KIT | KIT-Bibliothek | Impressum | Datenschutz

Analytical and numerical approximations to highly oscillatory solutions of nonlinear Friedrichs systems

Jahnke, Tobias 1; Mödl, Johanna 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider semilinear Friedrichs systems which model high-frequency wave propagation in dispersive media. Typical solutions oscillate in time and space with frequency of $\mathcal{O}(\varepsilon^{−1})$ and have to be computed on time intervals of length of $\mathcal{O}(\varepsilon^{−1})$, where $\varepsilon\ll1$ is a small positive parameter. For such problems, we present an approach which combines analytical approximations with tailor-made time integration. First, we replace the original problem by a fine-tuned modification of the classical slowly varying envelope approximation and prove that the corresponding error is only of $\mathcal{O}(\varepsilon^2)$. The resulting system of partial differential equations has the advantage that solutions do not oscillate in space, but still in time. For this system, we devise a novel time integrator and prove first-order convergence uniformly in $\varepsilon$. Essential to this is the careful analysis of interactions between oscillatory and non-oscillatory parts of the solution, which are identified by suitable projections.


Volltext §
DOI: 10.5445/IR/1000175756
Veröffentlicht am 29.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 28.10.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000175756
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 29 S.
Serie CRC 1173 Preprint ; 2024/22
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter nonlinear Friedrichs system, high-frequency wave propagation, spatio-temporal oscillations, slowly varying envelope approximation, time integration, error bounds
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page