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“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

— Marie Curie





Abstract

Discontinuous fiber-reinforced polymers such as long-fiber-reinforced thermoplas-
tics are valued for their good density-specific mechanical properties, relatively
low costs, fast cycle times and possible function integration in lightweight design
relevant sectors such as automotive engineering. However, their complex mi-
crostructure exacerbates the modeling and design of components. To characterize
the micro- and mesostructure, the acquisition of three-dimensional computed
tomography scans and subsequent image analysis has established itself as a non-
destructive method. Especially carbon fiber-reinforced polymers pose challenges
for this approach: Their small diameter combined with a low image contrast to
the surrounding matrix (due to similar attenuation coefficients) complicates the
application of previously developed methods for the evaluation of mechanical
parameters such as fiber volume contents. Therefore, two novel methods for deter-
mining the fiber volume content from scans of this material are presented in this
thesis, one of which is an artificial intelligence-based convolutional neural network
approach. Furthermore, even in the case of quantities that can be determined using
already implemented methods, such as fiber orientation tensors, computed tomog-
raphy images pose the problem that a high resolution is associated with a small
specimen geometry. In turn, this reduces the cross-scale significance of a quantity
determined from that small specimen. Three different methods (two algebraic and
one artificial neural network) for the interpolation of fiber orientation tensors were
therefore tested in order to obtain orientation information across an entire plate
from a few support points of tensors that were determined from small specimens.
The orientation distribution of the plastificate and thus of the initial state, on which
the compression molding process is based, was also investigated. In addition,
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Abstract

the problem arose that the acquisition of CT scans is energy-intensive and time-
consuming. Artificial microstructures could reduce this scanning effort. However,
artificial microstructures of carbon long fiber reinforced material generated with
conventional packing algorithms do not sufficiently resemble the real ones. As a
result, the rather novel approach of generative neural networks was successfully
used to generate two-dimensional images that are as similar as possible to the
layers of the computer tomography scans. The investigations in this dissertation
show the potential of image evaluation and especially the use of approaches based
on artificial intelligence for the investigation of computed tomography images of
carbon long fiber reinforced polymers despite the physically unfavourable initial
situation.
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Kurzfassung

Diskontinuierlich faserverstärkte Kunststoffe wie langfaserverstärkte Thermo-
plaste werden in leichtbaurelevanten Branchen, wie dem Automobilbau, aufgrund
ihrer guten dichtespezifischen mechanischen Eigenschaften, verhältnismäßig
geringen Kosten, schnellen Zykluszeiten und möglicher Funktionsintegration
geschätzt. Deren komplexe Mikrostruktur ist allerdings der Modellierung und
Auslegung von Bauteilen hinderlich. Zur Charakterisierung der Mikro- und
Mesostruktur hat sich das Anfertigen von dreidimensionalen Computertomogra-
phiescans und anschließende Bildauswertung als zerstörungsfreies Prüfverfahren
etabliert. Die Verwendung von Kohlenstofffasern sorgt allerdings für Heraus-
forderungen bei dieser Herangehensweise: Ihr geringer Durchmesser verbunden
mit niedrigem Kontrast im Bild zur umgebenden Matrix erschweren durch hohes
Bildrauschen die Anwendung bereits entwickelter Verfahren zur Auswertung
mechanischer Kenngrößen, wie Faservolumenanteilen. Aus diesem Grund werden
in dieser Thesis zwei neuartige Methoden zur Bestimmung des Faservolumenge-
halts aus Scans dieses Materials aufgezeigt, wovon eines ein auf künstlicher
Intelligenz basierter Ansatz eines convolutional neural networks ist. Weiter-
hin ergibt sich selbst bei mit bereits implementierten Verfahren bestimmbaren
Größen, wie Faserorientierungstensoren, bei Computertomographieaufnahmen
die Problematik, dass eine hohe Auflösung mit einer kleinen Probengeometrie
einhergeht. Kleine Probengrößen reduzieren wiederum die skalenübergreifende
Aussagekraft einer daraus bestimmten Größe. Um aus wenigen Stützpunkten an
Tensoren, die aus kleinen Proben bestimmt wurden, Orientierungsinformationen
über eine ganze Platte hinweg zu erhalten, werden daher drei verschiedene Ver-
fahren (zwei algebraische und erneut ein künstliches neuronales Netzwerk) zur
Interpolation von Faserorientierungstensoren implementiert und evaluiert. Auch
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Kurzfassung

die Orientierungsverteilung des Plastifikats und damit des dem Pressprozesses
zugrundliegenden Ausgangszustands wurde untersucht. Darüberhinaus ergab
sich die Problematik, dass die Anfertigung von CT-Scans energieintensiv und
zeitaufwändig ist. Künstliche Mikrostrukturen könnten diesen Scanaufwand
verringern. Allerdings ähneln die mit konventionellen Packungsalgorithmen
erzeugten künstlichen Mikrostrukuren von kohlenstofflangfaserverstärktem Mate-
rial den realen nicht ausreichend. Infolgedessen wurde der recht neuartige Ansatz
von generativen neuronalen Netzen erfolgreich verwendet, um - trainiert auf den
Schichten der Computertomographiescans - möglichst ähnliche zweidimensionale
Bilder zu erzeugen. Durch die Untersuchungen in dieser Dissertation zeigt sich
das Potential der Bildauswertung und speziell auch der Nutzung von Ansätzen
basierend auf künstlicher Intelligenz zur Untersuchung von Computertomogra-
phieaufnahmen kohlenstofflangfaserverstärkter Polymere trotz der physikalisch
ungünstigen Ausgangssituation.
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Symbols and acronyms

Acronyms

(µ)CT (Micro-) Computed Tomography

.ipynb Jupyter notebook

.py Native Python file

2D Two-Dimensional

3D Three-Dimensional

ABS Acrylonitrile Butadiene Styrene

ADAM Adaptive Moment Estimation

AI Artificial Intelligence

ANN Artificial Neural Network

AOA Average Or Above (thresholding)

BCE Binary Cross Entropy

bwHPC Baden-Württemberg High Performance Computing

Ci Label of specific specimen in charge area of plate

CA Component Averaging

CcGAN Continuous conditional GAN

CF Carbon Fiber

CFi Label of specific specimen in transition area between charge and
flow of plate
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Symbols and acronyms

CFRP Carbon Fiber Reinforced Polymer

cGAN Conditional GAN

CNN Convolutional Neural Network

Co Continuous (reinforced polymers)

CoDicoFRP Continuous-Discontinuous Fiber Reinforced Polymer

CoFRP Continuous Fiber Reinforced Polymer

CT Computed Tomography

DCGAN Deep Convolutional Generative Adversarial Network

DFG Deutsche Forschungsgemeinschaft

Dico Discontinuous (reinforced polymers)

DicoFRP Discontinuous Fiber Reinforced Polymer

DL Deep Learning

ED Euclidean Distance

Fi Label of specific specimen in flow area of plate

FASEP Brand name - System for determining the fiber length distribu-
tion

FE Finite Element (model)

FID Fréchet Inception Distance

FIJI Image processing package (a distribution of ImageJ2, bundling
a lot of plugins which facilitate scientific image analysis)

FLD Fiber Length Distribution

FOD Fiber Orientation Distribution

FODF Fiber Orientation Distribution Function

FOT Fiber Orientation Tensor

FRP Fiber Reinforced Polymer

fSAM Fused Sequential Addition and Migration

FVC Fiber Volume Content
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Symbols and acronyms

FVF Fiber Volume Fraction

GAN Generative Adversarial Network

GF Glass Fiber

GPa Gigapascal

GPU Graphics Processing Unit

HSV Hue, Saturation and Value

HT High-tenacity

IBOF Invariant Based Optimal Fitting

IDW (Shepard’s) Inverse Distance Weighting

InfoGAN Information maximizing GAN

IRTG International Research Training Group (in this work: IRTG2078
funded by the German Research Foundation)

LFT Long Fiber reinforced Thermoplastic

LFT-D Long Fiber reinforced Thermoplastic Direct process

LFT-G Long Fiber reinforced Thermoplastic Granulate process

MAE Mean Absolute Error

MEP Maximum Entropy Method

ML Machine Learning

MLP Multi-Layer Perceptron

MPa Megapascal

MSE Mean Squared Error

MSSIM Mean Structural Similarity Index Measure (SSIM)

ODF Orientation Distribution Function

PA(6) Polyamide (6)

PAN Polyacrylonitrile

PC Polycarbonate

PET Polyethylene Terephthalate
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Symbols and acronyms

Pixel (px) Picture x Element

PP Polypropylene

RAM Random-Access Memory

ReLU Rectified Linear Unit

ROI Region(s) Of Interest

ROM Rule Of Mixture

RSA Random Sequential Adsorption

RVE Representative Volume Element

SAM Sequential Addition and Migration

SEM Scanning Electron Microscopy

SFT Short Fiber reinforced Thermoplastic

SGD Stochastic Gradient Descent

SLP Single Layer Perceptron

SMC Sheet Molding Compound

SNR Signal-to-Noise Ratio

SPD Symmetric Positive Definite

SR Super Resolution

SSE Sum of Squares Error

SSH Secure Shell protocol

SSIM Structural Similarity Index Measure

SVE Statistical/Stochastic Volume Element

TEM Transmission Electron Microscopy

TGA Thermogravimetric analysis

Voxel (vx) Volume x Element

WGAN Wasserstein GAN

WGAN-GP Wasserstein GAN with Gradient Penalty
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Symbols and acronyms

Scalars

α Absorption coefficient

µ̄m Effective mass attenuation coefficient

ϕ̄ Interpolation scheme

Ē Effective Young’s modulus of composite

η Distance variable

γ (Shear) Strain

λi Eigenvalues

E Expectation operator

µ Attenuation coefficient

µ0, µ1, µT Class mean levels

µm Mass attenuation coefficient

µr, µg Means of real and generated images

µs Scatter coefficient

ν Poisson ratio

ω0, ω1 Probabilities of class occurrence

ϕi Discrete values

ψ Probability distribution function

ρ Density

ρi Standard deviation (in context of structure tensor)

σ Width of filter window/standard deviation of Gaussian kernel

σ(u) Activation function

σ0, σ1 Class variances

σ2
B Between-class variance

σ2
W Within-class variance

σi Normal stress in i-direction
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Symbols and acronyms

τ Shear stress

θG Parameters of the generator

ε (Normal) Strain

ξ Empirical geometry factor

A Area

ar Aspect ratio

b Bias

C Stiffness

c cos of angle

Cfiber Circumference of fiber

cov(x, y) Covariance of variables x and y

covr, covg Covariance of real and generated images

D Discriminator

d Diameter

d(x,xi) Distance from known point xi to unknown point x

dE Euclidean distance

Dx Definition domain of structuring element

E Young’s modulus

e Charge of an electron

Ep Distance function or error/cost function

F × F Filter dimension

F Force

f Mapping

f(x, y) Filter mask

fl Fiber length probability density function

G Generator

G(x, y) Gaussian function
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Symbols and acronyms

Gf , Gm, Gij Shear modulus (of the fibers, the matrix or considering the two
coordinate axes i and j)

GA Glyph to tensor A

h(l) Hidden layer

I Radiation intensity

i Input

I(x) Image intensity function

I0 Initial condition of radiation intensity

Ki Orthogonal K-invariants

l (Fiber) Length

l(y, ŷ) Log loss/BCE loss

lc Critical fiber length

ld Detector pixel size

LFD Distance between focus and detector

LFO Distance between focus and object

lt Length of fiber in order to transfer load

lv Voxel size

Li Specific fiber length of the i-th fiber

m Mass

me Mass of an electron

mg Geometric magnification

mi Moments of i

N ×N Image dimension

n/N Number (amount of instances of certain parameter/variable)

O Output size

o Soft sign activation function

o(x) Output image
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Symbols and acronyms

P Padding

pg Distribution of the generator

pz Distribution of noise variables

pi Probabilities

pj Fractions of below-threshold and above-threshold pixels

R Mean separation of the fibers normal to their length

r/rf Radius / Fiber radius

rl Learning rate

Ri Orthogonal R-invariants

S Stride

s sin of angle

s Isotropic voxel size

t Threshold

TOtsu Otsu threshold

u Activation potential

Ua Acceleration voltage

V Volume

v Velocity

V (D,G) Value function

vf Fiber volume content

wf Fiber weight content

wi Weights (fraction)

xn Input values

yj Output values

zi Class label

zj Gray value
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Symbols and acronyms

Vectors

h Hidden layer vector (output)

p Unit vector describing fiber orientation

vi Eigenvector

x Location

Tensors (2nd order)

σ̄ Effective stress

ε̄ Effective strain

Λ Diagonal eigenvalue matrix

σ Stress

τ Shear stress

ε Strain

A (Fiber) orientation tensor of second order

C Second order stiffness tensor

H Hessian matrix

J Final structure tensor

Kσ Gaussian Blur of width σ

R Rotation matrix (composed of the eigenvectors vi)

S Structure tensor

W Weight matrix

UL, ..., LR Measured tensors of second order (respectively denoting “Upper
Left", ..., "Lower Right", etc.). All together form the set of
measured tensors Tm
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Symbols and acronyms

Tensors (4th order)

A (Fiber) orientation tensor of fourth order

C Fourth order stiffness tensor

E Eshelby tensor

H0 Reference tensor

I Identity tensor

IS Identity on symmetric tensors

L Localization tensor

M Localization tensor

S Compliance tensor (inverse stiffness tensor)

Sets

R3 Real coordinate space of dimension 3

C Closure approximation

P Probability of finding fiber in direction p

S Two-dimensional unit sphere

Tm Set of measured tensors of second order

Ti = Tx,y Set of interpolated tensors of second order at specific (x,y) grid
position

SO(3) Special orthogonal group in 3 dimensions

Operators

(·)′ Deviatoric part

(·)T Transpose

(·)−1 Inverse

: Double contraction of tensors

∗ Convolution
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Abkürzungs- und Symbolverzeichnis

(̄·) Averaged/Effective quantity

· Scalar product or single contraction of tensors

det Determinant
˙(·) Material time derivative

∇(·) Gradient

⟨·⟩ Volume average

∥(·)∥ Euclidean tensor norm

∇ Depending on the context, one of the three differential operators
gradient, divergence or rotation

⊖ Erosion

⊕ Dilation

⊗ Dyadic product

∂ Partial derivative

⋆ Rayleigh product

tr(·) Trace of a matrix

d Derivative

Quaternions

q Unit quaternion
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1 Introduction

At the beginning of this thesis, the motivation for the topic under discussion will
be addressed, followed by the objectives of this work and a brief outline of the
thesis structure. Subsequently, the indication of the usage of texts/graphics from
the author’s own publications is clarified.

1.1 Motivation

The European Green Deal obliges all EU member states to become climate-
neutral by 2050 [1]. To this end, Germany has set an interim target of a 55 %
reduction in greenhouse gas emissions by 2030 compared to 1990 levels in a
federal climate protection law [2]. The transport sector makes a significant
contribution to emissions through automobile traffic and aviation, which makes
reducing emissions in these areas correspondingly important. In recent years,
research has therefore been carried out in a wide variety of scientific fields, with
lightweight design in particular contributing to this end in the field of materials
science. This is due to the fact that the vehicle mass enters linearly into four
of the five types of driving resistance and therefore plays a decisive role in fuel
consumption [3]. This makes material classes that are relatively light, but at the
same time offer convincing structural rigidity and strength for the safety of vehicle
occupants and functional maintenance, particularly relevant. Fiber reinforced
polymers are arguably the best known, relatively new material system in this
context of weight-specific excellent mechanical properties [4], which is why a lot
of research funding has been invested in their characterization and modelling.
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So-called continuous (Co) fiber reinforced components have higher stiffness and
strength due to their microstructure (high anisotropy and high fiber volume con-
tent), whereas discontinuous (Dico) fiber reinforced components are faster and
easier to manufacture and offer a high degree of design freedom. The combi-
nation of both Co and Dico to synergistically exploit the advantages of both
material classes is the central topic of the International Research Training Group
(IRTG) 2078, within the framework of which this doctoral thesis was written. It
was funded by the German Research Foundation (DFG). Dico material shows
a heterogeneous microstructure, the characterization of which is essential for
understanding and simulating the material behavior. Therefore, the project C2 of
the IRTG 2078, in the context of which this work was created, aimed to analyze
the microstructure of the Dico material used in each generation in more detail;
in this third generation of carbon fiber reinforced polyamide 6. In addition to
conventional macroscopic and microscopic destructive testing methods, computed
tomography (CT) has emerged as probably the most important non-destructive,
imaging characterization option. The 3D images, which allow the spatial dif-
ferentiation of the constituents of the composites through different gray values,
can provide important microstructure characterization parameters through image
processing algorithms, such as fiber volume contents, fiber length distributions or
fiber orientation distributions.

While the development of evaluation methods for CT images of glass fiber rein-
forced polymers has progressed quite far, new challenges arise when using the
stiffer, stronger but also more expensive carbon fibers as reinforcement material.
Since polymers and carbon fibers are chemically quite similar and hence their
attenuation coefficients differ little, the contrast in the images is comparatively
low. In addition, carbon fibers usually have a diameter of 5 µm - 7 µm, which is
below the image resolution when scanning reasonable sizes of specimens and also
often below the possible image resolution of conventional CT devices in general.
This makes it impossible to identify individual fibers and results in significantly
higher noise in the images. Several problems arise from these conditions for this
work leading to the research objectives described in the next section.
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1.2 Objectives of the thesis

First of all, the choice of an appropriate specimen size for the CT investigations
is not trivial. A sample that is too large limits the maximum possible image
resolution accordingly, while a sample that is too small represents microstructural
phenomena that are too localized and difficult to transfer to an entire macroscopic
plate of this material. In addition, the image quality is reduced in the latter case.
Assuming that a suitable specimen size was chosen, there are procedures such
as gradient-based fiber orientation determination that are usable despite the fact
that individual fiber segmentation is not feasible. Fiber orientation information
is then obtained, for example in the form of fiber orientation tensors at discrete,
small areas across such a plate. This provides one of the first major questions
of this work: How to obtain a continuous fiber orientation tensor field from
these fiber orientation tensors at specific points, which is suitable for comparison
with orientation courses resulting from process simulations or for use in stiffness
modeling for comparison with experimental results? This tensorial interpolation
problem entails different properties and requires alternative methods compared to
scalar interpolation. Regarding this issue, three different methods are tested that
differ both in their basic concept (linear algebra vs. artifical intelligence (AI)) as
well as in their implementation and computational/human effort.

The evaluation of some variables, on the other hand, requires thresholding methods
that do not work effectively for the scans of carbon fiber reinforced polymers,
such as the determination of the fiber volume content. It is an open question
whether thresholding methods can be adapted appropriately in order to work for
low-contrast and non single fiber resolving images or whether switching to AI is a
sensible option.

Furthermore, the creation of artificial microstructures, intended to mimic these
materials and often used in material modeling in the form of representative volume
elements (RVE), is challenging with conventional packing algorithms. Again, the
suitability of AI in the form of so-called generative adversarial networks is to be
assessed.
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In addition, the influence of the microstructure of the initial charge/plastificate as
the basis of the pressing process is also to be evaluated. Specifically, the porosity
and material orientation will be investigated. Summing up, the following open
research questions were assessed in this work:

1. How does information on small specimens relate to large dimensions (cf.
scale-bridging, up- and down-scaling), especially in relation to the interpo-
lation of fiber orientation tensors?

2. How can characteristic quantities like the fiber volume content (that re-
quire thresholding) be extracted reliably from µCT images of carbon fiber
reinforced polymers?

3. Can realistic µCT images be generated with generative adversarial networks
in order to save scan resources and do they have potential in the creation of
representative volume elements?

4. Underlying all of those points is the question as to whether conventional
methods (linear algebra or classical image processing) are superior or infe-
rior to artificial intelligence based solutions.

1.3 Outline of the thesis

In Chapter 2 fundamental basics of fiber reinforced polymer (FRP) material, their
modeling, characteristic microstructure quantities, their image-based evaluation,
computed tomography and artificial intelligence are covered to allow perspicuity
of the following methods. In particular, related research contributions of these
fields are studied, classified and partially reproduced. Chapter 3 focuses on the
distinct description and derivation of the self-developed methods. Chapter 4 is
dedicated to the detailed and objective presentation of the results of the applied
methods. The assessment and quality analysis of these results is subject of the
Discussion in Chapter 5. Possible further developments and prospects for future
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research in these areas are also included. Finally, the work is summarized and
concluded in Chapter 6.

1.4 Remark on the use of own publications in
this thesis

Parts of this work were previously published in journal papers/conference pro-
ceedings by the author. If text of own publications has been reproduced in an
identical manner apart from minor linguistic changes that were necessary due to
different notation, numbering, etc., the section is marked with a footnote. In it, the
word "extracted" is used along with the respective publication. Analogously, if
graphics/tables have been published identically before, the same wording is used
in their caption. In the case that graphics/tables have been newly created but are
based on either own publications or other people’s publications, the phrase "based
on" along with the respective publication is part of the caption. However, if text
has been newly written and was published by the author substantially, this work
will be cited and if it affects an entire paragraph a footnote with the expression
"based on" is used again. The author’s publications are listed at the end of this
work.
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The State of the Art first describes fiber reinforced polymers in general and their
mechanical description. Then, the possibilities for the quantitative description of
the microstructure of discontinuous fiber reinforced polymers are shown. After
a section on computed tomography (CT) and known possibilities for processing
CT images, the final section introduces artificial intelligence, and in particular
artificial neural networks (ANNs), convolutional neural networks (CNNs) and
generative adversarial networks (GANs).

2.1 Fiber reinforced polymers

Composites are a class of materials characterized by the combination of two com-
ponents that typically differ decisively in their properties. The desired optimum
result is a synergy effect resulting in the composite material to perform better than
the sum of the individual constituents.[5] For quite some time now, there have
been various examples of composite materials that are used on a daily basis, such
as ferroconcrete in construction or laminated composites such as plywood. In
this context, FRP represent a special group whose further scientific development
was mainly sparked by their enormous potential in lightweight design. Owing to
their high density-specific strength and stiffness, FRP are used in the transport
industry (automotive, aeronautical), sports industry as well as in the energy sec-
tor, e.g., in wind turbine blades. They consist of fibers with high strength and
stiffness embedded in a typically low-density polymer matrix which gives the
fibers a position structurally, transfers the load to them [5] and protects them from
environmental influences [6]. Typical fiber materials include glass with relatively
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low cost and high strength, carbon, which is even stronger and stiffer, but also
significantly more expensive, or Aramid, and now increasingly natural fibers such
as flax or hemp [5]. The thin fiber shape is not chosen arbitrarily. According to
the weakest link theory, the so-called size effect describes the statistical decrease
of strength-reducing defects in a smaller material volume [7, 8], as well as the
reduction of the size of these defects, which is also the basis of the statistical
theory of brittle fracture dating back to Weibull [9]. The matrix material can
either be a thermoset or a thermoplastic material (in rare cases also elastomers).
While the former was used more often in engineering, load-bearing applications
in the past due to their high strength and stiffness and their minor sensitivity
towards environmental aspects, the use of the latter is increasing in recent years
[10]. Without covalent bonds between the chains, thermoplastics exhibit lower
effective mechanical properties [5]. Furthermore, they are susceptible to tempera-
ture and - dependent on the exact substance - also to moisture, albeit to a more
varying degree [11]. However, they are meltable, which enables them to have
superior recycling potential, and they can be manufactured rapidly, which reduces
production costs [10].

2.1.1 Fiber reinforcement architectures

Fibers can be incorporated into the matrix in a variety of ways. The dimension
and shape of the reinforcing phase is decisive for the mechanical properties, and
each type of reinforcement is also directly related to the process developed for it.
[5]

2.1.1.1 Continuous (Co) fiber reinforcement

Continuous fiber reinforcement signifies the deliberate insertion of fiber rovings
in a specific direction, where the length of the fibers usually exceeds or equals
that of the part. For the latter reason, it is often also referred to as endless fiber
reinforcement. Continuous fiber reinforced polymers (CoFRP) are normally made
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up of different single layers, each with a defined orientation. There are pre-
impregnated semi-finished products, which are usually available in sheet, tape or
strand form. These include prepregs such as unidirectional (UD) tapes, which,
apart from layers with a 0° orientation, also always have layers with a 45° or 90°
orientation. There are also pure fiber semi-finished products, so-called textiles
(sometimes also referred to as fabrics), which are not pre-impregnated. In the
latter case, a distinction is made between the widespread non-crimp fabrics and
woven, braided and knitted fabrics. Both types of semi-finished products can
ultimately be stacked in so-called laminates. By selecting the arrangement of
plies, the material behavior can be tailored to the main load directions. As a result,
it can range from almost unidirectional to quasi planarisotropic properties. [5] All
continuously reinforced polymers have in common that they exhibit outstandingly
good specific mechanical properties in comparison to DicoFRP and a less complex
and thus easy-to-characterize microstructure, but in return they offer little design
freedom [12].

2.1.1.2 Discontinuous (Dico) fiber reinforcement

In the case of discontinuous fibers, either a cut to a defined length below the
component length takes place in the process, or the fibers are cut by shearing in
extruders to a length distribution that tends to be dominated by relatively short
fibers compared to CoFRP. They therefore typically have a more complex, hetero-
geneous microstructure, while both single fibers [13] and fiber bundles [14] may
be encountered. In general, DicoFRP exist with thermoplastics and thermosets.
The best known type of the latter are so-called sheet molding compounds (SMC).
SMC is a typical representative of a bundle structure [14]. Discontinuous fiber
reinforcement can be further subdivided into short fiber and long fiber reinforced
polymers, abbreviated as SFT and LFT for thermoplastics [5]. The distinction is
made on the basis of the aspect ratio ar = l

d (length to diameter), with a value
below 100 still considered a short fiber material and a value above 100 a long fiber
material [15].
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Long fiber reinforced thermoplastics (LFT)

LFTs are characterized by their good processability and the possibility of eco-
nomical production of larger batches compared to CoFRP, as well as typically
better mechanical properties than SFT due to their longer fibers [5]. Together
with the possibility of recyclability by melting down the thermoplastic, this group
presents a particularly interesting combination of challenges and opportunities,
which is why they are subject of this work. They are typically produced in ex-
trusion compression molding processes. These start with the plastification of
the polymer-fiber mixture in an extruder and the subsequent placement of the
produced plastificate/initial charge in a mold cavity in a press. It is then followed
by the closure of the mold resulting in the final product, e.g., in the shape of a
plate, which was mostly used in this work. There is another distinction between
the so-called LFT-G (granulate) and LFT-D (direct) process. The two processes
differ in that semi-finished products, i.e. pellets containing thermoplastic matrix
and long fibers, are processed in the LFT-G process. The LFT-D process, on the
contrary, which is the production method of the material used in this dissertation,
is characterized by the in-line processing of thermoplastic granulate and the direct
introduction of continuous fiber rovings into the polymer melt (cf. Figure 2.1).

The advantages of the LFT-D process are the independence of prefabricated semi-
finished products and the associated cost benefits, high output capacities and
flexibility in fiber and polymer adaptations [18]. Thermoplastics like polyethy-
lenterephthalat (PET), polycarbonate (PC), polypropylene (PP) or acrylonitrile
butadiene styrene (ABS) can be used in this process. In this work, polyamide 6
(PA6) was the thermoplastic matrix material used.

2.1.1.3 Continuous discontinuous (CoDico) fiber reinforcement

In order to profitably exploit the contrasting advantages of continuous and dis-
continuous fiber reinforced polymers (cf. Table 2.1), the idea of continuous
discontinuous fiber reinforced polymers, or CoDicoFRP for short, evolved [12]. It
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Thermoplastic pellets Modifiers + additives

Compounding
extruder

Carbon/Glass fiber rovings

Mixing extruder (twin screw)

Initial charge/
plastificate

Compression molding
in press

Figure 2.1: Schematic representation of the long fiber reinforced thermoplastic direct (LFT-D) process.
Based on [16] and Blarr et al. [17].

makes use of the design freedom and cost-effective production of DicoFRP while
locally reinforcing the component with CoFRP at points subject to particularly
intensive stress.
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Table 2.1: Advantages and disadvantages of CoFRP and DicoFRP to illustrate the effect of joint use.
Data based on [12].

Aspect Co Dico

Mass-specific mechanical properties + -

High fiber volume content + -

Degree of fiber alignment + -

Low microstructure complexity + -

Easy formability - +

Low manufacturing cost - +

High production rate - +

Low waste rate - +

2.1.2 Basic elastic mechanics of FRP

In this section, elastic mechanics of FRP are presented, starting with the basic
homogenization equations and followed by macroscale modeling approaches
like the rule of mixture and corresponding Reuss and Voigt bounds as well as
the Halpin-Tsai model. The concept of critical fiber length for DicoFRP is
also explained in this context. After outlining the idea of microscale and RVE
models as well as mean field models, the Mori-Tanaka model is given as a typical
representative of the latter.

2.1.2.1 Homogenization

In continuum mechanics, homogenization is understood as the attempt to describe
a heterogeneous material by means of a model that represents this complex
structure in a highly simplified way and yet leads to a plausible deformation
behavior, i.e., macroscopically equivalent as the heterogeneous material, for the
load cases investigated. Hence, there are a local stress σ(x) and a local strain
ε(x) that are heterogeneously distributed in the material. They are related to the
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overall global behavior, so that the effective stress σ̄ and effective strain ε̄ are
given by so-called localization tensors L and M in the following way:

ε(x) = L(x)[ε̄],

σ(x) = M(x)[σ̄].
(2.1)

The following applies to the localization tensors

⟨L(x)⟩ = IS and ⟨M(x)⟩ = IS . (2.2)

Applying the Hill-Mandel condition [19, 20], which states that the work of an
entire system does not change viewing it from the microscale or the macroscale,
the effective stress σ̄ and effective strain ε̄ can be given by a volume averaging
⟨·⟩ over the representative volume V :

σ̄ = ⟨σ(x)⟩ =
1

V

∫
V

σ(x) dV,

ε̄ = ⟨ε(x)⟩ =
1

V

∫
V

ε(x) dV.

(2.3)

Assuming linear elastic behavior, the relation between effective stress σ̄ and
effective strain ε̄ is given by the generalized Hooke’s law

σ̄ = C̄[ε̄] = ⟨C(x)[ε(x)]⟩, (2.4)

with the local stiffness tensor C(x) and the effective stiffness tensor σ̄. The
effective stiffness tensor C̄ analogously is defined by

C̄ = ⟨C(x)L(x)⟩. (2.5)
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2.1.2.2 Macroscale modeling

When modeling composites, fundamentally different approaches have to be con-
sidered. The previous homogenization equations are the basis for the following
rule of mixture (ROM) and the Voigt and Reuss bounds as first-order energy
principles, which can be classified as a macroscopic homogenization approach,
as well as the semi-empirical approach of Halpin-Tsai. When modeling on the
macroscale, the material is considered as a homogeneous, anisotropic material.
Stresses and strains in different directions can be determined by experiments,
and reverse-engineering can be used to determine the unknown constants in the
phenomenological models ultimately. Although these methods are an obvious
simplification of the true situation, since they ignore locally varying material prop-
erties that a composite always exhibits, they are popular due to their computational
simplicity, especially in industry or for large systems. [5]

Rule of mixture (Reuss and Voigt bounds)

The simplest micromechanical, energy-based model is the so-called rule of mixture
(ROM). Assuming a perfectly aligned unidirectional fiber reinforced composite
under uniaxial tension σ11 (cf. Figure 2.2) and a still intact material, the strains of
matrix and fibers have to be equal as they are bonded to each other.

This follows the so-called Voigt assumption [21]. Furthermore assuming linear
elastic behavior of both constituents according to Hooke, this can be written as

εc = εm = εf =
σc
Ec

=
σm
Em

=
σf
Ef
. (2.6)

In this and in the following equations, the subscripts c, m and f describe the
respective composite, matrix and fiber property.
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Matrix

Fiber

e2

e1

σ11

σ11

Figure 2.2: Schematic graphic of a perfectly unidirectional continuous fiber reinforced polymer under
uniaxial tension σ11. Based on [5].

Based on the premise that stress is defined by

σ =
F

A
, (2.7)

the force equilibrium

Fc = Fm + Ff (2.8)

can be rewritten with the help of Equation (2.6) as

EcεcAc = EmεmAm + EfεfAf (2.9)

and further as

Ec = Em
Am

Ac
+ Ef

Af

Ac
. (2.10)
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Introducing the fiber volume content/fraction vf this results in

E11 = Ec = Em(1− vf) + Efvf . (2.11)

It shall be mentioned that while under the given conditions, the shear and bulk
modulus follow the ROM, the Young’s modulus does only obey the ROM in the
case that the Poisson ratio of both fiber and matrix are equal [22]. Otherwise,
which is the normal scenario, the real Young’s modulus in longitudinal direction
E11 would actually be larger than given by Equation (2.11), which is the first-order
upper bound of Voigt.

Considering the transverse direction, thus a load perpendicular to the fibers σ22,
following the Reuss assumption [23] of equal stresses σ22 = σc = σm = σf , one
obtains the inverse ROM,

E22 = Ec =
(1− vf
Em

+
vf
Ef

)−1

, (2.12)

as the first-order lower bound modulus. It was first shown by Hill in 1952 that
those are upper and lower bounds [24]. They are visually displayed in Figure 2.3.
The Voigt bound is close to the actual value, as a parallel connection in the fiber
direction is a fairly good approximation. The Reuss bound, on the other hand,
is much further away, as a series connection in the transverse direction is not a
realistic analogy. Accordingly, all material properties of a composite (like the
Young’s modulus) are located between the two limits. This applies both to the case
where the loading is not entirely longitudinal or transverse, but a mixed loading is
present, and to the case where there is no optimally uniaxially reinforced FRP, but,
for example, a discontinuously reinforced composite. The Voigt and Reuss bounds
also directly result from Equation (2.5) in Section 2.1.2.1. After introducing
two phases (matrix, fiber) and a corresponding volume fraction of fibers vf , the
equation describing Voigt’s upper limit (cf. Equation (2.11)) is reattained easily.
By defining the compliance tensor S = C−1 as the inverse stiffness tensor, the
homogenized stiffness tensor of Reuss (cf. Equation (2.12)) is also obtained again.
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Figure 2.3: Graphic showing the effect of the fiber volume content vf on the effective Young’s modulus
Ē of a composite (gray area) with first-order upper Voigt (orange) and lower Reuss bound
(blue). The solid orange line signifies the upper bound in the case that both constituents
have the same Poisson ratio, the dashed orange line is an elevated adaption for unequal
Poisson ratios. Based on [22, 25].

Hashin–Shtrikman [26] actually showed in 1962 using variational principles that
the upper and lower bounds for the elastic moduli can be more narrow than the
Voigt and Reuss bounds, which will not be discussed further here. Even with this
simplified model, the relevance of local fiber volume contents for homogenization
of composites gets conveyed.

Concept of critical fiber length

In the case of DicoFRP, the fibers do not extend over the entire length of the
component. Naturally, this raises the question of whether the concept of load
transfer between matrix and fiber therefore still works without restriction. In order
to approach this issue, the model of a single, discontinuous fiber embedded in a
cylindrical matrix is used (cf. Figure 2.4).
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σ σ

Matrix

Fiber

σ

τ

τ

τ

τ

τ

0.5 · lt 0.5 · lt

Figure 2.4: Schematic of a single discontinuous fiber embedded in a matrix. The composite experi-
ences tensile stress in fiber direction. The respective load transfer from matrix to fiber is
depicted as qualitative plots of the tensile stress distribution in the fiber and the shear stress
distribution in the matrix. The blue line of the shear stress corresponds to the material
response of a fully elastic matrix (roughly that of a thermoset), whereas the dashed blue
line relates to a viscoelastic matrix, hence a thermoplastic material. Based on [5, 27].
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When this composition is subjected to tensile stress along the fiber direction, the
matrix deforms and thereby transmits load to the fiber through shear, especially at
both ends of the fibers. The shear stress decreases the further one gets away from
the edge of the fibers. The maximum normal stress is therefore induced in the
fiber when the fiber is long enough for the shear stress to become zero before the
middle of the fiber length. This allows maximum force transfer to occur, loading
the favorable tensile properties of the fibers instead of the more critical interface
properties. The course of the shear stress at the interface depends on the matrix
type. In the case of mostly elastically deforming thermosets, a sharp peak appears
at the end of the fiber (blue curve in Figure 2.4), whereas the viscoelastic material
behavior of thermoplastics tends to provide a softer transition (blue dashed curve
in Figure 2.4). [5]

Assuming - as a modeling simplification - that in the case of the thermoplastic
matrix the shear stress at the edge increases abruptly to τ and then remains
constant at this value up to the edge of the fiber, the shear force at the interface is
given by

FShear = Cfτ
1

2
lt =

πdltτ

2
, (2.13)

with the circumference of the fiber Cf = πd and the length of the fiber necessary
for load transfer lt. The maximum fiber force can be calculated by

Ff = Afσf =
πd2σf

4
, (2.14)

with the area of the fiber Af = πr2 = π
d2

4
.

Using Equation (2.6), as the load is parallel to the fiber direction, leads to

σf
Ef

=
σ

E11
. (2.15)
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In order to obtain the length necessary to transmit the entire load from the matrix
to the fiber, the shear force and the force in the fiber have to be equated, leading to

lt =
σfd

2τ
=

Ef

E11

σd

2τ
. (2.16)

In the case of failure, either the fiber breaks or the interface fails. Optimally, both
occurs simultaneously, reaching the bonding shear strength τb and the ultimate
fiber strength σfu. This leads to the reformulation of Equation (2.16) as

lc =
σfud

2τb
, (2.17)

with lc being called the critical fiber length. [5]

The importance of a minimum fiber length and in general the influence of fiber
length becomes clear in this simplified model. In the following, homogeniza-
tion approaches will be discussed which explicitly take more account of such
microstructural properties.

Halpin-Tsai

As a scalar and one of the most simple methods, the Halpin-Tsai model [28]
approaches short-fiber reinforced composite materials by including the length
to diameter ratio l

d . In the Halpin Tsai equations, a load-direction dependent
empirical factor ξ is introduced, defined as follows:

ξ11 = 2
( l
d

)
(longitudinal direction),

ξ22 = 2 (transverse direction).
(2.18)

It is therefore a semi-empirical homogenization method and an adaptation of
Voigt (ξ = ∞) and Reuss (ξ = 0). While this geometry factor ξ could be
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expressed correctly as a combination of elastic constants and differences in Poisson
ratios, the reasonable assumption that the engineering stiffness equations are
insensitive towards differences of the Poisson ratios was made [29]. The validity
of the expressions/values for ξ developed from this assumption was verified
both experimentally and by computer calculations of the exact equations [29].
Additionally defining η and λ as

η11,22 =

Ef

Em
− 1

Ef

Em
+ ξ11,22

,

λ =

Gf

Gm
− 1

Gf

Gm
+ 1

,

(2.19)

leads to the following equations for the longitudinal and transverse Young’s
modulus E11 and E22 and for the shear modulus G12

E11 = Em

(1 + ξ11η11vf
1− η11vf

)
,

E22 = Em

(1 + ξ22η22vf
1− η22vf

)
,

G12 = Gm

(1 + λvf
1− λvf

)
.

(2.20)

For l
d →∞, hence in the case of a CoFRP, these equations can be converted, e.g.,

with the help of L’Hôpital’s rule, into the ROM (cf. Equation (2.11)).
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The Poisson ratios are defined as

ν21 = νm(1− vf) + νf21vf ,

ν12 = ν21
E22

E11
,

(2.21)

with the first index describing the contraction direction and the second index the
load direction. [5]

The previous equations include the fiber volume content and also a (at least
average) fiber length. The stress-strain relation is given as


σ1

σ2

τ12

 =


C11 C12 C16

C12 C22 C26

C16 C26 C66


︸ ︷︷ ︸

=Cij


ε1

ε2

γ12

 , (2.22)

with the components of the stiffness tensor defined by

C11 =
E11

1− ν12ν21
, (2.23a)

C12 = ν21C11, (2.23b)

C16 = 0, (2.23c)

C22 =
E22

1− ν12ν21
, (2.23d)

C26 = 0, (2.23e)

C66 = G12, (2.23f)
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if the loading directions coincide with the main fiber orientation. In the case that
the load and fiber direction of the composite are now offset by an angle θ, the
components of the off-axis stiffness matrix C ′

ij can be calculated as follows:



C ′
11

C ′
22

C ′
12

C ′
66

C ′
16

C ′
26


=



c4 s4 2c2s2 4c2s2

s4 c4 2c2s2 4c2s2

c2s2 c2s2 c4 + s4 −4c2s2

c2s2 c2s2 −2c2s2 (c2 − s2)2

c3s −cs3 cs3 − c3s 2(cs3 − c3s)

cs3 −c3s c3s− cs3 2(c3s− cs3)





C11

C22

C12

C66


, (2.24)

where c = cos θ and s = sin θ. [30] The equations are given in Voigt notation.
This way, the fiber orientation can be considered in the Halpin-Tsai homoge-
nization through the inclusion of the amount of fibers aligned in a specific angle.
In practice, the occurrence of fibers in a specific angle range of, e.g., 20°, is
incorporated instead.

Shear-lag modified Halpin Tsai

Another well-known model for unidirectional discontinuous short fiber reinforced
polymers is the so-called shear-lag model according to Cox [31]. The name is
based on the fact that the fiber and matrix experience different displacements when
a load is applied. This leads to a "delay" in the displacement near the fiber-matrix
interface compared to the matrix. A precise derivation can be found in the work
by Fu et al. [32]. The final result is the following equation for the stiffness in fiber
direction:

EL = Efvf

(
1− tanh(χl/2)

χl/2

)
+ Em(1− vf), (2.25)
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with l as the average fiber length and χ given by

χ =

√
2Gm

r2f Ef ln (R/rf)
. (2.26)

Therein, the average fiber radius is given by rf and R denotes the mean separation
of the fibers normal to their length. Equation (2.25) can then be used as E11 in
the Halpin-Tsai model (cf. Equation (2.20)) resulting in the shear-lag modified
Halpin-Tsai equations. To the author’s knowledge the use of shear-lag in the
Halpin-Tsai model was first considered by Fu et al. in 2002 [30].

2.1.2.3 Microscale/Multiscale modeling

When modeling on the microscale, on the other hand, every fiber, the matrix,
each void and the geometric arrangement has to be considered. For this purpose,
RVEs are used at the micro level (µm). While this is possible on a small scale,
with glass fibers being between 14 µm and 20 µm in diameter and carbon fibers
between 5 µm and 7 µm, there can be so many fibers in just one square millime-
ter that this is hardly a realistic approach computationally when considered at
the component level. If an RVE is used for homogenization and coupled with
macroscale modeling (mm), this is considered multiscale modeling. These unit
cells in microscale modeling should be chosen to be as small as possible but as
large as necessary. This means that they should optimally represent the global,
effective material behavior and not only local features, while at the same time
being small enough for efficient computations. The choice of the size of this
RVE is therefore challenging, especially for DicoFRP. The material properties can
then be homogenized within the RVE. The macroscopic material behavior can be
obtained by assembling a component in a finite element (FE) model recurrently
from copies of this RVE. [5]

Depending on the microstructure, multiscale modeling can also mean using a
material unit discretely on the mesoscale. Using the example of SMC, which
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has a typical bundle structure, the fiber bundles can be segmented as a unit from
CT images [14]. This bundle-matrix structure can then be the basis for structural
material simulation [33] as well as for a mesoscale simulation of the mold filling
process [34].

Microstructure generation for RVEs

In this context, the creation of an RVE that can be used discretely in simulations
is an entirely new issue. There are programs that can basically automatically
create a discrete RVE model from a CT image. However, this only works for very
high-resolution and high-contrast CT images and comes with certain limitations in
accuracy. Classically, image analysis of CT images and experimental procedures
are used to determine quantities such as fiber orientation, fiber length distribution,
fiber volume content and pores for the size of the intended RVE and then an
attempt is made to recreate the microstructure from this information. Therefore,
microstructure generators are programmed. These are typically based on so-called
sphere-packing algorithms. Therein, one attempts to pack particles or fibers
into a cell in a non-overlapping manner and to match the specified properties
such as fiber volume content, fiber orientation and fiber lengths as precisely as
possible. In order to achieve the packing, scientist have relied on a wide variety
of approaches, such as mechanical compression or more chemically influenced
ideas of molecular dynamics, right up to a shrinking RVE cell. Typical examples
are random sequential adsorption (RSA) [35], the approaches by Lubachevsky
and Stillinger [36] or Torquato and Jiao [37] and mechanical contraction [38].
These packing algorithms have limitations. Particularly high fiber volume contents
are a problem for them, but curvature of the fibers is also difficult to incorporate.
However, both effects were observed in the material used in this work. In particular,
the visible mixture of fiber bundles and individual fibers cannot be covered,
even with newer, improved or extended approaches. Therefore, this topic will
be addressed again in Section 2.2.4 in the State of the Art. With the use of
AI to generate CT images of microstructures, a completely new direction of
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microstructure generation and possibly eventually RVE generation will be opened
up.

2.1.2.4 Mean field homogenization

Mean field homogenization can be regarded as a middle ground between the
homogenization approaches mentioned so far. The aim is to determine mean
material parameters for a certain volume, which is supposed to represent the
microstructure of the composite. The important assumption here is that each fiber
is an ellipsoid in the matrix and the aspect ratio of the ellipse represents the aspect
ratio

(
l
d

)
of the fiber. It is further assumed that the fibers are straight and well

distributed and that there is no fiber-fiber interaction. The homogenized material
properties are then to be determined for this RVE with the simplified structure.
[5, 39, 40]

In the context of mean field homogenization, the analytical solution for stress and
strain in an infinite linear-elastic body with an ellipsoidal inclusion by Eshelby in
1957 was decisive [41]. He found that there is a uniform strain εinclusion in the
inclusion when it is exposed to eigen-strain εm, related by

εinclusion = Nεm. (2.27)

The strain in the infinite elastic body and the ellipsoidal inclusion are therefore
not equal. N is a fourth-order tensor that is a function of the fourth-order stiffness
tensors of matrix Cm and inclusion Cf defined by

N =
[
I− EC−1

m (Cf − Cm)
]−1

, (2.28)

with I as the fourth-order identity tensor and E being the fourth-order Eshelby
tensor, whose components are defined as a function of the aspect ratio of the
inclusion (with which the average fiber length is taken into account) and the
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Poisson ratio of the elastic body around it. The exact definitions of the components
can be retrieved from the original paper [41]. [5] An overview of the different
options of homogenizing a composite can be seen in Figure 2.5.

Mori-Tanaka

As Eshelby deduced the above expressions only for a single ellipsoidal inclusion,
no interactions between those inclusions are allowed for and hence the stress
in the inclusion can be caused by the matrix only. As this is not the case in a
composite, Mori and Tanaka [42] extended this model to a two-phase system with
interactions between the inclusions, resulting in one of the most well-known mean
field homogenizations. [5]

A new tensor of fourth-order T is introduced as an adaption of N, leading to

εinclusion = Tεm. (2.29)

T is given depending on N and the volume fraction vf as

N =
[
(1− vf)I+ vfT

]−1

T. (2.30)

If the volume content of the fibers is zero, T and N are equal. The stiffness tensor
of the composite can then be calculated as

Cc = C̄ = Cm + vf⟨(Cf − Cm)T⟩. (2.31)

The fiber volume content and the aspect ratio are already taken into account in
this expression. There are subsequently two options for also taking the fiber
orientation into account if it is not a unidirectional material. The reference tensor
H0 (see Section 2.2.3.1 and [43]) can either be multiplied subsequently after the
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Macro scale Mean field Micro scale

RVE

CT scanCoupon testing

Experimental
stress-strain

Curve-fitting

FVC, FLD, FOT
measurements

Discrete microstructure
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Ellipsoidal
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Figure 2.5: Overview of the various homogenization options for a fiber reinforced composite with
increasing complexity from left to right. For further explanation, the corresponding text
sections should be consulted. Images of the CF-PA6 plates used in this work are shown at
the top, with possible specimen geometries for different evaluation methods. The 3D view
of the scan is an image of a 25 mm × 25 mm × 3 mm GF-PA6 sample. The generated
microstructure on the far right is a specially created microstructure with 1000 fibers and a
fiber volume content of 0.2, which was implemented using an RSA algorithm in which
spherocylinders were packed.
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stiffness determination. This corresponds to a linear dependency. Alternatively,
the orientation determination can already be coupled directly to the tensor T,
which no longer complies with linearity in the dependency and, to the author’s
knowledge, was introduced for the first time by Benveniste [44]. More details
can be found in the works of Bauer and Böhlke [45] and Benveniste [44]. The
former paper also shows that this makes no major difference in the effective values
for one type of fiber in the composite. However, the linear adjustment of the
orientation no longer makes sense if, for example, there are two fiber types with
different orientations in a hybrid composite.

2.2 Quantitative metrics of DicoFRP
microstructures and their determination

Over time, various parameters have been developed for the quantitative description
of the complex, heterogeneous microstructure of discontinuous fiber reinforced
polymers. These are outlined below and established methods - whether destruc-
tive or non-destructive, experimental or by image evaluation - that lead to the
determination of these quantities are described.

2.2.1 Fiber volume content

The fiber volume content (FVC), often also referred to as fiber volume fraction
(FVF) and in this work denoted as vf , determines the proportion of fibers in the
total volume of the material. In general, a higher fiber concentration implies a
higher elastic modulus, as well as higher strength and better impact behavior,
although the effect on the latter two typically inverses at some point (at least for
DicoFRP) due to the formation of non-impregnated bundles [5].
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2.2.1.1 Experimental destructive methods for FVC determination

A first starting point to get an approximate FVC of a plate/part is, of course,
the value nominally set in the process during fiber feeding. However, since
this information is quite inaccurate and the fiber content varies across a plate
due to the process, a measurement of the FVC of the finished material is of
interest. Typically, a smaller sample is cut out of a part and the fiber volume
content is measured destructively by removing the matrix and then measuring
the fiber weight compared to the total weight of the sample. This method is also
known as thermogravimetric analysis (TGA). The polymer is most commonly
removed by incineration, also known as pyrolysis, as it is the most straightforward
approach [5]. The temperature and time profile of the incineration process must
be adjusted individually for each polymer, exemplified by Rohde et al. [46] for
polypropylene. The decisions also depend on the time available and whether
the fibers are measured further afterwards and therefore may not become more
brittle or sintered. For glass fibers, this works well in principle, but for carbon
fibers, which are the most frequently treated in this work, problems arose because
the carbon fibers can be attacked by the burning process. If the specimens were
incinerated too short or at too low a temperature, the matrix was not yet completely
dissolved and the fibers were therefore still attached to each other. However, if
the specimens were processed longer or at higher temperatures, the fibers were
already visibly attacked. Due to the experienced difficulties of pyrolysis for CFRP,
this method was not applied further after initial tests. Alternatively, the matrix
can be dissolved using acid. Here too, experience for certain polymers plays a
role in the exact test procedure (choice of different acids, their concentration, time
periods and temperatures). The exact method and the parameter values will follow
in the Methods section. Subsequently, when the fibers are separated, they are
weighed with a high-precision scale and divided by the total mass mtot of the
sample to obtain the fiber mass content:

wf =
mf

mtot
. (2.32)
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To determine the fiber volume content on this basis, the densities of the constituents
and the trivial relationship mm = mtot −mf must be used, leading to

vf =

mf

ρf
mf

ρf
+
mm

ρm

. (2.33)

2.2.1.2 Determination of FVC through consideration of composite
density

With the density of the composite ρc defined as

ρc = wfρf + (1− wf)ρm, (2.34)

the fiber weight content wf can be determined as

wf =
ρc − ρm
ρf − ρm

. (2.35)

The density of the two constituents (fiber and matrix) is usually known from data
sheets. The density of the composite can be determined by using Archimedes’
principle - provided the material is non-porous. Otherwise, the volume of the
composite sample can also be determined very accurately by CT measurement
and the mass can be weighed.

2.2.1.3 Computational non-destructive methods for FVC
determination

There are multiple reasons why a non-destructive determination of the fiber volume
content is desirable. Firstly, CT scans are used for every holistic characterization
of FRP, as the fiber orientation, for example, cannot really be determined well
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locally in another way (apart from using the method of ellipses on micro sections
[5]). The non-destructive determination of any additional parameter from a 3D
CT image makes the investigation more efficient instead of going to the further
expense of pyrolysis/acid dissolution. Furthermore, in case of an experimental
FVC determination, a round or rectangular sample between 10 mm and 30 mm
is usually processed as a whole. This does not provide any information about
the course of the fiber volume content along different axes. However, there
is good reason to suspect that this is of particular interest with regard to the
thickness of flat samples, e.g., to investigate the shell-core effect appearing in
injection molding [5]. A low FVC on the outer surfaces of the specimen and
thus a lower stiffness and strength could be decisive, especially for bending loads
with maximum bending stress as tension or compression at the outermost edge
of the cross-section. Theoretically, it is also possible to obtain 3D information
on the FVC destructively by milling off thin layers and subsequent pyrolysis,
which has already been done [5]. However, this procedure requires a lot of effort
and measurement inaccuracies are particularly serious given the small amount
of material and the potential fiber shortening due to the milling process. In
addition, neither pyrolysis nor chemical dissolution are possible if natural fibers
are involved, which are attacked by both.

The method of choice from classical image evaluation would be global threshold-
ing. One makes use of the different attenuation coefficients of the fibers and the
matrix, which cause them to appear with different gray values in the CT image.
Hence, a gray value as threshold is sought which divides the histogram of all
gray values in the image exactly at the point, where the material, that the voxels
represent, changes. The location of these voxels is not taken into account in the
case of thresholding procedures. One can simply search for a threshold manually
in commercial software such as ImageJ by creating a threshold and visually esti-
mating how many fibers are detected. However, there is also a large number of
so-called automatic thresholds that are calculated based on analytical considera-
tions, like the Otsu threshold [47], the moment-preserving method by Tsai [48] or
the mean threshold [49–51]. They are pre-implemented both in ImageJ as well
as in image processing packages available for Python or C++. The computation
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of the most known ones are explained in Section 2.3.4.2. You can then divide
the number of pixels/voxels detected as fibers by the total number and obtain
a fiber volume content. The difficulty with this method is that the determined
FVC depends directly on the threshold value. However, the true threshold cannot
be determined even with high-resolution CT images with good contrast. Pinter
[52] has applied a large number of different threshold techniques to GF-LFT and
GF-SMC and compared them with TGA measurements, but cannot find one that
fits perfectly and advises that these values should be treated with caution and that
high contrast between fiber and matrix is required. Gandhi et al. [5] introduce
a new µCT procedure that attempts to get rid of the ambiguity of selecting the
true threshold. They chose the midpoint between the mean value that represents
the glass fibers in the histogram and the mean value that represents the matrix as
the threshold value. Although this does not represent the true threshold, small
adjustments to higher or lower values only results in the FVC distribution being
slightly shifted up or down, but its course remains the same. They then normalize
the values of the distribution by dividing them by the average fiber concentration
of the entire data set. This shifts the curves back to approximately the same values,
regardless of which threshold was originally used. However, this approach only
works if two clear peaks are recognizable in the histogram of the CT images. This
is not the case for carbon fibers with a diameter of 5 µm - 7 µm, which show a low
contrast to polymers in CT due to their similar densities. This challenge will be
elaborated on in Section 2.3 about computed tomography.

After reviewing further literature, it becomes apparent that a simple threshold
between fiber and matrix is clearly too imprecise [53–55]. They are still widely
used in the case of pores and voids as air inclusions are usually easy to detect
[56]. Even in that case though, deep learning (DL) solutions have outperformed
thresholding in specific cases like small voids or low porosity [57]. Combinations
of DL and thresholding have been explored for low contrast and noisy X-ray
images as well [58]. For the specific problem of reliable determination of the
FVC of carbon fiber reinforced polymers (CFRP) through image segmentation of
CT images, DL presents a promising opportunity. Convolutional neural networks
(CNN) in particular have proven to be able to handle low contrast images and
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improve statements resulting from them [59–64]. It seems especially tempting in
cases like these as necessary filtering and image processing steps do not have to be
found by the engineer, notwithstanding that they are often needed for the training
of the CNN in advance. Thus, in the Methods (Chapter 3) a CNN will be presented
for this use case as well as an adapted thresholding method as comparison.

2.2.2 Fiber length distribution

The fiber length distribution (FLD) describes the amount of fibers as a function
of their length in a sample volume. It plays an important role for the mechanical
properties as described in Section 2.1, especially when including damage mech-
anisms [52]. Young’s modulus, strength, and impact behavior all improve with
rising fiber length with the effect saturating at very high lengths or even decreasing
in the case of high fiber volume contents [5]. It can be given as a probability
density function fl(l). Analogous to classical probability density functions, fl is
non-negative, integrable and normalized in such a way that the total integral takes
the value one:

∫ ∞

0

fl(l)dl = 1. (2.36)

A two-parameter Weibull distribution is mostly used for modeling the fiber length
distribution [65–68], which is defined as

fl(L) =
m

n

(
l

n

)m−1

exp
[
−
(
l

n

)m]
; l > 0, (2.37)

with n and m as scale and shape parameters and l as the fiber length.

Alternatively, length histograms are used in practice, in which fibers inside of
defined intervals of length are summed up.
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2.2.2.1 Experimental destructive methods for FLD determination

There are several ways to determine the fiber length destructively, all of which
are connected to the matrix removal, which is also used to determine the fiber
volume content. Secondly, in most cases, a certain representative proportion of
the fibers is selected first, as there are usually too many in a sample to be able
to measure them meaningfully. Gandhi et al. [5] recommend a sample size of
1000 to 2000 fibers. After some kind of method for the dispersion of fibers is
applied, the fibers are separated. The fibers can be dispersed either manually
or by air on a scanner. As this causes difficulties, most current methods are
based on dispersion in liquid and subsequent mixing either manually or using
ultra-sound [46, 69], including the two commercial methods described briefly
below. The fiber lengths could be determined subsequently, for example, by
progressive filtering, a fast, mechanical but rather imprecise process. Direct
optical methods are more common. Therefore, a digital image is created either
through microscopy or an optical document scanner and the image is afterwards
analyzed. The individual length of each fiber can be detected either manually by
selecting respective endpoints or with the support of image processing algorithms.
Hybrid approaches are also used. [5]

FASEP

With the commercially available system FASEP (IDM Systems, Darmstadt, Ger-
many) [70] fiber lengths up to a theoretical length of 25 mm and also bent or
crossed fibers of fiber reinforced thermoplastic materials can be detected. In a first
step, as already mentioned, a sample is either pyrolysed or dissolved in acid in
order to remove the matrix. After the fibers are separated, they must be dispersed.
This is done by adding the remaining fibers to distilled water to which glycerine
has been added. The mixture is gently stirred and multiple of these diluting steps
are carried out by adding more water and glycerine [5]. A small amount of this
mixture is then pipetted into a 90 mm diameter Petri dish. A digital image of the
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fiber mixture is obtained using a customized dark-field imaging approach. The
optical resolution of 1700 dpi corresponds to a pixel size of 14.9 µm. The tracking
in the image itself is carried out using an ALF algorithm developed in-house by
the FASEP company. [52, 69] Typically, several of these subsets of the sample are
examined in succession to obtain a set of at least 3000 fibers and the results are
combined into a histogram of the frequencies.

FibreShape FiVer

The sample preparation can be performed analogously to the FASEP approach.
Distilled water and a little detergent are then added together with the fibers to a
sample container measuring 6 cm × 12 cm. The fibers are distributed as evenly
as possible with a spatula without breaking them. The sample vessel holder
is then placed in the so-called FiVer scanner. An image is scanned using the
Silverfast software. The real optical resolution corresponds to 8 µm, which is
why fiber lengths between 30 µm and 5 cm can be detected. Depending on the
inhomogeneity of the sample, five to seven of such images are taken per sample,
which can correspond to over 10,000 elements after the measurement. In particular,
the high resolution also makes it possible to measure fibers with a thinner diameter,
such as carbon fibers. The FibreShape (IST AG, Vilters, Switzerland) program is
then used to measure the corresponding lengths from the images. The exact length
detection algorithm of the company is not known to the author. The output is the
geodetic length, as the fibers that are measured are often curved. The geodetic
length indicates the corresponding length that would be measured if the fiber was
straight. The program calculates the value on the basis of the equality of the area
or circumference of the bent and the curved fiber image. The procedure complies
with the specifications of ISO 9276-1 and ISO 13322. [52]

This method is the one used for the determination of the fiber length distribution
in this work, mainly because it was the technique available at FIBRE (Bremen),
where the chemical matrix dissolution was performed before.
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2.2.2.2 Computational non-destructive methods for FLD
determination

Multiple algorithms have been developed for the non-destructive measurement of
fiber lengths from µCT images. To the author’s knowledge all of them have been
developed for the example of glass fiber reinforced polymers.

A method for the measurement of the length of short fiber reinforced polymers has
been introduced by Salaberger et al. [71] in 2011, where they present two concepts.
The first procedure works by accurately detecting a starting point and an end point
of every fiber. Therefore, an anisotropic diffusion filter was applied first to reduce
noise without blurring any edges. The image is then binarized by applying the
Otsu threshold in order to isolate the fibers from the matrix. In order reduce the
information per fiber to their medial axis and therefore only a single line of voxels,
a binary thinning is conducted. This process is also called skeletonization [72]. In
the following, a cluster analysis is performed, which has the purpose of dividing
touching fibers, i.e. regions with clustered fiber-associated voxels, into individual
objects. This method was introduced by Pfeifer [73]. Clusters are defined as a
voxel that has more than two neighbors. They are recognized morphologically.
The cluster information is then used for the fiber tracing, where the fibers are
followed to their endpoint or until a cluster is reached. If detected segments fall
below a user-defined length, they are assigned to image noise and are not evaluated
as fibers. Subsequently, all detected segments are analyzed and identified as fibers
or merged into fibers in the event of a cluster encounter. The joining decision is
made by analyzing the angles of all segments in a cluster. Salaberger et al. chose
a kink angle of 160° and a cluster distance of 14 µm, which corresponds to the
approximate fiber diameter as parameters of this algorithm. Subsequently, when
all fiber paths are found, the length determination itself can be performed.
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Since straight fibers can be assumed in the case of short fibers, the length of the ith
fiber is simply determined by the Euclidean distance of the start point xi1, yi1, zi1
and end point xi2, yi2, zi2 of the fiber as

li =
√

(xi2 − xi1)2 + (yi2 − yi1)2 + (zi2 − zi1)2. [13] (2.38)

As the second concept presented by Salaberger et al. [71] is similar to the approach
by Teßmann et al. [74] presented in the next paragraph, it will not be described in
detail in this work. It works directly on the gray value image without binarization
and requires the detour via the determination of the fiber orientation by calculating
the Hessian matrix and analyzing their eigenvalues. The Hessian matrix is a
measure of the local curvature of a 2D/3D image. While originally being used in
order to detect valleys and ridges in topology problems [52], Daniels et al. [75]
first implemented a 3D Hessian matrix for the evaluation of local orientations in
volumetric images in 2006. Mathematically it is defined as the square matrix of
the second order partial derivative of the image I(x):

H(x) = ∇2I(x) =



∂2I

∂x2
∂2I

∂x∂y
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∂x∂z
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∂y∂x
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∂y2
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∂y∂z
∂2I

∂z∂x

∂2I

∂z∂y

∂2I

∂z2

 . (2.39)

In addition to the local orientation, the gray value distribution across the cross
section of a fiber is taken into account. It should roughly match a Gaussian
distribution perpendicular to the axial direction and hence show the highest gray
value in the center of the fiber. Thereby, one can reduce the fibers to their center
voxels. This dataset can then be examined analogously to the approach before
to detect the start and end point of the fibers and find the length. They attain up
to 97 % accuracy in another paper investigating the reproducability and accuracy
of the described approach for short glass fiber reinforced polypropylene [76].
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However, mean fiber lengths decreased for lower resolutions. Since the curvature
of the fibers, which generally occurs in long-fiber reinforced polymers, is not
taken into account by these approaches, two further methods are described below.

Teßmann et al. [74] introduced an alternative approach for the fiber length determi-
nation from µCT images of long fiber reinforced thermoplastic specimens in 2010.
This approach is based on the reasonable assumptions that (a) the fibers have a
cylindrical shape, (b) the gray value profile of the fibers is the highest at their
centers as mentioned in the paragraph before and (c) that all fibers have a constant
and previously known diameter. Subsequently, the segmentation is divided into
several sub-steps. The image is filtered and reduced by a closing operation first.
This step is necessary as standard segmentations such as seeded region growing
[77] fail in case of tightly packed fibers. A morphological erosion filter is therefore
applied to the image, in order to enhance the fiber borders. Subsequently, the
center voxels of the fibers have to be determined through a discrimination function
based on an eigenvalue analysis, which was introduced by Frangi et al. [78]. The
already mentioned Hessian matrix is computed for every voxel for this step. The
thereby detected center points are used as starting seeds for the tracing algorithm.
Therefore, a model-based cylinder approximation scheme is used which is based
on the fiber shape assumption mentioned before. A starting point candidate is
followed along the minimum eigenvector in both directions resulting in a center
point list, from which the circular shape can be built. Once a fiber is completely
segmented, it is removed from the original image and the procedure is repeated
until there are no more prospective fibers in the image. Finally, the fiber lengths
can then be determined easily as

Li = ns, (2.40)

with n denoting the number of center point voxels of one fiber and s the isotropic
voxel size. In the paper by Teßmann et al. [74], certain special cases of crossing
fibers or partial fiber segmentation are explained in more detail. Finally, the
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algorithm was tested on artificially generated test images and images of selected
real components.

Finally, the FLD determination approach by Pinter et al. [13] from 2016 is
presented here. They introduced a reliable procedure to determine FLDs of LFT
material which - contrary to Teßmann’s method - shall even work for moderate
image qualities. It starts with a pre-processing of the image with the help of a
CircularVoting filter developed by Bertram and Pinter [79] and available as open
source software on SourceForge as part of the so-called Composight package.
Through this pre-filter, connections of almost touching fibers are avoided by
thinning them and thus increasing their distances. For the exact details of the
CircularVoting method, the reader is referred to the cited paper. However, the
idea is based on the combination of a coherence measure with a surface normal
overlap measure. The latter uses only the fixed fiber radius of the glass fibers.
The former makes use of the eigenvalues of the structure tensor of the image.
The structure tensor is also used for determining the fiber orientation tensors in
this work and will therefore be introduced here. Krause et al. [80] were to the
author’s knowledge one of the first who used the structure tensor approach to
acquire orientation information from CT images of FRP in 2010. It is defined as
follows:

S =∇Iσ(x)⊗∇Iσ(x) = ∇Iσ(x)∇Iσ(x)⊺ =

(
∂Iσ
∂x

)2
∂Iσ
∂x

∂Iσ
∂y

∂Iσ
∂x

∂Iσ
∂z

∂Iσ
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)2
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(2.41)
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Working on the first numerical derivative of an image combined with a fixed
"window function", in this case a Gaussian blur of width σ used for smoothing, it
is a robust approach [80–82].

After the CircularVoting pre-filter is applied, a user-defined threshold is applied
on the image in order to binarize it [52]. Then, the fibers are reduced to their
medial axis through skeletonization [72]. The fibers are tracked with the help of a
modified version of the ImageJ plugin Skeletonize (2D/3D) and AnalyzeSkeleton
by Ignacio Arganda-Carrera [83, 84]. The original code was not intended for
fibers that do not show any junctions. It was therefore modified by Pinter et al.
[13, 52] taking the local orientations into account in order to remove cross-over
links in the resulting graphs and connect branches that belong to the same fiber.
For more details on the method, the readers are referred to the sources [13, 52].

While the first method by Salaberger et al. [71] only works for short-fiber rein-
forced polymers, the latter two by Teßmann et al. [74] and Pinter et al. [13] can
also handle scans of long-fiber reinforced polymers. However, both emphasize
the need for high resolution, even in Pinter’s work, and both only work with glass
fibers. However, a high resolution of e.g. 5 µm for glass fibers may correspond
to three or even four voxels across the diameter. This would be equivalent to
less than 2 µm resolution for carbon fibers. The frequent dichotomy in this work
between the extremely high resolution required and the poor image quality, high
noise and low contrast meant that this goal could not be achieved. Accordingly,
these algorithms were not used for the material in this work and only destructive
methods were used to determine the FLD.

2.2.3 Fiber orientation distribution

Most fibers in short and long fiber reinforced polymers do not have a uniform
orientation. A necessary description of the orientation distribution can be given
by a probability distribution function of the orientation, ψ, [43], sometimes
called orientation distribution function (ODF) [85] or fiber orientation density
distribution function [86], which all describe the same property. First of all, it is
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assumed that the orientation of a fiber in any coordinate system can be described
by a unit vector p ∈ S, where S = {p ∈ R3 | ∥p∥ = 1}. S denotes the two-
dimensional unit sphere as the set of all possible directions of p. The components
of p can be determined using the angles that the fiber makes with the axes of the
coordinate system (cf. Figure 2.6) using trigonometric functions as follows:

p1 = sin θ cos ϕ

p2 = sin θ sin ϕ

p3 = cos θ.

(2.42)

1

2

3

p

ϕ

θ

Figure 2.6: Coordinate system and fiber with angles to the coordinate axes. Based on a TikZ library
[87] but changed for the case at hand.

The length of the vector is fixed, fulfilling

pipi = 1. (2.43)

The fiber orientation distribution function (FODF) ψ : S → P describes the
probability of finding a fiber in direction p with P = {ψ ∈ R | 0 ≤ ψ ≤ 1} [43].
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2.2 Quantitative metrics of DicoFRP microstructures and their determination

ψ is defined in a way that the probability of finding a fiber between angles θ1 and
(θ1 + dθ) as well as between ϕ1 and (ϕ1 + dϕ) is given by

P(θ1 ≤ θ ≤ θ1+dθ, ϕ1 ≤ ϕ ≤ ϕ1+dϕ) = ψ(θ1, ϕ1) sin θ1 dθ dϕ [43]. (2.44)

In practice, the distribution of orientations can be given in the form of a histogram
as a discrete approximation to the underlying probability density function for
orientation [88] (as can be seen in Figure 4.33 on the right side).

The function ψ(p) has to fulfill multiple mathematical conditions. First of all,
fibers have an orientation but do not have a direction [85] meaning a fiber with
angles θ, ϕ is identical to one with angles π − θ, ϕ + π to the function [43]. In
other words, the beginning and end of a fiber cannot be distinguished [86]. Hence,
ψ(p) is periodic and therefore a symmetric function

ψ(p) = ψ(−p). (2.45)

The function ψ(p) is also non-negative [85]:

ψ(p) ≥ 0. (2.46)

Secondly, ψ(p) has to be normalized as every fiber has an orientation [43], i.e.,

∫ π

θ=0

∫ 2π

ϕ=0

ψ(θ, ϕ) sin θ dθdϕ =

∮
ψ(p)dp =

∫
S
ψ(p)dp = 1, (2.47)

using the integral over the surface of the unit sphere and consequently over all
possible directions of p [43].
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Lastly, ψ(p) fulfills the continuity condition [86]

ψ̇ = −gradS(ψ(p)ṗ). (2.48)

This equation describes the change of the fiber orientation distribution function
with time when the fibers move with the bulk motion of the fluid. ψ(p) can
therefore be determined when an appropriate expression describing the average
fiber angular velocities θ̇, ϕ̇ or the average fiber direction velocity ṗ is provided
[43]. This last condition is particularly crucial in the context of modeling and
simulating a flow process, which will not be discussed in detail in this paper.

While the fiber orientation distribution function is a closed, explicit [25], complete
and unambiguous [43] description of the fiber orientation state, it can become
arbitrarily complex [86]. Hence, Kanatani [89] as well as Advani and Tucker [43]
suggested the use of moments of the function, which are called fiber orientation
tensors. Inspired by the Fourier series expansion, they offer improved storage
possibilities, reduced complexity and the application of algebraic operations [85].

2.2.3.1 Fiber orientation tensors (FOT)

While Kanatani [89] distinguishes between orientation tensors of first and third
kind, only the tensors of first kind that are also discussed in the work of Advani
and Tucker [43] will be discussed here.
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Orientation tensors as statistical moments of the distribution function are defined
as the integral of the dyadic product(s) of the vector p. As the odd-order integrals
amount to zero due to the symmetry of ψ(p), there are only even-order tensors,
with the second- and fourth-order tensors being the most commonly used ones
[43, 85, 86]:

A =

∫
S
ψ(p)p⊗ p dp,

Aij =

∮
ψ(p) pipj dp,

A =

∫
S
ψ(p)p⊗ p⊗ p⊗ p dp,

Aijkl =

∮
ψ(p) pipjpkpl dp.

(2.49)

In the index notation, the base ei has been omitted respectively. In practice, after
the orientation of N fibers is measured in a region of interest, e.g., through image-
processing of µCT images, the orientation tensors of second- and fourth-order can
be calculated via

A =
1

N

N∑
i=1

(p⊗ p)k ,

Aij =
1

N

N∑
i=1

(pipj)k ,

A =
1

N

N∑
i=1

(p⊗ p⊗ p⊗ p)k ,

Aijkl =
1

N

N∑
i=1

(pipjpkpl)k [88, 89].

(2.50)
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A set of measured FOT of second order will later be referred to in caligraphic
letters, such as Tm.

Orientation tensors are fully symmetric [43], hence

aij = aji or A = AT ,

aijkl = ajikl = akijl = alijk = aklij , etc.
(2.51)

holds. The symmetry reduces the amount of necessary tensor components to
uniquely describe an orientation tensor of second order to only six (a11, a22, a33,
a12, a13, a23) instead of nine. As a consequence of the normalization condition in
Equation (2.47), the trace of an FOT of second order has to be one:

A · I = tr(A) = 1, (2.52)

with the identity tensor I . This relationship further reduces the necessary tensor
components to only five [90, 91].

All higher order tensors contain the respective tensors of lower order [85], leading
to the following contraction [86]

A : I = A. (2.53)

In contrast, determining a higher order tensor from a lower order tensor is not
trivial and requires some kind of closure approximation, which will be shortly
taken up again in the next paragraph of this section.
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The distribution function ψ(p) could be reconstructed exactly by means of Fourier
analysis if all FOT up to order n =∞ were available [92]. In all other cases, it can
be approximately recovered from an FOT, as shown exemplary in the following
equation for a second order tensor:

ψ(p) ≈ 1

4π
+

15

8π
BF (p), (2.54)

with B = A− 1
3I and F (p) = p⊗ p− 1

3I [43].

This expression of the distribution function through FOT as 3D tensorial Fourier
series, is also called spherical harmonic expansion [89, 93]. It is cut in Equation
(2.54) after the first two terms. For the respective relationship for higher order
tensors, the reader is referred to the article by Advani and Tucker [43] and to
the one by Jack et al. [94]. It shall also be noted that orientation tensors are
a truncation of the full series partly shown in Equation (2.54) and higher order
tensors represent the distribution function more accurately. However, second- and
fourth-order tensors are sufficient in practice and state of the art. [43]

Closure approximations

A closure approximation C is a mapping A = C(A) [92]. The need for closure
approximations descends from process simulations of fiber suspensions. The
orientation evolution can be described by approaches like Jeffery’s model [95]
or the model by Folgar and Tucker [96] who included the FODF and added a
diffusion term to the former equation [86]. When expressing the afore-mentioned
models in terms of FOT, the fourth-order tensor A is required in order to solve the
transport problem.
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Many different closure approximations have developed over time with varying
complexity and accuracy. The quadratic closure can be considered the simplest
analytical closure and is given by

AQ = A⊗A (2.55)

and is only exact for a unidirectional FRP [43, 86, 97]. Contrarily, the linear
closure [43, 98] gives correct results for isotropic fiber orientations [86]. Then,
there are hybrid closures combining these ideas [99, 100] and more advanced
orthotropic fitted closures [101, 102] working with fitting of eigenvalues. The
widely used invariant-based optimal fitting (IBOF) closure [103, 104] is also a
physically more consistent approach [92] and was used, e.g., by Meyer et al. [34]
in their simulation of the compression molding process of Sheet Molding Com-
pounds or by Brylka [90] for linear elastic homogenization of polypropylene LFT
with Mori-Tanaka as a good compromise between accuracy and computational
cost [86]. For a more comprehensive analysis and discussion of the various closure
algorithms, the reader is referred to the work of Breuer et al. [105].

It should be mentioned at this point that the use of closures inevitably introduces
errors. For example, Brylka calculates maximum errors in the resulting stiffness
of 7 % on the sample scale and 15 % in the individual layers across the thickness
by using second-order FOT and an IBOF closure in his Mori-Tanaka approach
compared to the direct use of fourth-order FOT [90]. Furthermore, it should be
noted that there is also the possibility of using indirect closure methods [93, 106],
which take the detour of reconstructing the FODF ψ from the second-order tensor,
which can then be used to determine the fourth-order tensor [92]. However, these
are based on assumptions too that can vary depending on the approach. Shannon’s
maximum entropy method (MEP) [107] is a well-known example.

48



2.2 Quantitative metrics of DicoFRP microstructures and their determination

Examples of FOT and correlation with concrete fiber distributions in
FRP

In order to be able to refer an orientation tensor to an actual fiber distribution,
visible, e.g., in a CT scan, three simple FOT of a unidirectional, approximately
planar and isotropic state are presented in Figure 2.7 alongside a respective FRP
microstructure portraying the orientation state of the FOT.


1 0 0

0 0 0

0 0 0



0.49 0 0

0 0.49 0

0 0 0.02




1
3 0 0

0 1
3 0

0 0 1
3


Unidirectional Almost planar isotropic Isotropic

Figure 2.7: Examples of different orientation states in generated microstructures of specific fiber
distributions and respective orientation tensors.

The microstructures were generated with the "fSAM" algorithm by Lauff et al.
[108]. An almost planar isotropic fiber orientation state is considered as generating
microstructures with eigenvalues closer to a33 = 0 is computationally extremely
expensive. Further fiber packing algorithms will be mentioned in this work in
Section 2.2.4.
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Parametrization of FOT

Any FOT of second order A is symmetric (see Equation (2.51)), and positive semi-
definite as all of its eigenvalues are non-negative, λi ≥ 0 (cf. Equation (2.46)).
Consequently, it can be rotated in a way that only the diagonal of the matrix is
populated, hence it can be diagonalized. This so-called eigendecomposition of a
matrix is defined as such

A = RΛRT = R ⋆Λ, (2.56)

with R ∈ SO(3) being an orthogonal matrix (RRT = RTR = I holds), whose
i-th column is the eigenvector vi of A (the three eigenvectors are orthonormal to
each other) and is sometimes called rotation matrix for afore-mentioned reasons.
Λ is the diagonal matrix with the corresponding eigenvalues Λ = Iλ with
λ = [λ1, λ2, λ3]

⊺. It exists a common ordering convention of the eigenvalues
[85, 91, 109–111] following

λ1 ≥ λ2 ≥ λ3. (2.57)

Equation (2.52) translates to

λ1 + λ2 + λ3 = 1. (2.58)

This parametrization of orientation tensors allows the depiction of the variety
of FOT via pairs of λ1 and λ2 (alongside a mapping R defining the orientation
coordinate system) in a two-dimensional space [85]. This representation is also
known as orientation triangle, which can be seen in Figure 2.8 and also, e.g., in the
works of Bauer and Böhlke [85], Gajek et al. [91], Goldberg et al. [109], Cintra
et al. [101], Chung et al. [103] or Köbler et al. [110].
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B : unidirectional
C : planar isotropic

: orthotropic
transverse isotropic v3

λ1 = λ2
transverse isotropic v1

λ2 = λ3
planar
λ3 = 1− λ1 − λ2 = 0

Figure 2.8: Material symmetries and constraints defining the orientation triangle. Based on [85].

It simplifies the assignment of different material symmetries to the specific FOT.
The weakest material symmetry of orthotropy as the gray area in Figure 2.8 is
thereby defined by three points of extremal orientation states of isotropy (A),
unidirectionality (B) and planar isotropy (C). The connection lines between these
three points describe special material symmetries themselves, with the connection
between A and B depicting states of transverse isotropy regarding the principle axis
of v1, the connection between A and C portraying transverse isotropy regarding v3

and the connection between C and B represents a planar state of fiber orientation.
The reader is referred to Bauer and Böhlke’s comprehensive work on the variety
of fiber orientation tensors [85] for more details.

Visualization of fiber orientation tensors through tensor glyphs

Especially for the FOT interpolation described in Section 2.2.3.3, a simple and
descriptive but comprehensive way to visualize fiber orientation tensors and
their anisotropy was necessary. Therefore, the possibility to portray symmetric
positive definite (SPD) tensors by glyphs (often ellipsoids) was used, which is
a well-known concept in scientific visualization and could be found mostly for
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diffusion tensors [112–114] in the beginning. It is especially helpful for tensor
field visualization, where a tensor is available at different points in a grid. The
glyphs (sometimes also called icons) portrayed at each grid point are a symbolic
parametric object to visually represent the features of the tensor it portrays [115].
Hence, the attributes of the tensors somehow have to be mapped to the parameters
(or degrees of freedom) of the glyph [115]. So as described by Kindlmann in
[116], one takes an initial glyph geometry G (in our case the ellipsoid geometry)
and translates it into a tensor glyph GA as following

GA = RΛG, (2.59)

and then plots GA at the specific grid location of the given orientation tensor
A. It goes back to the spectral decomposition of an SPD tensor described in
Equation (2.56), but by specifically not rotating back, the orientation of the tensor
can be depicted. The shape of the ellipsoid is representative of the eigenvalues
and concomitant with the tensor’s anisotropy and the orientation of the ellipsoid
is representative of the eigenvectors, respectively. More specifically, the three
eigenvalues determine the radii of the ellipsoid in the three main spatial directions.
The center of the ellipsoid is set to the tensor’s position. Then, the coordinates
in the variables x, y and z are rotated with the rotation matrix (eigenvectors) to
represent the orientation of the tensor.

Kindlmann further developed superquadric tensor glyphs in 2004 [116] to battle
problems of asymmetry and ambiguity, which were further generalized in 2010
[117] and even used for fiber orientation tensors as well [92]. However, the
standard glyph visualization was sufficient in this work.

The glyphs offered a way to interpret the success of different interpolation methods
by visualizing the evolution of orientation tensors across FOT fields. The rendering
in this work was done with MATLAB R2020b with the help of the “plotDTI”
function of the fanDTasia ToolBox by Barmpoutis et al. [118].
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In Figure 2.9, some examples for special tensor glyphs rendered with the function
above can be seen. Multiple fields of realistic tensor glyphs follow in the course
of this work.


0.9 0 0

0 0.05 0

0 0 0.05




1
2 0 0

0 1
2 0

0 0 0




1
3 0 0

0 1
3 0

0 0 1
3


Nearly unidirectional Planar Isotropic

Figure 2.9: Examples of tensor glyphs rendered with the "plotDTI" function of Barmpoutis et al. [118]
in Matlab R2020b. At the left, a nearly unidirectional state can be seen, as a completely
unidirectional case is impossible to visualize as an ellipsoid (see section above). The high
anisotropy can be identified by the slim ellipsoid body and the strong orientation in the
x-direction (horizontally to the right) is visible. This is followed by a completely planar
state, which is visualized as a flat plate. The isotropy in the visible plane can be seen due
to its complete roundness and the missing shading implies the missing expansion in the
z-direction (normal to the visible plane). Lastly, the isotropic case leads to a perfect sphere
with equal dimensions in all coordinate directions. As for the planar case, no preferred
orientation can be perceived.

2.2.3.2 Computational methods for determination of fiber orientation
tensors from µCT scans

In order to determine the fiber orientation from µCT scans, two generally different
approaches are conceivable. As already described in Section 2.2.2.2 on computa-
tional determination of fiber lengths, one can track the center line of each fiber
to get a vector for every fiber orientation, as done in [76]. However, this method
requires high resolution and sufficient contrast of the images and both aspects are
lacking in our case and carbon fiber reinforced polymers in general. Luckily, the
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orientation of the fibers can - in contrast to their length - also be determined on a
voxel basis not including their connectivity [81]. Pinter presented an evaluation
of the accuracy of three methods of this kind in [81] (also in [52, 119]). The first
method was introduced by Lampert and Wirjadi and is based on an anisotropic
Gaussian filter [120]. This filter returns higher values if the fiber in the currently
examined voxel aligns better to an orientation from a table of given orientations
and vice versa. The second concept is based on the already introduced Hessian
matrix (compare Equation (2.39)) proposed by Daniels et al. [75]. Lastly, the
also already introduced structure tensor (cf. Equation (2.41)) was tested. All
of the three implemented methods were published in the open source project
Composight by Bertram and Pinter [79]. As the last method performed the best for
artificial images and real images of glass fiber reinforced polymers and Pinter et al.
[81] showed that it was even the only one working for low contrast pictures with
carbon fiber reinforced polymers, the structure tensor approach as implemented
by Bertram and Pinter [79] was used in this work and it is therefore the only one
described in further detail. A small adjustment made later is explained in the
Methods (cf. Section 3.6).

Described by van Ginkel [121] as a way to analyze orientation in 3D images,
Krause et al. [80] used a structure tensor based approach first for orientation
analysis of FRP in 2010. The structure tensor S is composed of the dyadic
product of the so-called Gaussian derivative∇Iσ(x) [80] defined as

∇Iσ(x) = ∇(Kσ ⋆ I)(x), (2.60)

which can already be seen in Equation (2.41). It consists of the partial derivatives
of the function I combined with a Gaussian blur Kσ in a fixed window with width
of σ. The Gaussian derivative is a regularization, as the computation of gradients
without it is ill-posed [80]. The application of a Gaussian blur is the same as
convolving the image with a Gaussian function and will be revisited in Section
2.3.4.1 on filters. Subsequently, both Krause and Pinter use an additional, not
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mandatory Gaussian smoothing Kρ1
with the standard deviation ρ1 as additional

regularization leading to the final structure tensor Jρ1
:

Jρ1(x) = Kρ1 ⋆ (∇Iσ∇Iσ(x)T )(x). (2.61)

Pinter et al. [81] point out that the second blurring parameter ρ1 has to be larger
than the first one, σ, that is used for the derivative. The resulting structure tensors
are flat ellipsoids in the case of fiber-like structures that are aligned perpendicular
to the local fiber orientation, see Figure 2.10. The fiber orientation vector is finally
calculated by evaluating the smallest eigenvalue of the structure tensor and its
corresponding eigenvector.

λ1, e1

λ2, e2

λ3, e3

Figure 2.10: The flat structure tensor (gray) of a fiber-like neighborhood (orange) that is parallel to
vector e3. The gradient directions are hence spread out but perpendicular to e3 resulting
in a pancake-like shape of the structure tensor with λ1 ≈ λ2 ≫ λ3.

The resulting fiber orientation vectors are further processed in MATLAB to
orientation tensors, pseudocolor images, etc., which will be explained in the
Methods (cf. Section 3.6).

2.2.3.3 Necessity of fiber orientation tensor interpolation

The fiber orientation in a sample of FRP material can accordingly be determined
by a CT scan and the subsequent application of the method presented above. The
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question of the size of the sample volume is not insignificant here. This question
is discussed in more detail in Section 3.1.6. However, it is trivial that a fiber
orientation tensor of a rather small sample may represent very locally occurring
fiber orientation behavior (e.g. a strong anisotropic orientation of a single fiber
bundle). In contrast, a very large sample would on the one hand make it impossible
for the algorithm to detect small fiber bundles because the resolution would then
be too poor. On the other hand, a fiber orientation tensor obtained in this way
would mean a massive averaging of a large range of different fiber orientations,
which would probably result in very isotropic FOT that are not representative.

In this work, specimen sizes with an edge length between 10 mm and 30 mm were
used depending on the application (see Section 3.1.6) at a plate size of 400 mm ×
400 mm × 3 mm. It is immediately clear that a specific orientation tensor of such
a sample represents only a fraction of the entire fiber orientation behavior of the
pressed plate (cf. Figure 2.11).

Figure 2.11: Visualization of the interpolation problem: Nine measured tensors of 10 mm × 10 mm ×
3 mm specimens are shown as blue tensor glyphs at the corresponding extraction points.
A transparent photo of an original plate with the dimensions 400 mm × 400 mm × 3 mm
is shown in the background. The behavior of the fiber orientation between the small
measured areas is unknown. Based on Blarr et al. [17].

For stiffness modeling, however, a representative averaged FOT of such a plate
is often required, which cannot be obtained in this way. Specimens for tensile
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tests, where one would like to compare the discovered stiffnesses and strengths in
different directions with measured fiber orientations, are by standard also larger
than the CT specimens. In addition, simulations of the pressing process usually
provide an FOT at each mesh point, which is difficult to compare with only a few
FOTs determined at specific points. However, cutting and scanning the entire
plate and then carrying out a fiber orientation analysis would be immensely time-
consuming. With an average scan length of two hours and approximately another
hour of work in post-processing, this seems impossible to implement in practice.
Therefore, the scientific question of determining tensors at various grid points
from a few given tensors at specific grid points arose. This corresponds to the
mathematical problem of tensor interpolation. While the interpolation of scalar
values has been widely studied, the interpolation of tensors is less well-known.

Current state of research on tensor interpolation 1

The problem of tensor interpolation can be theoretically avoided for fiber orien-
tation tensors, compared to, for example, stress and strain tensors, by switching
to the scalar distribution function. It must be mentioned, that this switching is
not unique, as the second order FOT contains too little information. Nevertheless,
the function can be recovered under assumptions and a subdivision into discrete
directions and subsequent interpolation would equal a Euclidean interpolation of
the scalar-valued function Ψ̄. In fact, this corresponds exactly to averaging the
tensor components (with weights depending on distance). This can be explained
by the fact that an integral is a linear mapping. However, this standard method
led to a kind of "artificial" isotropy, which is shown by a change of shape in the
manner of a rounding in the representation form of tensor glyphs. This does not
necessarily seem to represent a useful averaging, as this issue of so-called tensor
swelling arose both in the field of medical technology when interpolating diffusion
tensors from MRI images [122–124] and in the case of FOT mapping in process

1 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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simulation applications [125]. This swelling effect is due to non-monotonic inter-
polation of the tensor determinant and the Euclidean method does not preserve the
positive definiteness. It was part of scientific discussions whether a more isotropic
tensor as an interpolation between two anisotropic tensors that point in different
directions still constitutes a reasonable behavior of fibers. It would imply that in
a region of changing flow direction first some fibers turn and others stay in the
original direction until most are turned in the end. The opposite idea that most turn
first a bit and later completely into the new direction would rather be indicative of
tensors in the center to be not significantly less anisotropic than the two next to it.
As a reference solution, the first method for tensor interpolation implemented and
used in this thesis is this Euclidean interpolation, which will be called component
averaging (CA) from now on.

The complex Riemannian interpolation is another "global" interpolation method
[126]. However, if more than two input arguments are used, the underlying
computations can only be solved implicitly, which requires an iterative and there-
fore computationally expensive calculation. Since this thesis explicitly seeks an
application-oriented method that is as fast and simple as possible while maintain-
ing the highest possible quality, Riemannian interpolation will not be discussed
further. Another logarithmic, but explicitly solvable approach was introduced by
Arsigny et al. [122]: the Log-Euclidean tensor interpolation method. This method
was already considered for FOT by Krauß and Kärger [125]. As it showed similar
behavior in [125] as the basic Euclidean interpolation (component averaging), it
will not be used in this work.

A completely different approach are so-called decomposition methods. These
methods make use of the fact that SPD tensors can be decomposed into eigenval-
ues and eigenvectors in spectral decomposition (cf. Equation (2.56)). In terms
of tensor glyphs, the eigenvalues are responsible for the shape, while the eigen-
vectors are responsible for the orientation of the tensor in space. Thus, shape and
orientation can be weighted (according to various possible distance measures)
and interpolated separately and then recomposed into a tensor. This can be done
directly via the eigenvalues and eigenvectors, or via detours with the help of other
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invariants and, for example, quaternions. This method allows in particular the
resolution of the swelling effect [123, 125]. It should be mentioned here that there
is not only one decomposition method, but this must be understood as a kind
of umbrella term, which can be executed very differently in the individual steps.
The only previous use of this concept for FOT by Krauß and Kärger [125] differs
from the one implemented in this work, for example. The exact concepts used for
the decomposition method will be explained in detail in the Methods chapter (cf.
Section 3.7.3) and have been previously summarized by the authors in [17, 127],
but basic considerations about the decomposition method will be elaborated in the
following paragraph.

As far as the shape is concerned, a direct interpolation of the eigenvalues would
be conceivable. There are also approaches which handle it this way [128]. But
Ennis et al. [124] developed the concept of orthogonal invariants, which seem to
perform very well for physical problems. Each set of invariants decomposes the
tensor shape with an orthogonal basis so that the derivatives of these invariants Ii
with respect to the (fiber orientation) tensor A behave as follows:

∂Ii
∂A
· ∂Ij
∂A

= 0, i ̸= j. (2.62)

Ennis et al. established the so-called K- and R-invariants, which are also used in
this paper. They argue that while eigenvalues form a set of orthogonal invariants as
well, they have the disadvantage of not isolating essential attributes of tensor shape
like size and anisotropy which the sets of K- and R-invariants provide instead. A
direct interpolation of the eigenvalues has still been performed as a test but indeed
seemed to distort the results and will not be considered in more detail in this work.

When it comes to the interpolation of the orientation of the tensors, there are
multiple works which focus on the interpolation of rotations in 3D, i.e., elements
in the 3D rotation group, which is also called SO(3), as a separate mathematical
problem independent of tensors or the shape of the same [129–132]. However,
many of these papers focus on the smooth rotation between two or few different
orientation states. These methods do not necessarily perform just as well for
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multiple and spreaded orientation tensors. Typically, the orientation of a general
basis in 3D linear algebra is described by Euler angles with respect to a fixed
coordinate system. Generally, it must be considered that an orientation can be
described by 24 different coordinate systems. This ambiguity is counteracted
with the help of conventions, this includes the determination to use a right-handed
system as well as the sorting of the eigenvalues according to magnitude. However,
after the conventions still four possible coordinate systems remain to describe
an orientation. Depending on the choice it can be influenced whether between
two orientations, which, e.g., lie only 20° apart, the interpolated tensor rotates by
10°, which corresponds to the - at least at first - obviously correct option, or by
170°, which would correspond to the mirrored coordinate system. For two tensors
between which one wants to interpolate, it therefore makes sense to implement a
query and restrict the size of the angle. However, for a set of measured tensors Tm
at multiple supporting points, where the ones further away from the one that is
currently to be calculated have less weight but are still included in the calculation
of this interpolated tensor, this becomes less obvious. For this reason, no angle
restriction is implemented in this work (cf. Section 3.7.3). This aspect will be
taken up again in the Discussion (cf. Section 5.4.4.4).

A much-investigated method is the orientation interpolation via quaternion. Quater-
nions as described by Hamilton extend the complex number system and are usually
represented in the following form:

q = a+ bi+ cj + dk with (2.63)

i2 = j2 = k2 = ijk = −1 (compare complex numbers).

The result is a four-dimensional number system (mathematically: a vector space)
with a real part consisting of one real component and an imaginary part consisting
of three components, which is also called the vector part. Multiplication of quater-
nions is noncommutative. Quaternions allow in many cases a computationally
elegant description of three-dimensional Euclidean space, especially in the context
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of rotations. By using quaternions instead of Euler angles the problem of Gimbal
lock can be avoided and they are simpler to compose. Compared to the rotation
matrices, quaternions are more compact, efficient, and numerically stable. Re-
gardless, not all ambiguities can be circumvented. The unit quaternions q and −q
represent the same rotation. This means that there is a 2:1 homomorphism from
quaternions of unit norm to the 3D rotation group SO(3). In other words, SO(3)

is double-covered by quaternions. This sign ambiguity has to be paid attention to
when computing a quaternion from the rotation matrix.

Alternative fiber orientation interpolation methods were developed, e.g., by Köbler
et al. [110]. They developed a mechanical interpolation method in a surrogate
model, i.e., they first calculated the material response for discrete fiber orientations
and then used linear interpolation on the fiber orientation triangle (a material model
as a function of the orientation triangle). While this yields good results, it requires
a prior mechanical model and is therefore of no interest in the application thought
of in this work.

The use of AI for fiber orientation tensor interpolation has been explored by
Sabiston et al. [133]. The authors used a large number of FOT obtained - as in this
work - from µCT images of multiple plates of the same process. This represented
their ground truth, which they used to train the artificial neural network (ANN),
which was subsequently able to predict the tensor components for plates of
this process with less deviation than the variability was between neighboring
microstructure units. Since this represents an entirely new, non-physical, nor
classically linear-algebraic way, a neural network is used as the third interpolation
method in this work. However, in contrast to Sabiston’s work, the ANN is trained
using only the nine measured tensors considered for all methods for comparison.
Then, the remaining 160 are predicted using the trained network. Even though
the nine tensors give five values of information each, the use of AI with such a
small amount of input data is rare, but it is intended to assess whether this can still
produce reasonably useful results, or whether a useful result can be expected with
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a small additional number of given tensors.2 The usefulness of this approach will
be taken up again in the Discussion (cf. Section 5.4.4.3).

Therefore, in this thesis, three different methods are presented in the Methods
chapter (see Section 3.7) and their results in the Results chapter (Section 4.6) to
obtain a full-field distribution of fiber orientation tensors over a plate. The classical
Euclidean interpolation (averaging of the tensor components), a decomposition
method based on the separate interpolation of the shape via orthogonal invariants
and the orientation of the tensors via quaternions and the adaptation of the ANN
developed by Sabiston et al. [133] to the given application are tested. All ideas
were not developed in the context of fiber orientation tensors but in theoretical
papers focused on mathematics. However, the application of the first two methods
to fiber orientation tensors was done by Krauß and Kärger [125] for a slightly
different background, namely the mapping of fiber orientation tensors between
different meshes. Sabiston’s [133] ANN worked with a large number of input
tensors from different plates and was intended for the general prediction of average
fiber orientations of a process. The application of these methods to small numbers
of fiber orientation tensors measured from CT images and the generation of larger
numbers between the given ones is, to the author’s knowledge, a novelty that first
appeared in the self-published paper [17] and proceeding [127].

2.2.4 Representative volume elements and
microstructure generation

In order to avoid having to reproduce the complex structure of an entire component
when modeling FRP, it is common practice in homogenization approaches to
develop a small sub-unit that is representative of the entire microstructure. Such
unit cells, whose material response should correspond to the average of an entire
part, are - as already mentioned - also called representative volume elements (RVE)

2 Up until here, this section is extracted from the author’s publication [17] with only slight linguistic
changes.
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[134–136]. Some authors have introduced the idea of statistical (or stochastic)
volume elements (SVE) [137–139] incorporating microstructural variability. The
edge lengths of such volume elements are often difficult to determine and can be
estimated using measured fiber lengths, for example, so as not to shorten them too
much or change of microstructural quantities like fiber volume content between
sizes. This will be discussed again in this thesis when it comes to specimen
extraction (cf. Section 3.1.6). The fiber structure within an RVE can be created
either by direct discretization of voxel data from a CT image. This requires, first,
that the resolution is high enough for single fiber detection and second, that the
contrast to the matrix is high enough for correct thresholding. However, such an
artificial microstructure can also be generated algorithmically and independently
of image data. A CT image may serve as a model and fiber volume contents, fiber
length distributions and fiber orientation distributions/tensors already measured
from the CT images or experimentally can be used as parameters for packing
the fibers into the cell. The class of algorithms that can be used for this purpose
are called packing algorithms, which developed from the original sphere-packing
algorithms. A number of different approaches exist, starting with rather simple
ideas such as random sequential adsorption (RSA) introduced by Feder in 1980
[35], where objects are successively packed into the cell at random locations
without overlap. A more dynamic approach with velocity vectors is that of
Lubachevsky-Stillinger [36]. The mechanical contraction method of Williams-
Philipse [38], on the other hand, works by shrinking the cell and only then
removing overlaps. Finally, a completely optimization-based approach is that
of Torquato-Jiao [37]. These algorithms have been used succesfully for sphere
packings and also for simply-structured fiber packings. Schneider [140] introduced
the so-called sequential addition and migration (SAM) algorithm in 2017 reliably
producing microstructures of short fiber reinforced polymers even with larger
aspect ratios and volume fractions. Schneider [141] improved and extended
this approach to be able to generate long fiber reinforced structures by allowing
curvature of the fibers. There are also other works dealing with microstructure
generation of LFT material [142]. Even though curvature of the fibers and higher
aspect ratios seem manageable by now, most of these approaches still struggle to
reliably generate a microstructure seen in the carbon fiber reinforced polyamide 6
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that was subject of this work (cf. Section 4.1). In particular the fineness of the
carbon fibers (5 µm - 7 µm) and the mixed bundle and single fiber structure are
challenging, especially as single fibers are not even detectable in the CT images.
The approach to determining fiber orientation from CT images in the case of this
problem is a voxel-based one in this work. So is it possible to generate voxel-
based microstructures instead of discrete fibers? In fact, the idea of Generative
Adversarial Networks, short GANs, developed by Ian Goodfellow et al. [143], has
been around in the field of AI since 2014, generating images from training images.
Hence, in this work the generation of two-dimensional artificial microstructure CT
images via GANs is explored with the possible future extension towards directly
creating RVEs with these networks.

2.3 Computed tomography

After Wilhelm Conrad Röntgen famously discovered a radiation with the ability
to penetrate optically opaque objects at the end of the 19th century, called X-rays
[144], the first computerized computed tomography (CT) system was realized
by Hounsfield [145] in 1972. Together with Cormack, he won a Nobel Prize in
1979 for this development, as did Röntgen previously for the discovery of X-rays.
With time, micro-computed tomography (µCT) systems developed that increased
the range of CT applications from medical use towards non-destructive material
testing.

2.3.1 Theoretical principles

2.3.1.1 X-ray generation

X-ray radiation is on the electromagnetic spectrum and is generated through the
deceleration of fast electrons that are emitted from a heated filament and then
enter a solid metal anode [144]. The thereby emitted wavelengths range between
approximately 10−8 m and 10−13 m. The electron velocity v determines the
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radiation energy. The velocity depends on the acceleration voltage Ua between
cathode and anode. Energy conservation leads to the following equation,

eUa =
1

2
mev

2, (2.64)

with the charge of an electron e and the mass of an electron me, with which the
electron velocity can be determined. Typical ranges of acceleration voltages can
lie between 25 kV and 500 kV, whereas the smaller values are typically chosen
for medical diagnostics and higher values are rather relevant for material testing,
where radiation exposure hazards can be neglected. [144]

2.3.1.2 Photon-matter interaction

When X-rays enter a material, the amount of photons, i.e., the radiation density,
decreases exponentially due to absorption and scattering. This attenuation of
the radiation intensity is material-dependent. The correlation is expressed in the
Beer–Lambert law [146–148]

I(η) = I0e−µη, (2.65)

with the radiation intensity I , a distance variable η, the attenuation coefficient µ
and the initial condition I(0) = I0. The linear attenuation coefficient µ is thereby
the sum of a scatter coefficient µs and an absorption coefficient α [144]:

µ = µs + α. (2.66)

The unit of µ is m−1. Apart from being influenced by the photon energy, the
attenuation coefficient is also dependent on the type of irradiated material and
more specific on its effective atomic number and its mass density ρ [25, 149]. As
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a result, the mass attenuation coefficient µm gives a density invariant attenuation
coefficient and is hence defined as

µm =
µ

ρ
. (2.67)

Mass attenuation coefficients are often given in cm2

g and tabular collocations of
values for different elements and compound materials can be found, e.g., in [150]
or in [151] [25].

For composites, the effective mass attenuation coefficient µ̄m is calculated from
the respective weight fraction wi and mass attenuation coefficient µm,i of each
constituent i:

µ̄m =
∑
i

wiµm,i [25, 152]. (2.68)

2.3.1.3 Functionality of a computed tomography system

CT devices consist of the X-ray tube with its anode and cathode that create the
effective target area, which is also called the optical X-ray focus. In a CT system,
X-rays are created from a nearly point-like source, as bigger diameters result in a
so-called penumbra (shadow area, that is reached by only a part of the light) fringe
(for details, the reader is referred to Buzug [144]). After passing the object to be
scanned, it impinges on a detector, which in modern CT devices typically consists
of a scintillator medium and a photon detector (for details cf. [144]) as shown in
Figure 2.12. An image of the geometry and material composition of the object
can be generated by the detector based on the difference between the initially
transmitted beam intensity and the intensity received due to attenuation by the
object material. This difference is converted to a spectrum of different gray values.
Before the scan, the initial transmitted beam intensity is typically measured in a
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so-called correction step, where the tube is raised to nearly the uppermost position
in order to irradiate onto the detector with no object interference.

X-ray tube

Cone beam

Detector

Focus spot

LFD

LFO1

LFO2

× ×

Scanned objects

Figure 2.12: Simplified setup of a cone beam computed tomography device. Two alternative positions
for differently sized objects in the beam path are shown to illustrate the dilemma between
sample size and resolution. Based on Schöttl [25].

The platform on which the object is placed and the detector can be moved in
horizontal direction. Thereby, the image region and the resolution can be adjusted
[52]. The object platform rotates 360° in the beam path. The CT user can
set a number of projections, nprojections. Projections are the singular 2D scans
taken during a stop of the rotation. Hence, the object rotates in steps of φ =

360◦/nprojections. All of the 2D projections then have to be reconstructed by
an algorithm to create the required 3D image of the object. Many different
algebraic and statistical reconstruction methods have developed over time, many
are summed up in [153]. In the present work the cone-beam algorithm that works
with convolution-backprojection of Feldkamp et al. [154] is used. It is fairly
common and implemented in VG Studio Max 3.4.2; a software that was used in
this work for all immediate post-processing, including reconstruction, registration
and cutting of regions of interest (ROI). For further processing, the volumetric
image obtained this way, is often cut again in 2D slices for easier processing
(Matlab, Python) or easier visualization (ImageJ). However, these slices are
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linearly aligned with a coordinate axis (often perpendicular to the thickness of the
specimen) and not a rotation angle.

The volumetric images consist of discrete, in this case cubic, volume elements,
that are called voxels (from "volume x element"); analogously to pixels in 2D.
The voxel size or the in this case isotropic voxel edge length are a measure of the
image resolution [25]. The geometric magnification mg is defined as the division
of the distance between focus and detector LFD by the distance between focus
and object LFO:

mg =
LFD

LFO
, (2.69)

as visible in Figure 2.12.

The voxel size lv can subsequently be determined based on the detector pixel size
ld and the magnification as

lv =
ld
mg

. [25, 155] (2.70)

2.3.2 Specific challenges of CT scans of CFRP

2.3.2.1 Low contrast between constituents

Both carbon fibers and polyamide 6 are mainly composed of C elements. There-
fore, they have similar densities and even the density independent attenuation
coefficient values are very close. For a photon energy of 400 keV, carbon has
a mass attenuation coefficient µm of 9.546e−2 [150] and polyamide 6 has an
experimentally measured mass attenuation coefficient of 10.86e−2 at 356 keV
[156]. This chemical similarity leads to poor contrast between the two materials in
the CT scans, which impedes the determination of fiber-dependent microstructure
quantities.

68



2.3 Computed tomography

2.3.2.2 Impossibility of single carbon fiber detection

The used µCT device in this work (cf. Section 3.6) could theoretically produce
images up to a resolution of 1 µm/voxel. However, there are two main reasons why
the resolutions of all scans used in this work were significantly higher: The image
noise rises with higher resolutions (cf. next Section 2.3.2.3) and the required
specimen sizes to realistically depict the microstructure were too large for higher
resolutions. Hence, the resolutions of the scans used in this work range between
8.57 µm/voxel and 25.98 µm/voxel. The diameter of carbon fibers is between 5 µm
and 7 µm. In order to reliably segment an individual fiber, one requires voxel sizes
that are three to six times smaller than the fiber diameter [13, 25, 76, 157, 158].
This is of course not the case with the resolutions of the scans used in this work.
Therefore, it must always be assumed that all methods only detect agglomerations
of fibers or fiber bundles, but not individual fibers. However, since a large
proportion of the fibers appear to be in fiber bundles (smaller and larger), the
results later still match well with those determined experimentally. In general,
only methods without direct fiber detection and instead voxel-based approaches
are developed and used in this work.

2.3.2.3 Blur and noise

As Sprawls describes in [159], the main characteristics of CT imaging exacerbating
the detection of structures are blur and noise. The former reduces the visibility of
small objects and hence decreases image detail. The latter reduces the visibility of
low-contrast objects. Fibers fit both of these descriptions. While small voxels and
edge-enhancing filters can reduced blurring, small voxels absorb fewer photons
and therefore increase noise, which is caused by the variation in attenuation
coefficients between voxels. Noisy images can be improved by large voxels,
increasing the radiation dose or using smoothing filters. The latter, however,
increases blurring again. [159] Since the measures for reduced blur and noise are
partially mutually exclusive, the focus of the work was on the reduction of noise,
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since single-fiber detection was excluded anyway. Hence, larger voxels, increased
radiation dose and smoothing filters were used for image improvement.

2.3.2.4 Conflict between image resolution and object size

The size of the specimens was determined individually for different examinations
by considerations including fiber length, measured fiber volume contents in dif-
ferent specimen sizes and reasonable RVE microstructures (cf. Section 3.1.6).
Therefore, they were at edge lengths between 10 mm and 30 mm. In order to
get them completely into the beam path, they had to be moved away from the
source accordingly (see Figure 2.12) and this decreased the resolution in turn.
This problem generally occurs for CT images and is sometimes called the conflict
between sample size and image resolution [25] and is therefore not limited to the
material combination used.

2.3.3 Artifacts

CT images are subject to a variety of artifacts originating from different reasons
[144]. There are, e.g., partial volume artifacts, appearing when an object boundary
is not located exactly at the edge of a detector element leading to an averaged
intensity in these elements and a blurred object boundary. Another well-known
artifact is that of beam-hardening. This effect refers to the non-monochromatic
energy spectrum of the radiation changing along the path. Low-energy, i.e., soft
X-rays are absorbed more than high-energy, hard X-rays, so that the beam hardens
while going through the object. This can result in streaking artifacts or cupping
artifacts that will cause the middle of the image, which is normally the area around
the rotation axis, to decrease in gray value and hence appear darker. Often objects
are set in the beam in slight angular offset to the rotation axis due to this artifact.
There are various other artifacts like ring artifacts, motion artifacts, etc. which
shall not be explained in detail here as this work is not centered around the making
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of CT scans but rather around their FRP-specific analysis and evaluation but can
be explored in appropriate literature, like [144].

2.3.4 Image processing

The processing of digital images through algorithms with the help of digital
computers is commonly termed digital image processing [160]. The goals of this
processing can range from classification, through feature extraction to pattern
recognition. Some of the many conventional techniques that can be used in image
processing and are specifically helpful for the application at hand are explained
in the following subsections. AI-based methods are explained in Section 2.4.
Henceforth, an image has to be understood as a function i(x, y) mapping locations
in images to specific - in this case - gray values. For example, in the case of an
8bit gray value image, there exists a gray value between 0 (black) and 255 (white)
for every pixel (x, y).

Image processing aims in general at the enhancement or modification of image
properties and/or at the extraction of valuable information like edges. The changes
can be made directly on the image plane itself, which is called the spatial domain.
In contrast, the manipulations can also be performed in a transform domain,
which implies a transfer to the transform domain, processing there and a back
transfer to the spatial domain. The latter concept is fundamentally based on
Fourier transform and will not be explained in more detail in this work; however,
important basics for it like convolution (which is also the base for many other
concepts in image processing) will be covered in other sections of this work (cf.
Section 2.4.1.6). The following sections instead concentrate on spatial processing,
of which again two basic categories exist, which are intensity transformations and
spatial filtering. While intensity transformations manipulate individual pixels of
an image and are fundamental for contrast manipulation, histogram processing and
image thresholding (which will be discussed in Section 2.3.4.2), spatial filtering
performs operations in a neighborhood of every pixel in an image. The latter
concept will be elaborated on in the next Section 2.3.4.1.
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2.3.4.1 A selection of spatial filters

A central role in filtering play so-called kernels or masks, an array characteristic
for the specific filter. It is a small rectangle with values slid across every pixel of
an image, which changes the value of the central pixel according to the result of
the filtering operation including the surrounding pixels. This process of moving a
filter mask over the image and computing the sum of products at each location is
also called correlation [160] and defined as

f(x, y) ∗ I(x, y) =
m∑
i=0

n∑
j=0

f(i, j)I(x+ i, y + j), (2.71)

with a filter f(x, y) of size m × n (both odd integers) and the image I(x, y).
Correlation is similar but not identical to convolution; a small subtlety that is
not adequately represented in most literature. In the case of convolution, there
would be minus signs instead of the addition on the right, which flip f (i.e., rotate
it by 180°). Correlation therefore corresponds to convolution if the filter f is
simply rotated by 180°. However, since most filter masks are known by their
representation for correlation, this is also the used convention in this work. It is
anyways only relevant in the case of an asymmetric kernel.

Depending on the kernel, a filter can have a smoothing effect on an image or
a sharpening effect, e.g., for enhancing edges. Smoothing filters are used for
blurring and noise reduction and will be elaborated on in the next paragraphs.
Linear spatial filter output the average of the pixels in the neighborhood of the
filter mask, which is why they are also called averaging filters or lowpass filters.
They reduce sharp transitions in intensity, leading to reduced noise but increased
blurring of edges. [160] Different kinds of smoothing filters will be shortly
addressed in the following. It shall be mentioned that different, odd kernel sizes
are possible, depending on the desired effect (the larger the kernel, the stronger
the blur) and the image resolution. For simplicity reasons, a kernel size of three is
depicted for all displayed filters. Furthermore, the question of how to handle the
edges of an image naturally arises. When the central pixel in the kernel is an edge
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pixel, some of the kernel positions are not occupied. One can use only the pixels
next to the edge pixels as central pixels but that results in a reduction of dimensions
of the resulting image. Another possibility is the so-called padding, which refers
to the addition of extra rows and columns of values to solve that problem. For
example, the well-known so-called zero padding signifies the addition of zeros
around the borders, leading to a black frame around the image. There are also
other padding possibilities like mirroring the value next to the border, etc. and the
reader is referred to [160–163].

A standard 3 × 3 blur filter, which is a linear smoothing filter, gives the average
of the nine surrounding pixels:

1

9


1 1 1

1 1 1

1 1 1

 . (2.72)

For reasons of computational simplicity, the coefficients are all one and the
normalization factor is multiplied afterwards. An important characteristic of the
standard blur filter is the uniformed weighting of all pixels in the kernel. It is
sometimes also called a box filter.

The Gaussian blur filter is similar to the box filter but uses a weighted mean, with
neighborhood pixels that are closer to the central pixel having a higher weight.
The weights drop in the intensity of a Gaussian normal function. Thus, the kernel
can be determined by the two-dimensional Gaussian function defined by

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2.73)

with x and y being the respective distances to the horizontal and vertical center of
the kernel and σ being the standard deviation of the Gaussian kernel. An often
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used approximation of the correctly calculated Gaussian blur kernel looks as
follows:

1

16


1 2 1

2 4 2

1 2 1

 . (2.74)

The Gaussian smoothing is supposed to deliver a more natural blur and better
preserve edges in the image compared to the average blur.

A median filter, as a representative of order-statistic, nonlinear filters, does not
compute a new value from the values present in the kernel but instead replaces the
central pixel value with the median value existent in the mask, as demonstrated in
the following Figure 2.13.

15 1 25

3 3 30

12 7 22

Sorting
1, 3, 3, 7, 12, 15, 22, 25, 30

Median Blur
12

Figure 2.13: Graphical demonstration of the principle of the median blur filter.

It is highly effective against so-called salt and pepper noise and robust against
outliers. Unlike in the case of the average blur filter, a rectangular kernel dimension
is impossible; it must be square.

Another noise reducing, smoothing filter is the bilateral filter [164]. It is a non-
linear filter used to blur images while preserving object edges. The filter owes the
preservation of edges to the fact that, unlike the Gaussian blur, the weights depend
not only on the Euclidean distance of the pixels so not only on their geometric
closeness but also on their photometric similarity (e.g., range differences, such
as color intensity, depth distance, etc.). It prefers near values to distant values in
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both domain and range. Different filter kernels can be used for both the closeness
function c(ξ,x) and the similarity function s(ϕ, i). Gaussian functions of the
Euclidean distance between their arguments are widely used for both. So bilateral
filtering denotes the combined domain and range filtering and delivers an output
image o(x) for an input image I(x) as

o(x) = k−1(x)

∫ ∞

−∞

∫ ∞

−∞
I(ξ)c(ξ,x)s(I(ξ), I(x))dξ, (2.75)

with the normalization

k(x) =

∫ ∞

−∞

∫ ∞

−∞
c(ξ,x)s(I(ξ), I(x))dξ. [164] (2.76)

2.3.4.2 Thresholding approaches

Thresholding refers to the selection of one or more intensity values/limits that
divide the histogram into two or more areas in each of which only the pixels/voxels
of a specific object/material appear. These groups are often called classes. This
subdivision of the image can be highlighted by binarization:

o(x, y) =

 1, if i(x, y) > T

0, if i(x, y) ≤ T
. (2.77)

If more than two threshold values would be necessary for the segmentation
problem at hand, one oftentimes has to switch to alternative methods. Furthermore,
the successful application of certain thresholding methods requires in particular
clear separation of the intensity peaks and low noise content, which makes it clear
why this method can also cause difficulties when used for the CT scans in this
work. However, due its (computational) simplicity, thresholding is still highly
relevant to this day. There are different subcategories of thresholding. The basic
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case of a constant threshold across an entire image is called global thresholding.
Conversely, there is variable thresholding. If the threshold at a point is dependent
on its neighborhood, this variable thresholding is also called local or regional
thresholding. The term dynamic or adaptive thresholding, on the other hand, is
used when the threshold T depends directly on the spatial coordinates x and y.
However, Gonzalez and Woods point out the inconsistent use of these terms in the
image processing literature. [160]

The determination of a global threshold, if applicable, often requires a more
sophisticated algorithm and cannot be easily deduced. In the following, the
calculation of three well-known, global and automatic thresholding methods are
described as examples, which are usually already pre-implemented in scientific
image processing software such as ImageJ (FIJI) or in MATLAB libraries or
Python image processing packages and were used in different cases throughout
this work.

The method by Nobuyuki Otsu, called Otsu’s method or Otsu threshold, finds a
threshold separating foreground and background by minimizing the intra-class,
also called the within-class intensity variance, or equivalently, by maximizing
the inter-class, also called between-class, variance [47]. Granted a picture is
represented in L gray levels and a threshold t exists at one of those levels. The
within-class variance σ2

W is defined as follows

σ2
W = ω0σ

2
0 + ω1σ

2
1 , (2.78)

with ω0 and ω1 being the probabilities of the respective class occurrence and σ0
and σ1 being the respective class variances. The probabilites are calculated by

ω0(t) =
t−1∑
i=0

pi and ω1(t) =
L−1∑
i=t

pi. (2.79)

Of course, ω0 + ω1 = 1 holds.
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The class variances are given by

σ2
0 =

t−1∑
i=0

(i− µ0)
2 pi
ω0

and σ2
1 =

L−1∑
i=t

(i− µ1)
2 pi
ω1
. (2.80)

The between-class variance σ2
B is given by

σ2
B = ω0(µ0 − µT)

2 + ω1(µ1 − µT)
2

= ω0ω1(µ1 − µ0)
2,

(2.81)

with the class mean levels

µ0(t) =
t−1∑
i=0

ipi
ω0(t)

and µ1(t) =
L−1∑
i=t

ipi
ω1(t)

and µT = µ(L) =
L−1∑
i=0

ipi.

(2.82)

Finally, the optimal threshold t is found by either maximizing the between-class
variance or minimizing the within-class variance:

t = arg

{
max

0≤t≤L−1

{
σ2
B(t)

}}
= arg

{
min

0≤t≤L−1

{
σ2
W(t)

}}
[47, 165]. (2.83)
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Another automatic thresholding procedure is the moment-preserving threshold by
Tsai [48]. Thereby, a threshold value is selected so that the first three moments of
image i in the resulting binarized image o are preserved. The moments of i are
defined by

mi =
1

n

∑
j

nj(zj)
i =

∑
j

pj(zj)
i, (2.84)

with n being the entire amount of pixels of image i, nj being the total number of
pixels in i with the gray value zj and pj =

nj

n . After having applied the threshold
and binarized the image, the first three moments of o can be computed in the
following way:

m′
i =

1∑
j=0

pj(zj)
i, i = 1, 2, 3; (2.85)

where p0 and p1 signify the fractions of below-threshold and above-threshold
pixels, respectively. Preserving the first three moments of i in o means,

m′
i = mi, i = 1, 2, 3 (2.86)

has to hold. Furthermore,

p0 + p1 = 1. (2.87)
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The last two equations can be translated into the following equation system

p0z
0
0 + p1z

0
1 = m0,

p0z
1
0 + p1z

1
1 = m1,

p0z
2
0 + p1z

2
1 = m2,

p0z
3
0 + p1z

3
1 = m3.

(2.88)

mi is calculated with the help of Equation (2.84) and m0 is defined to be 1. Then,
the equations are solved to obtain p0 and p1, which inevitably leads to choosing t
such that

p0 =
1

n

∑
zj≤t

nj . (2.89)

There might not exist an exact value for t fulfilling this condition, so the closest
gray value should be chosen. [48]

Moreover, the mean threshold [49–51] is defined by choosing t as the mean value
of the distribution of pixel values. Analogously, the median threshold, as a special
method of Doyle’s p-tile method [166], is set so that 50 % of pixels lie in each of
the two binary classes [49].

The use of those different thresholding techniques concerning carbon fiber rein-
forced polymers will be taken up again in the Methods (Chapter 3, Section 3.4.2.2
and Section 3.6).

2.4 Artificial intelligence

The term artificial intelligence describes the intelligence of machines or software.
It is a field of study in computer science and its technologies have spread across
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various applications throughout industry, governments, science and entertainment.
Initiated by Alan Turing in the 1950s [167], AI rose to its initial promise only in
the last decade as large computational power and big data storage and handling
possibilities emerged [168]. This led to the AI boom, sometimes called AI Spring
[169], in the later 2010s and early 2020s.

The large field of AI is further differentiated. Machine learning (ML) is probably
the largest sub-category [168]. It refers to algorithms that can automatically
improve the execution of a specific task [170]. Hong et al. [168] emphasize that
the major difference between conventional programming and machine learning
programming is ML working through induction. In the former, a programmer
has to formulate general rules and the algorithm is able to deduce the result for
specific observations, while in ML the algorithm itself finds general rules from
the given observations [168]. The programmer’s work lies in the development
of the structure and environment of the algorithm for it to reliably induce those
rules. Either another subcategory of ML or a mixture of AI and ML concepts
(depending on the definition), is the so-called deep learning (DL) [168]. Deep
learning refers to processing the observations through ANNs that are inspired
by biological neural networks. The adjective "deep" stresses the use of multiple
layers in the network. There is the further differentiation into supervised and
unsupervised ML. The former denotes networks that work on input data that was
labelled by a human, while the latter type signifies networks that have to find
common patterns and make predictions without any other human guidance [170].

In the following, the general theoretical principles of ANN will be elaborated on,
before specific types of those networks will be outlined.

2.4.1 Theoretical principles of ANNs

2.4.1.1 Single layer perceptrons

The smallest sub-unit of an ANN is a so-called single layer perceptron (SLP).
Based on the original neuron model by McCulloch and Pitts in 1943, it was first
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introduced as perceptron by Rosenblatt in 1957 and is a linear classifier whose
structure resembles that of a biological neuron (cf. Figure 2.14). [171, 172]

∑
σ(u)

b

y

w1x1

w2x2

wn

xn

...

Figure 2.14: Schematic depiction of a single layer perceptron as described by Rosenblatt [171]. Based
on [173].

Different inputs {x1, x2, ..., xn} (similar to the impulses collected by dendrites of
a biological neuron) are weighted based on their relative importance by the weights
{w1, w2, ..., wn} and subsequently summed up by a linear aggregator. A lower
threshold value b, also known as the bias, determines whether an output signal
is afterwards triggered. The activation function σ(u) depends on the difference
between b and the result of the linear aggregator, the activation potential u. This
results in the output signal y of the SLP

y = σ(u) = σ

(
n∑

i=1

wixi − b
)
. (2.90)

The activation function thereby restricts the possible output values to a set range.
[174] Equation (2.90) can be simplified by adding a dummy input x0 = 1 and the
corresponding weight w0 = b to

y = σ

(
n∑

i=0

wixi

)
= σ(x ·w) = σ(w⊺x), (2.91)

which increases the vector dimensions of x and w by 1 [175].
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There are many different possible activation functions including the step function,
linear function, sigmoid function, tanh function or a rectified linear unit (ReLu)
[174]. Assuming a simple bipolar step function for demonstration purposes, which
is given by

y = σ(x · y) =

1 if w · x > 0,

−1 if w · x ≤ 0,

(2.92)

one gets a binary output y independent of the (possibly non-binary) input [174,
175]. If only two input values and weights were given, this would result in the
following inequalities

w1x1 + w2x2 − b ≥ 0,

w1x1 + w2x2 − b < 0,
(2.93)

which creates a linear boundary between two classes [174]. In case of more than
two input and weight parameters, this approach has to be extended to a hyperplane
defined by w · x = 0 [176]. This function of SLP as classifier is shown in Figure
2.15.

Class 1

Hyperplane

Class 2

Figure 2.15: Schematic two-dimensional illustration of a hyperplane (dashed blue line) separating
two classes originating from the system of inequalities given by a SLP. Based on [176].
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The perceptron learns by adjusting the weights when it has made wrong decisions.
This updating or learning rule is a recursive algorithm. Suppose that the respective
class label zi of a given input value xi is given by

zi =

1 if xi ∈ of the first class,

−1 if xi ∈ of the second class.
(2.94)

For a set of p training samples (xi, zi) ∀ i = 0, 1, ..., p, then y = y(w) gives
the (binary) prediction of zi for a given xi based on the current weights and bias.
The change of the weights wi is then defined as

wi → wi +∆wi, (2.95)

with

∆wi = rl(zi − yi)xi. (2.96)

This learning rule is also called delta rule and is a gradient descent algorithm
for optimization. The parameter rl ∈ [0, 1] denotes the learning factor or more
commonly known the learning rate. The convergence of this learning rule after a
finite number of iterations was proven by Rosenblatt in the perceptron convergence
theorem. [171, 175, 176]

2.4.1.2 Multi-layer perceptron (MLP)

A standard neural network normally consists of multiple layers of perceptrons,
more precisely an input layer, some number of hidden layers and an output layer;
so at least three layers. The input layer is often not counted in the amount of layers
as it performs no processing and only has a distribution function towards the next
layer [177]. These kinds of neural networks are often referred to as "vanilla"
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neural networks emphasizing their simplicity and them being the first of their
kind [178]. A simple fully connected MLP with one hidden layer can be seen
schematically in Figure 2.16.

x = = y... ...

...

x1

x2

xn

h1

h2

h3

hk

y1

ym

Input
layer

Hidden
layer

Ouput
layer

Figure 2.16: Schematic visualization of a simple MLP structure with every node incorporating a linear
aggregator, activation function and bias. Based on [176].

The input values x = {x1, x2, ..., xn} are often referred to as "features" in the
context of neural networks making x the feature vector [174]. Following, one
or multiple layers of hidden notes hi process the input until it reaches the final
output layer, where the results are given out in the output vector y. An activation
function maps the weights to the following layer [179]. The name multi-layer
perceptron is misleading or incorrect in that contrary to the step function used as
activation function by the original perceptron, modern neural networks rely on
nonlinear kinds of activation functions providing them the ability to distinguish
data that is not linearly separable [180]. Different kinds of activation functions
will be shortly outlined in Section 2.4.1.5. In this simple case, connections are
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only permitted between nodes in consecutive layers and in a forward direction,
which is why they are also called feedforward networks [175].

Analogously to Equation (2.90), assuming that all layers use the same activation
function σ, the output of a single node j in a specific hidden layer h(l), 1 ≤ l ≤ N,
is given by

h
(l)
j = σ

 kl−1∑
i=1

w
(l)
ij h

(l−1)
i − b(l)j

 , (2.97)

where kl denotes the total number of nodes in the hidden layer h(l) and w(l)
ij the

weights between a unit j in the lth hidden layer and another unit i in the preceding
layer [181]. It shall be noted that different layers may have different activation
functions, which would require a distinction to be made between the different σ.
Equivalent expressions can be found for the output of the first hidden layer h(1) as

h
(1)
j = σ

(
n∑

i=1

w
(1)
ij xi − b

(1)
j

)
, (2.98)

with the number of input features n, and the output values yj as

yj = σ

 kl−1∑
i=1

w
(l)
ij h

(l−1)
i − b(l)j

 . [181] (2.99)

Considering an example of two consecutive hidden layers h(1) and h(2) with the
number of nodes k1 and k2, exemplarily shown in Figure 2.17 with k1 = 4 and
k2 = 3, the output of the first unit h(2)1 in the second layer can be calculated based
on Equation (2.97) as

h
(2)
1 = σ(w

(2)
11 h

(1)
1 + w

(2)
12 h

(1)
2 + ...+ w

(2)
1k1
h
(1)
k1
− b(2)1 ). (2.100)
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h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4

h
(2)
1 h

(2)
2 h

(2)
3

Figure 2.17: Schematic description of two consecutive hidden layers h(1) and h(2) of an MLP. For
the sake of simplicity, previous or subsequent layers are not shown. In order to illustrate
the calculation of the output of node h

(2)
1 , all other units that are not directly connected

are grayed out.

Repeating this calculation for all other units in the second layer results in k2
different equations. Combining all outputs of the preceding layer as a single
vector h(1) and the biases as vector b yields the linear algebraic description of the
output vector h(2) = h

(2)
1 , h

(2)
2 , ..., h

(2)
k2

of the second layer as

h(2) = σ





w11 w12 · · · w1k1

w21 w22 · · · w2k1

...
...

. . .
...

wk21 wk22 · · · wk2k1





h
(1)
1

h
(1)
2

...

h
(1)
k1


+



b1

b2
...

bk1




, (2.101)

with the weight matrix W = [w
(2)
ij ] for 1 ≤ j ≤ k1 and 1 ≤ i ≤ k2. This

symbolic tensor notation compresses the process between two layers into one
equation and simplifies the use in code:

h(2) = σ
(
W (2)h(1) + b(2)

)
. (2.102)
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Generalized for any hidden layer h(l), this yields

h(l) = σ
(
W (l)h(l−1) + b(l)

)
. [182, 183] (2.103)

Their more complex structure allows MLPs to be applied to a variety of problems
from pattern recognition [181] over clustering to optimization [176]. However,
some disadvantages of fully connected layers include

• the large number of parameters

• slow convergence of training and

• bad generalization effect when applied to new training data. [179]

While the complexity of an MLP or an ANN can be increased arbitrarily both
in the amount of layers as well as in the amount of nodes per layer, this leads
to the requirement of high computational power or time and to increased risk
of so-called overfitting [184]. Overfitting denotes the network being perfectly
trained on the input/training data and hence also fitted to the noise and irregular
peculiarities thereof, instead of finding a general predictive rule that allows good
predictions on new data points [185]. Increased model complexity and overfitting
is tantamount to decreasing bias (error due to the used model’s incapability of
capturing the underlying model) and increasing variance (error due to sensitivity
to noise in the data). The opposite called underfitting hence typically shows high
bias and low variance. This dilemma of finding the optimal model complexity is
depicted in Figure 2.18. [186]

2.4.1.3 Training and backpropagation

The basic training process of a neural network is based on iterative optimization,
illustrated in Figure 2.19.

The training of a multilayer ANN is in general similar to the training of an
SLP, which was introduced in Equations (2.95) and (2.96) as delta rule. The
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Model complexity

Error

Bias

Variance
Total

Figure 2.18: Qualitative depiction of the relationship between variance and bias and their effect on the
error of the network. Models too simple to capture the underlying real model typically
show high bias and low variance; they are underfitting. In contrast, an overly complex
model is likely to have low bias and high variance and is therefore overfitting. Based on
[186].

Data set

Test data Validation data

ANN Prediction Loss function

Loss score

Weights Weight update Optimizer

Figure 2.19: Illustration describing the training of weights in neural networks according to [25, 187].
Extracted from Blarr et al. [188].
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production of output through the forward propagation of activation was introduced
in the last section. However, in most modern feedforward networks a second
training phase is involved, where the error is propagated backwards in the so-
called backpropagation. [177] This efficient application of a chain-rule based
supervised learning [189] was introduced by Linnainmaa [190] with significant
improvements and analyses by Werbos [191] and Rumelhart [192]. According to
Rojas, the backpropagation algorithm can be decomposed into four main steps
that are the feedforward computation, the backpropagation to the output layer, the
backpropagation to the hidden layer and finally the weight updates [193]. When
the results of the feedforward computation are available, there exists a network
output, hence prediction, y = y(w), for every of the q training vector pairs of
input and output (x,y). Then, an error or cost function E comparing output y
and desired target z is to be minimized

min
w
E =

q∑
p=1

Ep, (2.104)

where Ep is some kind of distance function. The sum of squares error (SSE) based
on Euclidean distance and given by

Ep = ||zp − yp||2, (2.105)

is a popularly applied error function. [194]

E is computed solely through the composition of the node functions and hence
forms a continuous and differentiable function of the l network weights
{w1, w2, ..., wl}. In order to minimize this error, an iterative process of gradient
descent is used, for which the gradient of the error function has to be determined
given by

∇E =

(
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wl

)
. (2.106)
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The weights can subsequently be adjusted incrementally by descending the gradi-
ent as follows

∆wi = −rl
∂E

∂wi
, i = 1, 2, ..., l, (2.107)

with learning rate rl defining the step length of each iteration. This procedure is
repeated for a finite number of steps, steadily choosing the correction path with
the steepest descent, until a minimum of the error function is found with∇E = 0

or a satisfatory reduction of the error function is achieved. [193]

This so-called generalized delta rule [194] is illustrated in Figure 2.20.

Weight a

Weight b

Sum-squared error

C

B

A

Change of weights

Figure 2.20: Idealized bowl-shaped error surface for 2D weights, where the weights are changed
following the steepest path towards the bottom C, which is the desired minimum (with
current weights at point A and corrected weights at B). Based on [173].

Disadvantages of classical backpropagation include slow convergence speed and
the strong dependence on chosen parameters, like initial weights and especially the
learning rate. In addition, real error surfaces do not look like the simplified shape
in Figure 2.20 but instead often show ravine-like features and many dent-like local
minima [173]. This may result in the backpropagation training the network into a
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local minimum that it might not be able to escape. However, reaching the global
minimum is in practice not always necessary, provided a set of weights is found
that works accurately enough for the application at hand. [173, 195]

2.4.1.4 Optimizing algorithms

Even though a variety of optimizing algorithms to minimize the loss function have
been developed, only two will be shortly addressed in this section, which are the
stochastic gradient descent (SGD) and the ADAM optimizer. The choice is based
on the fact that these two perform well for common problems and are among the
most widely used. Furthermore, of the three different networks implemented in
this work, one works with SGD and the other two with ADAM.

Stochastic gradient descent (SGD) The basic gradient descent, first pub-
lished by Cauchy [196], has been introduced in the previous Section 2.4.1.3 in
Equation (2.106) and Equation (2.107) and is assembled here for the sake of
completeness again:

wi+1 → wi − rl∇E(wi). (2.108)

It shall be noted that rl = rl,i in the case of non-constant learning rates [197]. It
is sometimes also referred to as batch gradient descent as it is an optimization
method performed on the entire training set, which requires high computational
effort [197, 198]. In contrast there are stochastic optimization methods, of which
SGD, first described by Robbins and Monro [199] and in a form closer to today’s
SGD in DL by Kiefer and Wolfowitz [200], is the most prominent representative
[197]. SGD performs a weight update on every training example xi, yi:

wi+1 → wi − rl∇E(wi, xi, yi) [198], (2.109)
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which can be regarded as a stochastic estimate of the actual entire gradient. SGD
typically achieves fast iterations due to its reduced computational demand in
exchange for a lower convergence rate [197]. However, in practice nowadays,
often neither purely stochastic nor purely batch optimization methods are used,
as the SGD can be used on randomly chosen subsets of the data, or so-called
mini-batches without constraints [197]. It is mostly still referred to as SGD [198]
or sometimes as mini-batch gradient descent.

The ADAM optimizer One of the most used optimizing methods in DL is
the Adaptive Moment Estimation (ADAM) presented by Kingma et al. in 2014
[201, 202]. It is an algorithm for first-order gradient-based optimization based on
adaptive estimates of lower-order moments [201]. While there are many different
definitions of the ADAM optimizer [202], the original algorithm as in [201] is
introduced in the pseudocode (Algorithm 1) below.

Empirical results show that the ADAM optimizer outperforms many other known
optimizers like "AdaGrad" or SGD both in logistic regression as well as in mul-
tilayer fully connected neural networks and deep convolutional neural networks
[201] concerning its training cost. Its local convergence has been proven [202].
For further information, the reader is referred to the original paper [201].

2.4.1.5 Common activation functions

It has already been mentioned that the activation functions have to be non-linear
in order for the model to be able to learn complex correlations. Many different
activation functions are possible and have been used, of which some major ones
shall be presented in the following. In general, an activation function is defined as
a function h : R → R, which is continuously differentiable almost everywhere
(requirement for backpropagation) [203].
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Algorithm 1 Pseudo code for ADAM optimizer computation. The proposed
parameter settings are rl = 0.001, (β1, β2) = (0.9, 0.999) and ϵ = 10−8. Slightly
modified from: [201].
Require: rl: Step size (i.e. learning rate)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for estimating the moments
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 ▷ Initialisation of first moment vector
v0 ← 0 ▷ Initialisation of second moment vector
t← 0 ▷ Initialisation of time step
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) ▷ Obtain gradients w.r.t. the stochastic objective at time

step t
mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
vt ← β2 · vt−1 + (1− β2) · g2t ▷ Update biased second moment estimate
m̂t ← mt/(1− βt

1) ▷ Compute bias-corrected first moment estimate
v̂t ← vt/(1− βt

2) ▷ Compute bias-corrected second moment estimate
θt ← θt−1 − rl · m̂t/(

√
v̂t + ϵ) ▷ Update parameters

end while
return θt ▷ Resulting parameters

The activation of a single hidden unit h(l) is given by

h(l) = σ(u) = σ(w(l)⊺x), (2.110)

with σ as the associated activation function, w(l) as the corresponding weight
vector and x as the input vector (compare Equation (2.91)) [204].
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Binary step function The activation function that is closest to the reaction
of a biological neuron is a simple binary step function, which is either zero or
positive, defined by

h(l) =

1 if w(l)⊺x ≥ 0,

0 if w(l)⊺x < 0,

(2.111)

and depicted in Figure 2.21.
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Figure 2.21: Binary step function.

Sigmoid functions Sigmoid functions are bounded and differentiable func-
tions, which are non-decreasing and have exactly one inflection point [205]. Two
sigmoid functions are shortly outlined, the logistic sigmoid function, which is
sometimes only referred to as sigmoid function, and the hyperbolic tangent func-
tion.

The logistic sigmoid function is defined as follows

h(l) =
1

1 + exp
(
−w(l)⊺x

) , (2.112)
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which translates any input between (−∞;∞) to the range [0; +1] and can there-
fore be thought of as a smooth version of the binary step function [205]. While
the binary step function is not differentiable at x = 0, the logistic function is
differentiable infinitely many times on its entire domain [205, 206]. Owing to their
effect of "squashing" the real values into a bounded interval, they are occasionally
called squashing functions (cf. Figure 2.22) [205]. Hence, they can suffer from
vanishing gradients, especially in deep networks [206, 207]. The logistic sigmoid
function is therefore often used in rather shallow networks or often in output
layers of networks due to its value distribution [206].
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(a) Logistic (b) Tanh

Figure 2.22: Sigmoid (a) and tanh (b) activation functions.

As a further development, the similiar hyperbolic tangent function is given by

tanh(u) = 2sigmoid(2u)− 1, (2.113)

which gives the following activation function:

h(l) =
2

1 + exp
(
−2w(l)⊺x

) − 1 [206, 207]. (2.114)
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Bounding the input values in the range of [−1;+1] (cf. Figure 2.22(b)), it has a
steeper derivative than the logistic function but suffers from vanishing gradients
nonetheless [207]. The gradients of sigmoid funtions in general converge towards
zero at the outer limits and are therefore soft-saturating:

lim
x→+∞

σ′(u) = 0, lim
x→−∞

σ′(u) = 0 [206]. (2.115)

Similarly, the hyperbolic tagent is used mostly in output layers as well, especially
in the case of input values that were mapped between minus one and one [206].

Rectified Linear Unit (ReLU) and Leaky Rectified Linear Unit Inspired
by neuroscience, Nair et al. [208] presented the ReLU as a piecewise linear
activation function in 2010 initially for the use in restricted Boltzmann machines,
which has since become one of the most used activation functions [207]. In
contrast to the previously shown functions, ReLU is a non-saturated function
resulting in high convergence speed and the avoidance of vanishing gradients
[209]. The function can be expressed by

h(l) = max(w(l)⊺x, 0) =

w(l)⊺x if w(l)⊺x ≥ 0,

0 if w(l)⊺x < 0,

(2.116)

and can be seen on the left in Figure 2.23. Disadvantages include the death of
neuron units that were not initially activated as their weights will not be updated
and a slow training process for gradients constantly being zero [204, 206].
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(a) ReLU (b) Leaky ReLU with λ = 0.1

Figure 2.23: Original ReLU and Leaky ReLU activation function.

On that account, Maas et al. introduced the Leaky ReLU as improvement of the
standard ReLU function, which is defined by

h(l) = max(w(l)⊺x, 0) =

w(l)⊺x if w(l)⊺x ≥ 0,

λw(l)⊺x if w(l)⊺x < 0 [204].
(2.117)

The slope in the Leaky ReLU function depicted on the right in Figure 2.23 is
chosen to λ = 0.01 as suggested in the original paper [204]. When the unit is
saturated and not active, the leaky rectifier allows for a small, non-zero gradient
unlike the standard ReLU activation [204]. Sacrificing the so-called hard-zero
sparsity of ReLU allows for a gradient which is potentially more robust during
optimization [204].

2.4.1.6 Types of layers

The effect of increasing the number of layers to improve a network is limited,
which is why alternatives to the previously introduced fully connected layers (also
known as linear layers) have been developed. Some of the most important ones
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used in the networks in this work are briefly explained below. In some cases,
the use of a certain type of layer also determines the name of the network, for
example, an ANN that has one or more convolutional layers becomes a CNN.

Dropout layers Introduced by Hinton et al. in 2012, dropout layers can be used
in ANNs to prevent overfitting and achieve improved robustness against choices
of network architecture [210]. Dropout layers refer to a defined percentage of
randomly selected neurons being ignored in an epoch, removing all connections
from and to other units temporarily. The approach was partly motivated or at least
linked to the fact that more advanced organisms have evolved due to the breaking
up of sets of co-adapted genes during sexual reproduction compared to asexual
reproduction increasing the robustness of the remaining units over time [211]. An
example is given in Figure 2.24.

Figure 2.24: Model of a thinned dropout neural network, where crossed out single units are dropped.
Based on [212].

One drawback of dropout is the two to three times increased training time due
to its stochasticity. It mainly stems from training a different random architecture
each time as the dropped out units change every iteration. As for every network,
ANNs with dropout layers require extensive hyperparameter tuning with increased
demands for network size, hence layers, higher learning rate, etc. [212]

98



2.4 Artificial intelligence

Batch normalization Batch normalization, as proposed by Ioffe and Szegedy
in 2015 [213], refers to the normalization of the input of every layer (and repeating
so for every mini-batch) in a network as opposed to only the input layer. It can
be included in backpropagation [213]. Batch normalization allows the use of
higher learning rates, accelerating the training process up to 14 times [213], as one
gets rid of the changing distribution of each layer’s inputs. It also decreases the
importance of careful choice of initial hyperparameters. While being comparable
to the impact of dropout layers, for which they can serve as substitute, its additional
regularization effect may eliminate the need of dropout layers alltogether in some
cases. [213, 214]

Convolutional layers Convolution is continuously defined as follows:

(f ∗ g)(t) :=
∫ ∞

−∞
f(x)g(t− x)dx [215]. (2.118)

The convolution of two functions f and g can be understood as mirroring of
function g along the y-axis, subsequently adding a time offset x and lastly sliding
function g from −∞ to∞. It passes function f on the way. Wherever the two
functions intersect, the integral of their product, so the area under function f
weighted by function g, is evaluated. Convolution is commutative.

In the context of neural networks, convolutional layers, as fundamental component
of any CNN, introduced by Le Cun et al. [216], are used to perform so-called
feature extractions. They often consist of a combination of linear convolution and
nonlinear activation functions. In this regard, a discrete definition of convolution
is applied (changing the integral to a sum and working on finite sequences). It can
be understood as a small array of numbers, called kernel or filter, sliding across the
input tensor. By multiplying every entry of the kernel and the input element-wise
and subsequently summing up these products, one obtains the so-called feature
map (cf. Figure 2.25).
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Figure 2.25: Schematic description of a convolutional layer in a neural network. A filter of a specific
kernel size, in this case 3 × 3 is applied on the original image to obtain a so-called
feature map. The feature map carries its name due to the fact that the most important
features of an image are kept or even enhanced with this method, while the dimensions
decrease compared to the original image.

Especially if this is repeated for different filter kernels, the characteristics or
features of the input image are enhanced and captured. The output of the convolu-
tional layer typically has decreased dimensions. In the case that this is unwanted,
so-called padding, typically zero padding, which signifies the addition of rows
and columns of zeros on each side of the input tensor, is applied in order to keep
the same in-plane dimension throughout the convolution operation. If in contrast,
the size reduction is desired, another parameter influencing the final output size,
the stride parameter, comes in play, which defines the distance between two con-
secutive kernel positions. [217] While setting a stride larger than one can reduce
overlap, it can also lead to checkerboard artifacts, especially if the size of the
output window and kernel are not a multiple of the stride [218]. The alternative of
applying pooling layers for the further reduction of output size will be discussed
in the next paragraph.

The final output size can be calculated by

O = 1 +
N + 2P − F

S
, (2.119)

with the image dimension N × N , the filter dimension F × F , stride S and
thickness of padding P [219]. As an example, in the case in Figure 2.25, with
N = 6, P = 0, F = 3 and S = 1, the output size of 4 results.
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The output vector h(l) of a hidden convolutional layer can be calculated analo-
gously to the equations for MLPs and using the discrete definition of convolution
(cf. Equation (2.103)) by

h
(l)
i = σ

 ∑
i∈Mj

h
(l−1)
i ∗W (l)

ij + b
(l)
j

 , (2.120)

with a selection of input maps Mj [220, 221]. The weights Wij are updated
through backpropagation and stochastic gradient descent just like the previously
introduced fully connected layers [221] and the kernel values are the only parame-
ters to be learned (while their size, padding, stride, etc. are hyperparameters that
are set in advance) [217]. The inverse operation is used in some CNNs and also
in deep convolutional generative adversarial networks (DCGANs); the layers are
then called deconvolutional layer.

Pooling layers Pooling layers are used to decrease the in-plane dimensionality.
They further introduce a higher translation invariance concerning small shifts and
distortions in images, and decrease the number of subsequent learnable parameters.
It shall be stressed that in contrast to a convolutional layer there are no learnable
parameters in any of the pooling layers. [217] Some common, self-explanatory
pooling operations that were used in the CNN in this work are depicted in Figure
2.26, Figure 2.27 and Figure 2.28.

15 1 25 27

3 3 30 11

19 4 9 15

12 7 22 28

2 × 2 MaxPool 15 30

19 28

Figure 2.26: Depiction of a MaxPooling layer.
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Figure 2.27: Depiction of an AveragePooling layer.
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Figure 2.28: Depiction of a GlobalAveragePooling layer.

2.4.2 Generative adversarial networks

Generative adversarial networks, or GANs for short, were introduced by Goodfel-
low et al. [143] in 2014, and have since been considered one of the biggest findings
in AI science [222], which is underlined by the over 78,000 citations of the orig-
inal paper to date [223]. In 2020 alone, about 28,500 papers related to GANs
were published, corresponding to approximately 78 papers every day, which are
more than three per hour [222]. The main function of GANs is the generation of
realistically looking images after being trained on a given training image data set
[143]. Possible areas of application range from 3D object generation via medicine,
pandemics (mostly during COVID19), image processing, face detection and text
transferring to traffic control and many more [224]. In these application fields, the
function of a GAN is not limited to the generation of images per se, but includes
noise reduction, classification, detection of human motion, the generation of 3D
images from 2D images, face recognition or super-resolution of images [224].
After a slow start, GANs have also established themselves in materials science.
They have been used among others for the inverse chemical design of materials
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[225, 226], data augmentation in microscopic images for material data mining
[227], virtual microstructure design for steels [228], predicting the compressive
strength of concrete (using tabular GANs) [229] or the generation of synthetic im-
ages of porous aluminum foam [230]. There is relatively little research on GANs
in connection with FRP. Corresponding papers can be found on 3D inpainting
of µCT images of glass fiber reinforced composites [231], fiber break analysis
of unidirectional carbon fiber reinforced polymers by using super-resolution of
synchrotron CT images [232], generation of 3D structures from two-dimensional
slices of a variety of microstructures [233] and on the generation of realistic 2D
transverse microstructures of unidirectional fiber reinforced composites [234].
The sources mentioned raise the hope that GANs also represent a serious option
for microstructure generation in relation to discontinuous carbon fiber reinforced
CT scans.

2.4.2.1 Basic theory

The Nash equilibrium The original idea of GANs derives from a central
concept of game theory [235]. It is based on a two-player zero-sum game with
two independently acting, non-communicating players trying to improve, while
the gain of one player is exactly the loss of the other player resulting in a total
sum of zero for the interests of both sides [235, 236]. In this optimization process,
which is also called a minimax game [143, 235], the goal is to reach the so-called
Nash equilibrium, which was shown to exist in any infinite game following these
criteria by John Nash in 1950 [236]. At this equilibrium point, a one-sided change
of strategy would be of no benefit to neither of the players.

Inspired by this concept, the traditional GAN as described by Goodfellow et al.
[143] consists of two competing neural networks, one so-called generator and
one discriminator. The generator makes an effort to capture the distribution of
real, given training data and tries to create new samples that mimic the real ones.
Meanwhile, the discriminator, which is often a binary classifier, aims at differ-
entiating the real samples from the generated samples as accurately as possible.
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Driven by their competition, constant improvement is required by both generator
and discriminator in order to win the game [143, 237]. In the original paper, the
process is compared to counterfeiters (generator) producing fake currency and
police (discriminator) trying to detect the counterfeit currency [143]. Once the
saddle point of the Nash equilibrium is reached, this adversarial training ends and
the generator is considered to have correctly estimated the real data distribution
[222]. In reality, reaching the Nash equilibrium is very challenging considering
the objective functions being non-convex, the parameters being continuous and
the parameter space being high-dimensional [238]. Nevertheless, outstanding
results have been achieved with GANs, and they are particularly impressive due
to the possibility of generating theoretically infinite data once properly trained.

The traditional GAN structure Figure 2.29 shows the structure of the basic
GAN (also called vanilla GAN) as a flowchart. Therein, a generator G is fed with
noise samples z from a prior defined noise function such as a Gaussian distribution
and outputs generated samples G(z). Those are provided alongside samples from
the real data distribution to the discriminator D, which tries to classify the data by
assigning a label of zero for data that it detects as generated and one for data that
it detects as real. With this discriminator feedback and the actual true labels, a
loss function can be calculated, based on which the weights of the generator and
discriminator network are updated using backpropagation.

Noise z Generator G

Real samples
x

G(z)

Discriminator D True/False

Backpropagation

Figure 2.29: Flowchart diagram of the basic structure of the vanilla GAN as proposed by Goodfellow
et al. Based on [235].

In the vanilla GAN, both generator and discriminator are normal MLPs with
trainable parameters θ [143]. A value function V (G,D) is used to evaluate the
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cost of the training. During the training process, only the parameters of one model
are updated, while the parameters of the other are fixed [239].

The MLP representing the generatorG is a differentiable function with parameters
θG. In order to learn the distribution pg over real data x, a mapping of the input
noise variables pz(z) to the data space, G(z, θG), is required. The second MLP
representing the discriminator, D(x, θD) outputs a single scalar. D(x) ∈ [0, 1]

describes the probability that x came from the training data and not the distribu-
tion of the generator pg. [143] Hence, the generator is trained to maximize the
probability D(G(z)) or to minimize log (1−D(G(z)) leading to the following
equation for the training of the generator, while the discriminator is fixed:

min
G

V (D,G) = Ez∼pz(z) [log (1−D(G(z)))] [143]. (2.121)

The expectation operator E denotes the expected value of the specific distribution
function [179]. The parameters θG are updated by calculating and subsequently
descending the stochastic gradients based on this equation. [143]

The discriminator is provided with samples from the unknown input distribution
pdata(x) and the (at the training time of the discriminator) fixed generator samples.
Hence, the value function is given by

max
D

V (D,G)

= Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] [143].
(2.122)

The discriminator parameters get updated analogously by ascending the stochastic
gradient based on this equation.

Goodfellow et al. further proved that global optimality is only reached for
pdata = pG, so if the input data distribution matches the distribution learned
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by the generator. In this case, D(x) = 1
2 holds, which results in regression in the

training process. [143]

Combining Equation (2.121) and Equation (2.122) results in the following mini-
max game for GAN optimization:

min
G

max
D

V (D,G)

= Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] .
(2.123)

log (1−D(G(z))) gives the cross-entropy between [0 1]T and
[D(G(z)) 1−D(G(z))]T . Proposed by Rubinstein [240] in 1997, the cross-
entropy is a measure of the quality of a model for a probability distribution. As the
name already implies, it uses the cross entropy or Kullback–Leibler divergence
as a measure for the closeness of two sampling distributions [241]. Analogously,
logD(x) gives the cross-entropy between [1 0]T and [D(x) 1 − D(x)]T .
Hence, the value function V (G,D) is a Binary Cross Entropy (BCE) function,
which is commonly used in binary classification problems [238]. In fact, any
monotonically increasing function could be used instead of a logarithmic function
[242].

After introducing the equations, the training procedure ought to have become
evident: The discriminator receives a mini-batch of the generator samples and a
mini-batch of the true samples. Then, the stochastic gradient of the discriminator
equation is ascended to update the discriminator. The generator receives noise
samples and the stochastic gradient of the generator equation is descended, and
so on. A corresponding pseudocode can be taken from [143]. Theoretically, the
discriminator could be updated k times and the generator only once per iteration,
but in the original paper they use the least expensive and meanwhile most used
option with k = 1.

If the discriminator is too good in early stages of learning, log (1−D(G(z)))

saturates. This issue can be solved by training the generator to maximize
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logD(G(z)) instead, which provides much stronger gradients in early learning.
[143]

The already mentioned familiar difficulty in training GANs stems from the fact
that due to the minimax game in Equation (2.123), the optimal weights for an
adversarial network correspond to saddle points of the loss functions and not
minima thereof, which is the case for conventional ANNs [242]. This issue is
visualized in Figure 2.30.

(a) Standard ANN

Saddle point

(b) Adversarial networks

Figure 2.30: Schematic illustration of gradient methods for a standard neural network (a) and adver-
sarial networks (b). Classical loss functions are bounded from below, which means that
following the gradients normally leads to a minimum, where the method is stopped. As
opposed to this, loss functions of adversarial networks may be unbounded from below
and the training alternates between minimization and maximization steps. If those two
are unbalanced, the solution path might "slide off" the loss surface and never reaches the
desired saddle point, making the algorithm unstable and resulting in a sudden "collapse"
of the network. Based on [242].

The solution for the saddle point problem is determined using the alternating
stochastic gradient method, changing between the descent and ascent step. Typi-
cally, the gradients are updated by an automated solver like the already introduced
ADAM optimizer. [242]
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2.4.2.2 Common challenges when training GANs

Apart from the general problem of non-convergence, there are specific typical
challenges when training GANs, two of which will be elaborated on in the follow-
ing paragraphs. Those issues mainly occur due to each model trying to negate the
effect of the other one [243]. Solving one of the issues does not necessarily lead
to success as these different challenges may occur parallel or at different stages of
the training process [244].

Mode collapse The first common challenge is the so-called mode collapse,
also called catastrophic collapse, which signifies the creation of very similar look-
ing output data lacking variety by the generator [244]. Mode collapse occurs when
the discriminator is stuck in a local optimum [244]. Typically, the generator can
then produce one realistic data sample, which the discriminator recognizes as real,
and will stick with it; sacrificing the goal of generating a data distribution similar
to the training data distribution. Alternatively, only a particular, limited subset of
modes is learned by the generator, which is sometimes called partial mode collapse
[238, 245]. The discriminator function often shows sharp gradients around real
data points in local equilibria [246] and hence the discriminator gradients point to
similar directions for many similar points (discriminator overfitting) (cf. Figure
2.31). As the discriminator processes every generated image independently, there
is no interaction between the gradients (also called catastrophic forgetting [247]).
The generator is therefore not told to diversify its outputs. [248]

One possible solution to avoid mode collapse is the use of previously mentioned
minibatch discrimination, where the discriminator is fed with multiple images
at the same time rather than single images [248]. In addition, multiple further
developments of GANs, like deep convolutional GANs [250], were proposed to
tackle this issue by using different network structures, new objective functions
or different training algorithms. Some important specific types are mentioned in
Section 2.4.2.3.
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Generation manifold

∇D

M1 M2

Figure 2.31: Simplified depiction of mode collapse with the generator gradients pushing to M1 for
most of the input noise z. Only if G(z) is very close to M2, the second mode is reached
by the gradients. Provided that a corresponding z has a low probability in the noise
distribution, the mode is visited rarely and the generator has little possibility to improve
in this area. Based on [249].

Vanishing gradients If the discriminator becomes too good at its job of as-
signing zero to fake images and one to real ones, the generator gradients approach
zero. This behavior is called vanishing gradients and prevents training progress. It
typically appears when the discriminator is already close to the optimal solution.
[238, 244] It can be addressed, e.g., by using the Wasserstein distance as an
alternative method to calculate the loss of a GAN (see Section 2.4.2.3) [251].

2.4.2.3 Other types of GANs

In this section, a short, by no means comprehensive list of popular adaptions of
the original GAN idea is presented.

First described by Arjovsky et al. [251], the Wasserstein GAN (WGAN) has the
same structure as the vanilla GAN [143] but uses the Wasserstein distance, also
known as Earth Mover distance, to calculate the generator and discriminator loss
[235, 252]. It was intended to solve the problem of vanishing gradients [235], but
can also itself show problems of bad image quality of the generated samples or
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convergence failure. This was improved by Gulrajani et al. [253] by adding a
gradient penalty, introducing the WGAN-GP.

DCGANs as introduced by Radford et al. [250] in 2016, do not only consist
of fully connected layers, but obtain deconvolutional (more precisely known
as transposed or fractionally strided convolutions) layers in the generator and
convolutional layers in the discriminator. This is the kind of GAN that was used
in this work as well. While the basic structure is the same, DCGANs typically
include batch normalization in the hidden layers allowing for a deeper gradient
propagation as the risk of generator collapse is decreased. In order to avoid sparse
selection of gradients, ReLU activation is used in the generator (except for the
output layer, which uses tanh) and Leaky ReLU activations are selected for the
discriminator with the sigmoid activation in the output layer. [179]

Conditional GANs (cGANs) described by Mirza et al. in 2014 [254] condition
the generator and discriminator on discrete auxiliary information by adding this
information, normally a corresponding label, as another input layer. This enables
the trained generator to output a result based on a requested label instead of
generating random outputs. [254] In the case of continuous variables, the given
additional input information can be divided into separate classes. The further
development of a Continuous conditional GAN (CcGAN) by Ding et al. might be
another option in that case [255].

Another extension of the cGAN would be the information maximizing GAN
(InfoGAN) as introduced by Chen et al. in 2016 [256].

2.4.3 Neural networks in materials science

AI is making its way into all scientific fields; materials science is no exception.
Apart from classical ML algorithms, which have been used for a while, neural
networks are increasingly used and classified as DL at more complex scales
(multiple layers). They can be used to predict mechanical properties [257], weld
characteristics [258], crack propagation [259], and crystal structures [260] as well
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as to classify surface defects [261], fracture surfaces [261, 262] and microstruc-
tures [263, 264], or to segment phase fractions [265], grain boundaries [266], or
precipitates [267]. Deep learning can also play a role in materials science for
object recognition [263], crack detection [25], feature extraction from transmis-
sion electron microscopy (TEM) or scanning electron microscopy (SEM) images
[268], or the creation of digital twins [269]. Another technique is increasing
image resolution through super resolution (SR) networks, which has been used
sporadically in materials science [270], but is also emerging in commercially
available software. The use of GANs in materials science was already elaborated
on in the prior Section 2.4.2.

In this work, three neural networks are implemented and evaluated. One rather
classical ANN for tensor interpolation, one CNN for the determination of FVC
from 3D scans and one DCGAN for the generation of realistic 2D CT images.
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The Methods chapter first discusses the material and the CT scans, which serve
as the basis for all investigations in this thesis. The methods used to examine the
plastificates are then explained. This is followed by descriptions of the methods
for determining fiber volume content, fiber length distribution and fiber orientation
distribution. After the interpolation of the fiber orientation tensors has also been
explained, the chapter concludes with an elaboration of the generative adversarial
network used for artificial image generation.

3.1 Materials and processes

In the following, the material constituents are presented, as well as the process used
to produce the final composites, the sizes and extraction points of the specimens
and the considerations behind these.

3.1.1 Polyamide 6

PA6, sometimes also referred to as polycaprolactam, Perlon or Nylon 6, is a
thermoplastic, semicrystalline polymer from the group of polyamides. The number
6 was assigned because of the six carbon atoms between the nitrogen atoms in
the molecule chain. The chemical formula is (C6H11NO)n. In contrast to other
polyamides, which are mostly formed by condensation, PA6 is synthesized by
ring-opening polymerization of ε-caprolactam (compare Figure 3.1).
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Figure 3.1: Schematic depiction of the synthesis of polyamide 6 by ring-opening polymerization of
ε-caprolactam. The ε-caprolactam is heated at about 533 K - 553 K in an inert atmosphere
of nitrogen for multiple hours until the ring breaks and polymerization takes place. Small
amounts of water are initially required, which is why this synthesis process is also known
as hydrolytic polymerization. However, alternative synthesis processes are also possible.
Based on [271].

PA6 has a melting temperature of approximately 222 °C, a glass transition temper-
ature between 50 °C and 60 °C and a density of 1.14 g/cm3. With 3 % moisture
absorption at 50 % relative humidity and even 9.5 % moisture absorption in water,
PA6 can uptake particularly high amounts of water. [271] Water acts as a plasti-
cizer in PA, decreasing the glass transition temperature by about 50 °C between
completely dry and maximum water absorption [272]. In addition, the shear
modulus and modulus of elasticity depend on the temperature, as typical for ther-
moplastics. [272] These dependencies on climatic and environmental conditions
exacerbate the work of engineers when designing with PA6 and characterizing the
material behavior of it.

In this specific work, the PA6 matrix material used was the TECHNYLSTAR
XS 1352 BL NATURAL with a master batch. It was generously provided by the
company DOMO Chemicals GmbH, Leuna, Germany.

3.1.2 Polycarbonate

In order to take into account the differences that the choice of matrix system has,
in particular on the structure of the plastificate, polycarbonate is sometimes used
as a reference system in this thesis. The polycarbonate material is a Makrolon
2405 PC provided by Covestro AG, Leverkusen, Germany.
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3.1.3 Carbon fibers

Carbon fibers are a long and thin (usually about 5 µm - 7 µm in diameter) material
composed mostly of carbon atoms. They owe their high strength and Young’s
modulus to their graphite-like arranged carbon structure in planes that get aligned
parallel to the fiber direction during manufacturing. When producing carbon
fibers, the raw material, also called precursor, is in most cases polyacrylonitrile
(PAN), or more rarely rayon or pitch, which all exhibit long strings of carbon
bound molecules. After thermally stabilizing the long strands of precursor by
heating the fibers in air at 200 °C - 300 °C, the so-called carbonizing step follows.
While heating the fibers for several minutes at a temperature between 1,000 °C
and 3,000 °C in an atmosphere without oxygen, the non-carbon atoms leave the
fibers. After treating the surface to slight oxidization, the fibers are finally coated
in a material compatible with matrix material. This process is also called sizing.
[273]

For this work, high-tenacity (HT) carbon fibers PX 35 with sizing for PA6 were
acquired from ZOLTEK Corporation, St. Louis, United States. In the respec-
tive data sheet, the manufacturer states a carbon content of 95 %, a density of
1.81 g/cm3, a diameter of 7.2 µm, a Young’s modulus of 242 GPa, a tensile strength
of 4,137 MPa and an elongation at break of 1.7 %. The tex number is 3750.

3.1.4 Glass fibers

The glass fibers were provided by Johns Manville Corp, Denver, United States.
The type is StarRov ® 895 2400 with a tex number of 2400. However, they will
only play a subordinate role in this work, which is why no further mechanical
parameters will be given.
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Clarification of material use per method

It shall be made clear at this point that the main investigation material in this
work is carbon fiber reinforced polyamide 6. Only in individual cases, which
are broken down in more detail below, is another fiber or matrix material used
for comparison. In the case of the plastificate examinations, in order to better
understand the peculiarities of the CF-PA6 material, such as the increased porosity,
GF-PA6 and GF-polycarbonate are also included. In the fiber volume content
investigations, only CF-PA6 is used, as there is hardly any potential for developing
methods for material combinations with glass fibers, since the FVC determination
there works reasonably reliably even in a non-destructive manner. Specimens from
Plate 2 and Plate 3 are used, which are shown in Figure 3.4. The investigations
are published in [188]. As far as fiber orientation determination is concerned,
CF-PA6, GF-PA6 and hybrid CF-GF-PA6 are investigated. Specimens from Plate
3 (CF-PA6), Plate 4 (GF-PA6) and a hybrid CF-GF-PA6 plate with an identical
cutting pattern, which is not shown explicitly in this dissertation, were used. The
method for GF-PA6 has already been implemented by Bertram and Pinter [79], the
slight adaptations that are necessary for the other two material types are explained
in the respective Section 3.6 in the Methods. With regard to tensor interpolation,
only CF-PA6 is initially considered, as the various methods were assessed on this
basis. Only specimens from Plate 1 (Figure 3.4) were used. These results are
published in [17]. The determined orientation tensors of CF-PA6, GF-PA6 and
hybrid CF-GF-PA6 and their interpolation were considered for the use in Mori-
Tanaka and Halpin-Tsai and the respective comparison with the experimental
values. The samples and plates correspond to those mentioned in the context
of fiber orientation determination. These results are published in [274]. For the
GAN, only CF-PA6 samples were used again, namely from Plate 3 and another
pure CF-PA6 plate, which is not printed, with an identical cutting pattern, but with
the plastificate inlay rotated by 180°. This decision was due to the fact that in
the course of the preparation of this work, the discovered skewed flow front was
identified as a process error and not as a desirable process property to be depicted.
By using a plate with an inverted plastificate insert, the training data set could
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be somewhat neutralized in this respect. These investigations were published in
[275].

3.1.5 The LFT-D manufacturing process

The long fiber thermoplastic direct (LFT-D) process is depicted schematically in
Figure 2.1. The polyamide 6 granulate is compounded in an extruder along with
the master batch at temperatures between 260 °C - 280 °C. In a second, mixing
extruder with a twin screw, the fiber rovings are introduced to the polymer melt
uncut and are chopped up irregularly by the shearing motion of the extruder. The
resulting initial charge, also called plastificate in this work, of which two kinds
can be seen on top in Figure 3.2(a) and Figure 3.2(b), is ejected through a specific
nozzle. Subsequently, it is directly inserted in a press (Dieffenbacher), preventing
a reheating of semi-finished products, which is necessary in other known LFT
production processes.

In the press, the plastificate is transformed into a plate or part (depending on the
inserted mold) and simultaneously cooled down (cf. Figure 3.3) in a so-called
compression molding process. The press has a temperature of about 80 °C - 90 °C.
The mold for the plates commonly used in this work has dimensions of 400 mm ×
400 mm and the height of the plates was fixed at 3 mm using spacers. An image
of both front and back of these plates can be seen on the left in Figure 3.3. The
insertion area of the plastificate at the left is clearly visible.

It shall be noted that both the amount and geometry of the plastificates as well as
the insertion position in the mold severely influence the mold filling behavior. This
in turn influences the macroscopic quality of the component, but in particular also
the microstructure and therefore anistropies and weak points in the mechanical
properties. These investigations are not part of this work and are carried out by
process developers and process simulants. However, the aim of this work is to
be able to draw conclusions about the behavior in the process and in subsequent
mechanical tests through targeted characterization and quantitative reproduction
of the microstructure in the plates. For the plates used in this work, one single,
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(a) (b)

(c) (d)

Figure 3.2: Images of (a) an initial charge/plastificate (340 mm × 75 mm × 35 mm) for the plate
production with its (c) insertion position in the 400 mm × 400 mm mold, as well as
(b) an initial charge/plastificate (275 mm × 175 mm × 29 mm) for the "MaiQFast" part
(automotive underbody segment with stiffening ribs) and its (d) insertion position in the
"MaiQFast" part mold (two overlapping inserted plastificates in the middle, and three
tapes, e.g., on the upper side, for additional continuous reinforcement). The scale from
image (b) does not apply to all images, so the corresponding dimensions are given in this
caption.

longer plastificate of about 340 mm length, 75 mm width and 35 mm height was
inserted at the left of the 400 mm × 400 mm mold (see left side of Figure 3.2).
It shall be added that the dimensions of the plastificates given in the caption of
Figure 3.2 are theoretical values, from which the actual plastificate geometries
sometimes deviated significantly, especially the wider ones used in the MaiQFast
production.

3.1.6 Preparation of specimens

In order to examine the material in the CT device, smaller specimens were cut
from the material through waterjet cutting. The size and position of the specimens
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(a) (b)

(c) (d)

Figure 3.3: Images of the front (a) and back side (c) of a 400 mm × 400 mm × 3 mm CF plate used
in this work after the press process and the front (b) and back side (d) of an additionally
continuously reinforced "MaiQFast" part with dimensions of 600 mm × 400 mm after the
press process.

was of particular interest. Regarding the position of the specimens, the differences
between the area where the initial charge is inserted (often labeled C), the transition
area (CF) and the area dominated by the material flow (F) were of particular
interest. Therefore, in most cases, three specimens were taken from each of these
areas as can be seen in Figure 3.4 (a), (c) and (d).

Considering the dimensions it was evident that the samples should be small, so
that a high resolution in the CT images could be reached, but large enough, so
that not only very local effects are depicted. Several considerations influenced

119



3 Materials and Methods

(a) Plate 1 (b) Plate 2

(c) Plate 3 (d) Plate 4

Figure 3.4: Different cutting plans to extract specimens of different sizes and at different locations by
waterjet cutting superimposed on an image of a CF plate ((a), (b) and (c)) and GF plate
(d).
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the choice of specimen size for a particular application/evaluation, so that partly
different specimen sizes were used for different methods (cf. Figure 3.4). As
far as the first question regarding the necessary resolution is concerned: 3 voxels
- 4 voxels across the fiber diameter, i.e. a resolution of 1 µm - 2 µm, would be
necessary for single fiber detection. This is not compatible with a reasonably
justifiable specimen size and is also not inevitable, as algorithms that do not rely
on single fiber segmentation are possible. The next aspect of a representation of
the microstructure that is not too localized is more difficult to grasp. Therefore, it
seemed sensible that after cutting a specimen to size, the stochastic fiber length
distribution in the plate resulting from the process should still be mapped as
representatively as possible. To investigate the effect of specimen size on the
FLD, three specimens measuring 10 mm × 10 mm, 20 mm × 20 mm and 30 mm
× 30 mm were taken from Plate 2, both in the charge area and in the flow area (see
Figure 3.4). The fiber lengths of these samples were determined experimentally
and can be seen in Section 4.4. While there were occasional fiber lengths of
significantly more than 10 mm, a peak at about 0.5 mm, a median length of about
0.48 mm and an average (arithmetic mean) length based on number of about
1.07 mm clearly indicate the occurrence of the clear majority of fibers in the range
below 2 mm (see Figure 4.15). Based on this consideration, an initial specimen
size with a side length of 10 mm could be justified for the development phase of
the tensor interpolation problem, because only very few fibers would be decisively
cut off (see Plate 1 in Figure 3.4). For all subsequent investigations, however,
larger samples with side lengths of 25 mm (see Plate 3 and Plate 4 in Figure 3.4)
were chosen for several reasons, which are briefly summarized hereinafter. Firstly,
quite extreme cases of anisotropic tensors with very different local orientations
were deliberately desired for the development of the interpolation methods, as
this would ensure that the method would work in the worst case scenario. This
was not the case for all further evaluations, where a realistic representation of
the microstructures to be expected in such a plate was required. Furthermore,
the average fiber lengths of the differently sized test samples increased from the
smallest to the middle sample in both cases, but did not show a definitive trend
from the middle to the largest sample (see Figure 4.16). Thus, a saturation of the
effect of the sample size on the fiber length distribution between a side length
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of 20 mm to 30 mm was assumed. In addition, the fiber volume contents of the
test samples were also determined via acid based dissolution (cf. Section 3.4.1)
and they increased with increasing sample size as well (cf. Section 4.3.1). The
available crucibles for the thermogravimetric analysis with the commercial system
LECO TGA801, as an alternative determination of FVC through pyrolysis, had a
diameter of 25 mm. For all these reasons, a side length of 25 mm was subsequently
considered appropriate.

In this work, apart from the purely CF reinforced plates (cf. Figure 3.4 (a), (b)
and (c)) and the GF reinforced plate (cf. Figure 3.4 (d)), a hybrid reinforced plate
with both carbon and glass fibers was also considered sporadically; especially in
the context of reliably extracting the two separate fiber orientations in CT data of
a plate like this.

3.2 CT scans

The CT device, the process of creating CT scans and the parameters used for them
are explained briefly below.

3.2.1 Device

Most CT scans in this work were done with the institute’s (Institute for Applied
Materials at Karlsruhe Institute of Technology) own CT device. It is a YXLON-
CT (Yxlon International CT GmbH, Hattingen, Germany) precision µCT system
with a µ-focus X-ray transmission tube with tungsten target and a PerkinElmer
(Waltham, MA, USA) Y.XRD1620 flat-panel, quadratic 2048 pixel (px) × 2048
pixel (px) detector.

During a repair of the in-house CT, another device was used at the wbk Institute
of Production Science at KIT. This device was a Zeiss Metrotom 800 cone beam
µCT system with the flat panel detector PaxScan2520V with 1536 px × 1920 px,
so a rectangular detector contrarily to the other one used.
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3.2.2 Procedure

After mounting the specimen(s) and installing them in the beam path, appropriate
parameters were selected for the scan (see Section 3.2.3). After the scan procedure
is done, the respective 2D projections generated by rotating the sample in the beam
path were reconstructed to a volumetric image applying the Feldkamp cone-beam
algorithm [154]. Subsequently, the reconstructed scans were processed in VG
Studio Max 3.4.2.

3.2.3 Parameter settings

Different parameters were chosen for different scans used in this work. The pa-
rameters of some of the most important scans (the four main plates and specimens
referenced in Figure 3.4) are summarized in the following Table 3.1.

Table 3.1: Scan parameters of the different plates. The rectangular specimens of Plate 2 were scanned
on the Zeiss device, all others on the Yxlon device.

Parameter Unit Plate 1 Plate 2 Plate 3 Plate 4

Voltage kV 150 100 110 125

Current mA 0.25 0.16 0.13 0.12

Voxel size µm/voxel 8.57 25.98 17.39 19.17

Linebinning parameter - 2 - 2 2

Number of projections - 1950 1450 2220 2100

Exposure/Integration time ms 500 1000 800 1000
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3.3 Investigations of the initial
charge/plastificate

It appears obvious that the microstructure of the final plates is particularly de-
pendent on the initial structure of the inserted plastificate. For this reason, a CT
image-based investigation of the microstructure of the plastificate was initially
of interest in order to understand the overall flow and material behavior in the
pressing process.

3.3.1 Initial orientation state

First of all, the initial fiber orientation in the plastificate appears to be particularly
decisive for the fiber orientation and microstructure of the plate. It could basically
be determined using the same procedure for determining the fiber orientation
tensors as for the samples from the plates, which is presented in Section 3.6 and
which is based on the principles explained in Section 2.2.3.2. Therefore, CT
images were acquired from plastificates, which can be seen for CF-PA6 in Figure
3.5 and for GF-PA6 in Figure 3.6.

The two swirls in the center of the plastificate can be clearly seen in image (a) of
both figures. However, no real distinction between fiber and matrix is possible,
especially with the CF plastificate, but also with the GF plastificate. This is
due to the poor resolution, which is required by the size of the plastificate, and
the fact that there is a lot of air in the material mixture, which has such a clear
difference in gray value that the small difference between fiber and matrix is hardly
recognizable. A classic fiber orientation analysis is therefore hardly possible.
However, the gradient-based method can still be used and simply determine the
gradients between air and material. This would then determine the overall material
orientation. One can make the reasonable assumption that the fibers move along
the matrix flow and should therefore be oriented in a similar or the same way as
the overall material.

124



3.3 Investigations of the initial charge/plastificate

(a) (b)

(c) (d)

Figure 3.5: Upper (a), right (b), front (c) 2D section view and 3D view (d) of a CF-PA6 plastificate.
It was done with the Zeiss Metrotom 800 cone beam µCT system at wbk Institute of
Production Science at KIT. The scan had a resolution of 73 µm/voxel and was also used in
the author’s publication [276].

Accordingly, grids were placed over the plastificates (see Figure 3.7) and the
material orientation tensors of the cubes were evaluated applying the method used
to determine the fiber orientation tensors (see Section 3.6).

3.3.2 Porosity and volume determination

Fiber orientation measurements in the plate revealed that the flow front in the pro-
cess appears to be slightly skewed. After ruling out various causes, the somewhat
irregular geometry of the plastificates and their porosity distribution were taken
into consideration.

Therefore, the images were first loaded into Python (read in as .raw image file) and
then converted to numpy arrays with the correct dimensions. Subsequently, the
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(a) (b)

(c) (d)

Figure 3.6: Upper (a), right (b), front (c) 2D section view and 3D view (d) of a GF-PA6 plastificate.
It was done with the institute’s own YXLON CT device. The scan had a resolution of
77.5 µm/voxel.

(a) (b)

Figure 3.7: (a) Image of a CF plastificate scan section with a superimposed grid of 36 3.33 mm ×
3.33 mm × 3.33 mm cubes around the left swirl. (b) Image of a GF plastificate scan
section (different plane than in (a)) with a superimposed grid of 12 20 mm × 20 mm ×
20 mm cubes along the extrusion direction.
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image was made binary with the Otsu threshold applied to each slice. Afterwards,
the segmentation of the plastificate area and the pores inside this area had to
be implemented. This is difficult insofar as the area of the plastificate that is
penetrated by pores cannot be delimited by thresholding methods, as air is on the
outside and inside, and also cannot be delimited by region growing approaches
or similar due to its branched shape. The solution is morphological approaches.
These apply a structuring element, which can have any shape or size, usually a
square or circle, to an input image and generate an output image. These have the
advantage that they cannot only remove noise but isolate individual elements and
especially join disparate elements in an image, which is needed to capture the
plastificate as a whole. The most basic and well-known morphological operations
are dilation and erosion, which were both used in this application and are explained
in the following. Numpy [277], the OpenCV cv2 [278] library and Matplotlib
[279] were used for these operations and the creation of plots.

Dilation

The image I is convolved with a kernel X . The kernel is set with the command
cv.getStructuringElement and is chosen to be of elliptic shape in this case. The
ellipsis is defined with the function cv.MORPH_ELLIPSE as a circle with radius
of the kernel size 15 - again in this particular work. The center of the kernel
is typically the anchor point of the kernel, which is slid across the image. For
the dilation operation (cv.dilate), the anchor point pixel value is replaced by the
maximal pixel value captured by the kernel:

(I ⊕X)(x, y) = max{I(x+ s, y + t) +X(s, t) | (s, t) ∈ Dx}, (3.1)

with Dx as the definition domain of the structuring element. It is in that sense
similar to a maximum filter with the difference of the important choice of special
structuring elements, changing the outcome decisively. Dilation causes the bright
regions within an image to grow (cf. Figure 3.8), hence the name.
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(a) (b) (c) (d)

Figure 3.8: (a) Binarized slice of the original scan. (b) Same slice after applying dilation. The
entire plastificate has become white and the borders are dilated. (c) Same slice as (a)
but after applying erosion. The entire image has nearly become black. (d) Slice with
successive application of dilation and subsequent erosion. The innards of the plastificate
are still completely white, but the extended borders are reduced by the subsequent erosion.
Segmentation of the plastificate is possible.

Erosion

Erosion (cv.erode) is like the antagonist of dilation computing a local minimum
across the area of the given kernel:

(I ⊖X)(x, y) = min{I(x+ s, y+ t)−X(s, t) | (s, t) ∈ Dx}. [280, 281] (3.2)

It can be seen in Figure 3.8 that by applying dilation to the scan image, the pores
can be filled in. However, the edge also expands beyond the edge of the actual
plastificate. A subsequent erosion operation can reverse this expansion of the edge.
The result is an image which (apart from small errors at the edge) has segmented
the plastificate quite well.

Consequently, the difference between the image with the completely white plastifi-
cate (d) and the original image (a) can be used to generate an image in which only
the pores are white. By counting all pore pixels and all pixels that are assigned
to the plastificate and dividing them by each other, the proportion of porosity
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per slice is obtained. In addition, by dividing the pixels assigned to the material
by the proportion of the total pixels of the scan, the proportion of area of the
plastificate can be determined. Both of these aspects are shared in the results and
then discussed.

3.4 Determination of fiber volume content

In the following, the procedure of the experimental and then the two computational
methods for determining the fiber volume content is presented. Parts of this have
already been published in a paper [188], which is marked accordingly.

3.4.1 Chemical dissolution 1

In order to chemically remove the matrix, approximately 50 ml of concentrated
sulfuric acid is added to the samples in an Erlenmeier flask which is then placed
on a hotplate (cf. Figure 3.9).

(a) (b)

Figure 3.9: (a) Drop of a specimen in sulfuric acid in Erlenmeier flask and (b) dispersion of the
detached fibers. Courtesy of FIBRE Bremen. Extracted from Blarr et al. [188].

This is followed by heating until smoke is produced. Subsequently, the samples
have to react for one hour at this temperature. After the samples have cooled

1 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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down ("lukewarm"), they are mixed with approximately 25 ml of a 35 % hydrogen
peroxide solution and heated until the solution becomes clear and no more gas
bubbles rise.

The remaining fibers are put in a new specimen cup and can be used for the fiber
volume content determination via weighting and for the fiber length distribution
determination.

The investigations were done at FIBRE (Bremen). For Plate 2, directly calculated
FVC values by FIBRE were taken as result, for the specimens of Plate 3, the
calculation of the FVC via the fiber mass content and the respective densities was
performed afterwards.

3.4.2 Computational methods

This section explains the two methods for determining the FVC using image
evaluation methods after the problems with existing methods have been addressed
again.

3.4.2.1 Application and shortcomings of common techniques 2

The through-thickness fiber concentration analysis by Gandhi et al. was mentioned
in the State of the Art [5]. However, it was impossible to apply this procedure to
the µCT scans in this work as the first step of choosing the midpoint threshold
is not feasible for the histograms of the CFRP scans as will be elucidated in the
next section (Section 3.4.2.2) and can be seen in Figure 3.12 (only one peak is
visible). Conventional automatic thresholding methods were tested as comparison
to the methods introduced in this work, which can be seen in Table A.1 and
Table A.2 in the Appendix (Section 9). Therefore, the two common automatic
thresholding methods Otsu (opencv [278]) and mean (scikit image [282]) were

2 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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applied, once without filtering the image before and once with the best-performing
filter option of our self-implemented method (medianBlur with a kernel size of 15
for Plate 2 and 23 for Plate 3, respectively) applied beforehand. The minimum
threshold by scikit image did not even compile with a "RuntimeError: Unable to
find two maxima in histogram", which confirms the previous findings. While the
two thresholding procedures that worked were applied in Python supporting the
subsequent further processing of the values, the exact same threshold and filtering
methods can be applied in ImageJ as well. The results were far away from the
experimental values. It is noticeable that the results of the pure threshold methods
deviate on average by almost 100 % relatively compared to the experimental
results. It is particularly striking that the calculated FVC values are almost the
same for each sample. A purely constant shift of the threshold value therefore does
not appear to make sense, as this would also not cover the differences between
the samples. The use of the median blur at least significantly improved the results
with the Otsu threshold. It seems that in the case of low contrast CT images of
composites with high fiber volume content, simple thresholding is insufficient for
fiber segmentation, which is supported by literature [283].

3.4.2.2 "Average or above" (AOA) thresholding 3

The novel thresholding method is realized in Python 3.8.7 with the help of the
SimpleITK [284–286], the OpenCV [278] and the NumPy [277] libraries among
others. The scans of the samples are generated as 16 bit 3D images in the .raw and
.mhd file format. For all further steps those scans were converted into 8 bit. Dark
slices at the borders resulting from the specimens not being exactly even-surfaced
and further image errors were cut. Each loaded scan was converted into a 3D array.
In the following, every slice is handled separately; so it was iterated through the
thickness of the samples and worked on 2D images. At first, a filter was applied to
reduce the noise. The filters tested include the "normal" blur filter, the median blur
filter, the Gaussian blur filter and the bilateral filter each with various kernel sizes.

3 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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The kernel size defines the dimension of the window that is slid across the image
and in which the filter-specific calculation is performed. The performance of the
filters was judged afterwards by comparing the resulting calculated fiber volume
contents with the experimental values. The results of the specimens of the Plate 2
can be seen in Table A.3, Table A.4 and Table A.5 and the results of the specimens
of the Plate 3 in Table A.6 and Table A.7 in the Appendix (Section 9). The median
filter with resolution-adapted kernel size performed the best. It works by creating
a kernel of pixels around a central pixel. The values are sorted and the central
pixel gets replaced by the median value. From the then noise-reduced image, a
threshold value was determined by using the Otsu algorithm. The Otsu algorithm
separates an image in two sections by maximizing the inter-class variance of the
gray-level intensities between those sections:

σ2
B(t) = ω1(t) · ω2(t) (µ1(t)− µ2(t))

2
. (3.3)

t is the gray value of the threshold being searched for and i is the run variable
with i ∈ [0, L]. ω1 and ω2 are the probabilities of the two sections with

ω1(t) =
t−1∑
i=0

p(i) and ω2(t) =
L−1∑
i=t

p(i), (3.4)

while p(i) represents the probability for each gray level intensity. µ1(t) · ω1(t)

represents the mean intensity value of the first section (and accordingly for the
second section) with

µ1(t) =
t−1∑
i=0

i · p(i)
ω1(t)

and µ2(t) =
L−1∑
i=t

i · p(i)
ω2(t)

. (3.5)

After calculating the Otsu threshold T for each slice, it is plotted over the thickness.
In Figure 3.10, the plot for specimen F1,carbon can be seen as an example.
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Figure 3.10: Example of the threshold values from sample F1,carbon. Based on Blarr et al. [188].

Considering the course of the threshold values over the height of the sample, it
is noticeable that the threshold values are the highest in the center and drop to
a much lower level at the borders of the specimen. Inspecting the scans slice
per slice, it is noticeable that there are less fibers visible in those border areas
compared to the central layers of the sample as can be seen in Figure 3.11.

(a) (b)

Figure 3.11: First slice (a) and center slice (b) of the scan of the specimen F1,carbon. The low amount
of fibers and fiber bundles at the border (a) and the contrary high amount in the center
(b) is clearly visible. Extracted from Blarr et al. [188].

This phenomenon is due to the material flow in the compression molding process.
The process-induced difference between outer layers and the center of the part
is called shell-core effect in injection molding vocabulary and can be detected

133



3 Materials and Methods

considering both fiber volume content as well as fiber orientation [5, 17]. However,
this would mean that there are more lighter gray values representing the fibers
and less darker ones representing the matrix in the center layers, but the threshold
value distinguishing between the two peaks should not shift. This therefore cannot
be the main reason for the course of the threshold values over the thickness.

A second possible explanation would be that of the beam hardening effect, a com-
mon phenomenon in computed tomography. The further the beam penetrates the
material, the higher the average energy of the photons, as the low energy photons
get scattered easily. However, uncorrected images typically show increasing gray
values towards the center, hence the rotation axis of the CT. Consequently, this
effect would be contrary to the one observed. Additionally, multiple specimens
were scanned occasionally, which would superimpose this effect on multiple
samples.

Considering the histograms, one understands the issue more. In Figure 3.12,
exemplary histograms of specimen F1,carbon are given.

In Figure 3.12(a), the histogram of the entire specimen is shown, in Figure 3.12(b),
one can see the histogram of one single slice rather towards the border of the
specimen and in Figure 3.12(c), the histogram of a single slice in the center of
the specimen is given. In the entire histogram in Figure 3.12(a), it is apparent
that there are not two peaks as expected. To the contrary, all voxels seem to show
gray values roughly fitting to one single normal distribution. This is due to the
bad contrast between carbon fiber and polymer in the CT, which has already been
mentioned before and can be seen, e.g., in Figure 3.16(b), induced by the closeness
of the densities. Additionally, much higher resolutions would be necessary to at
least come close to resolving single carbon fibers, which is not given with the
resolutions of these scans. Both of these facts lead to very noisy images. The Otsu
thresholding, respectively any thresholding method for that matter, therefore can
not work the way it is supposed to, but calculates some kind of median value of
the entire gray value distribution. Looking at the histogram of the border slice
(Figure 3.12(b)), the peak intensity is slightly shifted to the left and there is a small
shoulder visible at the left of the distribution. Comparing it with the histogram of
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(a)

(b) (c)

Figure 3.12: Comparison between the histograms of the entire specimen F1,carbon (a), a border (b)
and a middle slice (c) (after having applied the median filter). (b) ⊂ (a) ∧ (c) ⊂ (a).
Based on Blarr et al. [188].
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the center slice (Figure 3.12(c)), the distribution is shifted to the right in this case
and there is a pronounced shoulder at the right of the distribution. This leads to
the rise of the threshold values towards the center of the scans. As these values
are more correct than the low threshold values calculated at the borders, there is
the need of a non-constant adaption of the threshold values up until the center of
the specimens.

Therefore, a two-stage procedure is implemented.

1. The first stage consists of the previously described approach. A median blur
filter is applied to each slice. Afterwards, the threshold value is determined
and saved as TOtsu[i], with i being the corresponding slice.

2. At the beginning of the second stage, the average threshold value

Taverage = T =

n+1∑
i=0

TOtsu[i]

n
(3.6)

is calculated. Following, a new array Tnew is declared. If TOtsu[i] is smaller
than Taverage, Tnew[i] will be set equal to Taverage. Otherwise Tnew[i] will
be set equal to TOtsu[i].

This procedure can be seen in the flowchart in Figure 3.13.

After that, a binary image is created from each slice i by using the threshold value
Tnew[i]. From these binary images, the FVC for each slice can be calculated by
determining the percentage of the pixels with a non zero value. The comparison
of TOtsu and Tnew can be seen in Figure 3.14.

The effects of this two-stage approach can be viewed in Figure 3.15. This empirical
procedure was only one among multiple ones tested, but the one that made the
most sense considering the non-constant adaption of threshold values reflecting
the changes in the gray value distributions over the thickness.
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START

Calculate TOtsu[i] ∀ i ∈ [1, n]

Calculate Taverage =
∑n

i=1 TOtsu[i]

n
for the entire stack

Declare array for new threshold values Tnew(n)

TOtsu[i] < Taverage

Tnew[i] = Taverage Tnew[i] = TOtsu[i]

RETURN Tnew(n)

Yes No

Figure 3.13: The process of the novel thresholding procedure. At first, the threshold value for each
of the n images is calculated with the Otsu algorithm and stored in TOtsu. Afterwards,
the average threshold value Taverage across all slices is determined. Then, the threshold
value TOtsu[i] for each image i is compared to Taverage. The larger of the two values
is then stored in Tnew as Tnew[i]. Extracted from Blarr et al. [188].
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Figure 3.14: Example of the threshold values from the sample F1,carbon. The blue line represents
TOtsu, the orange line Taverage and the green line represents Tnew. Based on Blarr et
al. [188].

(a) (b) (c)

Figure 3.15: Comparison between the original image (a) and the binary image after the first (b) and
second stage (c). Extracted from Blarr et al. [188].

3.4.2.3 Convolutional neural network

Input data and data processing 4 The convolutional neural network is
implemented in Python 3.6.8 with the help of inter alia the NumPy, Scikit-image
[282] and SimpleITK packages. Tensorflow [287] and Keras [288] were used
as AI framework. The calculations were performed on CPUs provided by the
bwHPC cluster 2. For the CNN, the 16 bit scans are loaded directly into the

4 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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Python script for further processing. In contrast to the thresholding method,
the scans are handled as 3D arrays without a loop iterating through the slices.
A comprehensive set of uniformization methods is applied so that the neural
network’s training algorithms solely train the network on the intended differences
between the scan data. For the data loading, uniformization and augmentation,
the Python libraries of SimpleITK, Keras and Numpy provide a large variety of
useful methods. However, since the data is processed in 3D, a range of processing
methods had to be custom-made. Those helper functions can be found in the
respective Github repository as well (cf. link in [188] or at the end of this work in
Chapter 9). The steps used to process the scans are as follows:

1. Cutting

First, the scans were cropped individually to the actual core material vol-
ume to avoid noise at the edges of the scan volume (cf. Figure 3.16).The
individual amount of cut back slices per specimen can be taken from Table
3.2.

(a) (b)

Figure 3.16: Exemplary slice near the top of the FLD2 scan (a) showing marking and uneven surface
conditions in contrast to (b) a slice of the same scan 30 layers deeper into the material.
Partly extracted from Blarr et al. [188].

2. Resizing

All data used to train the CNN should be of the same shape so that one input
size of the network can be established. Furthermore, reshaping all arrays
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Table 3.2: Overview of the original scan data. The resolution is given in terms of the absolute amount
of voxels in each dimension. The numbers below "Front/Back cut" refer to the amount of
slices removed during data pre-processing. Based on Blarr et al. [188].

Scan
Destructively

measured FVC

Original scan

resolution

Front

cut

Back

cut

FLD1 22.3 % 122 × 386 × 386 5 10

FLD2 25.5 % 128 × 780 × 780 12 12

FLD3 28.6 % 148 × 1168 × 1162 35 35

FLD10 17.9 % 130 × 391 × 395 9 14

FLD11 24.0 % 135 × 777 × 772 16 16

FLD12 26.6 % 132 × 1164 × 1167 13 15

F1,carbon 23,1 % 168 × 1424 × 1425 0 0

F2,carbon 22,1 % 165 × 1421 × 1425 4 0

F3,carbon 23,1 % 165 × 1416 × 1428 0 0

CF1,carbon 25,6 % 171 × 1403 × 1415 1 5

CF2,carbon 22,3 % 161 × 1422 × 1421 4 0

CF3,carbon 22,8 % 165 × 1406 × 1415 0 0

C1,carbon 26,4 % 165 × 1409 × 1421 2 4

C2,carbon 23,1 % 155 × 1414 × 1421 0 4

C3,carbon 23,8 % 161 × 1406 × 1425 0 4

into cubes adds an additional possible axis to rotate the data by without
changing its shape. That allows for an additional augmentation step and
thus doubles the amount of input data after augmentation.
To reshape the cuboid scans into cubes, the transform()-method from the
scikit-image library was used. The target size of the cubes was constrained
by the computing power available at the bwHPC cluster. Iterative trials
showed that it was capable of executing the script stably up to a cube size
of 100 × 100 × 100 voxels, which was thus selected as array dimension.
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3.4 Determination of fiber volume content

3. Augmentation

Neural networks require extensive amounts of data to improve their training
process. Since only a small amount of scans are available (14), multiple
stages of 3D-image augmentations were used to enlarge the input data set.

In the first step, every scan was rotated by 90◦ and added to the data set with
the same FVC as its original. Since the cuboid shape of the transformed data
allows for rotation about three independent axes, the process was repeated
for the remaining two orthogonal axes. Solely rotating by multiples of 90◦

ensures that no data is lost at the edges by leaving the scope of the arrays.
Furthermore, it is computationally much more efficient than a rotation by a
random angle since only the array indexes need to be interchanged.

After multiplying the data set by a factor of 4 by adding rotations of the
original scans, all scans are then flipped in a second step. Similarly to the
first step, copies of the original scans are mirrored at one plane and then
added to the data set with the same FVC as their originals. The process is
repeated for the two remaining normal planes, further multiplying the data
set by a factor of 8.

Overall, by combining three rotations and three mirroring steps, the amount
of input data can be multiplied by a factor of (1+nrotations) · 2nreflections =

(1 + 3) · 23 = 32. Therefore, the 14 original scans multiply to a data set
of 448 samples. More combinations are possible but they lead to exact
duplicates of arrays which can be obtained using the method above, i.e. two
consecutive 90◦ rotations about one axis equal two reflections about two
different planes.

4. Split

Before being fed into the neural network, the data, consisting of CT scan
arrays coupled with their respective, experimentally (destructively) observed
FVC values, are split into a training and a validation set. The larger training
set is used for the initial tuning of the network’s parameters similar to [289].
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In between each training epoch, the validation set is used to verify the
model’s performance on unseen data, which prevents overfitting and allows
for an estimation of the model’s ability to generalize beyond the training set.
More details on the training process are discussed in the Network training
process paragraph below.

Network architecture 5 A special characteristic of the network implemented
in this work is the direct input of a 3D scan along with a singular scalar value
representing its corresponding FVC making it a mixed network. However, the
output of the network is only the predicted FVC as a singular value between 0 and
1 for a given scan.

For image processing tasks, the conventional type of neural network is a CNN.

The model architecture in this work consists of several layers of convolutions,
pooling, dense, and dropout layers. Overall, the neural network can be divided
into two stages: The feature extraction stage, where the convolution is happening
and the subsequent feature processing stage, where the extracted features are
mapped to a corresponding output.

The input layer takes in a 3D tensor of depth, width, and height, representing the
CT-scan data, as a single channel since the CT-scans are in gray scale. Furthermore,
the single scalar value for the FVC is passed along.

The subsequent convolutional layer that extracts features from the input data is
followed by a max-pooling layer that downsamples the output of the convolutional
layers to reduce the dimensionality of the data and capture the most important
features. In this case, a 2 × 2 × 2 max-pooling layer follows the convolution,
where out of the 23 = 8 voxels only the largest value is passed on to the next layer.
This way, an 87.5% reduction of data is achieved without a major loss of relevant
information since for feature extraction, the precise location of certain features is

5 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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less relevant. Furthermore, the strongest features are enhanced more as only the
highest value inside the kernel area is passed on.

After the convolutional and max-pooling layers, the output is passed through
several dense layers with ReLU activation function. In the case of this study,
where FVC percentages are evaluated, any negative values are implausible and
get filtered out automatically this way. These layers enable the model to learn
complex relationships between the input and output. Dropout layers are added
after each dense layer to prevent overfitting.

The further one advances into the network during the analysis, the less relevant
spacial information becomes, since the ultimate objective is to compute a single
scalar, that describes the entirety of a scan. A Global Average Pooling Layer
transforms the 3D output of the dense layers into a single-row vector. Its dimen-
sionality corresponds to the amount of feature maps which the feature extraction
stage feeds forward. This technique and the choice of Global Average vs. Global
Max Pooling was inspired by Zunair et al. [290] and improved the performance
of the CNN.

Finally, the output layer is a dense layer with a sigmoid activation function. Its
output represents the predicted FVC of the CT scan.

The final network architecture can be seen in Figure 3.17. The parameters that
define the shape of all layers used were determined using parameter sweeps, which
are discussed in the Network optimization paragraph below. The graphic was
made with the help of the latex code published in [291].

Network training process 6 The CNN described so far is initialized with
random weights in all of its layers. Therefore, the initial predictions for the scans
of the training set will also be random and are unlikely to show any causal relation
to their actual FVC values. In order to tune the weights in a way that enables the
network to make reasonable predictions, a training algorithm is used. The training

6 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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Figure 3.17: Final architecture of the CNN. Extracted from Blarr et al. [188] and based on [291].

can be divided into two main steps: model compilation and model fitting. During
the model compilation step, the configuration parameters are set up. The chosen
loss function for this task is Binary Cross Entropy (BCE). The BCE loss, also
referred to as log loss or negative log probability, is defined as follows

l (y, ŷ) = −
(
y log (ŷ) + (1− y) log (1− ŷ)

)
, (3.7)

with y being the true term (0 or 1) and ŷ being the predicted probability (between
0 and 1) [292, 293]. In the perfect case of the model exactly predicting 0 or
1 correctly, the loss amounts to zero. However, in this work the true term y is
not only zero or one, but a continuous value in between. While this is not what
the BCE loss was originally intended for, it worked better than other popular
loss functions that are not intended for binary input (and output) such as the
mean square error (MSE) or mean absolute error (MAE) or regular cross entropy.
Literature also suggests that it works in practice [294, 295], so the BCE loss was
used in this work. It shall be noted that BCE is asymmetric in the case of the
ground truth not being a binary value and the minimum loss is not zero anymore.
As an example for y = 0.24, which is roughly the average FVC in this case, the
minimum loss for ŷ = y = 0.24 amounts to 0.5511 (cf. Figure 3.18). This will be
relevant when judging the loss plot in the Results (cf. Section 4.3.3).
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Figure 3.18: Course of the BCE loss over prediction values ŷ between 0 and 1 for a true value of
y = 0.24. Extracted from Blarr et al. [188].

The optimizer selected for this task is ADAM. It is an adaptive learning rate
optimization algorithm that adjusts the learning rate dynamically during training,
which helps to converge to an optimal solution faster. Because of its computational
efficiency and little memory requirement [201], it is a popular choice for training
deep neural networks due to its efficiency and effectiveness in updating the
parameters of the model. Additionally, the mean squared error (MSE) is used as a
metric to evaluate the performance of the model during training. It measures the
average squared difference between the predicted and true values. Therefore, it
provides insight into the overall accuracy of the predictions of the model along
the training process.

After model compilation, the model is fitted to the training data using the
model.fit() function from Tensorflow. This method implements the general process
of machine learning using the parameters set in the compilation process: Using
the weights provided at that stage in the network, all training scans are passed
through the network. The resulting scalars (the predictions) are compared to the
actual FVC values of the respective specimens. The loss function, which was
specified earlier, takes both the prediction and the real value as its arguments and
computes a loss score. Subsequently, the selected optimizer adjusts the weight
in the layers according to the performance of the score, before the entire process
is repeated by the set amount of epochs specified in the beginning. Figure 2.19
describes this process visually.
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Alongside the training set, the validation set is being evaluated with the same
model and loss function simultaneously. Finally, a loss plot, which can be seen in
Figure 4.13, is generated using the training and validation loss values. The plot
shows both as a function of the number of epochs. This visualization helps to
monitor the convergence and performance of the model during training, where a
decreasing loss indicates that the model is learning and improving over time.

Furthermore, this method also takes over the task of shuffling the input data and
splitting it into training and validation sets, for which a ratio of 2/3 to 1/3 was
set. The number of training epochs is set to 40, indicating the number of times
the entire training data set is passed through the model during training. Once the
model is trained, it is used to predict the fiber volume content for the test data.
The deviation between the predicted values and the true labels is then plotted, as
visible in Figure 4.14.

Network optimization 7 The CNN requires a lot of parameters to be defined.
It was started with values provided in similar literature [187, 289], which were
adapted to the problem at hand. Most parameters were defined by so-called
parameter sweeps. Instead of single values, the parameters were provided with a
list of values, which were looped through. By changing two parameter values at
once, one can find the combination with the best performance. As an example,
the amount of filters in a 3D convolutional layer is selectable in Keras. The
best amount of connected dense-dropout layers was also unclear. Hence, lists
for the amount of filters in the convolutional layer nfilters = {2, 4, 8, 16, 32} as
exponential values to the basis 2 in order to cover a greater field and a list for
the amount of dense-dropout layers ndd−layers = {1, 2, 3, 4, 5} was given to the
network instead of singular values of these parameters. These lists are then iterated
through and training is carried out for each combination, i.e. each new network.
The standard average deviation for the results of each network is finally compared
and the combination of parameters that leads to the best FVC prediction is used.

7 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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A similar procedure was followed for the parameters of the dropout rate in the
dropout layer, the pool size in the max-pooling layer and the kernel size in the
convolutional layer. Analogously, multiple initial learning rates, loss functions
and optimizers were tested until the author arrived at the presented architecture in
Figure 3.17.

3.5 Determination of fiber length distributions

In the following, it is explained how the fiber length distribution of individual
samples was determined experimentally.

Experimental method

Owing to the process-related stochastic scattering of the fiber lengths, a deter-
mination of the fiber length distribution is of particular interest in the case of
LFT materials. As it was impossible to separate individual fibers in the CT im-
ages of the CF-PA6 scans, only an experimental determination was carried out
at the FIBRE. This fiber length analysis is conducted after the resolution of the
surrounding matrix.

As the dispersion of the resulting fibers was not ensured adequately for the
pyrolysis results, only the FLD of the specimens investigated through chemical
dissolution of Plate 2 are taken into account here.

Therefore, distilled water and detergent are added to the carbon fibers obtained
by acid-based dissolution in a sample vessel. They are then evenly distributed
throughout the sample vessel without breaking them. After placing a cover slip
on it, it was placed in the so-called "FiVer" scanner (cf. Section 2.2.2.1). Several
scans of the fibers in the liquid are then performed. These images are loaded into
the "FibreShape" software, which performs the analysis of the fiber lengths. The
.csv-files obtained after completion were visualized by the authors in the Results
in Section 4.4. These investigations were also done at FIBRE (Bremen).
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3.6 Determination of fiber orientation tensors

In order to determine fiber orientation tensors, the specimens cut out of plates/parts
through waterjet cutting, were installed on the rotary table of the CT device. After
adjusting the specific scan parameters, the CT scan takes place. The resulting 2D
projections were reconstructed with the Feldkamp cone-beam algorithm [154]
in VG Studio Max in the Versions 3.3.2, 3.4.2 and 2023.2.1. After loading the
reconstructed version in the same software, the registration of the object, hence the
alignment of the (often straight) object borders with the coordinate system of the
viewpoint is performed. In the case of multiple specimens in one scan, this was
repeated for each separate object. These were then cut out as a ROI and exported
separately as .raw-files. Along with respective sizes of dimensions, these can be
loaded in the software FIJI/ImageJ, where an adjustment of brightness takes place
and subsequently an approximate gray value threshold differentiating between
fiber and matrix is determined. While there are pre-implemented automatic
thresholds available in ImageJ (Otsu, Mean, Moments, Median, etc.), sometimes
the manual determination of the threshold made more sense in the sensitive case
of CFRP. The resulting stacks of 2D images are saved as .mhd-files which allow
for further processing without additional information. This is followed by the
actual orientation determination. The C++ code by Bertram and Pinter, which was
published in Composight [79], is used for this evaluation. Its basic functionality
based on the structure tensor was explained in the State of the Art in Section
2.2.3.2. In practice, the executable (.exe-) version of the code was used, which
was accessed via console. Apart from the .mhd image file and the threshold value
determined before, the width σ of the Gaussian blur applied in combination with
the derivative and the second blurring parameter ρ, also referred to as the mask size,
have to be specified. σ was usually chosen to 0.2, whereas ρ was typically eight or
smaller, but always larger than σ. After running, a vector-valued image as another
.mhd file with three channels is output storing the information of orientation in
each coordinate direction. This .mhd-file is finally read into MATLAB R2020b
as a fourdimensional matrix with the mha_read_volume function available on
Mathworks File Exchange in the Read Medical Data 3D toolkit by Dirk-Jan Kroon
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from 2010 [296]. In MATLAB, the orientation tensors of second- and fourth-order
are determined along with many other evaluations, which will be explained in
the following and of which the results will be shown in Section 4.5. The entire
procedure is summarized in the flowchart in Figure 3.19.

Specimens Extracted through
waterjet cutting

CT scan

Projections

Reconstruction

Registration and ROI

Processing in VG Studio Max

.raw file

Adjustment of brightness

Fiber threshold determination

Processing in FIJI/ImageJ

.mhd file, σ, mask size ρ, fiber threshold

.exe of C++ orientation code Composight by Bertram and Pinter [79]

Vector-valued .mhd file (FO vectors)

MATLAB for FOT determination
+ other kinds of evaluations

Figure 3.19: Flowchart of the typical procedure for determining the fiber orientation tensors.
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FOT calculation

After importing the vector-valued image (.mhd file resulting from the C++ code
by Bertram and Pinter [79] in Figure 3.19), the following procedure to calculate
the FOT implemented by Schöttl [25] was used. The components of the voxels
can be accessed as follows:

image(c, x, y, z),

with c being the component of the orientation vector at the position x, y, z.
Hence, the orientation tensor of second-order can be determined using the sum
function and element-by-element multiplication (using the .* Operator in MAT-
LAB) of two channels of the image over all voxels. As an example, to calculate
the A11 component, the multiplication of the voxel values of the first channel with
itself is needed, for A12 the first and second channel are used, etc.):

OT2(n)=sum(sum(sum(image(i,:,:,:).*image(j,:,:,:)))).

Of the nine components, only six are calculated due to the tensor symmetries and
saved in the following order:

[A_11 A_12 A_13 A_22 A_23 A_33].

In order to guarantee the trace condition (cf. Equation (3.15)), the FOT is normal-
ized as such:

OT2=OT2/(sum([OT2(1) OT2(4) OT2(6)])).

The FOT of fourth-order is calculated analogously and saved in the following
order:

A_3333 A_3332 A_3322 A_3222 A_2222 A_3331 A_3321 A_3221
A_2221 A_3311 A_3211 A_2211 A_3111 A_2111 A_1111. [52]
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3.6 Determination of fiber orientation tensors

Visualization via pseudo color image

In order to visualize the planar orientation of the fibers in the slices, the fibers are
colored according to their angle resulting in a pseudo color image. This procedure
was implemented by Schöttl as well [25]. Therefore, the angle between the x-axis
and the voxel vector is calculated through the arctangent as

phi(:,:,:) = atan(img(2,:,:,:)./img(1,:,:,:)) + pi/2.

This angle becomes the H value in the HSV (hue, saturation, and value) color
space, which is illustrated below (Figure 3.20).

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

Figure 3.20: Visualization of the HSV color space with respect to the fiber orientation symmetry
(p=̂− p). Extracted from [274].

The further S and V values are both set to one, implying full saturation and
brightness. The colored slices are finally saved as .tiff-stack. [25] This kind of
visualization is especially helpful to detect flaws in the angle determination.

Further depictions of orientation information

In order to judge the behavior of the orientation across the thickness of the
specimens (respectively the plates) and not only obtain one single tensor per
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specimen, the determined main components, A11, A22 and A33, were plotted for
each slice progressively. This allows for process-related conclusions.

Furthermore, while the FOT were used in the Mori-Tanaka homogenization, a
distribution of angle occurrences was required for Halpin-Tsai. The occuring
angles are partitioned into ncenters = 20 centers with an interval arc length of ni ∈
[i · π/20, (i+ 1) · π/20) with i = {x ∈ N0 : x < 20}. It is subsequently counted
how often angles fitting in each specific angle group appear in the specimen in
order to obtain a discrete fiber orientation histogram.

Challenges for CFRP and hybrid reinforced material

While the orientation determination worked without problems for GFRP, the
CF-PA6 CT scans showed much more salt and pepper noise, which led to some
orientation recognition inconsistencies that were conspicuous in the HSV images.
Hence, compared to the description of Pinter et al. [52] an additional median filter
with a kernel size of 10 was applied to the images of the carbon fiber reinforced
specimens only.

A further challenge was the orientation determination for hybrid GF-CF reinforced
material as the thresholding is more difficult for four different constituents in the
CT scan (air, polymer, GF, CF). Therefore, a multiple thresholding procedure was
used in order to separate the different fiber types. The glass fibers were thresholded
first as they have better contrast towards the matrix. After the resulting image stack
was subtracted from the original one, the air is thresholded. Subsequently, the
resulting image stack is again subtracted from the original stack. Air then appears
completely black and the glass fibers completely white. Afterwards, a twofold
limited threshold was applied, cutting off air (black), glass (white) and matrix,
which has the closest gray value to the carbon fiber one. Finally, the original image
stack was fed to the C++ code with the glass fiber threshold evaluating the glass
fiber FOT. The final stack following the procedure just described was subsequently
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given to the C++ code along with the carbon fiber threshold to acquire the carbon
fiber FOT.

3.7 Interpolation of fiber orientation tensors

The motivation to find a tensor interpolation method suitable for the interpolation
of fiber orientation tensors was already given in Section 2.2.3.3. In the following
sections, three methods, that were implemented and evaluated in this thesis, to
obtain full-field FOT information, are explained. The sections are extracted from
the author’s publication [17].

3.7.1 General notes on the interpolation methods 8

In general, all interpolation methods were mainly implemented in Python 3.8.

SPD tensors can be visualized as tensor glyphs [116, 117]. This method will be
used in this work as it constitutes a descriptive and interpretable way of assessing
the success of the different implemented interpolation methods. The visualization
was implemented in Matlab R2020b with the help of the “plotDTI” function of
the fanDTasia ToolBox by Barmpoutis et al. [118].

The overall idea of all three implemented interpolation methods is to get FOT
values for the 160 positions in the plate that are missing, from calculations with the
measured nine FOT at the given grid positions. Determining values between a set
of measured values, here the set Tm = {UL, UM, UR, ML, MM, MR, LL, LM,
LR} (respectively denoting “Upper Left", "Upper Middle", "Upper Right", "Mid-
dle Left", . . . , "Lower Left", etc.) of measured FOT computationally, based on the
set of measured values, describes a classical interpolation problem. An interpola-
tion scheme ϕ̄ is defined as a mapping f , which connects its arguments, on the

8 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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one hand a set of N ≥ 1 discrete values ϕi and on the other hand their associated
weights wi ∈ [0; 1]:

ϕ̄ = f(ϕi, wi). (3.8)

As a weight function, multiple options are conceivable with the possibly simplest
being Shepard’s inverse distance weighting (IDW) [297]

wi(x) =
1

d(x,xi)p
, (3.9)

as an explicit approach with x denoting an arbitrary point that shall be inter-
polated, xi being a known interpolating point and d being the given distance
from the known point xi to the unknown point x. p is a positive real number,
called the "power parameter". Weight decreases as distance increases from the
interpolated points. Greater values of p assign greater influence to values closest
to the interpolated point, which results in nearly constant interpolated values for
large values of p.

3.7.2 Component averaging 9

Recalling the definition of second-order orientation tensors as described by
Kanatani [89] as well as Advani and Tucker [43],

A =

∫
S
Ψ(p)p⊗ p dp, (3.10)

with S being the unit sphere and dp the surface element on it, as well as p being
the unit vector for the direction of the fibers, it appears that A is linear in Ψ(p).

9 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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Assuming the surface can be divided into two equally sized areas S1 and S2 with
two distribution functions Ψ1(p) and Ψ2(p) and Ψi(n) =

1
2 (Ψ1(n) + Ψ2(n))

holds, this means that Ai = 1
2 (A1 + A2) is exact, as integration is a linear

functional and as an integral domain can always be divided into sub-intervals.
This further implies that a direct averaging of the orientation function is equivalent
to an averaging of the components of the orientation tensors. Thus, the algorithm
multiplies the components of each measured FOT by a weight that depends on its
distance from the tensor being calculated. As mentioned before, Shepard’s inverse
distance weighting method [297] is used as weight function in all three methods
with p = 2:

wi =
1

∥xi − x∥p
1∑

j ∥xj − x∥−p
. (3.11)

Compared to Equation (3.9), Equation (3.11) features a necessary normalization
factor.

3.7.3 Decomposition method 10

The method, which uses spectral decomposition of tensors, is shown schematically
in Figure 3.21 and is described in the following.

For the chosen decomposition approach, the shape and orientation of the tensors
are to be interpolated separately. Therefore, the well-known spectral decomposi-
tion resulting from the eigenvalue problem is used:

A = RΛRT = R ⋆Λ. (3.12)

10 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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FOTTm = {UL,UM ,UR,ML,MM ,MR,LL,LM ,LR}

Spectral decomposition
(eigenvalue problem)A = RΛRT = R ⋆Λ

Orientation interpolation
Quaternion

q = a+ bi+ cj + dk
q = cos θ

2
+ (uxi+ uyj + uzk) sin

θ
2

Shape interpolation

Orthogonal invariants
K1 = tr(A),

R2 =
√

3
2

|A′|
|A| and

R3 = 3
√
6

det(A′)
|A′|

Individual weighting
Shepard’s inverse distance

wi =
1

∥xi−x∥p
1∑

j ∥xj−x∥−p

with p = 2 and
∑

i wi = 1

Back to eigenvectors,
respectively R

Back to eigenvalues,
respectively Λ

Figure 3.21: Overview of the concept of the implemented decomposition method. Based on the
graphic in the author’s publication [17].

Λ denotes the tensor containing the eigenvalues on the principal diagonal and R

is defined as the orthogonal rotation matrix consisting of the normalized eigenvec-
tors.

Orientation The rotation matrix R can be interpreted as a rotation around a
rotation axis and can therefore be transformed into a quaternion as described in
the State of the Art:

q = a+ bi+ cj + dk,

q = cos
θ

2
+ (uxi+ uyj + uzk) sin

θ

2
,

with rotation axis: u = (ux, uy, uz)
T and rotation angle θ.
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The quaternion is calculated from the given rotation matrix R via:

t = tr(R), r =
√
1 + t and a =

r

2
with

b = sgn(Rzy −Ryz)

∣∣∣∣12√1 +Rxx−Ryy −Rzz

∣∣∣∣,
c = sgn(Rxz −Rzx)

∣∣∣∣12√1−Rxx+Ryy −Rzz

∣∣∣∣,
d = sgn(Ryx−Rxy)

∣∣∣∣12√1−Rxx−Ryy +Rzz

∣∣∣∣.
This is followed by the actual interpolation: qges =

∑
i wiqi with weights:∑

i wi = 1 and the retransformation of qges in R:

R =


a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)

2(bc+ ad) a2 − b2 + c2 − d2 2(cd− ab)

2(bd− ac) 2(cd+ ab) a2 − b2 − c2 + d2

 . (3.13)

Shape For the interpolation of the shape, three linear independent invariants
are formed of each tensor and interpolated separately. Of the already mentioned
K- and R-invariants [124] K1, R2, and R3 will be used (comparable to [123]):

K1 = tr(A), R2 =

√
3

2

∣∣A′
∣∣∣∣A∣∣ and R3 = 3

√
6
det(A′)∣∣A′

∣∣ . (3.14)

A’ is the deviatoric part of A.

Even though K1 and R2 are not orthogonal [124], the use of K1 can be justified
by ensuring that the trace of the orientation tensor is one. It is not necessarily
essential to have orthogonal invariants for this specific case of application.
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The invariants are then interpolated individually: K1,ges =
∑

i wiK1i, R2,ges =∑
i wiR2i and R3,ges =

∑
i wiR3i. The weights stay the same:

∑
i wi = 1.

From the interpolated invariants, the following formula was used to calculate the
associated eigenvalues (cf. [123]):

For i = 1, 2, 3 holds: λi =
1

3
K1 +

2K1R2

3
√
3− 2R2

2

cos

(
cos−1(R3) + Pi

3

)
,

with Pi = 0, 2π,−2π

With these eigenvalues, Λ can then be created again.

3.7.4 Artificial neural network11

The artificial neural network used in this study is based on the idea and imple-
mentation of Sabiston et al. [133]. Just like for the other two methods, the goal
of the neural network is to determine a FOT for each specified point of the 160
missing positions within the plate. For the ANN, the nine x, y (and z) coordinates
of the given FOT were normalized (divided by 14 since there are 13 rows and
columns of FOT). These x̃, ỹ, and z̃ represent the input data. The output data for
the ANN are the respective components of the nine given orientation tensors of
second-order. Since these components are already between -1 and 1, this data
does not need to be normalized. The coordinates were read in as one .csv file
as input and the components separated by A11, A33, A12, A13 and A23 as five
separate .csv files as output.

11 This section is extracted from the author’s publication [17] with only slight linguistic changes.

158



3.7 Interpolation of fiber orientation tensors

There are only five independent components instead of the usual six independent
ones for symmetric tensors, since orientation tensors are subject to an additional
condition that the trace of the tensor must add up to 1:

3∑
i=1

Aii = 1. (3.15)

Therefore, only A11 and A33 were fed into the network as output parameters
and A22 was determined via A22 = 1 − A11 − A33. The choice was made
explicitly, according to the findings of Sabiston et al. [133], to use only one in-
plane coordinate and the through-thickness coordinate (A22 and A33 would have
worked analogously as well) in order to reduce the error and to satisfy equation
(3.15). This is due to the two in-plane coordinates being significantly larger than
the through-thickness coordinate, which in turn meant that A11 and A22 alone
could get above 1 if they were both predicted.

The ANN consists of an input layer, where the normalized input coordinates of
the i = 9 different points are given and two hidden layers with n = 48 neurons.
The output of the first hidden layer is the input for the second hidden layer. In the
output layer the five independent tensor components A11, A33, A12, A13 and A23

are predicted for the given i = 9 points. The structure of the ANN can be seen in
Figure 3.22.

The optimizer used is SGD which is an iterative method for optimizing an objective
function Q(w) with suitable smoothness properties. Thereby, after choosing an
initial vector of parameters w and a learning rate rl, two steps are repeated until an
approximate minimum is obtained: The samples in the training set are randomly
shuffled and w := w − rl∇Qi(w) is set for i = 1, 2, ..., n (with Qi being the
summand function typically associated with the i-th observation in the data set
(used for training)).
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Figure 3.22: Schematic concept of the ANN used for FOT interpolation. Extracted from Blarr et al.
[17]).

The loss function chosen is the MAE, which is defined as follows:

MAE =
1

n

n∑
i=1

=

∣∣∣∣Ajk(i) − Âjk(i)

∣∣∣∣, (3.16)

with n being the number of samples, Ajk(i) being the value of the orientation
tensor component at the sample location and Âjk(i) being the predicted value of
the orientation tensor component at that sample location. MAE was preferred as
error metric over percentage error since many values (especially the off-axis and
A33 components) are close to zero. Therefore percentage errors tend to become
quite large. Additionally, outliers seem to be filtered out better by using MAE than
by a quadratic error metric like root mean squared error which is more likely to
result in overfitting and being biased towards outliers respectively. Additionally, a
soft sign activation function is used in the model as it is able to calculate negative
numbers and behaves differently in terms of saturation (compared to, e.g., the
hyperbolic tangent) because of its smoother asymptotes (polynomial instead of
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3.7 Interpolation of fiber orientation tensors

exponential) [298]. However, this of course impacts the amount of epochs required
for training as it does not saturate as quickly. The soft sign activation function is
given as

o =
i

1 + |i| , (3.17)

where i is the input to the function and o is the output of the function. Furthermore,
a bias was placed on the loss weights (w) of the outputs of the ANN in order to
give more weight to the in-plane orientations. The biases are 0.4 for A11, and
0.15 for all four other components, adding up to 1. The classical data validation
split of 25% is used in the study. The high amount of 100,000 epochs, i.e., times
the neural network iteratively trains the weights for each neuron to optimize the
outputs from the given input steps, was chosen. While increasing the epochs
normally reduces the error, it can also evoke overtraining and leads to longer
calculation times. All chosen parameters of the ANN are summarized in Table
3.3.

Table 3.3: Parameters of the neural network for the FOT interpolation. Extracted from Blarr et al.
[17]).

Parameter Value

Software Keras 2.4.3 in Python 3.8.5

Optimizer SGD

Loss function MAE

Layers 2 hidden (plus 1 input

and 1 output layer)

Neurons per layer 48

Training data 75 %

Validation set 25 %

Epochs 100,000
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Once the model is trained, a .csv-file with all 160 normalized coordinates - apart
from the nine the network was trained with - is given to the trained ANN, to
predict the components of the missing FOT.

3.7.5 Simplified decomposition method for tensors of
fourth-order

In order to subsequently test the quality of the fiber orientation tensor interpo-
lation, the use of an averaged (from all measured and interpolated ones) fiber
orientation tensor in Mori-Tanaka and of an averaged (again from all measured
and interpolated ones) angular distribution in Halpin Tsai was planned. This
provides stiffnesses for given angles, which can then be compared with experi-
mental results. However, Mori-Tanaka requires a fourth-order fiber orientation
tensor. The interpolation method for tensors of second-order could have been used
notwithstanding, and the final averaged tensor could have been converted into a
fourth-order tensor by a closure approximation. Nevertheless, closures introduce
a non-negligible inaccuracy into the method. Consequently, a direct interpolation
of fourth-order tensors was developed instead. As the decomposition method
proved to be particularly useful, this idea was also used for the interpolation of
fourth-order tensors. However, a simplification was chosen in this case. The
transformation to quaternions and orthogonal invariants was not considered as
the transformation is not straightforward. Hence, the rotation matrix and the
eigenvalues of the tensors of fourth-order are used directly. Therefore, the tensors
were read into Python in Mandel notation and subsequently decomposed into
eigenvalues (6 × 1) and the rotation matrix (6 × 6) using NumPy’s linalg library
[277]. Subsequently, the eigenvalues were sorted by magnitude. The fact that
portraying a 3D tensor in 2D using Mandel notation and thus receiving a 6 ×
6 matrix, allowed the author to apply the spectral decomposition. Afterwards,
the distance-dependent weights applied to each measured tensor for each tensor
position to be determined were also calculated with Shepard’s inverse distance
weighting [297] as explained before. Reassembling the newly weighted rotation
matrix and eigenvalues leads to a then interpolated tensor for a specific point.
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3.8 Microstructure generation through generative adversarial network

3.8 Microstructure generation through
generative adversarial network

The methodology of image generation by the DCGAN is explained below. The
computational resources and software are discussed first, followed by the prepara-
tion of the input data and the network architecture, and then various quantitative
evaluation methods of the network and the generated images. Parts of this have
already been published in a paper [275] and are marked accordingly.

3.8.1 Computational resources and software

As the generator and discriminator can consist of several million trainable param-
eters each, a high amount of computational power was inevitable. The training
of the GAN was therefore performed on the Baden-Württemberg High Perfor-
mance Computing (bwHPC) resources and in particular on the GPU x4 partition
of bwUniCluster 2.0. Its hardware and architecture is shown in Table 3.4 below.

Table 3.4: Specification of the GPU x4 partition compute nodes on bwUniCluster 2.0. Based on [299].

GPU x4 partition resources

Processors Intel Xeon Gold 6230

Number of sockets 2

Processor frequency 2.1 GHz

Total number of cores 40

Main memory 384 GB

Accelerators 4x NVIDIA Tesla V100

Accelerator memory 32 GB

Interconnect IB HDR
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While the CNN in Section 3.4.2.3 was solely trained via the Jupyter web access
(JupyterLab 3.6.2), this approach was only used for the GAN for less computa-
tionally expensive jobs as only a limited amount of resources is available in this
case. For all jobs requiring either high random-access memory (RAM), multi
graphics processing unit (GPU) usage (NVIDIA CUDA) or a longer computing
time, direct remote access through the command prompt with the standard Secure
Shell protocol (SSH) was used to access the bwUniCluster 2.0.

The entire code is written in Python using both native Python files (.py) and
Jupyter notebooks (.ipynb). The FIJI application of ImageJ2 was helpful for
image visualization [300]. The following Python libraries and modules have been
made use of in a virtual environment:

• PyTorch 1.10.1 and the Torchvision 0.11.2 library [301, 302]

• Numpy 1.19.5 [277]

• The OpenCV cv2 4.7.0.72 library for image editing [278]

• Matplotlib 3.3.4 for creating plots [279]

• TorchMetrics 0.8.2 for evaluating the image quality [303]

• Torchinfo 1.5.4 for structure information about the models [304]

• IPython 7.16.3 for live progress in Jupyter notebooks [305]

• tqdm 4.64.1 to show progress bars [306]

• Mahotas 1.4.13 to calculate Haralick features [307]

• SimpleITK 2.2.1 for image editing [284]

The Jupyter web access ran with Python 3.9.7, whereas the older Python 3.6.8
was installed on the cluster itself requiring some modifications when switching.

164



3.8 Microstructure generation through generative adversarial network

3.8.2 Image pre-processing

The scans of the nine specimens of Plate 3 were used along with the scans of nine
specimens at identical positions of another CF-PA6 plate. The only difference
of the latter, which is not pictured or numbered in Section 3.1.6 and Figure 3.4,
was the insertion of the plastificate rotated through 180° to find possible changes
in the fiber orientation drift. However, the overall fiber orientation and material
behavior is identical. In addition, very similar scan parameters were used. The
further processing of these 18 raw images is summarized in Figure 3.23 and will
be described shortly in the following paragraphs.

Raw 3D images
(scan)

Drop first and
last layers

Image
smoothing

Cutout
square images

Downsizing to
desired resolution

Image augmentation
(rotation/mirroring)

Training
images

Figure 3.23: Schematic depiction of the image pre-processing procedure from CT scans to training
images.

3.8.2.1 Dropping border layers

The 18 3D scans have slightly varying width, height and layers (thickness) with
minimum values of width× height× layers = 1366× 1346× 155 voxel. They are
sliced in thickness direction to obtain 2D images with the largest dimensions and
most information per slice. For every of those raw images, the first and last 30
layers were dropped. They were especially prone to portraying artifacts or air-rich
areas (cf. Figure 3.24(a)). While these outer layers close to the specimen surface
also show below average fiber volume contents due to the manufacturing process
(cf. Figure 3.24(b)), varying FVC in the images was actually desired. Variety in
realistic (not artifact based) microstructure depictions allows for the network to
actually reproduce diverse output. Fortunately, even with the cut of the first and
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last 30 layers, still enough variety of FVC was given both within one scan and
between the different scans.

(a) An examplary first layer with
surface roughness and air inclusions

(b) An exemplary ninth layer with
low FVC

Figure 3.24: Two exemplary outer layers of different scans showing air-rich areas and a patchy surface
(a) and a low FVC (b).

3.8.2.2 Cutout images

In order to avoid dark border regions in the 2D images, specific cutout sections
were considered. To further increase the amount of training images from the
available scans, it was decided to use multiple cutout sections. Therefore, four
1,024 px × 1,024 px regions of interest were cut out of every of the remaining
layers, each with a given arbitrarily chosen offset of 128 px from the center in x-
and y-direction (cf. Figure 3.25). While it can be chosen arbitrarily as well, the
size of the cutout section had the advantage of being a multiple of the later input
size of 256 px × 256 px. Possibly less information is lost that way during the
downsizing operation.
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Figure 3.25: Exemplary layer with center (green) and offset (yellow) by ± 128 px in x- and y-direction
cutout sections of 1.024 px × 1.024 px superimposed.

3.8.2.3 Downsizing and image smoothing

Considering downsizing, a balance between computation time and sufficient
level of detail in both input and generated images was sought. After initially
setting a size of 128 px × 128 px, finally, a size of 256 px × 256 px was chosen.
The downsizing operation was performed with the recommended INTER_AREA
interpolation from cv2. While this higher resolution allowed for the recognition
of smaller fiber bundles and other details, it also conveyed a fair amount of salt-
and-pepper noise. In order to avoid the generator learning this noise as desirable
feature and applying it to the output images, the cutout images were blurred using
a median filter before resizing them to the desired input resolution. A kernel size
of 5 px × 5 px was chosen. Figure 3.26 exemplary shows an image of a CT scan
slice with (a) and without (b) median filter.

167



3 Materials and Methods

(a) (b)

Figure 3.26: An example image of a CT scan slice with (a) and without (b) median filter.

The blurring effect is visible but still most details are recognizable. In fact the
average signal-to-noise ratio (SNR) of all input images without median filter is
with a value of 5.27 lower than the average SNR of all input images with median
filter of 5.90. The latter were hence used as input images for the training.

3.8.2.4 Image augmentation

As most neural networks, GANs require a large training data set to be able to
detect reoccurring image features. Figures of 105 − 106 images are suggested for
modern, high-resolution GANs [308]. The high number of images is particularly
relevant to reduce overfitting [309], which leads to the discriminator feedback
becoming meaningless for the generator and finally the training diverging [308].
As reaching such a high amount of original training data is cumbersome and at
times impossible, image augmentation has developed as the default solution to
multiply the dataset [308, 309]. Augmentation refers to a deliberate, slight change
to existing training images in order to create new training images that expand
the original images within a meaningful scope to increase input dataset variety
and improve training. Augmentation strategies for gray value images include
but are not limited to rotation, flipping, translation, scaling and modifications of
brightness and contrast [308]. In the case of the GAN presented in this thesis,
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every cutout image was rotated by 180° (corresponding to a point reflection) and
additionally mirrored both horizontally and vertically, which can be seen in Figure
3.27.

Original

⟳

Original

Duplicate

(a) (b)

Figure 3.27: Visualization of the image augmentation through (a) rotation and (b) mirroring. The
arrows indicate the orientation of the images.

A simultaneous mirroring at the horizontal and vertical axis was omitted due to
being a duplicate to the 180° rotation. Furthermore, rotations by ± 90° were also
left out to preserve the preferred fiber orientation resulting from the compression
molding material flow. After all cutting and augmentation steps, this results in a
total of 29,280 2D training images that are fed into the network as input.

3.8.3 Network architecture 12

The code provided in the official PyTorch tutorial [310] served as a starting point
for the DCGAN structure and was gradually adjusted to work with the given
training data set. For larger image resolutions, the DCGAN structure by Milad

12 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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Hasani [311] was found to work well. Inspired by this, a network structure for even
larger resolutions was developed (cf. Figure 3.28). The generator takes a Gaussian
sampled noise vector with 100 entries and uses a combination of transposed
convolutional layers, batch normalization and ReLU activation to output images
with a resolution of 256 px × 256 px. Tanh was used as final activation. In
the discriminator, convolutional layers, batch normalization and Leaky ReLU
activations were used. The latter was replaced by a Sigmoid activation in the final
layer. The entire code can be found in the according GitHub repository linked in
Chapter 9.

In a first step, all images from the input data set are loaded as PyTorch tensors
(one 3D array per image of x value, y value and gray value) and normalized to
values in the range [−1, 1] to avoid coefficients equal to 0. The image tensors
are then shuffled and divided into individual batches. The last non-full batch
is dropped, i. e. the images are not used for training. Unlike in the original
DCGAN paper [250], no initial weights were defined as this was found to increase
the likelihood of a stable training process for this particular configuration. The
training loss is calculated with the ADAM optimizer based on the commonly used
BCE. Setting the ADAM optimizer parameters to (β1, β2) = (0.5, 0.999) was
found to improve the stability of training just as described by Radford et al. [250].
For multi-GPU parallelization and therefore a faster training, NVIDIA CUDA
with the "DataParallel" method of PyTorch is used [310].

The actual training process follows this scheme: First, one batch of generated
images is created based on random noise vectors and associated with the corre-
sponding labels (0 for generated). These images are then fed to the discriminator
together with one batch containing only real images from the training data set
(labeled 1 for real). Based on the average of the calculated losses (following
Equation (2.123)) on both batches, the discriminator biases are updated. As a next
step, again Gaussian sampled random noise vectors are passed to the generator
which outputs one batch of generated images. Based on the discriminator feedback
on these images, the generator is then updated. Every epoch consists of multiple
iterations and ends if the whole input data set was processed this way. It shall
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Figure 3.28: Graphic of the final DCGAN network architecture. Designed with the help of the latex
code in the GitHub repository of Haris Iqbal [291]. Extracted from Blarr et al. [275].

171



3 Materials and Methods

be mentioned that the losses were saved after every single iteration, whereas the
Fréchet inception distance (FID) was only calculated after every epoch in order
to avoid slowing down the training too much. Additionally, after every epoch a
number of generated images based on fixed noise vectors was saved in order to
visually analyze the training progress later on. Due to the computational effort
needed, the image quality assessment was performed in a subsequent step.

3.8.4 Quantitative quality metrics 13

Apart from the visual and hence qualitative evaluation of the generated images,
multiple quantitative measures have been developed in recent years in order to
assess the performance of a generative network [312]. Of those, the FID and
nearest neighbor evaluations based on two different metrics were conducted that
are outlined in the following.

3.8.4.1 Fréchet inception distance (FID) 14

The Fréchet inception distance [313], as an advancement of the inception score
[314], is a metric to determine the difference between feature vectors of generated
samples and real training images. It is based on the Inception v3 Network [315]
that is pre-trained on the ImageNet [316]. The FID compares the activations from
the penultimate layer of the inception network of real pr(x) and generated pg(x)
images [317]. The distributions of these real and generated images are thereby
modeled as multi-dimensional Gaussians that are defined by their mean µ and
covariance cov(x, y). The distance is hence defined by

13 This section is extracted from the author’s publication [275] with only slight linguistic changes.
14 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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d2
(
(µr, covr)(µg, covg)

)
=

|µr − µg|2 + tr
(
covr + covg − 2(covrcovg)

1/2
)
.

(3.18)

Thus, a lower FID value corresponds to a smaller distance between the two
distributions of real and generated data. The FID values are dependent on the
corresponding resize or compression operations and can even improve for higher
compressed images (i.e. poorer resolution) [318]. The FID values must therefore
be regarded as a benchmark for the quality of images created using the same
network in different epochs and are of limited suitability for comparing different
networks. The FID was calculated of 128 generated images per epoch.

3.8.4.2 Nearest neighbor procedures 15

A question that arises quite naturally is whether a network reproduces only the
training data, which involves overfitting. To address this, a k-nearest neighbor
search is performed, which calculates the k nearest neighbors from the entire
training data set to a given generated image. This is equivalent to finding the im-
ages in the training data set that have the smallest distance to the generated image
based on a suitable distance measure. In the following, we briefly introduce the
Euclidean distance and the computationally more expensive structural similarity
index measure (SSIM), as these serve as the basis of the k-nearest neighbor search
in the results of this paper.

• Euclidean distance (ED)
The Euclidean distance being one of the simplest ways to determine the
similarity between two arrays and the most common distance measure for
nearest neighbor search [319] can be calculated for two gray scale images
x = (x1, x2, ..., xMN ) and y = (y1, y2, ..., yMN ) of size M px×N px as:

15 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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d2E(x,y) =
MN∑
k=1

(xk − yk)2 (3.19)

with the gray levels at the location (k, l) given as xkN+l and ykN+l. The
smaller the calculated value, the higher the similarity. As there are major
limitations like the non-consideration of spatial relationships, the nearest
neighbors found through the calculation of the ED sometimes do not match
human perception. Therefore, a second distance metric is considered. The
ED is still calculated due to its computational simplicity.

• Structural similarity index measure (SSIM)
Another option for the evaluation of nearest neighbors of GANs is the
SSIM [312] introduced by Wang et al. in 2005 [319]. It focuses especially
on factors that are also relevant to human perception through evaluating
luminance L, contrast C and structure S. Those three aspects are separately
mathematically defined through means µx and µy, standard deviations σx
and σy and cross-correlation coefficient σxy of the two images x and y.
The detailed formulas can be found in the paper by Wang et al. [319]. In
order to avoid instabilities for small values, constants Ci are added. The
product of these three quantities relatively weighted through three power
parameters α > 0, β > 0 and γ > 0 results in the SSIM(x,y). Choosing
α = β = γ = 1 and C3 = C2/2 leads to the following SSIM formula:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (3.20)

The values range between (-1, 1] with a value of one corresponding to
optimal similarity, hence equality of the images. It shall be mentioned that
the SSIM is usually not calculated globally but instead inside of a Gaussian
window covering a local square patch which slides pixel by pixel across
the entire image. In the so-called mean-SSIM or MSSIM all local values
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are summed up and divided by the total number of windows m in order
to obtain one single quality measure. Conventionally, the MSSIM is often
referred to as just the SSIM, which will be handled similarly in this work.

3.8.5 Overview of all chosen parameters 16

All values of important parameters are summarized in the following list.

• Image resolution 256 px × 256 px

• Learning rate rl 0.0001

• ADAM optimizer (β1, β2) = (0.5, 0.999)

• Duration of training 75 epochs

• Number of input images
nscans × fcut × faugmentation = nfinal
1, 830× 4× 4 = 29, 280

• Images per batch 128

• Number of iterations per epoch (the last non-full batch is dropped)
29, 280/128 = 228.75.

16 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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Some of the parameters such as the learning rate were chosen by incrementally
increasing the learning rate in parameter sweeps and analyzing the respective
result.
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4 Results

This chapter first addresses microstructure characteristics that were noticeable in
the CT scans. Then, in the same order as in the Methods chapter, the results of
the plastificate examinations, the fiber volume contents and the newly developed
methods for their evaluation and the fiber length distributions are presented. This
is followed by the results of the fiber orientation distributions, the fiber orientation
tensor interpolation and the image generation by the GAN.

4.1 Characteristics of microstructure

Looking at example images of scans in Figure 4.1, the significantly better image
quality for the glass fiber reinforced specimens is visible. Owing to their larger
diameter, even single fibers are recognizable in the matrix in Figure 4.1(b). How-
ever, this visual perception is challenging to convert into a quantitative metric.
As an example: The signal-to-noise ratio of the example image in Figure 4.1(b)
is with 2.95 lower than for the carbon fiber reinforced specimen in Figure 4.1(a)
with 5.74. For this reason, different kinds of metrics were used for the evaluation
of the images in the image generation section of this thesis (cf. Section 4.7).

Furthermore, there is a strong tendency towards fiber bundle formation, both in the
CF and GF reinforced material. A particular effect on the material properties due
to these quite large bundles is to be expected, as well as difficulties in using known
material modeling approaches for their prediction. It is especially interesting that
these fiber bundles often include unimpregnated areas, as can be seen in Figure
4.2.
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(a) (b)

Figure 4.1: An image of a slice of the scan of specimen CF1,carbon of Plate 3 (CF-PA6) (a) and of
specimen CF1,glass of Plate 4 (GF-PA6) (b).

Figure 4.2: Example of an unimpregnated fiber bundle (blackish area in whitish fiber bundle area in
the upper left corner) of specimen F3,carbon of Plate 3 (CF-PA6).
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These matrix-free areas or at least areas with poor fiber-matrix bonding are
often the starting point for failure of the sample in tests, e.g., tensile tests, with
matrix-fiber bonding strength being one of the two major critical failure modes of
DicoFRP (together with fiber breakage) [5]. It can also be assumed that they have
an influence on the modulus of elasticity even in the linear-elastic range.

Further microstructure characteristics associated with specific microstructure
quantities like FVC of FOD will be discussed in the respective sections on those
quantities (cf. Section 4.3 and Section 4.5).

4.2 Plastificate investigations

In order to enhance the understanding of the process and the modeling thereof,
scans of the plastificates, as the basis of the later plates, were conducted. The
material orientation in two planes was investigated as well as the porosity of the
initial charges.

As can be seen in Figure 4.3, the material constituents influence the shape, porosity
and behavior of the plastificate.

While the combination of PA6 and CF (a) shows many air inclusions in the interior,
the GF-PA6 (b) appears to have a somewhat protruding, loose surface layer. If,
on the other hand, a different matrix material, polycarbonate, is selected, the
plastificate (c) appears much more compact overall. A less compact plastificate
shape, as occurs with the material used in this work, could also complicate the
assessment of the influence on the finished plate.

As expected, it is not possible to differentiate between fiber and matrix in the first
case, but this also appeared to be difficult with the glass fibers, which is why the
orientation must be regarded as material orientation and not fiber orientation in
the following. This is based on the reasonable consideration that the fibers align
themselves along the matrix material, which has already been described in the
Methods (cf. Section 3.3).
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(a) (b) (c)

Figure 4.3: Sections of a scan of a CF-PA6 (a), a GF-PA6 (b) and a GF-PC (c) plastificate for
comparison.

4.2.1 Initial orientation

With y being the extrusion direction, the orientation in the x-z plane was first of
interest. In the 3D CT image, a quarter of the plastificate was therefore segmented
into 15 cubes with dimensions of 10 mm × 10 mm × 10 mm (repeated at different
y-positions). Evaluating the orientation with the structure tensor approach and
plotting the resulting orientation tensors as glyphs, led to the result in Figure 4.4.
The results of the quarter was mirrored vertically, horizontally and both vertically
and horizontally at the same time to cover the remaining three quarters with the
tensor glyphs as well assuming symmetric behavior. This assumption was made
based on own observations and literature [320–322].

It is visible that the tensors in the corner are rather oriented in extrusion direction.
In general, the tensors tend to get more isotropic towards the middle of the
plastificate. Other than that, the two swirls of the twin screw extruder that are
visible in the CT scan are reproduced by the glyphs quite well. Zooming in on
this swirl area in Figure 4.5 shows that in more detail.
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4.2 Plastificate investigations

Figure 4.4: Glyphs of fiber orientation tensors evaluated in a quarter of a CF-PA6 plastificate and
mirrored. The chosen grid consists of 3 × 5 cubes with dimensions of 10 mm × 10 mm
× 10 mm. Glyph plots by Louis Schreyer in collaboration for joint proceeding [276].

Figure 4.5: Glyphs of fiber orientation tensors evaluated around the twin screw extruder swirl of a
CF-PA6 plastificate. The chosen grid consists of 2 × 2 cubes with dimensions of 10 mm
× 10 mm × 10 mm. Glyph plots by Louis Schreyer in collaboration for joint proceeding
[276].
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In order to analyze that in more detail, a finer 6 × 6 grid with cubes of a side
length of 3.33 mm was evaluated, which can be seen in Figure 4.6.

Figure 4.6: Glyphs of fiber orientation tensors evaluated around the twin screw extruder swirl of
a CF-PA6 plastificate. The chosen grid consists of 6 × 6 cubes with dimensions of
3.33 mm × 3.33 mm × 3.33 mm. Glyph plots by Louis Schreyer in collaboration for joint
proceeding [276].

The tolerably consistent circular orientation enabled a simpler reconstruction
of the initial orientation state based on geometric considerations, which will be
elucidated in the Discussion (Section 5).

To evaluate the orientation behavior across the extrusion direction y, slicing in the
x-y plane was necessary. At mid-level z-position a grid of 3 × 4 cubes of 20 mm
× 20 mm × 20 mm. The result can be seen in Figure 4.7.

Both outer layers (considering the x direction) have higher values concerning
the 33 component of the tensor, hence are oriented more towards the z-direction,
which coincides with the findings of the evaluation in the other plane before.
While they also show a slightly higher 22-component, thus are more oriented in y-
direction (extrusion direction), the overall tensor behavior is very 11-component (x-
direction) dominant. This again simplifies a geometric reconstruction, compared
to similar studies where authors found a more significant orientation in y-direction,
which will also be discussed in Section 5.
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4.2 Plastificate investigations

(a) (b)

Figure 4.7: Sections of a scan of two different parts of the same GF-PA6 plastificate with their
orientation tensors plotted as tensor glyphs superimposed. Glyphs of fiber orientation
tensors evaluated in the x-y plane of a GF-PA6 plastificate. The chosen grid consists of 3
× 4 cubes with dimensions of 20 mm × 20 mm × 20 mm.

4.2.2 Porosity and volume

Considering the porosity of the plastificates it was of particular interest to un-
derstand the influence of process parameters on it, as well as the course of the
porosity across the extrusion direction of the plastificate.

In Figure 4.8, the binarized image (a), the detection of the plastificate area (b) and
the thereof determined pores in the plastificate (c) by the algorithm described in
the Methods (Section 3.3) are depicted.

While in the example image, the detection of the outer bounds of the plastificate
worked well, it was more difficult for the polyamide 6 based plastificates that
exhibited more fringed surfaces (compare Figure 4.3).

Evaluating the porosity across the extrusion direction and the average porosity
in percent for different configurations of plastificates enables conclusions that
coincided with process observations. In Figure 4.9, four porosity plots can be
seen.
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Figure 4.8: Example image of a slice of a binarized GF-PC scan at the left and the area that the
algorithm identifies as the plastificate in white in the middle. At the right, all the detected
pores are marked white.

Plots (a) and (b) show the porosity curves of two halves of the same GF-PA6
plastificate. In (a) you can see the end that came out of the twin-screw extruder
nozzle first, i.e. the "front end", and in (b) the "back end", which was extruded
last. It is noticeable that the average porosity (red dotted line) of the front end is
significantly higher at 0.4310 than that of the back end at 0.3746. This is consistent
with observations from process trials in which the plastificate appeared to expand
(also known as lofting) when lying on the roller conveyor for a long time. This
is clearly visible in plot (a), where towards the oldest end (high layer numbers)
both the area occupied by the plastificate in the slice (on average 0.8001) and
thus three-dimensionally the volume in the overall scan, as well as the porosity
increases. The average area covered in plot (b) is slightly smaller at 0.7886.
Incidentally, when calculating the porosity or the volume taken up, 20 slices were
cut away at the edge of the 3D scans, as these had artifacts or already showed
areas rich in air due to unevenness, etc. The area and volume comparisons are
only valid because both plastificate halves were scanned in one scan and therefore
have the same scan section and the same resolution.
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4.2 Plastificate investigations

(a) (b)

(c) (d)

Figure 4.9: Course of the porosity of the "front end" (a) and "back end" (b) of a GF-PA6 plastificate.
In addition, course of the porosity of two GF-PC plastificates, one manufactured with a
screw speed of 45 rpm (c) and one with 100 rpm (d).

Looking at the plots (c) and (d), the porosity curves of two separate GF-PC
plastificates produced under different conditions can be seen. The plastificate
shown in plot (c) was produced at a screw speed of 45 rpm, while the plastificate
shown in plot (d) was produced at 100 rpm. The plastificate produced at slower
speed shows a significantly lower mean porosity of 0.2196 compared to 0.3248
for the faster extruded plastificate. The low speed and porosity in (c) also ensures
a relatively consistent porosity and volume profile across the slices, while the
higher speed in the production process in (d) results in an increase in porosity and
volume towards the end.
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4.3 Fiber volume content

In this section, the results of the experimental determination of FVCs of specimens
are shown, as well as results of their computational determination from the scans
of specimens with self-implemented, novel methods.

4.3.1 Chemical dissolution 1

The nominal fiber volume content set during production was 25 %. Since the
samples that were dissolved in acid of Plate 2 (cf. Figure 3.4) were of different
sizes, the dependence of the fiber volume contents on the sample size can be
shown. In fact, this effect seems to be clearly pronounced, as can be seen in Table
4.1: the fiber volume contents increase monotonically from Sample 1 to 3, as
well as from 10 to 12. With Specimen 1 being the smallest (10 mm × 10 mm
× 3 mm), Specimen 2 being the second largest (20 mm × 20 mm × 3 mm) and
Specimen 3 being the largest (30 mm × 30 mm × 3 mm), it is noticeable that
the larger the specimen, the larger the FVC. Moreover, the fiber volume content
seems to be higher in the charge region (Specimen 1, 2, 3) than in the transition
region (Specimen 10, 11, 12) - a finding that contradicts the results of the samples
of Plate 3 (cf. Table 4.2). The results of the FVC in Table 4.2 of Plate 3 have
been first published by Scheuring et al. [274]. While the average FVC of the three
charge specimens (C1, C2, C3) is equal to the global average with 23.57 %, it is
indeed slightly higher than the average FVC of the three specimens of the flow
region (F1, F2, F3) with 22.74 %. The transition region (specimens CF1, CF2,
CF3) shows the biggest average FVC with 24.42 % in this plate.

1 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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4.3 Fiber volume content

Table 4.1: FVC in % for specimens of Plate 2 (cf. Figure 3.4) determined through acid-based
dissolution of the matrix. Extracted from Blarr et al. [188].

Specimen FVC

FLD1 22.3 %

FLD2 25.5 %

FLD3 28.6 %

Average 25.5 %

Standard deviation 2.6 %

FLD10 17.9 %

FLD11 24.0 %

FLD12 26.6 %

Average 22.8 %

Standard deviation 3.6 %

Overall average 24.2 %

Overall standard deviation 3.4 %

4.3.2 "Average or above" (AOA) thresholding 2

The scans, that the FVC had to be determined of, all showed salt and pepper noise.
So the first step of the implemented thresholding method was the application of a
filter. The choice of the filter type and kernel size was decided on after all other
steps of the procedure were defined. A study was conducted, as to which filter and
kernel size produces an FVC closest to the measured ones. Finally, the median
blur led to the least average deviation between the calculated and the measured
results. It is noticeable, that there are differences of the best kernel size between
the two different plates. For the specimens of Plate 2, consisting of FLD1 to
FLD12, a median blur filter and a kernel size of 15 × 15 px showed the least

2 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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Table 4.2: FVC in % for specimens of Plate 3 (cf. Figure 3.4) determined through acid-based
dissolution of the matrix. Data from Scheuring et al. [274]. Extracted from Blarr et al.
[188].

Specimen FVC

F1 23.07 %

F2 22.08 %

F3 23.06 %

Average 22.74 %

Standard deviation 0.46 %

C1 25.57 %

C2 22.31 %

C3 22.81 %

Average 23.56 %

Standard deviation 1.43 %

CF1 26.36 %

CF2 23.10 %

CF3 23.81 %

Average 24.42 %

Standard deviation 24.42 %

Overall average 23.57 %

Overall standard deviation 1.37 %
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4.3 Fiber volume content

(a) (b) (c) (d) (e)

Figure 4.10: Illustration showing the whole process of FVC determination by AOA thresholding
using the example scan of sample FLD3. (a) Shown is a middle slice of the original
3D CT image read into Python. (b) The same slice is shown after applying the median
filter (kernel size in this case 15). (c) The Otsu threshold of each slice was determined
and plotted over the slices. The calculated thresholds are shown in blue, the average in
orange and the value that is ultimately applied in green. The average value is used if the
actual threshold of the slice is below the average value, otherwise the calculated value
above it is used (cf. Figure 3.14). (d) The slice is shown with the threshold applied. (e)
Finally, the fiber volume content determined by the method is plotted over the slices. The
decreasing volume content at the edges is clearly visible. The mean value over all slices
in orange is the final determined value, which is again compared with the experimentally
determined value. Based on Blarr et al. [188].

average deviation, as well as the least maximum deviation. The results can be
seen in Table A.3, Table A.4 and Table A.5 in the Appendix. For the specimens
of Plate 3, consisting of C1 to F3, a median blur and a kernel size of 23 pixel ×
23 pixel had the least average deviation, as well as the least maximum deviation,
which is shown in Table A.6 and Table A.7. In the tables with the results of Plate
3, only the tested kernel sizes that seemed the most relevant of some filters are
listed. Comparing the dimensions of the images of the different plates, to be seen
in Table 3.2, it shows that the average image size of Plate 3 is larger than that of
Plate 2, hence the image resolution is higher for Plate 3 (cf. Table 3.1). Apparently
the needed kernel size of the median blur is dependent on the dimensions and the
resolution of the scan used. The effect of the median blur is visible comparing the
images (a) and (b) in Figure 4.10. The determined binary image after applying the
AOA thresholding method of this particular slice is shown in (d).

However, not all final results of the FVC are convincing (compare Table A.4,
column "medianBlur(...,15), and Table A.6, column "medianBlur(...,23)). While
most samples show decent results, when not including outliers, with a relative
average deviation of 1.81 % in the first measurement series and 3.42 % in the
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second measurement series, there are samples with a much larger deviation.
Individual samples show relative deviations of up to 116.09 % (FLD10). The
reason for those differences of the performances of the algorithm are not entirely
clear. FLD10 was a small specimen and a scan with low resolution, which is not
the best combination in general. This condition arose because it was desired to
have the same resolution for all samples of one plate and the low resolution was
necessary in order to fit the biggest specimens inside of the beam path. Hence, the
image quality was insufficient but that was also the case for FLD1, which did not
deviate that massively. Additionally, FLD10 showed a much lower experimentally
measured FVC and minor measurement uncertainties were assumed to lead to
that value. For these reasons FLD10 was left out of the error calculations of the
AOA thresholding and was not used as training data in the CNN either. However,
the other two outliers C2 and F2 were included. Neither any visual deviation
nor deviations in the histograms, brightness levels or other measures used for
image comparison in these two scans could be detected, which is why they are
included in the absolute average deviations and were also used as training data for
the CNN. That way, the absolute average deviation of the final AOA thresholding
with medianBlur filter of 15 and 23, respectively, amounts to about 2.7 %. The
final results are depicted in Table 4.3.

The final results of the FVC determined by AOA thresholding after applying the
median filter as described above are also plotted in Figure 4.11. The two deviating
values of C2,carbon and F2,carbon can be clearly detected.

Considering the progress of the fiber content across a specimen by the example
of specimen F2, a clear non-monotonous course can be seen in Figure 4.12. The
lower values at the borders of the sample and the increase of the FVC towards the
center have been expected. This behavior appears due to the compression molding
process, which will be further elaborated on in the Discussion.
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4.3 Fiber volume content

Table 4.3: Predictions of final AOA thresholding method (compare green columns in Table A.4 and in
Table A.6) and of final CNN structure. The values for the CNN are averaged predictions
for the original and all augmented 3D image versions with the same FVC. Extracted from
Blarr et al. [188].

Specimen Exp. values AOA thresholding CNN
FVC FVC Absolute deviation FVC Absolute deviation

FLD1 22.30 % 22.97 % 0.67 % 26.04 % 3.74 %
FLD2 25.50 % 24.18 % 1.32 % 28.62 % 3.12 %
FLD3 28.60 % 28.5 % 0.1 % 28.41 % 0.19 %
FLD11 24 % 23.91 % 0.09 % 25.24 % 1.24 %
FLD12 26.60 % 26.64 % 0.04 % 25.6 % 1 %
C1 23.07 % 24.07 % 1 % 23.24 % 0.17 %
C2 22.08 % 42.2 % 20.12 % 22.85 % 0.76 %
C3 23.06 % 23.04 % 0.02 % 22.49 % 0.57 %
CF1 25.57 % 26.6 % 1.03 % 23.12 % 2.46 %
CF2 22.31 % 23.53 % 1.22 % 22.35 % 0.04 %
CF3 22.81 % 22.53 % 0.28 % 22.80 % 0.01 %
F1 26.36 % 25.48 % 0.88 % 21.98 % 4.37 %
F2 23.10 % 32.76 % 9.66 % 24.78 % 1.68 %
F3 23.81 % 25.11 % 1.3 % 22.68 % 1.12 %
Mean 24.23 % 26.54 % 24.3 %
Abs. aver. dev. 2.7 % 1.46 %

Figure 4.11: Original (orange) and calculated with the novel thresholding technique (blue) values of
FVC for the fourteen specimens, as well as measured averaged FVC (orange dashed)
and calculated averaged FVC (blue dashed). Based on Blarr et al. [188].

191



4 Results

Figure 4.12: Exemplary progression of FVC over thickness of the specimen considering the example
of specimen F2. Typical increase of FVC towards the center of the specimen visible.
Extracted from Blarr et al. [188].

4.3.3 Convolutional neural network 3

As shown in Figure 4.13, using 40 epochs as training of the CNN is sufficient since
the model’s validation and training losses converge after around 15 epochs and
there are no significant improvements beyond that point. The training loss value
after 40 epochs amounts to 0.5539 and the validation loss to 0.5535. The initially
unusual fact that the loss in the training data is greater than in the validation data
is discussed in more detail in Section 5.2.3. Considering the shift of the minimum
attainable loss value briefly discussed in the Methods (Section 3), this can be
considered a successful training process.

The performance of the CNN is further assessed in Figure 4.14. Of the 448 3D
input scans, 299 were used for training and 149 for validation in accordance with
the two thirds split. Figure 4.14 shows the mean values of the predicted FVC of
all validation scans with the same experimentally measured FVC (14 different
ones) (including original and augmented scans). Thus, for five of the points, the
mean value was determined from ten predicted values and for the remaining nine
from eleven, resulting in 149 validation scans. The standard deviation was so
small, with a maximum value at one point of 0.0009 and a mean value over the 14

3 This section is extracted from the author’s publication [188] with only slight linguistic changes.
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4.3 Fiber volume content

Figure 4.13: Final graph showing the losses for the testing and validation data sets during the training
process as a function of the epoch. Extracted from Blarr et al. [188].

points of 0.0005, that no boxplot was used, but the same format as in Figure 4.11
with the thresholding results. The network thus calculates stable consistent values
for a given scan with the same FVC, regardless of whether it was augmented or
not. This indicates a good geometric independence of the network. In addition,
several runs of the CNN training were made with the same settings and the results
also hardly differed, which indicates a low intrinsic uncertainty of the CNN. The
biggest variation between runs was rather at which epoch the loss plot reached its
minimum, which could vary by 5-10 epochs.

In the best universal case, hence the final network depicted and described in
Section 3.4.2.3, an absolute average deviation of 1.46 % was achieved (cf. Table
4.3).

Beside the amount of epochs used to train the network, a number of variables
were tuned to improve the prediction’s accuracy. The augmentation process, e.g.,
has multiple steps of flipping and rotating images. Experiments with using less
or more augmentation steps showed that using the most amount of steps showed
the best results. Changing which scans were fed into the program from the start
had a large impact and by down-selecting systematically, an absolute average
deviation below 0.9 %, so a performance increase by about 40 % was achieved.
However, since the goal of this network is to provide a universal method for
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Figure 4.14: Original (orange) and calculated with the CNN (blue) values of FVC for the fourteen
specimens, as well as measured averaged FVC (orange dashed) and calculated averaged
FVC (blue dashed). Extracted from Blarr et al. [188].

CF-PA6 sample scans, all data was used instead, in favor of general applicability
to different scans at a later time. FLD10, which has already shown to be an outlier
for the thresholding method, poses an exception in this case. Its implementation
caused a remarkable decrease in performance in all cases, for which an identifiable
rationale is lacking and thus this scan had to be removed from the entire data set,
as mentioned before.

4.4 Fiber length distributions

In Figure 4.15, the length distributions of the samples FLD1 to FLD3 and
FLD10 to FLD12 of Plate 2 (cf. Figure 3.4(b)) can be seen.

The graph was truncated at a fiber length of 6.5 mm, in the knowledge that
occasional fibers up to a length of 32 mm do occur. In general, fibers appear
in an extremely wide range of lengths, but the majority of the fibers are in the
region between 0 mm and 1 mm. Especially the three samples from the charge

194



4.4 Fiber length distributions

0 1 2 3 4 5 6
Fiber length/mm

0

200

400

600

800

1000

1200

C
ou

n
ts

/-

nfibers = 58337.00
lmedian = 0.48
laverage = 1.07

FLD1

FLD2

FLD3

FLD10

FLD11

FLD12

Figure 4.15: Histogram of amount of fibers of a specific length in mm per specimen, including FLD1

to FLD3 and FLD10 to FLD12.

area, i.e. FLD1 to FLD3 show strong peaks in the range between 0.3 mm and
0.5 mm approximately. Of all the fibers measured from the six samples, more than
58,000 individual fibers were measured, which together have an average value
(in relation to the total number) of 1.07 mm. However, the median is 0.48 mm.
Here, it is already noticeable that the choice of the mean value determination can
have a significant influence on the result of a possible modeling of the material.
The aspect ratio is included in, for example, the Mori-Tanaka and Halpin-Tsai
homogenization approaches, and the resulting mechanical properties are therefore
dependent on the mean fiber length. In relation to the individual sample, the
average and median values can be seen again in Figure 4.16.

It is noticeable that the mean values of the samples in the charge area (FLD1 to
FLD3) are on average lower than those of the samples in the flow area (FLD10

to FLD12). In addition, the fiber lengths increase significantly from the smallest
(FLD1 and FLD10) to the next larger sample (FLD2 and FLD11) when looking
at the average. It is assumed that for a sample area of 10 mm × 10 mm, very
long fibers are already cut off, which is hardly likely to be the case for 20 mm ×
20 mm. From the medium (FLD2 and FLD11) to the largest samples (FLD3
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Figure 4.16: Average (blue) and median (orange) fiber lengths per specimen (FLD1 to FLD3 and
FLD10 to FLD12) and averaged across all specimens (dashed blue and orange).

and FLD12), the average fiber length increases only slightly, or even decreases
in the case of the flow samples. Therefore, specimen dimensions of 25 mm ×
25 mm were chosen for the specimens of Plate 3, since it may be assumed that
the influence of sample size on the fiber length distribution should be saturated
approximately in the range between the middle and largest samples. However,
median and average again behave differently. Thus, the sample size effect cannot
be clearly shown, but the difference between flow and charge area can be seen for
both mean values.

4.5 Fiber orientation

In the following section, all results relating to fiber orientations are presented.
First, validation results of the application of the structure tensor based method for
fiber orientation evaluation for the material of this thesis are shown. Subsequently,
special features of the evaluated fiber orientation tensors over the thickness (z-axis)
are addressed. The behavior of the fiber orientation tensors considering the x-y-
plane will be taken up in the following Section 4.6 dealing with the interpolation
of FOT.
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4.5 Fiber orientation

4.5.1 Validation of the application of the structure tensor
method

The validation of methods for fiber orientation determination is limited, as it
cannot be measured directly by experiment. Pinter et al. [81] created artificial
microstructures with given properties and used them to validate their structure
tensor approach (also applied in this work). In this respect, the method has already
been validated for similar microstructures. However, an exact validation is not
possible for the material in this work for the reason that the generation of a
microstructure that truly corresponds to the CF-PA6 with its mixture of bundles
and single fibers is currently not possible or implementable. There are two further
possibilities for validation, one qualitative and one indirect, quantitative. The
qualitative approach will be discussed here first. After applying the structure tensor
algorithm, a vector-valued image (3 channels) is created that maps the proportion
of the orientation in the three spatial directions in each pixel, respectively a
large number of orientation vectors that can be derived from this. The detected
orientations of the algorithm can in turn be made visible by false colors in the HSV
space and placed on the original slices. If the visual impression of the orientation
corresponds well with the detected colors/angles, the detection appears to have
been successful as shown in Figure 4.17.

Figure 4.17-1(a) shows an exemplary slice from the center of a CF-PA6 scan (in
this case sample CF2 from Plate 3, cf. Figure 3.4), Figure 4.17-2(a) of a GF-PA6
scan (CF2 from Plate 4) and Figure 4.17-3(a) of a hybrid reinforced CF-GF scan
(also CF2, i.e. the middle sample, analogous slice pattern to Plate 3 and Plate 4).
Below are the same images with the false color representation of the orientation
detected by the algorithm, where Figure 4.17-3(b) shows the orientation of the
glass fibers and Figure 4.17-3(c) that of the carbon fibers of the hybrid reinforced
sample. If one compares the colors in 2(b) and 3(b) with the resulting angles in
the HSV color circle in subgraph 4, the recognition of the algorithm corresponds
very well to the optical impression of the angles in the CT scan. Especially in
the purely CF reinforced case, however, it becomes clear that in areas of quite
uniform fiber bundle orientation, slight speckle patterns of other colors and thus
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Figure 4.17: One slice out of the middle of the CT scan of the CF2 stack of the CF reinforced plate
(1(a)), of the CF2 stack of the GF reinforced plate (2(a)) and of the hybrid CF-GF
reinforced plate (3(a)). 4: Color-angle correlation in the HSV ("Hue Value Saturation")
color space. 1(b): Detected fiber orientations in the slice presented in 1(a) through
the code by Pinter et al. [81] visualized in the HSV color space. 2(b): Detected fiber
orientations in the slice presented in 2(a) visualized in the HSV color space. 3(b):
Detected fiber orientations of the glass fibers in the slice presented in 3(a) visualized in
the HSV color space. 3(c): Detected fiber orientations of the carbon fibers in the slice
presented in 3(a) visualized in the HSV color space. Extracted from publication [274],
co-authored by the author.

orientations occur that are not comprehensible. These are due to the greater image
noise. An attempt was made to counteract these incorrect detections by applying a
median filter of kernel size 10 to the CT scans (before orientation determination)
of the purely CF-enhanced samples only. The effect of the filter known for salt
and pepper noise reduction is visible in Figure 4.18.

It can be clearly seen that there are almost no more randomly distributed deviating
color spots in otherwise homogeneously oriented bundles. However, the detection
of very fine structures is also no longer possible. Small bundles and individual
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(a) (b)

Figure 4.18: Effect of the median blur applied to a CT scan slice of a CF-PA6 specimen. HSV color
image without median filter visible in (a) and with median filter in (b).

fibers are no longer included in the orientation detection at all. Since the detected
fiber orientation in the CF-reinforced plates is dominated by the bundles anyway
and, as will be shown later, this corresponds well with the mechanical tests, it can
be assumed that this provides the more accurate solution.

The other quantitative, indirect type of validation mentioned above is the use
of the extracted orientation information in mechanical homogenization models.
The resulting stiffnesses or strengths can then be compared with those measured
experimentally. As these experimentally measured stiffnesses were carried out
with samples taken from the plates at different angles, the accuracy of the stiffness
values for different orientations can be used to draw conclusions about the quality
of the orientation information used in the modeling. However, since tensor
interpolation was used for the orientation information of the modeling, which
will not be described until the next section, the procedure and the result will be
explained in more detail in Section 4.6.4 and debated in the Discussion in Section
5.4.4.5.

199



4 Results

4.5.2 Characteristics of the FOD across the z-axis

The mere display of fiber orientation tensors does not appear to be useful for
obtaining a comprehensive understanding of the behavior of the fiber orientation.
The results over the plate (x-y plane) are therefore taken up in the visualization
form of the tensor glyphs in the context of the fiber orientation interpolation in
the next section. However, the behavior over the z-axis is thereby difficult to
recognize, which is why characteristic curves of the three main components of
the fiber orientation tensors of individual specimens were plotted in Figure 4.19
instead.

The two upper graphs show the results of CF-reinforced specimens, while the
lower graphs show the results of GF-reinforced specimens. In addition, the two
left-hand plots are each from a specimen in the batch area and the two right-hand
plots are each from a specimen in the flow area of the plate. Clearly, an edge effect
is visible in both samples in the charge region. The A22 component appears to
increase at the edge of the specimen and the A11 component, which is dominant
in the center of the specimen, decreases. In contrast, the curves of the main
components in the flow area tend to be constant and are clearly A11-dominant.
The question of whether this effect can be called the "shell-core effect", because
it is reminiscent of the phenomenon of orientation components changing across
the thickness in injection molding, is addressed in the Discussion in Section 5.4.
It is also discussed where this changed surface orientation could stem from and,
particularly, why it only occurs in the charge area but not in the flow area.
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Figure 4.19: Main components over thickness (in slices) of specimens C2 (a) and F2 (b) of Plate 3
(CF-PA6) and of specimens C2 (c) and F3 (d) of Plate 4 (GF-PA6).

4.6 Interpolation of fiber orientation tensors

The results of the three methods for the interpolation of fiber orientation tensors
of second-order are presented below, in the form of the tensors generated in each
case, as well as a quantitative evaluation by determining individual tensors that
have been measured previously. The specimens of Plate 1 were used (cf. Figure
3.4). These results have already been published in the paper [17]. The results
of the slightly modified decomposition method for tensors of fourth-order are
presented in the following. However, the use of these results in homogenization
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methods and the comparison with the experimental stiffness values is included in
the Discussion (Section 5.4.4.5).

4.6.1 Component averaging 4

The set of measured orientation tensors Tm via CT scan and subsequent calculation
via structure tensor is represented by the blue tensor glyphs in Figure 4.20, the set
of interpolated tensors Ti = {Txy ∀ x ∈ 1, ..., 13 ∩ y ∈ 1, ..., 13} by the orange
tensor glyphs.

The origin of the global coordinate system is located in the lower left corner of the
plate. The original LFT charge covered almost the entire left side of the 400 mm
× 400 mm mold with a width of about x = 90 mm (to the right), a length of about
y = 350 mm (up) and a height of about z = 60 mm. Thus, when the press closes,
one would expect a quasi 1D flow to the right. However, in Figure 4.20 a clear
progression can be seen in the measured (blue) fiber orientation.

After a clear preferred direction in the left region resulting from the plastificate,
i.e., from the last extrusion step in the LFT-D process, a turn to a rather dominant
orientation in the x-axis seems to happen towards the middle of the plate (apart
from the top region). At the right side another turn to an again more y-direction-
dominant orientation happens (apart from the lowest tensor glyph, which in general
seems to be more isotropic than the other tensors). Considering these measured
tensors, the interpolated tensors should follow some kind of curve. In fact, the
interpolation does not seem to cover this behavior smoothly but instead rather
accomplished the orientation changes through rounding the tensors. Following
the literature, this behavior was expected (cf. swelling effect in the State of Art
(Section 2.2.3.3)) and can be confirmed.

In order to be able to approach quantitative error analyses and to better assess the
interpolation behavior, one measured tensor of Tm was omitted in each case and

4 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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4.6 Interpolation of fiber orientation tensors

Figure 4.20: Visualization of interpolated (orange) and measured (blue) tensors when using the
component averaging interpolation method described in this thesis. Extracted from Blarr
et al. [17].

instead also determined with the interpolation method. The visualization results
are shown in the nine pictures in Figure 4.21.

To obtain a quantitative error value, the Frobenius norm of the measured tensors
and their respective interpolated substitutes was formed. The result of the differ-
ence between the Frobenius norm of the interpolated and the original tensor can
be seen as an error map in Figure 4.22. The method seems to predict the MM ,
LM and LL tensors the worst. It is difficult to judge whether the Frobenius
norm is suitable as a quantitative assessment, but it will be discussed further in
the Discussion.

Therefore, a third possibility of error analysis is considered, namely the direct
component comparison between interpolated and measured tensors. Figure 4.23
shows this for the component averaging method.

The nine graphs in Figure 4.23 correlate to the nine different tensor components
of a 3 × 3 tensor. Each graph shows the component value of the measured tensors
in blue and of the interpolated tensors in orange on the y-axis for each of the nine

203



4 Results

Without UL Without UM Without UR

Without ML Without MM Without MR

Without LL Without LM Without LR

Figure 4.21: The graphic shows the measured (blue) and interpolated (orange) fiber orientation tensor
glyphs when leaving one measured tensor out of the calculation and interpolating it
instead with the component averaging method respectively. Extracted from Blarr et al.
[17].
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4.6 Interpolation of fiber orientation tensors

Figure 4.22: Visualization of the discontinuous (left image) and continuous (right image) error of the
component averaging method across the plate of the interpolated tensor in comparison
to the measured one when leaving this specific tensor out of the computation. Value
determined via Frobenius norm. Extracted from Blarr et al. [17].

Figure 4.23: Comparison of each of the nine components of each of the nine measured tensors with
the corresponding resulting component of the interpolated tensors for the component
averaging method. Extracted from Blarr et al. [17].

205



4 Results

measured tensors (depicted on the x-axis, starting with UL). While the differences
are largest for the components with the largest values and fluctuations (mainly
A11 and A22), the character of the component averaging method is also clearly
evident in this type of error analysis. Thus, the components of the interpolated
tensors almost resemble a moving average of the components of the measured
tensors.

4.6.2 Decomposition 5

In Figure 4.24, the results of the interpolation with the quaternion-based decom-
position approach can be seen.

Figure 4.24: Visualization of interpolated (orange) and measured (blue) tensors when using the
decomposition-based interpolation method described in this thesis. Extracted from Blarr
et al. [17].

5 This section is extracted from the author’s publication [17] with only slight linguistic changes.

206



4.6 Interpolation of fiber orientation tensors

The before-mentioned progress of orientations can be visually traced as a clear
curve. As for the interpolation method as such, the visual results are for the
most part very appealing. Interpolation between the individual measured FOT
is good and the transition between two adjacent tensors also appears reasonable.
The anisotropy is not basically lost between two differently oriented tensors by
"rounding the tensor". The rotation of two adjacent tensors occurs with small
angles and therefore smoothly. The only exception to this can be seen at the upper
right edge: The interpolated tensor T10,13 in the middle of UM and UR behaves
somewhat strangely as far as the behavior of the row is concerned. Instead of
closing the estimated angle of 20° between UM and UR by a piece wise change
of 10°, the tensor T10,13 is oriented in an angle deviating by around 80° compared
to the measured ones. However, the tensor MM is for example also taken into
account for the calculation of this tensor (just like all the other measured ones of
the set Tm), even if weighted less strongly than UM and UR, which favors the
big rotation of the tensors in the uppermost row considering the global orientation
behavior. Furthermore, the behavior in this column looks much better than could
be expected if the tensor had rotated in mathematically negative (clockwise)
direction around the z-axis than the chosen positive (anti-clockwise) direction.
When leaving measured tensors out of the "ground truth" and interpolating them
instead, there are definite changes in the orientation course, which can be seen in
Figure 4.25.

For example, the behavior of the afore-mentioned T10,13 changes significantly
when UM or UR are omitted. In general, however, it must be stated that the
orientation courses react very agilely and sensibly to the changes when individual
tensors are omitted when using the decomposition method.

The quantitative evaluation based on the Frobenius norm is visualized in Figure
4.26. The rather poorer interpolation at the left and upper edges and the relatively
good performance in the middle of the plate (and lower right) are noticeable.

Considering the component-wise deviations displayed in Figure 4.27, it is striking
that they are considerably high in this specific case for this coordinate system.
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Without UL Without UM Without UR

Without ML Without MM Without MR

Without LL Without LM Without LR

Figure 4.25: The graphic shows the measured (blue) and interpolated (orange) fiber orientation tensor
glyphs when leaving one measured tensor out of the calculation and interpolating it
instead with the decomposition method respectively. Extracted from Blarr et al. [17].
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4.6 Interpolation of fiber orientation tensors

Figure 4.26: Visualization of the discontinuous (left image) and continuous (right image) error of the
decomposition method across the plate of the interpolated tensor in comparison to the
measured one when leaving this specific tensor out of the computation. Value determined
via Frobenius norm. Extracted from Blarr et al. [17].

However, it is noticeable that major trends between the different tensors are mostly
preserved by this method (cf., e.g., A11).

Figure 4.27: Comparison of each of the nine components of each of the nine measured tensors with
the corresponding resulting component of the interpolated tensors for the decomposition
method. Extracted from Blarr et al. [17].
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4.6.3 Artificial neural network 6

The results of the tensor field when interpolating with the neural network can be
seen in Figure 4.28.

Figure 4.28: Visualization of interpolated (orange) and measured (blue) tensors when using the ANN-
based interpolation method described in this paper. Extracted from Blarr et al. [17].

It strikes that when training this network with the measured tensors, it is able to
produce both very anisotropic and very isotropic tensors at the points with missing
tensors, compared to the other two main methods that rather dispensed one or the
other. While some areas look smooth like, e.g., the upper and right area, there is
non-monotonous interpolation behavior concerning, e.g., MM and LL where
the surrounding tensors are much more isotropic than the measured one and also
quite differently oriented (looking specifically at the tensor LL). When training
the network multiple times with the same input data, the results look very much
alike, speaking for the robustness of the method.

6 This section is extracted from the author’s publication [17] with only slight linguistic changes.
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4.6 Interpolation of fiber orientation tensors

However, looking at the plots of the tensor fields when leaving measured tensors
out of the input data (Figure 4.29), some of the non-monotonous behavior shows
again (cf., e.g., the fields without MM and without MR).

Without UL Without UM Without UR

Without ML Without MM Without MR

Without LL Without LM Without LR

Figure 4.29: The graphic shows the measured (blue) and interpolated (orange) fiber orientation tensor
glyphs when leaving one measured tensor out of the calculation and interpolating it
instead with the neural network respectively. Extracted from Blarr et al. [17].

Consequently, the difference of the Frobenius norm for these two cases is signifi-
cantly large and so is the error for the interpolation of the UM tensor, which is
all depicted in Figure 4.30.
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Figure 4.30: Visualization of the discontinuous (left image) and continuous (right image) error of the
ANN method across the plate of the interpolated tensor in comparison to the measured
one when leaving this specific tensor out of the computation. Value determined via
Frobenius norm. Extracted from Blarr et al. [17].

Considering the component-wise errors in Figure 4.31, the results are still com-
paratively good. The largest deviations occur especially for the three mentioned
tensors before. Just as was the case for the other two methods, the biggest devia-
tions appear mostly for the A11 and A22 components. The comparison between
the three methods regarding the differences between the measured and interpolated
tensor components will be taken up again in the Discussion (cf. Section 5.4.4).

The quality of the neural network must also be considered with respect to the
progression of an error measure over the number of epochs. As an error measure,
the already mentioned MAE was used and the course over the epochs can be seen
in Figure 4.32. As expected with the small number of training data, the network
does not behave optimally. However, the graphs show both overfitting (A23,
A33, A31) and underfitting (A11) trends. Thus, it is difficult to draw a general
conclusion. Overfitting rather argues for using more training data or stopping at a
lower number of epochs, apart from solutions that require more specific methods
which are very dependent on the model. Underfitting can be combated by different
measures depending on the cause of the underfitting; either more epochs (unlikely
here) or more parameters of the model can help, or a change to a completely
different model. However, more training data can also help with underfitting,
which is most likely in the case considered.
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4.6 Interpolation of fiber orientation tensors

Figure 4.31: Comparison of each of the nine components of each of the nine measured tensors with
the corresponding resulting component of the interpolated tensors for the ANN method.
Extracted from Blarr et al. [17].

4.6.4 Interpolation of tensors of fourth-order through
adapted decomposition method

With the simplified decomposition method for tensors of fourth-order explained
in Section 3.7.5, analogous fields of fiber orientation tensors could be created.
They are plotted in Figure 4.33 on the left side for the CF-PA6 Plate 3 (cf. Figure
3.4) (a), the GF-PA6 Plate 4 (cf. Figure 3.4) (b), the CF evaluation of the hybrid
plate (c) and the GF evaluation of the hybrid plate (d). The different shape of the
tensors of fourth-order compared to the ellipsoids of second-order can be clearly
seen. Furthermore, it strikes that the measured tensors are deviating a lot less
in their shape and orientation among themselves compared to the heterogeneous
initial state of the example in the sections before. This is due to the fact that
the samples in the previous case were significantly smaller (10 mm compared to
25 mm side length) and thus the orientation was evaluated very locally. This made
interpolation significantly more difficult and led to the critical points mentioned
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Figure 4.32: MAE over training epochs of the ANN per tensor component. Extracted from Blarr et al.
[17].
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4.6 Interpolation of fiber orientation tensors

above. In these cases, however, the interpolation appears uniform and monotonic,
as the output tensors are significantly more similar. The slight upward drift can
also be seen in the four cases, although it varies slightly in strength. In addition,
there is partly also a slight, less pronounced downward drift at the right end of the
plate in the lower part.

Averaging all 169 tensors into one averaged tensor gives a representation of the
overall fiber behavior. These averaged tensors can be seen in Figure 4.33 in
column 2. In general, they are similar in shape, with the averaged tensors repre-
senting carbon fibers being slightly more isotropic (rounder), which corresponds
to observations in the CT scans. The light and thin carbon fibers behave more ran-
domly, deviate in their angles a lot and are less strict aligned with the overall flow.
Orientation-wise, all show the slight upwards drift - again varying in intensity.

For the third column in Figure 4.33, the orientation vectors detected in the nine
scans were binned into 20 angle categories, each containing an interval of length
π/20. The results were averaged and plotted as fiber orientation histogram. A
shift towards slightly positive angle values can also be seen here. The distributions
of the carbon fibers are also somewhat flatter (especially in the hybrid case), or
show higher occurrences at larger angle values, which matches the somewhat
more isotropic tensor glyphs.

The averaged tensor glyphs of fourth-order were subsequently used (without prior
closing approximation) as input in the Mori-Tanaka homogenization, and the ori-
entation histograms in the shear-lag modified Halpin-Tsai homogenization. When
comparing the resulting stiffnesses with experimentally measured stiffnesses, the
use of the 169 tensors as basis for the average resulted in a stiffness body closer
to the experimental one than just using the nine measured ones. This will be
discussed in detail in Chapter 5.
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1(a) 2(a) 3(a)

1(b) 2(b) 3(b)

1(c) 2(c) 3(c)

1(d) 2(d) 3(d)

Figure 4.33: Field of tensors of fourth-order (1), averaged tensor glyph of all 169 tensors of fourth-
order (2) and histogram of orientation distribution of the mean of all specimen in degrees
for 20 groups (width of one column: 180◦/20), for the CF plate (a), the GF plate (b), the
carbon fibers in the hybrid plate (c) and the glass fibers in the hybrid plate (d). Extracted
from the publication [274], co-authored by the author.216



4.7 Microstructure image generation through generative adversarial network

4.7 Microstructure image generation through
generative adversarial network

In the following, the results of the final DCGAN network are presented - from
the actually generated images to quality evaluations of the network in the form
of the loss plot to quality evaluations of the generated images in the form of FID
calculations and nearest neighbor considerations with the two different metrics
of ED and SSIM. The results of the following sections have all already been
published in a paper [275].

4.7.1 Generated images 7

The DCGAN was trained for 75 epochs on 29,280 input images (cf. Section
3.8.2) with 128 images per batch corresponding to 228 iterations per epoch when
dropping the last non-full batch (cf. Section 3.8.5). A comparison of randomly
chosen real and generated images is shown in Figure 4.34.

It can be observed that every generated microstructure is different. Generated
images look mostly realistic (cf. orange-rimmed images in Figure 4.34) including
fibers and fiber bundles. The overall fiber orientation resulting from the flow in
the compression molding process (cf. Section 4.5) is visible and the contrast and
brightness varies between the images just as in the training images. There are,
however, few images which show characteristics that are not represented in the
input data set such as two dark border regions on opposite sides of the image (cf.
violet-rimmed image in Figure 4.34). This phenomenon has to be a result of the
combination of features from different images as in the original ones, at most one
side displays this artifact related to the scan process. In general, the observed
occurrence of dark border regions in the generated images can, for the most part,
not be traced back to the DCGAN structure but is subject to the quality of the
training data set. On the other hand, it should be positively emphasized that striped

7 This section is extracted from the author’s publication [275] with only slight linguistic changes.
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(a) Randomly picked generated images

(b) Random images from training data set

Figure 4.34: Comparison of (a) randomly picked generated images (after 75 training epochs) side by
side with (b) a random selection of real images of the training data set. Selected images
are highlighted in color as they are especially realistic looking (orange), show little to no
fibers (blue) or an excessive amount of fibers and fiber bundles (yellow). Furthermore,
some real and generated images contain artifacts such as dark image borders (violet) or
striped patterns (green). Extracted from Blarr et al. [275].
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4.7 Microstructure image generation through generative adversarial network

patterns (cf. green-rimmed image in Figure 4.34), which occur in the training
data and represent image artifacts as well, were no longer found in the generated
images. As they were not as common as the dark regions on the edge, these
artifacts disappeared in the course of the training process. Furthermore, some
images might show little to no fibers (cf. blue-rimmed images in Figure 4.34) or
an excessive amount of fibers and fiber bundles in unrealistic orientations, hence
strongly deviating from the general flow direction or showing extreme curvature
(cf. yellow-rimmed image in Figure 4.34).

4.7.2 Loss plot and FID 8

The loss value of the generator and discriminator network can be analyzed to
get information on the stability of the training process. This plot is shown in
Figure 4.35. It can be seen that both losses approach each other after only a
few epochs. However, while the loss of the discriminator stays on a very small
value for the rest of the training process, the generator loss increases slightly and
oscillations grow bigger. The smallest possible loss values for both generator
and discriminator would be zero, but they cannot simultaneously reach this value.
Hence, ideally, both losses should converge to approximately the same value
resulting in a balance of generator and discriminator or decrease monotonously
on average towards different values indicating a stable training process. This is
based on game theory and the aim to reach the Nash equilibrium. Even though
the generator loss in Figure 4.35 does not decrease monotonously (not taking
oscillations into account), the DCGAN in this paper still resulted in a stable
training process and the generation of meaningful images. In fact, similar shapes
of loss plots have been observed for other GANs as well [323–326]. The behavior
of the loss plot and its influence on the quality of the generated images and the
need for a different metric to assess them is elaborated on in the Discussion
(Section 5.5).

8 This section is extracted from the author’s publication with only slight linguistic changes [275].
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Figure 4.35: Plot of the generator and discriminator loss of the final network. The smoothed curves
of the loss values are calculated as floating average over 228 iterations (corresponds to
one epoch). While the discriminator loss increases merely visible at the very start, it
decreases to then stay constantly at very low values indicating correct assessment of the
images. The generator loss values increase contrarily after a small valley at the beginning
but stay roughly at a constant loss range although oscillating heavily. Extracted from
Blarr et al. [275].

In order to quantitatively judge the generated images even further, the associated
FID value was calculated after every epoch and is depicted in Figure 4.36. It
drops sharply during the first few epochs and then remains at this level without
major fluctuations. The average of the last 45 epochs is approximately 150.6 with
a standard deviation of about 5.7.

This coincides with the visual perception much better than the loss plot: Displaying
one randomly chosen generated image based on a fixed noise vector after each
epoch (cf. Figure 4.37 and Figure 4.38) shows that the images become slightly
better over time and not worse, which will be discussed further in Section 5.5.
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4.7 Microstructure image generation through generative adversarial network

Figure 4.36: Plot of the FID of images generated by the final network. The values decrease up
until about 30 epochs where the distance between the distributions of real and generated
images stays more or less constant. The FID hence corresponds more to visual perception
than the loss plot, at least in its initial course. Extracted from Blarr et al. [275].

4.7.3 Nearest neighbors 9

The distance to the nearest neighbor for every image within the last batch of
generated images (after 75 epochs) is depicted in Figure 4.39(a). The values are
sorted in ascending order (from left to right). Both for ED and structural similarity
index measure (SSIM), there is a wide distribution of images with a relatively
similar distance to their nearest neighbor and no noticeable sharp steps in the
plot. The range of possible SSIM values is (-1, 1], meaning that only about 2 %
is covered in the plot. On the contrary, the ED can output values between 0 and
512 for normalized image tensors of size 256 × 256 px and entries in the range
[-1,1] as used in this work (cf. Section 3.8.4.2, Equation (3.19)). Therefore, the
calculated ED values cover a significantly larger proportion of the possible range
(more than 16 %). However, these values cannot be compared directly since the
distribution of distance values is not linear and differs for ED and SSIM. It can
be noticed that for the ED the curve rises sharply on the right edge which leads
to the assumption that some generated images show a less strong resemblance to
even the closest image from the input data set. On the other hand, the SSIM curve
drops downwards (i. e. to higher values) at the left indicating that there are also

9 This section is extracted from the author’s publication [275] with only slight linguistic changes.

221



4 Results

(a) Epoch 9 (b) Epoch 15 (c) Epoch 21

(d) Epoch 27 (e) Epoch 33 (f) Epoch 39

(g) Epoch 45 (h) Epoch 51 (i) Epoch 57

(j) Epoch 63 (k) Epoch 69 (l) Epoch 75

Figure 4.37: Evolution of a selected representative image. From epoch to epoch, new microstructure
characteristics emerge and existing features are refined. Extracted from Blarr et al. [275].
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(a) Epoch 9 (b) Epoch 15 (c) Epoch 21

(d) Epoch 27 (e) Epoch 33 (f) Epoch 39

(g) Epoch 45 (h) Epoch 51 (i) Epoch 57

(j) Epoch 63 (k) Epoch 69 (l) Epoch 75

Figure 4.38: Evolution of a selected representative image. From epoch to epoch, new microstructure
characteristics emerge and existing features are refined. Extracted from Blarr et al. [275].
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few images that are very close to their nearest neighbor from the input data set
based on the SSIM. For both ED and SSIM it is unclear, what kind of shape of
the curve is desired. Both images of high quality (that means realistic looking
images that are no copies of the input data set) and images with a close nearest
neighbor as a consequence of copied image sections could score an equally low
value. Furthermore, a consistently high quality throughout the entire test batch
does not necessarily go hand in hand with an even distribution (i. e. a horizontal
line). This is due to the differences in images from the input data set. A side by
side comparison of two exemplary generated images Figure 4.39(b) and Figure
4.39(e) and their corresponding nearest neighbors for both ED and SSIM distance
measure is shown in Figure 4.39. For example image (b), both methods find
decent nearest neighbors. The nearest neighbor determined by ED even seems
somewhat closer. However, in the case of image (e), the nearest neighbor that is
found through the SSIM measurement fits much better. It appears that for images
with clearly recognizable and circumscribed fiber bundles that also appear at the
same place as in a training image, ED is a suitable measure. As soon as fibers are
rearranged in an angle or shifted in respect to the input images or the amount of
fibers in the entire image changes leading to large non-aligning areas, the SSIM
was found to be the more robust measure.

In order to not only judge the closeness of a final generated image to the training
data set, but also the evolution of their proximity throughout training, the smallest
ED and highest SSIM value of every epoch for one fixed generated image was
plotted. These results can be seen in Figure 4.40 and Figure 4.41 for the first
image and Figure 4.42 and Figure 4.43 for the second one, corresponding to the
respective image series in Figure 4.37 and Figure 4.38. In both cases the ED
and SSIM curves decline at the beginning and either increase slightly in the end
(ED and SSIM for the first image series, Figure 4.40 and Figure 4.41) or stay
approximately constant (ED and SSIM for the second image series, Figure 4.42
and Figure 4.43). It is striking that low values, hence high proximity to the nearest
neighbor in the training data set, appear for images that show small amounts of
fibers and therefore small gray value fluctuations and a somewhat smooth and
evenly distributed structure. Images of this kind appear in the training data set but
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4.7 Microstructure image generation through generative adversarial network

(a) Distance between generated images from the last batch (after 75 epochs) and their nearest
neighbor in the training data set based on ED or SSIM. The values are sorted in ascending order
(left to right). Note that for the ED, a small value corresponds to high similarity whereas for the
SSIM, with values ranging between -1 and 1, a value of 1 would mean perfect similarity (i. e.
identical images).

(b) Generated image (c) Nearest neighbor (ED) (d) Nearest neighbor (SSIM)

(e) Generated image (f) Nearest neighbor (ED) (g) Nearest neighbor (SSIM)

Figure 4.39: Top: Plot of the ED and SSIM of the generated images from the last batch after 75
epochs and their respective nearest neighbor in the training data set. Bottom: Examples
of two generated images ((b) and (e)) and their respective nearest neighbor image of
the training data set, based on ED ((c) respectively (f)) or SSIM ((d) respectively (g)).
Extracted from Blarr et al. [275].
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Figure 4.40: Plot of the smallest ED value between one chosen generated image (cf. Figure 4.37) and
the training data set over the duration of training. Extracted from Blarr et al. [275].

Figure 4.41: Plot of the highest SSIM value between one chosen generated image (cf. Figure 4.37)
and the training data set over the duration of training (higher value corresponds to higher
similarity). Extracted from Blarr et al. [275].

more often images with widely distributed fibers and fiber bundles occur. Hence,
generated images with characteristics close to the latter description should lead to
at least equally close nearest neighbors.

226



4.7 Microstructure image generation through generative adversarial network

Figure 4.42: Plot of the smallest ED value between one chosen generated image (cf. Figure 4.38) and
the training data set over the duration of training. Extracted from Blarr et al. [275].

Figure 4.43: Plot of the highest SSIM value between one chosen generated image (cf. Figure 4.38)
and the training data set over the duration of training (higher value corresponds to higher
similarity). Extracted from Blarr et al. [275].
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5 Discussion

In the following, the results of the plastificate investigations are discussed as
well as the fiber volume contents, the methods for their evaluation, and the fiber
lengths. The other sections deal with the results of the fiber orientation and the
fiber orientation tensor interpolation as well as the microstructure generation by
the GAN.

5.1 Investigations of plastificate

As a preliminary point, it should be noted that the plastificate investigations were
more of a phenomenological investigation than a statistically verified one. In many
cases, visual observations (material orientation around screw vortices, expansion
of the plastificate) or results from another type of examination by colleagues in
the International Research Training Group (IRTG) (volume detection via GOM
Atos 3D scanner, weighting, density calculation) should be confirmed or new
procedures were to be motivated. However, the plastificate investigations were
included in this dissertation because the majority of research is still concerned
with the characterization of the finished part after compression molding and not
the plastificate.

The fairly evenly rounded structure around the screw vortices was expected and
was already visually detectable from the scans. This double helix structure in the
cross section was, e.g., described by McLeod et al. [322]. Furthermore, Radtke
claims that there is a pre-orientation of the fibers in the plastificate strand as a
result of the discharge from the twin-screw device as well in his dissertation [321].
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He confirms the observation in this work that in the outer layers, the fibers are
arranged parallel to the extrusion direction, as they are aligned by the polymer
adhering to the extruder walls and the discharge nozzle wall. Inside of the strand,
the alignment of the fibers are predominantly influenced by the rotation of the
screw and the feed of the material according to Radtke, which also coincides with
the author’s findings.

In contrast, the relatively constant alignment of the fibers perpendicular to the
extrusion direction in the plastificate was more surprising. Radtke also determined
pre-orientations in 2009 using computed tomography of a plastificate strand [321].
He examined five layers separately across the thickness. Even though the work
unfortunately does not show a planar evaluation on the extrusion plane (x-y plane),
which makes a direct comparison with the findings in this work more complicated,
a plot with the frequency of occurrence of certain angles also shows a clear
tendency towards 0°, but then drops quite linearly towards 90° in both positive
and negative direction, so that angles not perpendicular to the extrusion direction
also occur frequently. This behavior appears quite regularly regardless of the
layer examined across the thickness. [321] This confirms findings of Tröster’s
earlier dissertation [320]. He also discovered the symmetry of the fiber orientation
across the thickness of the plastificate and the surface layer oriented in extrusion
direction observed in this work and by Radtke. In addition, he confirms the finding
of the orientation being similar along the length of the plastificate, which was also
shown in this work. In particular, he found the same course of angles as Radtke
though, with its mirror-symmetric orientation regarding the length axis of the
plastificate. Specifically, he shows a similar broad and flat frequency distribution
with a low maximum value indicating a small degree of preferred orientation in
extrusion direction. In fact, he schematically depicts the fibers being oriented
in -60° (left of the middle length axis of the plastificate) and +60° (right of the
middle length axis of the plastificate) to the extrusion direction. [320] This result
of Tröster and Radtke is the only one that is clearly not congruent to the findings in
this work. However, both Radtke and Tröster examined polypropylene with glass
fibers. The one polycarbonate scan in Figure 4.3 alone shows how strongly the
matrix system influences the plastificate. Furthermore, the fiber volume content
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and the speed of extrusion certainly influence the orientation as well and multiple
of these parameter combinations would need to be investigated in order to make
a definite statement on this. Anyway, the evaluated orientation behavior of the
polyamide plastificates in this work is consistent with the visual impression of the
scans and physical plastificate sections.

Pre-orientation in the plastificate is crucial for correctly predicting the fiber ori-
entation of the final part in process simulations. This non-uniform, local fiber
orientation state, which is influenced by the extruder geometry, has so far typically
either been neglected by assuming an isotropic or planar-isotropic orientation
state or has been measured through image-processing of scans similar as in this
work, which is then mapped to the finite element model of the charge used in the
simulation [5]. The regularity of both the vortex orientation and the orientation
in the extrusion direction in turn allowed considerations to generate these initial
fiber orientation states in a different way instead of determining them each time
in a time-consuming manner by CT scans. Schreyer therefore developed a novel
approach to determine the initial fiber orientation state with the help of the tensors
determined by the author and based on geometric assumptions [276]. Depending
on the extruder type and the dimensions of the plastificate, the tool can generate
a three-dimensional data set that outputs the mesh information together with the
tensorial representation of the initial fiber orientation state. With the help of
this simplified generation, the influence of different geometric variations of the
plastificate, different extruder variations and different insertion positions of the
plastificate in the press on the final product of the compression molding process
can be estimated without any experimental effort. An example of such a genera-
tion (right) and the corresponding original state (left) of a CF-PA6 plastificate is
shown in Figure 5.1. [276]

As far as the porosity and the expansion of the plastificates are concerned, obser-
vations and results of alternative methods were able to confirm the results of this
work. When systematically measuring the volume via GOM Atos 3D scanner,
the weight and calculating the consequential density of the old and new ends
of various plastificates, colleague Christoph Schelleis was able to determine a
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Figure 5.1: Section of a scan of a CF-PA6 plastificate with their measured orientation tensors plotted
at the left swirl and the geometrically generated ones at the right swirl - superimposed as
tensor glyphs. Extracted from the publication [276], co-authored by the author.

higher porosity (and thus a lower density) of the front end in each case. Using
the identical method, the same correlation between higher porosity and higher
screw speed was also demonstrated by Sven Löwe in his Bachelor’s thesis [327].
He consistently showed that higher rotation speed led to smaller densities and
therefore higher porosities both for high and low fiber volume content. He further-
more showed that higher fiber volume contents lead to lower densities and higher
porosities compared to plastificates with lower fiber volume content. [327]

5.2 Determination of fiber volume content

The precise determination of fiber volume content is of particular interest for
discontinuous fiber reinforced polymers. This allows both checking the set process
parameters to achieve the desired fiber volume content and providing exact values
for modeling.

Motivation for the development of recognition from CT images instead of the
exclusive use of experimental methods was already given in the State of the Art
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(Section 2.2.1.3). In the following, the results of all methods used are evaluated
and possible improvements are suggested.

5.2.1 Chemical method

As for the method itself, chemical acid-based dissolution of the matrix is the
standard for determining the fiber volume content of CFRP, but it is more complex
and labor-intensive than TGA [328, 329]. There are no comparative values and
no better or similarly good methods - therefore the quality of the results cannot
be checked. Nevertheless, the measurements are used as ground truth because,
according to current knowledge, there is no superior method.

As far as the FVC results are concerned, initially the low values at the borders
of the specimens and the higher values towards the middle of the thickness are
striking. The so-called "shell-core effect" known from injection molding signifies
changing fiber volume content and fiber orientation between shell and core layer
of the plate [5, 17]. While the fiber orientation effect is only visible in the area of
the initial charge (and will still be discussed in Section 5.4) and non-existent in the
flow area, the effect of the compression molding process on the through-thickness
FVC is clearly visible.

In general, the measured mean values (24.2 % for Plate 2 and 23.6 % for Plate
3) deviate from the target value of 25 %. It is difficult to answer why the true
values are slightly below the values actually set via the process parameters. This
is likely to be a measurement error, although the cause may be of various kinds.
The calculation made for the process may not have been accurate enough or the
feeding speed of the fibers may have deviated slightly from the calculated one.
Fiber losses in the extruder are also conceivable.

Furthermore, the clear increase in values when using larger samples is surprising.
Although the six samples of course do not provide sufficient statistical certainty,
the effect seems clearly pronounced. While an increase in mean fiber length
with increasing specimen sizes due to the cutting off of longer fibers in small
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specimens makes sense, there is no obvious reason why the pure fiber content
should be lower in small specimens. A literature search on this did not yield
any results; while mechanical tests are often performed with different sample
sizes, most authors determine FVC with only one sample size. Two possible
explanations are discussed in the following. Firstly, the significance of the FVC
value of a smaller sample is generally lower, as it is statistically more likely to
catch a spot in the panel that happens to be particularly rich in fibers or matrix. In
the cases measured, however, it would then have to be a very matrix-rich area in
each case. Another possible explanation is the fact that fibers can be pulled out of
the material at the cut surfaces when the sample is cut and removed from the plate.
As the small samples have a higher surface-to-volume ratio, this effect is more
significant for them. Now, the fibers could also get stuck in the specimen and be
detached from the plate, potentially increasing the FVC. However, the probability
that the larger part of the fibers is stuck in the plate is particularly high for small
specimens, which in turn could lead to the shorter piece in the specimen being
torn out. The probability that the longer part is not in the specimen is lower for
larger specimens. The idea is illustrated graphically in Figure 5.2. Furthermore, a
similar effect to the problem with incineration is conceivable as a possible cause:
Larger specimens have to be exposed to the acid for longer to dissolve the matrix
due to the poorer surface-to-volume ratio. However, since the same treatment
time was selected for the smaller specimens, the matrix could be removed more
quickly and the fibers subsequently attacked, as sulphuric acid is in fact oxidizing
and reacts with graphite. This could also lead to the lower measured fiber volume
content.

There is also a recognizable difference between the charge and flow areas. The
three samples in the charge area of Plate 2, FLD1 - FLD3, have on average a
higher FVC than the samples in the flow area, FLD10 - FLD12, and C1 - C3

of Plate 3 also have on average more fibers than F1 - F3. However, the central
samples of Plate 3, which have an even higher FVC than the charge samples, do
not quite fit the picture. Since the differences in the mean values are on average
less than 1 % between the different areas of Plate 3, the possibility that these
differences are due to measurement errors or general plate fluctuations must also
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Figure 5.2: Schematic representation of the theory for the reduction of the fiber volume content in
small specimens. Left: The fiber is less embedded in the small specimen than in the plate
and is therefore torn out of the specimen. Right: The fiber is more embedded in the large
specimen than in the plate and is therefore torn out of the plate.

be taken into account. Overall, the number of samples is too small to be able to
make valid statements. What is also noticeable is that the values in the center of
all three columns, i.e. the values of samples C2, CF2 and F2, are the smallest.
Considering the flow of the plastificate depicted in Figure 5.5, it makes sense that
most fibers are pushed towards primarily the upper and partly also the lower area
of the plate. The results of Plate 3 are summarized comprehensibly as boxplots in
Figure 5.3.
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Figure 5.3: Boxplots for the fiber volume content results of Plate 3 categorized into charge, transition
area and flow area (a) and top (1), center (2) and bottom (3) specimens (b). Data first
published by Scheuring et al. [274].
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In his dissertation, Radtke carried out similar measurements of the fiber volume
content in the different plate areas [321]. He found that greater fluctuations were
observed in the results across the width of the plate than along the flow path. This
observation is consistent with our results: The standard deviation within areas C
and CF is large (see Figure 5.3). However, the fluctuations in the flow area over
the height of the plate are small. In contrast, the FVC values along the flow path
in the area of the 3-sample (bottom) and the 2-sample (center) are quite constant.
Only along the 1-samples (top) is the deviation similar to that within the charge
and transition region of the plate. The upper samples (top, 1-samples) generally
show a high FVC. However, this corresponds very well with the skewed flow
front discovered, which will be explained in the context of the determined fiber
orientations, according to which a slightly upward-pointing fiber orientation and
thus flow front could also lead to an increased fiber volume content at the upper
end of the plate. The flow area shows the smallest average FVC along the flow
front; presumably not too many fibers arrive there.

5.2.2 "Average or above" (AOA) thresholding 1

With regard to the two computational methods for determining fiber volume
contents, the novel thresholding method AOA will be discussed first. It shall
be noted here directly that this method was born out of necessity, so to speak,
as conventional thresholding methods did not work, as can be seen from the
Appendix, and alternative methods such as Gandhi’s [5] were not possible.

The average of the FVC values determined by chemical dissolution was 24.2 %
and the AOA method determined an average value of 26.5 %. The absolute mean
deviation of 2.7 % is therefore greater than that of the CNN with about 1.5 %
(cf. Table 4.3). The deviation was mainly increased by the two outliers, which
were included in the result because there was no explanation as to why those
scans should differ (similar histograms to other scans, similar visual perception,

1 This section is based on the author’s publication [188].
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etc.). Without these two outliers, however, the average deviation of the AOA
thresholding would only be 0.6 %, which is more than twice as good as the
CNN. In addition, the results in Figure 4.11 of the AOA appear more reliable and
plausible than the results in Figure 4.14 of the CNN. The fact that the average value
of the CNN fits well is due to the average of the training data or is a coincidence.
Sample by sample, the agreement is much worse than with AOA thresholding.
So if the FVC of a new sample had to be determined, AOA thresholding could
probably be used with more confidence than the CNN.

If the method is to be evaluated as such, the general validity of the approach must
be critically examined. There is no guarantee that it will also work for alternative
material systems or scans of a different quality. It is fundamentally based on the
fact that the samples have fewer fiber bundles at the border of the sample (in
relation to the thickness) and many fiber bundles in the middle of the sample.
This changed the histograms per slice, which generally did not show two clear
peaks. The meaningful determination of a threshold was therefore difficult with
these changing histograms across the thickness. For all materials/scans that do
not exhibit this peculiarity, the approach will not be of interest, at least not in
exactly the same way. Regarding the adjustment of the threshold determination
across the thickness, alternative/more complex methods could be used than the
binary decision between the Otsu threshold of a single slice and the average Otsu
threshold of the whole stack chosen in this work. Instead, another non-constant
adjustment of the threshold could be developed. A mathematical determination of
the variation of the histograms over the thickness and a corresponding continuous
adjustment of the threshold values would be possible. Theoretically, it would
still be possible to locally enhance the CT scans with the low resolution (i.e.
single fibers and matrix mixed as mean gray value) with small CT scans of higher
resolution in order to be able to better interpret the gray values. However, the
aforementioned difficulty that an increase in stochastic noise occurs at higher
resolutions makes segmentation even more difficult. In addition, the sample would
then have to be cut into smaller pieces so that the sample fills the entire field of
view, as otherwise even more noise would occur. This in turn creates different
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boundary conditions if the FVC is still to be determined destructively and was no
longer possible in the case of this work anyway.

The previous application of the filters had a non-negligible influence on the quality
of the results. Nevertheless, it should be emphasized that the main factor is
thresholding. When looking at Figure 3.15, for example, it becomes clear that
although the median filter was applied to both images, the amount of fibers is
still greatly overestimated by the normal Otsu threshold. The correct choice of
filter is an additional finetuning factor. Considering that neural networks are
essentially just a series of filters, the importance of filter selection should not be
underestimated, especially in the case of noisy images with low contrast.

The AOA thresholding method is by no means optimal, but simple global thresh-
olding turned out not to be an option. The literature was also surprisingly sparse,
especially for discontinuous fiber reinforced polymers. Apart from a few sources
already mentioned in the State of the Art, Yu et al. [55] investigated fiber volume
contents, for example, using a method that combines scanning electron microscopy
and micro-computed tomography; however, for yarns in textile composites, which
in turn has a completely different structure. Wintiba et al.’s work [330] also
deals with woven composites. For these reasons, various approaches were tested,
including a normalization of the threshold values in relation to the mean grey
value/brightness of a scan, but none of them worked as convincingly as the AOA
method. It is a quick and simple method with sample-wise even better results
compared to the high development and training effort of the CNN. However, it was
particularly convincing that the FVC values calculated by the method increased or
decreased with the experimental values, apart from the two outliers, so that the
trend was mostly correct.

The possibility of easily investigating the course of the FVC over the thickness
of the sample, which was already mentioned in the motivation, should of course
be emphasized. As can be seen in Figure 4.12, the material examined in this
work shows a strong decrease in fiber concentration towards the edges, with a
maximum in the middle of the sample. Gandhi et al. [5] showed similar results for
LFT processed by injection molding (see also [331]). They also showed that the
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core layer width and maximum concentration increases with higher nominal fiber
concentrations. This fiber distribution across the thickness is of course particularly
important in bending tests, where most of the load falls on the outer areas.

5.2.3 CNN 2

At first glance, the CNN was convincing with the prediction of a mean FVC
of 24.3 % (compared to the experimental value of 24.2 %) and a mean absolute
deviation of only 1.5 % (see Table 4.3). However, as already mentioned in the
previous section, this is probably due to the average of the training data or is a
coincidence. The good agreement of the mean values should not be given great
importance if the individual values are usually not correct. It is noticeable that,
as with the thresholding approach, some samples are predicted very well, while
others deviate by well over one percent. Apart from the two outliers of the AOA
thresholdings, however, the CNN predictions are worse than those of the AOA
method. So while the maximum error is lower with CNN, the logical relationship
(increasing experimental FVC leads to increasing predicted FVC) is found less
frequently than with the thresholding approach (as seen in Figure 4.14). Since the
CNN uses the experimental data as a training basis, while the AOA does not, and
the CNN nevertheless makes relatively weak predictions, this clearly speaks in
favor of AOA thresholding.

There are various possible reasons for the loss behavior mentioned in the Results,
according to which the validation loss is smaller than the training loss. The first
possibility is the influence of so-called regularization methods (such as dropout).
This deliberate, random omission of neuronal connections is used in the training
process in order to better generalize the training, as explained in the State of
the Art. This often sacrifices some of the training accuracy. However, dropout
is not used in the validation process, which is also the default setting in Keras.
As a result, the validation loss may be better than the training loss. It would

2 This section is based on the author’s publication [188].
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be possible to determine this regularization loss by manually applying dropout
in the validation phase, for example, in which case the curves would probably
look different. Another reason could be the timing of the loss calculation. The
training loss is normally reported continuously as an average of the losses of a
batch within an epoch. The validation loss, on the other hand, is determined once
at the end of an epoch, after the model has already been updated throughout the
epoch, allowing it to benefit from the full extent of the epoch’s learning. If the
validation loss were shifted to the left by half an epoch, which would correspond
to the mean report time difference, the graphs would also already look different.
The last and probably worst reason would be that the validation set is too simple.
This would be conceivable because the training data (original and augmented
scans) of a sample did not strictly belong to the training or validation set in this
work. Adjusting this would be a necessary improvement.

There are several further ways to improve the CNN. Perhaps the most obvious
would be more diverse input training data. Although 448 scans were used for
training, these came from only 14 original scans that were augmented. Not using
more original scans was due to the fact that experimental FVCs were only available
from the 14 samples, as these examinations had to be carried out externally at
FIBRE. In addition, the fiber volume contents of these 14 samples were all between
22.08 % and 28.6 %. As a result, the network was highly trained to predict in this
range. The only attempt to augment this dataset was to use scans of pure PA6, as
it had the guaranteed FVC of 0 %, but this was not successful. It would certainly
increase the accuracy of the CNN in the long term if a wider variety of FVCs were
included. However, it should be mentioned here that the CNN naturally made
better predictions in terms of mean error than simply taking the mean of the FVC
values for each sample. The reason for using these samples of very similar fiber
volume content was again due to the available data: the plates were manufactured
at Fraunhofer ICT and CF-PA6 plates were only produced with the same mean
FVC. The fluctuation of the FVCs is therefore purely due to the fluctuations of
the FVC across the plates. These were not small, which in turn demonstrates
the necessity of such a local investigation. Another way to increase performance
would be to use a higher resolution for the scans. The reduction to 100 px ×
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100 px × 100 px was necessary due to the limitation of computational resources.
Any higher resolution led to memory issues in the bwHPC cluster, which was
used for the calculation. A higher resolution would allow a better inclusion of
single fibers or smaller fiber bundles and improve the distinction between fibers
and irrelevant gray value deviations of the matrix. However, it should also be
mentioned that this resolution is quite competitive when compared to other CNNs
[332–334]. Of course, an originally higher resolution of the CT scans could also
improve this further, but this brings us back to one of the basic dilemmas of this
thesis, namely that this would result in very small specimens whose informative
value with regard to mechanical characterization parameters such as the FVC is
low (not to mention the fact that a corresponding device quality is also required for
this). The aforementioned increase in noise at low resolutions further complicates
the evaluation, so that even small, high resolution samples in combination with
corresponding larger but lower resolution scans is not an optimal solution.

The direct use of 3D scans should be emphasized as a unique selling point com-
pared to other CNNs in the field of materials science that work with CT scans as
training data [334, 335]. No prior slicing is required. The complete evaluation of
the 3D scan, of course, slows down the calculation enormously. With regard to the
above-mentioned point of computational resource scarcity, the use of 2D slices
instead is of course very helpful. It also simplifies the use of pre-implemented
methods from tensorflow (but also pytorch), as most of them are designed for 2D
images. In general, the development effort and also the training effort compared
to the AOA thresholding must of course be emphasized negatively. However, once
trained, the effort required to determine the FVC is considerably less than the
experimental effort.

5.3 Fiber length distributions

The results of the fiber length evaluation in Figure 4.15 and Figure 4.16 show
an average fiber length of just over one millimeter. While this does not sound
like much for a long fiber reinforced material, it corresponds to an aspect ratio
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of a good 150 for carbon fibers of 7 µm, which can certainly be counted as long
fibers. However, the fact that the median is less than half as large at around half a
millimeter raised the question of the correct means of a distribution function. In
fact, depending on the choice of the mean value in a model, significant differences
can be achieved. This would be a separate mathematical topic that shall not be
addressed here.

It was also noticeable that the average fiber lengths in the charge area appeared to
be smaller than in the flow area. This is consistent with the results of Radtke [321].
He also found that the fiber length distribution at the end of the flow path showed
a shift towards longer fibers. Such an effect is also observed directly behind the
insertion area, which corresponds more to the position of the specimens FLD10

- FLD12 in this study. According to Radtke, the proportion of fine fibers at the
end of the flow path is lower than in the charge area, which means that greater
average fiber lengths are observed towards the end of the flow path. Longer fibers
offer more interaction with the melt and are therefore entrained for longer. This is
consistent with the fiber length distributions in Figure 4.15.

It is also noticeable that the average lengths increase with the size of the specimens.
This is not surprising, as longer fibers are cut off at the edge of smaller specimens
and it is therefore statistically more likely to have fewer long fibers in the specimen.
These long fibers have a strong influence on the average fiber length and therefore
raise the average. As this was no longer quite so clearly visible between the
medium-sized and large specimens, it was assumed that this effect is saturated at
around 25 mm side length (due to the fact that hardly any fibers are longer than
this side length). For this reason (and also because, for example, the diameter of
the round samples for commercial FVC determination by ashing was also 25 mm),
this size was used for the FVC investigation and retained for the microstructure
GAN.

In principle, the average fiber lengths are rather short compared to the results of
Radtke [321] and Tröster [320]. However, both used glass fibers and it is assumed
that the thin and fragile carbon fibers are cut/destroyed much more easily by the
screw extruder and the shearing. Tröster also explains that a maximum stiffness
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of 95 % is already achieved with a fiber length of approximately 1 mm [320], see
also [5, 336]. In systematic studies of the influence of fiber length, Thomason and
Vlug even found no dependence of stiffness on fiber length above 0.5 mm as long
as FVC and FOT are the same [337]. However, the influence on the strength is
still existent, otherwise there would be no need for long fibers.

5.4 Fiber orientation distributions

The measured fiber orientation distributions and fiber orientation tensors, of which
selected ones were shown in the Results, showed partly expected and partly
surprising characteristics, which are discussed in the following.

5.4.1 A11 dominant and planar orientation

Looking first at the measured orientations of Plate 3 and Plate 4 in Figure 4.33, for
example, it becomes clear that the tensors are - as expected - very much aligned
with the direction of flow of the material in the press. The tensors of Plate 3
are printed below for clarification. In addition, the main components of the nine
tensors are shown again in Figure 5.4, where the dominance of theA11 component
becomes even more visible.
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C1 =


0.798318 0.153878 0.004610

0.153878 0.195227 0.006829

0.004610 0.006829 0.006455

 CF3 =


0.876894 0.080256 −0.008694

0.080256 0.121239 −0.000411

−0.008694 −0.000411 0.001867



C2 =


0.902426 0.055382 0.009222

0.055382 0.090359 0.006853

0.009222 0.006853 0.007215

 F1 =


0.871685 0.204490 −0.002035

0.204490 0.124755 0.003296

−0.002035 0.003296 0.003560



C3 =


0.810983 0.098676 0.003675

0.098676 0.185093 −0.002959

0.003675 −0.002959 0.003924

 F2 =


0.851010 0.086686 0.005897

0.086686 0.140799 0.009363

0.005897 0.009363 0.008191



CF1 =


0.821371 −0.026740 −0.011685

−0.026740 0.176429 0.001062

−0.011685 0.001062 0.002200

 F3 =


0.749631 −0.234513 −0.000550

−0.234513 0.247066 −0.001583

−0.000550 −0.001583 0.003303



CF2 =


0.923717 0.032840 −0.005360

0.032840 0.074781 −0.000746

−0.005360 −0.000746 0.001502
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Figure 5.4: Main components of the nine measured tensors of Plate 3 (CF-PA6).
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However, if you look at the tensors of Plate 1 (cf., e.g., blue tensors in Figure
4.24), you can see that the A22 component is also dominant in some cases and not
all tensors are strongly aligned in the direction of flow. This difference is caused
by the different specimen sizes. The 10 mm × 10 mm large specimens of Plate 1
cover very small, local areas where a fiber bundle part can sometimes be oriented
against the flow direction and this is not compensated by enough other fibers
and fiber bundles that are oriented "normally". An A11-dominant orientation can
therefore certainly be assumed, as the results of Plate 3 (and 4 and the hybrid one)
are to be regarded as more generally valid. However, as a starting scenario for the
tensor interpolation, this rather complex state of Plate 1 was not undesirable in
order to test the methods for difficult cases.

It is also noticeable that all the orientation tensors/distributions measured over
an entire specimen are almost planar states. The A33 component is always below
0.1 (in the case of Plate 3 even below 0.01, cf. Figure 5.4). This was also to
be expected due to the thicker plastificate, the thinness of the final plate and the
resulting flow path.

5.4.2 Orientation behavior across thickness

Figure 4.19 shows curves of the main components of the fiber orientation tensors
over the thickness of different specimens. For the carbon fiber reinforced speci-
mens, similar plots of the main components were found for the same specimen
positions as for the glass fiber reinforced specimens. Slight differences at the
edge of the thickness may also be due to slightly different cuts of the scans of the
samples. Cutting away the unevenness at the edges correctly without taking away
too much of the specimen is challenging. In contrast, what clearly differs are the
curves of different specimen positions; especially the curves of charge specimens
and flow specimens. The curves of flow specimens were relatively predictable
with constant values across the thickness and a strong A11 component. In contrast,
the A11 component of the specimens in the charge region drops sharply at both
edges and the A22 component increases there. While this effect is also a kind
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of shell-core effect, it is not the shell-core effect known in injection molding,
which occurs due to the fountain flow [5]. Because the mass has to flow from
the center to the edge, the fibers in the core layer are mainly directed against the
flow and in the shell layers rather in the direction of the flow [5]. This is not the
case here. Instead, the observed courses are due to a different phenomenon: The
plastificate is inserted in the charge area and the fibers in its outer layer there are
mainly oriented in the extrusion direction, i.e. e22 direction. On contact with
the "cold" tool surface, the orientation there freezes directly as it appears in the
plastificate. In the flow area, however, the orientation of the material flow in the
e11 direction naturally dominates. This is consistent with the results of Radtke
[321]. He also claims that the longitudinal orientation prevailing in the outer
layers of the plastificate remains unchanged in the test plates in the insertion area,
as it freezes immediately on contact with the mold [321].

5.4.3 Skewed flow front

As already seen, the expected main flow direction also developed in the plates.
Due to the fact that the length of the plastificate does not extend completely over
one side of the plate, a slight widening of the flow in the direction of the upper
and lower edge of the plate at the end is to be expected, as shown in Figure 5.5.

In fact, this phenomenon can also be seen, e.g. in the tensors of the plates on
the left-hand side in Figure 4.33. In addition, however, the averaged tensors of
these plates (see middle column in Figure 4.33) are never completely oriented in
the e11 direction (or also 0° direction). Instead, they all point slightly upwards.
This was already evident in the tensors of second-order of Plate 1 with the smaller
specimens, which was used for the interpolation method evaluation (see e.g.
Figure 4.24). This deviation from the extrusion direction has already been partially
observed in literature [320, 321]. The reasons for this could be manifold. An
uneven tool in the press would immediately come to mind, but this was checked
and did not appear to be the case. This is also contradicted by the fact that an
attempt was made to insert the plastificate rotated by 180° and a downward drift
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Charge (C) Transition (CF) Flow (F)

Top (1)

Center (2)

Bottom (3)

Figure 5.5: Schematic representation of the expected, mostly one-dimensional flow pattern based on
the initial situation.

was detected. It therefore appears to have been caused by the plastificate itself,
which seems to be inhomogeneous in some way. Tröster comes to the same
conclusion: In addition to the insertion position of the plastificate, the direction of
the plastificate is also decisive for the resulting fiber orientation and, in particular,
deviations from the flow direction. However, he does not investigate further why
this is the case. Radtke [321] investigates the cause by using thermographic
images. He records a temperature difference of approx. 10 K - 30 K between the
front and back ends of the plastificate strand. As a result of the plastificate being
discharged from the plastificate nozzle, the plastificate cools slightly more at the
end that is discharged first. The tunnel heater at the outlet of the discharge nozzle
partially, but not completely, compensates for this heat loss. He claims that this
temperature gradient in the plastificate strand results in a difference in viscosity in
the strand. This could lead to a slightly rotated orientation of the flow front relative
to the mold edges. [321] However, a clear temperature difference could not be
detected in measurements in this case. In turn, it is assumed that the geometry
and/or the porosity of the plastificate could play a decisive role. Corresponding
investigations have already been shown in Section 5.1. Radtke also mentions the
so-called lofting (expansion of the strand due to the recovery of the relatively rigid
fibers, which are not fixed in the molten matrix) at the front end of the plastificate
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[321]. However, since the fibers are quite short, the lofting could also be caused
by the matrix. The short dwell time in the extrusion die subsequently leads to
strand expansion. This lofting leads to increased deviation of the cross-section
across the extrusion direction and the geometry itself (elongation of the front end
in the extrusion direction) and to increased porosity of the front end. These effects
could enable such a skewed flow front and thus lead to a deviation of the main
orientation and hence to material anisotropy.

5.4.4 Interpolation of fiber orientation tensors

In the following, the fiber orientation tensor interpolation methods are discussed
and evaluated.

5.4.4.1 Component averaging method 3

The weighted, arithmetic averaging of the components based on the Euclidean
distance is a linear approach and by far the simplest. It impresses with its calcula-
tion speed and is superior in terms of simplicity of implementation and general
complexity. It is therefore still frequently used. The problem of tensor swelling
already discussed in the State of the Art [122–125] was also evident in this work.
Tensor characteristics were therefore not monotonically interpolated, which is
considered a disadvantage. In the course of this, the scientific question of distin-
guishing between interpolation and averaging also arose (cf. [338]). This type of
component averaging can certainly be used with a clear conscience when it comes
to determining the mean value of a set of tensors. Interpolation, however, searches
for values between given ones, which this method cannot provide in the author’s
opinion.

3 This section is based on the author’s publication [17].
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5.4.4.2 Decomposition method 4

The decomposition method impresses with its monotonic behavior. This is also
visually appealing in the agile rotational behavior of the tensors and meaningful
changes in shape, which was also observed by other authors [123, 125]. Although
mathematically more complex, the calculation is still extremely fast, at least for the
smaller scopes tested. It was impressive to see how equally good the interpolation
was when the same nine given tensors were provided in different coordinate
systems (rotated by angles). An alternative to the method, which already works
very well as it is, would be to use projectors instead of quaternions for rotation
interpolation, as implemented by Krauß and Kärger [125]. These projectors have
the decisive advantage that they are unique for a given tensor.

5.4.4.3 ANN 5

The ANN obviously requires the most time to output the interpolated tensors.
With training times of less than an hour on an office laptop (Intel(R) Core(TM)
i5-10210U CPU @ 1.60 GHz, 2.11 GHz and 16.0 GB RAM) with the subsequent
output of 160 tensors, this is nevertheless still fast compared to around two
hours for a single scan and tensor. However, the increased implementation effort
for such a network must be taken into account. In this case, it was actually
low, as a network already developed for a similar application was adapted. The
interpolation of the ANN is not very convincing with non-monotonic behavior
similar to component averaging. With further development, nonetheless, a better
result could be expected. A more general question is of course whether a neural
network, which relies on a lot of training data, is at all useful for an application
with a data set this small. Presumably, the network would have to be given
additional input for better performance. Working with scarce (or sparse) data
and the challenges involved have accompanied artificial neural networks since

4 This section is based on the author’s publication [17].
5 This section is based on the author’s publication [17].
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the beginning of their use phase [339] and are a field of research in their own
right. Solutions range from transfer learning [340] and novel approaches for data
augmentation [341] to the development of novel, "greedy" algorithms [342]. The
additional use of the data employed by Sabiston et al. [133] alongside the nine
tensors in this network of course did not lead to any improvements as different
specimen positions were used and other initial basics differed. Alternatively,
this network’s application must be restricted to the prediction of FOT of an
entire process with thousands of values and not a single plate, as by Sabiston
et al. in [133], for which this network was also developed and where it was
convincing. It has another very decisive disadvantage: The other two methods
work instantaneously for each following set of tensors between which they are
supposed to interpolate. The ANN, however, must theoretically be retrained for a
new initial state.

5.4.4.4 Quantitative comparison of the three methods 6

The interpolation methods were also analyzed quantitatively in the Results by
omitting one measured tensor in each case and determining it using the respec-
tive method. The Frobenius norm of the measured and calculated tensors was
subsequently calculated. The difference between these norms, representing the
difference between two tensors in one value, was plotted for each method in the
Results chapter (Section 4.6). However, the question arose as to whether this
reduction of the tensor information to a single value of this norm can do justice to
this question. Hence, the absolute differences of the individual tensor components
per method can be seen in Figure 5.6 and the averaged differences for all nine
tensors per component and method in Table 5.1.

It is immediately apparent that the component averaging method performs best
according to this type of error determination, ahead of the neural network and
with the decomposition method performing worst. This hardly coincides with

6 This section is based on the author’s publication [17].
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Figure 5.6: Comparison of all methods concerning the absolute difference between the same compo-
nent of the measured and corresponding interpolated tensor. Extracted from Blarr et al.
[17].

Table 5.1: Deviation of calculated value to measured value of a specific component for a specific
method averaged over all nine measured tensors. Extracted from Blarr et al. [17].

Component Average absolute error of different methods

CA D AI

A11 0.233 0.401 0.248

A12 0.09 0.169 0.105

A13 0.009 0.112 0.02

A22 0.236 0.421 0.258

A23 0.043 0.071 0.04

A33 0.021 0.05 0.011

MAE 0.105 0.204 0.114
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the observed interpolation behavior. The shortcomings of the considered error
measure will therefore be discussed here. First of all, this type of "substitute
calculation" implies a change in the initial state, as the data set from which
the calculation is made is reduced by 1/9. Furthermore, the determination of
the corner tensors is particularly problematic if they are omitted: it resembles
an extrapolation, as the position is outside the grid of given tensors. Thus, a
fundamentally different property of the methods, that of extrapolation and not
interpolation, is assessed. In fact, this statement is confirmed in so far as the
error values are significantly reduced if these corner tensors are omitted from the
calculation - especially considering the decomposition method (see Table 5.2).

Table 5.2: Deviation of calculated value to measured value of a specific component for a
specific method averaged over the five tensors of Tm without the corner nodes
(UL,UR,LL,LR). Extracted from Blarr et al. [17].

Component Average absolute error of different methods

CA D AI

A11 0.158 0.181 0.172

A12 0.061 0.073 0.065

A13 0.007 0.087 0.01

A22 0.161 0.206 0.179

A23 0.022 0.047 0.023

A33 0.01 0.039 0.008

MAE 0.07 0.106 0.076

Deviation to error
0.035 0.098 0.038

with all tensors

However, it remains unclear whether this direct difference between the tensor
components is suitable as a measure of error either. It has been shown that the
components alone do not seem to be sufficient for a description of their nature, but
only the alternative description via invariants and eigenvectors made it possible to
grasp their structure at all.
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In addition, there are of course further points for discussion. It is certainly
important to mention the unusually complex initial state with very different
rotations of the measured tensors, which does not represent the typical fiber course
that occurs in this process. It became clear in the course of the dissertation that
the chosen sample size of 10 mm × 10 mm was quite small and reflects very
local effects. For the comparison with experimental values, which will follow
in this discussion, significantly larger samples were therefore chosen to better
represent the process behavior. As already mentioned, however, this allowed
the methods to be tested in a kind of worst-case scenario, which in turn was not
undesirable. Many mathematically motivated methods for tensor interpolation are
often not even tested with more than two tensors, let alone more complex initial
states, which makes realistic or non-academic use rather difficult. This was hence
intended to be avoided in this work.

The general challenge is the use of methods to solve an algebraic problem for
an application that is actually subject to physical boundary conditions and flow
phenomena. This naturally raises the question of whether physical conditions (e.g.,
insertion of the plastificate or orientation information of the plastificate) should be
added to such a method. Nevertheless, the decision was made not to pursue this, as
it was perceived to be an unnatural means of achieving the desired outcome. For
the same reason, a restriction of the possible angles was not implemented, which,
e.g., Krauß and Kärger have done [125]. Brannon even argues that methods for
mixing rotations must be selected according to the physical application [343].
This speaks against the existence of a universally valid procedure.

There are many possibilities for improvement. First of all, adjustments to the
methods implemented here are conceivable. The aforementioned restriction of
the possible angles could be achieved by comparing the scalar products of the
possible quaternions involved. By choosing the combination with the maximum
scalar product, the smallest angle is obtained. Normalization of the quaternions
would also be important in order to obtain unit quaternions for additions. The
ANN could certainly be optimized by the number of layers, depth of the layers,
learning rate, batch size, choice of loss, etc. In particular, the increased isotropy of
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the tensors in ANN (similar to the swelling effect in component averaging) should
be addressed.

As a completely different approach, the direct interpolation of fourth-level tensors
was tackled by some of the authors of the paper [17] with a complex method in
another paper [338]. In addition, the author’s simplified decomposition method
for fourth-order tensors was also successful, which will be discussed below.

As far as further investigations are concerned, a sensitivity analysis with regard to
specimen geometry and location and different tensor fields (different plates) should
be worthwhile. In particular, more central specimens should lead to better results
(especially for the decomposition method). The methods are also applicable for 3D
geometries, so that they should be tested with parts of more complex geometries
(especially concerning the z axis) than the plates.

5.4.4.5 Validation of fourth-order tensor interpolation through
simplified decomposition method 7

Benedikt Scheuring carried out tensile tests on tensile specimens taken from the
plates at different angles [274]. This enabled stiffnesses to be determined for the
different load directions. The mean values of these stiffnesses for multiple tensile
tests on specimens from the flow area of the plates are shown in a polar plot for
the CF plate in Figure 5.7 and for the GF plate in Figure 5.8.

The flow area was chosen for comparison because of its fundamentally more
uniform structure. However, the differences to the charge area are not significant.
The values determined were mirrored accordingly due to the expected symmetry.
The higher reinforcement in 0°, i.e. flow direction, compared to 90° is just as
recognizable as a drift of the highest stiffness values to about 5° instead of 0°,
which was already seen in the CT evaluation. These observations apply more or
less to both the CF and the GF material. The most noticeable difference between

7 This section is based on the publication [274], co-authored by the author.
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Figure 5.7: Polar plot with the experimental stiffnesses, the modeled stiffness through Halpin-Tsai
and different Mori-Tanaka-modeled stiffnesses depending on the input fiber orientation
tensor for Plate 3 (CF-PA6). Based on experimental and modeled data published in [274].

the two is that the ratio between the 0° and 90° directions differs. The CF material
is about three times stiffer in the flow direction than at 90°, whereas the ratio for
the GF material is only about two. This is due to the higher stiffness of the carbon
fibers themselves.

The fiber orientation information determined by the author has then been used
in turn for modeling approaches to compare the resulting stiffnesses with the
experimental ones. The Halpin-Tsai modeling with a shear-lag modification
that has been explained in the State of the Art (cf. Section 2.1.2.2) required the
determined orientation histograms (cf. Figure 4.33). Therefore, all occurrences of
angles of the nine specimens of a plate were averaged. The Halpin-Tsai stiffnesses
were then calculated with the Python package HomoPy [344]. However, for
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Figure 5.8: Polar plot with the experimental stiffnesses, the modeled stiffness through Halpin-Tsai
and different Mori-Tanaka-modeled stiffnesses depending on the input fiber orientation
tensor for Plate 4 (GF-PA6). Based on experimental and modeled data published in [274].

Mori-Tanaka (cf. Section 2.1.2.4) fiber orientation tensors of fourth-order were
required. Several approaches were under consideration for the input tensor. First,
the nine measured tensors of fourth-order were acquired with the same approach
for both the CF plate and the GF plate and averaged. Additionally, the adapted
tensor determination approach with the preceding median filter was applied to
the scans of the CF plate and the resulting nine tensors were averaged. Finally,
the presented simplified decomposition approach for tensors of fourth-order (cf.
Section 3.7.5) was applied on both the CF and the GF plate and the resulting
169 tensors were averaged, respectively. As an overview, the resulting averaged
tensors are plotted as tensor glyphs in Figure 5.9 and Figure 5.10.
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(a) (b) (c)

Figure 5.9: Tensor glyphs of different averaged tensors of the CF plate. The basis for these averaged
tensors were (a) all measured and interpolated tensors with the preceding median filter,
(b) all measured and interpolated tensors without median filter in the evaluation and (c)
only the measured tensors with preceding median filter.

(a) (b)

Figure 5.10: Tensor glyphs of different averaged tensors of the GF plate. The basis for these averaged
tensors were (a) all measured and interpolated tensors and (b) only the measured tensors.

These averaged tensors were then employed to calculate the stiffnesses with the
Mori-Tanaka approach, again with the help of the package HomoPy [344]. The
resulting stiffnesses are also plotted in Figure 5.7 and 5.8.

In the polar plots, it is initially noticeable that the stiffness curve, which is based on
the orientation evaluation without a previous median filter, appears to be rotated
by almost 45° and the shape also appears far too isotropic. The pre-filtering
therefore seems to have an enormous effect, which leads to a much more realistic
result. It is also noticeable that all other stiffness curves, whether experimental or
modeled, have approximately the same angle with the greatest stiffness, both for
the CF and the GF plate. This indicates a good agreement between the measured
fiber orientation tensors and the actual/experimentally determined fiber orientation
distribution in the plate. What is also noticeable for both plates, however, is
that the modeled stiffnesses significantly overestimate the actual values. This is
somewhat more pronounced for the CF plate. Furthermore, this overestimation
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is slightly greater with the Mori-Tanaka modeling than with Halpin-Tsai. It can
be assumed that this error is also due to the fact that neither the one nor the
other model was designed for such a complex mixed single fiber and bundle
structure. In particular, it was noticed that specimens in the tensile test often
failed on non-fully impregnated bundles. Although the failure behavior is not
directly related to the Young’s modulus or the stiffness, it is possible that these
non-impregnated or only partially impregnated fiber bundles already contribute
only partially to the force transmission in the linear-elastic section. As a result, it is
possible that the true mean fiber length and also the true fiber volume content may
be significantly lower than what was measured experimentally and given to the
models accordingly. Fiber waviness could also play a role in the reduced effective
stiffnesses. In the future, it would be interesting to draw conclusions about possibly
reduced material parameters by measuring the frequency of larger bundles and
their length/width/volume. A further development of previous homogenization
models would of course be conceivable too. It is also noticeable that the stiffness
curves of the Mori-Tanaka model do not differ greatly, regardless of whether only
the nine measured or also the interpolated ones were averaged. In fact, this is
a strong argument in favor of the interpolation method in this case, because the
corresponding initial situations of the plates were quite uniformly anisotropic
(oriented in the 11 direction) and no strongly deviating tensors would have been
expected, which seems to be confirmed. Overall, these results show how well the
orientation measurement agrees with the experimental values.

In general, the simplified decomposition method for tensors of fourth-order by
the author yields very good results (cf. tensor fields in Figure 4.33). In fact, it
performed better than the much more complex and mathematically more sound
method by Bauer et al. [338], when used in this context of a rather big two-
dimensional tensor field.
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5.5 Microstructure generation through
generative adversarial network 8

First of all, it should be mentioned that the use of the GAN for the generation of
artificial CT images of the material of this work should be considered as a kind
of feasibility study. Although there is no immediate application of the generated
images, it was important to be able to assess the enormous potential of these
networks in relation to the generation of rather irregular structures such as the
DicoFRP. With the help of some further developments, which will be discussed
below, they could be of great help.

5.5.1 Assessment of generated images

After much optimization of the network, generated images of the final network
architecture look surprisingly convincing. While some images show either an
unusually large number or barely any structures recognizable as fibers and some
images seem to combine attributes of different images in an unsuitable way, there
are also images that are difficult to distinguish from the original even for the
trained eye. This variance is also evident in the quantitative evaluation methods.
First, the signal-to-noise ratio of the output images was considered, which, with a
value of 3.70, was lower than that of the input images, but still clearly above 1,
indicating the presence of meaningful signals in comparison to the background
noise.

Upon examination of the grey value histograms, it becomes evident that the output
images exhibit a flatter profile and a darker maximum value compared to the input
images (cf. Figure 5.11).

The underlying cause of this deviation is challenging to ascertain, as are potential
corrective measures. One potential solution to achieve a more accurate match

8 This section is based on the author’s publication [275].
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Figure 5.11: Global histogram of gray value intensities of all input images without median filter and
with median filter as well as of the batch of 128 output images. Extracted from Blarr et
al. [275].

between the histograms is to incorporate the mean value of the histograms or
even the entire distribution as additional input (cf. the following explanation of
conditional GANs (cGANs) and InfoGANs). In the context of neural networks,
evaluation is typically based on loss plots, which provide insights into the con-
vergence and accuracy of the network’s predictions. However, the loss plot of
this GAN exhibited significant oscillations and did not demonstrate a continuous
decrease (cf. Figure 4.35). Nevertheless, the training was sufficiently stable. It
is assumed that the oscillating behavior of the generator loss is due to the fact
that the discriminator becomes very good very quickly and thus later outputs very
similar probabilities. The generator therefore receives little meaningful feedback.
Both vanishing gradients and general convergence problems could be responsible
for this failure mode. This behavior of the loss is also not unusual, which has
already been mentioned in the Results (cf. Section 4.7). The State of the Art
(Section 2.4.2) also elucidated that it is nearly impossible to attain an optimal
equilibrium between the generator and discriminator, as the optimal point is a
saddle point and not a minimum as for most other types of neural networks [242].
Nevertheless, since the generator loss does not increase exponentially, a kind of
metastable state is assumed here. However, it is also evident that further metrics
must be employed to assess the quality of the network. Subsequently, quantitative
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metrics were employed to directly evaluate performance on the generated images,
which will be discussed hereinafter.

The FID plot (cf. Figure 4.36) illustrates the mean FID of 128 generated images per
epoch. The improvement in the generated images can be observed as the distance
decreases. However, this decrease plateaus after a certain point, which suggests
that there is no further improvement in the images. To investigate this in more
detail, the development of a single generated image was assessed over the epochs.
In the initial example (cf. Figure 4.37), it is not possible to determine whether the
image "improves" in the final 30 epochs. This suggests that an earlier termination
of the training would also be possible. In contrast, in other examples (cf. Figure
4.38), it appears that the final image is the best. It is evident that the structures
within the image continue to undergo significant alterations in the final epochs,
which can be attributed to the fluctuations observed in the loss plot. However, the
inability to make an absolute assessment of which image represents the optimal
outcome precludes the formulation of a clear recommendation regarding the
optimal training duration. Nevertheless, these examples illustrate that the images
do not suddenly deteriorate with further training. Additionally, it is unlikely
that any discernible improvement will be observed beyond the 75th epoch in
comparison to the computational effort. Returning to the FID plot, it can be
observed that the final value is relatively high possibly indicating bad final image
results. However, it is important to note that the FID is highly dependent on the
number of samples. In fact, the fewer the samples, the higher the score [312].
Therefore, it is essential to exercise caution when assessing absolute values and
comparing them with those of other networks. This is particularly relevant when
considering CT images, which present a completely different set of conditions than
those encountered with most images generated by such networks. A comparison
of the ImageNet dataset, on which the FID is pre-trained, with the gray scale
images reveals that the former contains everyday, coloured photos with clearly
definable objects, people, etc., which cannot be compared with the stochastically
distributed fibers in the latter. Furthermore, similar FID values can also be found
in other papers with good results [345].
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The capacity of the DCGAN to generate novel images was investigated by search-
ing for nearest neighbors in the training dataset for each generated image. Two
different metrics, ED and SSIM, were employed as a basis for this investigation
(cf. Figure 4.39). Both metrics demonstrated an ability to select appropriate
images as nearest neighbors and both were able to demonstrate that the network
generates images that differ significantly from training images. The ED metric,
despite being the more straightforward and faster method to calculate, was unable
to find suitable nearest neighbors in some instances for highly novel images. This
is because the ED is not capable of recognizing similar structures that are offset
slightly in spatial location as similar [319]. As a result, it is often the case that
neighbors determined using SSIM are perceived to be closer to those visually
observed. The values of the ED to the nearest neighbor and the SSIM were also
plotted for the two single image developments (cf. Figure 4.40 and Figure 4.41
for the first image in Figure 4.37 and Figure 4.42 and Figure 4.43 for the second
one in Figure 4.38). All plots exhibited a decrease at the beginning, followed by
an increase in the first example or a period of relatively constant performance
apart from fluctuations. This corroborates the difficulty previously identified in
the context of the FID in determining when an image has reached a point of no
further improvement. Apparently, after just a few epochs, images are generated to
which similarly close neighbors can be found as to the final generated image. It is
noticeable that low distance values, i.e. high correspondence with a training image,
often occur for images with few structures recognizable as fibers. Presumably,
these are then structurally so homogeneous that an image with equally few fibers
in the training data set simply shows a high degree of correspondence. However,
since there are even more images with many fibers in the training data set, but
their distance to similar generated images is typically greater, it is recommended
that these nearest neighbor determinations are not primarily used to assess the
development of a single generated image. The FID is probably more suitable for
this purpose. In principle, however, both the nearest neighbor method itself and
the two metrics ED and SSIM proved to be quite helpful for assessing the network.
ED is particularly useful for quick comparisons and SSIM for more precise ones.
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5.5.2 Further development

Further developments of this network are conceivable and recommended. One
option would be to provide the network with additional information about the
training images. Various quantities are possible here. In addition to purely image-
based information such as the Haralick entropy from the Haralick features [346],
which provide information on the heterogeneity of the images, the mechanical
parameters mentioned in this paper, FVC, FLD and FOD/FOT, would be of
particular interest. This physical information would ensure that the network is
able to recognize and reproduce superordinate structural relationships between
individual voxels. The network would have to be modified accordingly. In
literature, a so-called conditional GAN, or cGAN for short, was first introduced,
which enables the assignment of a specific label to each training image [254].
This was tested for this problem by assigning a value of its Haralick entropy
to each image. However, the significance of such a single value is low, and
accordingly this did not improve the network. Instead, it would be more beneficial
to evaluate several values of entropy across the image in a grid. Alternatively,
the mechanical parameters previously mentioned should definitely be employed.
Subsequent developments, such as the continuous conditional GAN (CcGAN)
[255] or the so-called InfoGAN [256], are more suitable for this purpose. A
further development (to a continuous conditional DCGAN, CcDCGAN) with
mechanical parameters could be used to develop a true microstructure generator
that can generate images with a specific FVC, FLD or FOD requested by the user.
Furthermore, the development of a network that can process and generate 3D
images must be pursued in the long term in order to exploit the potential for the
creation of RVEs.
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6.1 Summary

In this work, investigations into the plastificates were first presented. It was shown
that both the rotational speed during extrusion and the lofting of the plastificates
have an influence on their porosity. As expected, the orientation results show
double circular structures in the cross-section due to the twin-screw extruder and
almost perpendicular orientation to the extrusion direction.

To determine fiber volume contents from the scans, a slightly adapted thresholding
method and a convolutional neural network were developed and validated using
experimentally obtained data. While the network performed well, the AOA
thresholding was sample-wise better. Further development and inclusion of
samples with more variable fiber volume contents would be useful. The second
research question formulated in the introduction aimed at how quantities such as
fiber volume content can be reliably extracted from CFRP scans, which are more
difficult to process. This work shows that adaptation of known methods, but above
all AI-based methods, can certainly provide a remedy for low-contrast or noisy
images. However, eliminating the cause and generating better images in the first
place would of course be an even better measure, but this was not possible within
the scope of this dissertation.

With regard to the interpolation of second-order fiber orientation tensors, three
different methods were tested, whereby the decomposition method based on
spectral decomposition was the most convincing. It was then applied in simplified
form to fourth-order fiber orientation tensors. The resulting averaged tensors could
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in turn be used without closure approximation in Mori-Tanaka homogenization
and the resulting modeled stiffnesses could be compared with experimentally
determined stiffnesses. Concerning the orientation, the results were largely in
agreement. This tensor interpolation provides initial answers to the first research
question formulated at the beginning, namely how information from smaller
specimens can be transferred to larger dimensions. First of all, it should be noted
that the consideration of information from smaller specimens instead of purely
macroscopic observations makes sense considering the fluctuations of mechanical
variables over, e.g., such a plate as in this work. In order to obtain a reference to a
macroscopic behavior, interpolation methods such as the ones described above
are suitable. Even for the more complex case of tensors, there are methods that
can generate realistic interpolations. However, the resolution problem of CT scans
for materials with such small constituents as carbon fibers greatly complicates the
processing of medium-sized samples. Samples that are too small also exacerbate
these methods though, as the information obtained can be so local and deviate
so strongly from the global material behavior that a corresponding interpolation
is again difficult. The problem has therefore not been conclusively clarified and
would have to be checked in particular by interpolating fiber volume contents or
fiber length distributions too.

Finally, the development and successful use of a generative adversarial network for
the generation of artificial two-dimensional CT images was demonstrated. From
the author’s point of view, the third research question of this thesis can therefore
be clearly answered in the affirmative. Realistic images could be generated by
the GAN and there is also potential for future use to generate three-dimensional
RVEs. However, the second part must be answered positively with reservations
and caution, as this must be preceded by a great deal of further development work.

To address the final research question of the thesis: The enormous potential of
AI-based methods, especially neural networks, for the application to such material
science characterization questions could be clearly demonstrated. The networks
showed particularly good results especially for image evaluation/generation ques-
tions, where convolutional layers proved to be powerful. In the case of tensor
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6.2 Conclusion

interpolation, more complex algebraic approaches proved to be the better solution.
However, the risks of AI-based methods should also be pointed out here. While
the GAN generated very realistic images, their objective assessment was difficult.
Still, the use of such generated images to co-train networks (as an extension
of a "real" data set) should not be problematic and can certainly improve the
performance of other networks. The overtraining that presumably occurred in the
case of the CNN, which only output fiber volume contents in the area in which
it was trained, should also be viewed critically. However, the conclusion that a
bias in the training dataset leads to a bias in the results is straight-forward and
therefore a lot of prior knowledge and work should be put into the creation of the
training dataset. The argument concerning the unscientific nature of the "black
box" of a neural network remains, as the depth of layers, branches and weightings
are usually not comprehensible.

6.2 Conclusion

This dissertation shows how image analysis methods and especially neural net-
works can be used to determine micro- and mesomechanical parameters from CT
scans of long carbon fiber reinforced polymers. This enables comprehensive char-
acterization and scale-bridging of mechanical quantities in addition to classical
macroscopic characterization.

The following conclusions can be drawn from this work:

Neural networks with convolutional layers are a powerful tool for image pro-
cessing or image generation even of slightly noisy CT images. However, prior
knowledge of materials science must be taken into account when selecting training
data and network architecture. Interpolation methods can help to close the gap
between microstructural variables that can be evaluated from small samples and
macroscopic material behavior. However, it does not solve the dilemma between
resolution and sample size and the poor CT image quality due to the small size
of the fibers and their low contrast to the matrix. A fundamental improvement
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6 Final remarks

of the images would of course still be desirable for all evaluation and process-
ing methods. Furthermore, it can be concluded that the process - as expected -
has an enormous influence on the final workpiece quality and that an increased
understanding of the process is essential in order to improve it. There is still a
great deal of research to be done on the LFT-D process in particular. In principle,
image processing, whether AI-based or not, opens up enormous possibilities for
fast, statistical microstructure analysis, even beyond the field of fiber reinforced
polymers, and will sooner or later find its way into all aspects of materials science.
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9 Code and data availability

In the following section, links to retrieve the code and the corresponding data,
such as the scan files, are provided for all major topics in this paper that have
already been published by the author as first author. The respective link contains
more detailed information (e.g. on the exact contents of the data set).

• FVC:

– Code AOA: https://github.com/jewelsbla/AOA_thresholding

– Code CNN: https://github.com/jewelsbla/FVC_CNN

– Data: https://doi.org/10.35097/1707 [348]

• FOT interpolation:

– Code: https://github.com/jewelsbla/oriopy

– Python package: Oriopy https://pypi.org/project/oriopy/

– Data: https://doi.org/10.5445/IR/1000153725 [347]

• GAN:

– Code: https://github.com/sklinder/microDCGAN

– Data: https://doi.org/10.35097/1822 [349]
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A FVC evaluations

A.1 Results of FVC determined by different conventional
thresholding methods

Table A.1: Fiber volume contents of the specimens of the first plaque determined by chemical dissolution and by exemplary slice-wise
conventional thresholding procedures in Python that are also available in ImageJ. The results of the white row of FLD10 were not
incorporated into the final maximum deviations, sum of relative deviations and relative average deviations in order to be comparable
to the results in Appendix B. Extracted from Blarr et al. [188].

Specimen Exp. values opencv Otsu medianBlur(. . . ,15) + O. skimage mean medianBlur(. . . ,15) + m.
FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

FLD1 22.30 % 48.90 % 119.28 % 33.18 % 48.79 % 49.58 % 122.33 % 44.10 % 97.76 %
FLD2 25.50 % 48.89 % 91.73 % 28.20 % 10.59 % 49.66 % 94.75 % 43.50 % 70.59 %
FLD3 28.60 % 48.93 % 71.08 % 30.89 % 8.01 % 49.69 % 73.74 % 43.55 % 52.27 %
FLD10 17.90 % 49.31 % 175.47 % 44.36 % 147.82 % 49.77 % 178.04 % 47.88 % 167.49 %
FLD11 24 % 48.69 % 102.88 % 32.49 % 35.38 % 49.49 % 106.21 % 43.74 % 82.25 %
FLD12 26.60 % 48.88 % 83.76 % 31.45 % 18.23 % 49.59 % 86.43 % 42.51 % 59.81 %
Max. deviation 119.28 % 48.79 % 122.33 % 97.76 %
Sum of rel. dev. 468.73 % 120.99 % 483.46 % 362.68 %
Rel. aver. dev. 93.75 % 24.20 % 96.69 % 72.54 %
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Table A.2: Fiber volume contents of the specimens of the seecond plaque determined by chemical dissolution and by exemplary slice-wise
conventional thresholding procedures in Python that are also available in ImageJ. Extracted from Blarr et al. [188].

Specimen Exp. values opencv Otsu medianBlur(. . . ,23) + O. skimage mean medianBlur(. . . ,23) + m.
FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

C1 23.07 % 47.97 % 107.96 % 30.88 % 33.87 % 49.30 % 113.73 % 44.69 % 93.74 %
C2 22.08 % 48.78 % 120.91 % 46.33 % 109.82 % 49.47 % 124.04 % 49.00 % 121.91 %
C3 23.06 % 48.10 % 108.60 % 33.84 % 46.75 % 49.32 % 113.89 % 45.71 % 98.23 %
CF1 25.57 % 48.32 % 88.94 % 33.25 % 30.01 % 49.37 % 93.05 % 44.16 % 72.68 %
CF2 22.31 % 47.44 % 112.60 % 36.85 % 65.14 % 49.06 % 119.86 % 45.64 % 104.54 %
CF3 22.81 % 47.77 % 109.42 % 32.94 % 44.40 % 49.16 % 115.51 % 46.13 % 102.23 %
F1 26.36 % 48.27 % 83.14 % 39.78 % 50.93 % 49.47 % 87.69 % 46.88 % 77.87 %
F2 23.10 % 48.98 % 112.01 % 46.58 % 101.62 % 49.71 % 115.17 % 49.00 % 112.10 %
F3 23.81 % 48.22 % 102.55 % 36.07 % 51.51 % 49.34 % 107.25 % 46.43 % 95.03 %
Max. deviation 120.91 % 109.82 % 124.04 % 121.91 %
Sum of rel. dev. 946.13 % 534.07 % 990.19 % 878.31 %
Rel. aver. dev. 105.13 % 59.34 % 110.02 % 97.59 %
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A.2 Results of FVC of Plaque 2 determined by AOA thresholding for

different pre-filters

Table A.3: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different
configurations of the "blur" filter onto the CT images. Extracted from Blarr et al. [188].

Specimen Exp. values blur(...,(11,11)) blur(...,(13,13)) blur(...,(15,15)) blur(...,(19,19))
FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

FLD1 22.30 % 25.43 % 14.04 % 23.66 % 6.10 % 22.41 % 0.49 % 21.05 % -5.61 %
FLD2 25.50 % 26.77 % 4.98 % 25 % -1.96 % 23.76 % -6.82 % 21.26 % -16.63 %
FLD3 28.60 % 29.83 % 4.30 % 28.95 % 1.22 % 28.36 % -0.84 % 27.64 % -3.36 %
FLD10 17.90 % 36.30 % 102.79 % 35.09 % 96.03 % 34.16 % 90.84 % 32.97 % 84.19 %
FLD11 24 % 26.07 % 8.63 % 24.65 % 2.71 % 23.26 % -3.08 % 21.91 % -8.71 %
FLD12 26.60 % 26.24 % -1.35 % 23.58 % -11.35 % 22.56 % -15.19 % 20.40 % -23.31 %
Max. deviation 14.04 % 11.35 % 15.19 % 23.31 %
Sum of rel. dev. 33.30 % 23.34 % 26.43 % 57.61 %
Rel. aver. dev. 6.66 % 4.67 % 5.29 % 11.52 %
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Table A.4: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different
configurations of the "medianBlur" filter onto the CT images. Extracted from Blarr et al. [188].

Specimen Exp. values medianBlur(. . . ,11) medianBlur(. . . ,13) medianBlur(. . . ,15) medianBlur(. . . ,19)
FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

FLD1 22.30 % 26.12 % 17.13 % 24.37 % 9.28 % 22.97 % 3.00 % 21.26 % -4.66 %
FLD2 25.50 % 27.57 % 8.12 % 25.64 % 0.55 % 24.18 % -5.18 % 22.49 % -11.80 %
FLD3 28.60 % 30.14 % 5.38 % 29.16 % 1.96 % 28.50 % -0.35 % 27.69 % -3.18 %
FLD10 17.90 % 36.30 % 102.79 % 39.47 % 120.50 % 38.68 % 116.09 % 36.81 % 105.64 %
FLD11 24 % 26.68 % 11.17 % 25.06 % 4.42 % 23.91 % -0.37 % 22.31 % -7.04 %
FLD12 26.60 % 29.20 % 9.77 % 27.56 % 3.61 % 26.64 % 0.15 % 25.79 % -3.05 %
Max. deviation 17.13 % 9.28 % 5.18 % 11.80 %
Sum of rel. dev. 51.57 % 19.82 % 9.06 % 29.74 %
Rel. aver. dev. 10.31 % 3.96 % 1.81 % 5.95 %

Table A.5: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying a "gaussianBlur"
and "bilateralFilter" onto the CT images. Extracted from Blarr et al. [188].

Specimen Exp. values GaussianBlur(. . . ,(15,15),0) bilateralFilter(. . . ,15,350,350)
FVC FVC Deviation FVC Deviation

FLD1 22.30 % 28.30 % 26.91 % 24.39 % 9.37 %
FLD2 25.50 % 30.96 % 21.41 % 25.56 % 0.24 %
FLD3 28.60 % 32.39 % 13.25 % 29.23 % 2.20 %
FLD10 17.90 % 39.79 % 122.29 % 35.52 % 98.44 %
FLD11 24 % 28.39 % 18.29 % 25.11 % 4.63 %
FLD12 26.60 % 29.87 % 12.29 % 25.01 % -5.98 %
Max. deviation 26.91 % 9.37 %
Sum of rel. dev. 92.15 % 22.41 %
Rel. aver. dev. 18.43 % 4.48 %
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Table A.6: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different
configurations of the "medianBlur" filter onto the CT images. Extracted from Blarr et al. [188].

Specimen Exp. values medianBlur(. . . ,15) medianBlur(. . . ,21) medianBlur(. . . ,23) medianBlur(. . . ,25)
FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation

C1 23.07 % 25.88 % 12.21 % 24.41 % 5.81 % 24.07 % 4.36 % 25.39 % 10.06 %
C2 22.08 % 41.43 % 87.63 % 42.06 % 90.50 % 42.20 % 91.10 % 42.56 % 92.73 %
C3 23.06 % 25.48 % 10.52 % 23.43 % 1.62 % 23.04 % -0.08 % 22.59 % -2.03 %
CF1 25.57 % 22.65 % -11.42 % 25.58 % 0.02 % 26.60 % 4.01 % 28.31 % 10.70 %
CF2 22.31 % 24.52 % 9.90 % 23.65 % 5.97 % 23.53 % 5.44 % 23.48 % 5.24 %
CF3 22.81 % 23.33 % 2.28 % 21.97 % -3.69 % 22.53 % -1.24 % 22.41 % -1.76 %
F1 26.36 % 26.90 % 2.07 % 25.70 % -2.48 % 25.48 % -3.33 % 25.28 % -4.09 %
F2 23.10 % 32.43 % 40.37 % 32.52 % 40.74 % 32.76 % 41.81 % 35.16 % 52.19 %
F3 23.81 % 26.46 % 11.15 % 25.29 % 6.23 % 25.11 % 5.49 % 25.00 % 5.01 %
Max. deviation 12.21 % 6.23 % 5.49 % 10.70 %
Sum of rel. dev. 59.55 % 25.82 % 23.95 % 38.89 %
Rel. aver. dev. 8.51 % 3.69 % 3.42 % 5.56 %
Rel. aver. dev. with outliers 20.84 % 17.45 % 17.43 % 20.42 %
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Table A.7: Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying a "gaussianBlur"
and "Blur" onto the CT images. Extracted from Blarr et al. [188].

Specimen Exp. values GaussianBlur(. . . ,(21,21),0) blur(...,(15,15))
FVC FVC Deviation FVC Deviation

C1 23.07 % 27.03 % 17.20 % 25.86 % 12.13 %
C2 22.08 % 39.09 % 77.03 % 41.19 % 86.55 %
C3 23.06 % 26.53 % 15.05 % 24.99 % 8.36 %
CF1 25.57 % 22.47 % -12.14 % 21.03 % -17.78 %
CF2 22.31 % 25.47 % 14.16 % 24.85 % 11.39 %
CF3 22.81 % 23.83 % 4.45 % 22.53 % -1.24 %
F1 26.36 % 26.00 % -1.35 % 24.97 % -5.28 %
F2 23.10 % 30.93 % 33.88 % 30.41 % 31.64 %
F3 23.81 % 27.81 % 16.80 % 26.51 % 12.89 %
Max. deviation 17.20 % 17.78 %
Sum of rel. dev. 81.15 % 69.07 %
Rel. aver. dev. 11.59 % 9.87 %
Rel. aver. dev. with outliers 21.34 % 20.81 %
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