KIT | KIT-Bibliothek | Impressum | Datenschutz

Analytical and numerical approximations to highly oscillatory solutions of nonlinear Friedrichs systems

Jahnke, Tobias 1; Mödl, Johanna 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider semilinear Friedrichs systems which model high-frequency wave propagation in dispersive media. Typical solutions oscillate in time and space with frequency of O(ε1) and have to be computed on time intervals of length of O(ε1), where ε1 is a small positive parameter. For such problems, we present an approach which combines analytical approximations with tailor-made time integration. First, we replace the original problem by a fine-tuned modification of the classical slowly varying envelope approximation and prove that the corresponding error is only of O(ε2). The resulting system of partial differential equations has the advantage that solutions do not oscillate in space, but still in time. For this system, we devise a novel time integrator and prove first-order convergence uniformly in ε. Essential to this is the careful analysis of interactions between oscillatory and non-oscillatory parts of the solution, which are identified by suitable projections.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 28.10.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000175756
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 29 S.
Serie CRC 1173 Preprint ; 2024/22
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Abstract/Volltext
Schlagwörter nonlinear Friedrichs system, high-frequency wave propagation, spatio-temporal oscillations, slowly varying envelope approximation, time integration, error bounds

Volltext §
DOI: 10.5445/IR/1000175756
Veröffentlicht am 29.10.2024
Seitenaufrufe: 30
seit 30.10.2024
Downloads: 27
seit 02.11.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page