

� �
dV

+ i
R
Cαξβη kηvβ xτ

� � ∂uα ðxτ Þ
∂xξ

� kη
∂vβ xτð Þ

∂xi
uαðxτ Þ

� �
dV:

ð11Þ

The boundary conditions Eqs. (6), (7), (9), and (10) are used to
arrive at the above equation. Likewise, multiplying both sides of Eq. (1)
with vαðxτÞ leads to

�ω2
R
ρ uα xτ

� �
vα xτ
� �� �

dV=
R
Cαξβη �kηkξuβ xτ

� �
vα xτ
� �� ∂uβ xτð Þ

∂xη

∂vα xτð Þ
∂xξ

� �
dV

�i
R
Cαξβη kηuβ xτ

� � ∂vα xτð Þ
∂xξ

� kξ
∂uβ xτð Þ
∂xη

vα xτ
� �� �

dV:

ð12Þ
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It can be shown that the right-hand sides of Eqs. (11) and (12) are
equal due to the major symmetry of the elasticity tensor, i.e., via
Cαξβη =Cβηαξ . By subtracting Eq. (12) from Eq. (11), we have

ω2 � ω02
� �Z

ρuα xτ
� �

vα xτ

� �� �
dV=0: ð13Þ

In general, the integrand in Eq. (13) is not zero. The two eigen-
frequencies are identical, ω02 =ω2, or alternatively, ω2 �kξ

� �
=ω2 kξ

� �
.

This relation holds true even for lossy materials with complex-valued
elasticity tensors. In fact, the symmetry of Cαξβη =Cβηαξ can be
deduced from the requirement of reciprocity15.

Static simulations of metamaterial beams
We simulate the stretching of the metamaterial beam by using the
commercial software Comsol Multiphysics with the following static
elasticity equation

E
2 1 + vð Þ 1� 2vð Þ

∂
∂xα

∂uβ xm
� �

∂xβ

 !
+

E
2 1 + vð Þ

∂
∂xβ

∂uα xm
� �

∂xβ

 !
=0 , ð14Þ

where, ρ, E and v are the mass density, the Young’s modulus, and the
Poisson’s ratio of the constitutive material, respectively. In the static
calculation, we use the same elasticity parameters as in the calculation
of the complex-valued phonon band structures. We apply fixed
boundary conditions to one end of the metamaterial beam and
prescribe a finite displacement at the other end.

The spring constants, K1 and KN , used in the simplifiedmass-and-
spring model for the metamaterial beam, are also obtained by solving
Eq. (14). Here, two plates with only nearest-neighbor connections or
only third-nearest-neighbor connections, respectively, are modeled to
derive theparametersK1andKN . Oneplate isfixed at the bottom,while
the other plate is loaded with force Fz along the axial direction. We
obtain the axial displacement uz of the loaded plate from Comsol
Multiphysics and derive the effective Hooke’s spring constant Fz=uz .
The obtained stiffness parameters forN =2, 3, and 4 are K1 = 33:5N=m,
KN =2562:9N=m, K1 = 33:5N=m, KN = 2401:3N=m, and K1 = 8:1 N=m,
KN = 756:7N=m, respectively. The effective Hooke’s spring constants
ofmetamaterial beamswith finite length (cf. Supplementary Fig. 4) are
derived analogously.

Decomposition of displacement field
For the simplified finite-length mass-and-spring model in Fig. 5b, we
denote the axial (z-direction) displacement of each mass by un with
n=0, 1, 2 . . . , L=az . We first focus on the masses in the bulk, i.e.,
n=N,N + 1, . . . L=az � N. Each of these masses is connected to two
immediate neighbors and two N-th nearest neighbors on both sides.
Thus, the force-balance equation for the mass n reads:

K1 un + 1 +un�1 � 2un

� �
+KN un +N +un�N � 2un

� �
=0,n=N,N + 1, . . . L=az � N:

ð15Þ

Apparently, this set of equations always supports the linear non-
Bloch solution

unB
n =C1 +C2n,n =0, 1, 2 . . . , L=az , ð16Þ

C1 and C2 are constants. Additionally, multiple frozen evanescent
phonons of the following form are possible

uj
n = exp ikj na� L=2

� �� �
,n=0, 1, 2 . . . , L=az : ð17Þ

Here, the complex wavenumber kj satisfies the following condi-
tion

K1sin
2 kja

2

� 	
+KNsin

2 N
kja
2

� 	
=0: ð18Þ

Equation (18) has infinitely many solutions for kj . Here, we only
need to consider kj with its real part inside of the first Brillouin zone,
�π=az <ReðkjÞ≤π=az , as other solutions are simply shifted by an
integer multiple of 2π=az, which does not influence the displacement
solution Eq. (17).

For the considered parameter settings in Fig. 5c, we have the
following solutions for kj :

N =2, k1 � ð1 +0:0364iÞπ=az , k2 � ð1� 0:0364iÞπ=az ð19Þ

N =3, k1 � 0:6662 + 0:0217ið Þπ=az , k2 � �0:6662 + 0:0217ið Þπ=az ,

k3 = � k1, k4 = � k2:

ð20Þ

N =4, k1 � 0:4998 + 0:0116ið Þπ=az , k2 � ð�0:4998 + 0:0116iÞπ=az ,

k3 = � k1, k4 = � k2,

k5 � ð1 + 0:0164iÞπ=az , k6 � ð1� 0:0164iÞπ=az

ð21Þ

The displacement field in Eq. (17) for kj with a positive imaginary
part represents a frozen evanescent phonon that exponentially decays
to the right, while the one with a negative imaginary part stands for a
frozen evanescent phonon exponentially decaying to the left.

The general displacement field of the finite-length system in
Fig. 5b is a linear combination of the above solutions, i.e.,

un =C1 +C2n+
X
j

Ej exp ikjna
� �

ð22Þ

The displacement field Eq. (22) automatically ensures the force-
balance equation Eq. (15) for the masses in bulk, i.e.,
n=N,N + 1, . . . L=az � N. The unknown complex coefficients, C1,C2,
and Ej, can be determined from the boundary conditions applied to
the mass-and-spring chain.

For the single-site loading as in Fig. 5c, the left most mass and the
right most mass have prescribed displacements, u0 =0, and
uL=az

=umax. In addition, masses n= 1, . . .N � 1, and masses n= L=az �
N + 1, . . . L=az � 1 must be in force-balance, too. For the two-sites
loading condition in Fig. 5d, the mass n= L=az � 1 is similarly pre-
scribed with displacement, uL=az�1 =umax. Other conditions are the
same as the single-site loading conditions. It can be easily verified that
the number of the boundary conditions 2N, exactly matches the
number of the unknown coefficients. Thus, the unknown coefficients
can be determined. Afterward, the total displacement field Eq. (22), as
well as individual parts, including the linear part and the frozen eva-
nescent phonons, can be obtained. The analytical formula for the
unknown coefficients is very lengthy and thus omitted here.

Metamaterial-beam fabrication
Wemodel the metamaterial beam in the commercial software Comsol
Multiphysics and export the STL file for fabrication. Due to multiple
overhanging beams in the metamaterial model, the geometry is split
intodifferent parts andprinted sequentially. Geometry compensations
are considered to minimize the discrepancy between the fabricated
samples and the targeted geometry parameters. We fabricate the
metamaterial samples by using a commercial 3D laser printer (Pro-
fessional GT, Nanoscribe GmbH) with a 25 ×microscope objective lens
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(numerical aperture NA=0:8, Carl Zeiss) at a laser focus scanning
speed of 0:115m=s and a printing laser power of 25mW. A commercial
liquid photoresist (IP-S, Nanoscribe GmbH) was used, and the dip-in
printing mode was selected. We printed the metamaterial beam ver-
tically on a glass substrate coated with indium tin oxide and silanized
using 3-(trimethoxysilyl)propylmethacrylate. The hatching distance
and slicing distance were chosen to be 0:3μm and 0:5μm, respec-
tively. A bottom plate with a loading hook was printed separately with
the printing parameters of 50mW for the laser power, 0:140m=s for
the focus scanning speed, 0:5μm and 1:5μm for the hatching distance
and slicing distance of the baseplate. For the hook, 0:3μm and 0:5μm
were chosen. On top of themetamaterial beam, an auxiliary eyelet was
printed to ease the connection between the metamaterial and the
loading hook. More details about the printing setting can be found in
the GWL files that are published in [https://doi.org/10.35097/
RgiKSjVUuivXDyKi].

After completing the printing job, wefirst immersed the sample in
propylene glycol methyl ether acetate and ethanol for 20min each to
remove excess photoresist. Afterward, the samples were super-
critically dried in CO2 (Leica EM CPD 300).

Metamaterial beam stretching experiment
In the experiment, one end of the metamaterial beam is fixed on a
bottomglass substratewhile theother end is connected via theprinted
eyelet and the loading hook to a computer-controlled motorized
actuator (TRA25CC, Newport). Here the hook was glued (Plast Special,
UHU) onto a stamp screwed to the actuator andmade from aluminum.
Beginning with the upstretched initial state of the metamaterial beam,
the actuator is programmed to gradually move to a prescribed dis-
placement umax � 0:01 L and then stay steady for 2 seconds. After-
ward, the actuator is again programmed to gradually move backward
to its initial position (see Supplementary Movies 1−10). We image the
metamaterial beam from the side with a digital camera (Blackfly BFLY-
PGE-50H5C, Point Gray Research) and record the complete loading-
unloading process at a frame rate of 7:5 fps. We extract the displace-
mentof eachunit cell from the cross-shapedmarkersby using adigital-
image cross-correlation algorithm43. For eachmetamaterial sample, we
repeat the loading-unloading cycle ten timeswith awaiting timeof 30 s
in between the cycles. The obtained displacements are averaged over
ten measurements to derive the data points shown in Fig. 5. More
details about the measurement and raw data can be found in the data
repository published together with this work [https://doi.org/10.
35097/RgiKSjVUuivXDyKi].

Experimental determination of effective Hooke’s spring
constants
In the above stretching experiment, we also record the force applied to
the metamaterial beam end by using a force sensor (K3D40, ME-
Meßsysteme GmbH). With the displacement data for the top unit cell
of themetamaterial beam (derived from the above digital-image cross-
correlation algorithm), we obtain the force-displacement curve. The
effective Hooke’s spring constant is derived by fitting the slope of the
force-displacement curveusing a least square algorithm.Asmentioned
above, we repeat the loading-unloading cycle ten times for each
metamaterial beam sample. Therefore, ten effective Hooke’s spring
constants, with each corresponding to one loading-unloading cycle,
are derived. We obtain the averaged effective Hooke’s spring constant
and the standard deviation from the ten results. The raw displacement
data and force data can be found in the data repository published
together with this work [https://doi.org/10.35097/RgiKSjVUuivXDyKi].

Data availability
The simulation and experiment data generated in this study are
available from the corresponding authors upon request and are

published in the open-access data repository of the Karlsruhe Institute
of Technology [https://doi.org/10.35097/RgiKSjVUuivXDyKi].

Code availability
The code that produces the results and the plots within the paper are
available from the corresponding authors upon request and are pub-
lished in the open-access data repository of the Karlsruhe Institute of
Technology [https://doi.org/10.35097/RgiKSjVUuivXDyKi].
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