AutoML-Supported Lead Time
Prediction

Enabling Smart Job Scheduling in
Make-To-Order Production

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN
(Dr.-Ing.)

von der KIT-Fakultét fiir
Maschinenbau
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte

DISSERTATION

von

Janek Bender, M.Sc.
geb. in Osnabriick

Tag der miindlichen Priifung: 28.10.2024

Hauptreferent: Prof. Dr. Dr.-Ing. Dr. h. c. Jivka Ovtcharova
Korreferent: Univ.-Prof. Dr.-Ing. Detlef Gerhard

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Zusammenfassung

Die verarbeitende Industrie steht immer komplexeren Kundenanforderun-
gen in Bezug auf Produktcustomisierbarkeiten und Lieferzeiten gegeniiber,
wihrend sie gleichzeitig mit Marktunsicherheiten und Stérungen innerhalb
ihrer Lieferantennetzwerke konfrontiert ist. Insbesondere kleine und mittlere
Unternehmen aus dem Bereich der Einzelfertigung suchen nach neuen An-
sdtzen, um angesichts dieser Herausforderungen ihre Termintreue aufrechtzuer-
halten. Durch die Fortschritte in der kiinstlichen Intelligenz und insbesondere
im maschinellen Lernen haben Methoden zur intelligenten Planung von Ferti-
gungsauftrigen an Bedeutung gewonnen. Die Grundlage fiir jeden Ansatz zur
intelligenten Auftragsplanung ist jedoch eine Vorhersage der produkt-prozess-
ressourcenspezifischen Durchlaufzeit, da diese eine entscheidende Eingangs-
grofle fiir den Planungsalgorithmus bildet. Dieser oft manuellen Vorhersage
fehlt heute die notwendige Genauigkeit, insbesondere unter Beriicksichtigung
der hochgradig kundenspezifischen Produkte der Einzelfertigung.

Daher stellt diese Arbeit die erste durchgéngige Methodisierung einer produkt-
prozess-ressourcenspezifischen Durchlaufzeitvorhersage fiir kleine und mit-
tlere Unternehmen aus der Einzelfertigung unter Verwendung von kiinstlicher
Intelligenz in Form von automatisiertem maschinellem Online-Lernen vor. Die
Methode definiert zwolf notwendige Schritte, welche den gesamten Lebenszyk-
lus des maschinellen Lernens von der Datenaufbereitung iiber die Modellen-
twicklung bis hin zur Modellbereitstellung und -pflege umfassen. Als Kern-
technologien nutzt sie das automatisierte maschinelle Lernen, um den Ansatz
fiir Doménenexperten zuginglicher zu machen, sowie das Online-Lernen, um
Modelle zu entwickeln, die gegeniiber leistungsmindernden Effekten wie Con-
cept Drift robust sind. Die Validierung erfolgt anhand zweier Fallstudien, bei
denen die mit der Methode erstellten Modelle eine Verbesserung zwischen 35%
und 50% gegeniiber manuellen Vorhersagen erzielten. Die bewerteten Mod-
elle zeigten dariiber hinaus die Féahigkeit, sich an kiinstlich in den Datenstrom
eingebrachten Concept Drift anzupassen.

Abstract

Manufacturing industries face increasingly complex customer demands in
terms of product customisation and delivery times while simultaneously being
met with market uncertainty and disruptions within supply networks. Es-
pecially small and medium enterprises from the make-to-order domain seek
new approaches to uphold their adherence to schedule in the light of these
challenges. As such, methods for the smart scheduling of manufacturing jobs
gained traction in recent years due to advances in artificial intelligence, and par-
ticularly in machine learning. The basis for any smart job scheduling approach
however is a prediction of the product-process-resource-specific lead time as
this forms a crucial input variable for the job scheduling algorithm. Today,
this often manual prediction lacks the necessary accuracy, especially when
considering the highly customised products of the make-to-order domain.

Therefore, this thesis provides the first end-to-end methodisation of a product-
process-resource-specific lead time prediction for small and medium enter-
prises from the make-to-order domain using artificial intelligence in the form
of automated online machine learning. The method defines twelve necessary
steps spanning the entire machine learning lifecycle from data preparation via
model development to model deployment and maintenance. As core technolo-
gies it leverages automated machine learning as a means to render machine
learning more accessible to domain specialists and online machine learning
in order to develop models robust toward performance degrading effects such
as concept drift. Validation is conducted along two real-world case studies in
which the models produced by the method achieved between 35% and 50%
improvement over manual predictions. The models under evaluation further-
more showed the ability to cope with concept drift by adapting to adversarial
changes artificially introduced to the underlying data stream.

il

Table of Contents

Zusammenfassung
Abstract
Listof Figures
ListofTables
Abbreviations Lo oo

1 Introduction
In Need of a Better Planning Basis for Job Scheduling
1.1 Motivation. e
1.2 Problem Statement
1.2.1 Main Objective
1.2.2 Research Questions
1.3 Structure of this Thesis

2 Background
The Managerial & Technical Foundations
2.1 Production.
2.1.1 Production Types
2.1.2 Production Organisation
2.1.3 Production Planning & Control
2.2 Artificial Intelligence oL
2.2.1 Machine Learning
2.2.2 Feature Engineering
2.2.3 Concept Drift Handling

15
15
15
17
18
20
21
27
32

Table of Contents

vi

2.2.4 Automated Machine Learning
2.2.5 Machine Learning Engineering
2.3 Chapter Summary

State of the Art

Towards Machine Learning for Lead Time Prediction . . .

3.1 Machine-Learning-Supported Methods for Lead Time Predic-
tion
3.1.1 Scope & Structure of the Literature Review
3.1.2 Lead & Processing Time Prediction
3.1.3 Transition Time Prediction
3.1.4 Literature Comparison

32 ResearchGaps. i

3.3 Chapter Summary

A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials
41 Framework
4.1.1 Technical Objectives
4.1.2 Streaming Scenario
4.1.3 Preconditions
4.2 Description
42.1 DataPreparation
4.2.2 Model Development
423 Model Deployment
4.3 System Architecture
4.3.1 Inference Pipeline
4.3.2 Training Pipeline
4.4 Assessment & Differentiation
4.4.1 Assessment of the Technical Objectives
4.42 Assessment of the AutoML Support
4.43 Differentiation from Existing Methods for Lead Time
Prediction
4.5 Chapter Summary

36
45
48

49

49
50
51
57
65
67
68

69
69
70
71
73
74
77
100
107
115
116
116
117
118
119

Table of Contents

5 Validation

A Practical Application 123
5.1 Case Study A: Lead Time Prediction on Real-World Data . . 123
5.1.1 Scenario 124
5.1.2 Method Application 124
5.13 Results o 139
5.1.4 Discussion 147
5.2 Case Study B: Lead Time Prediction under Concept Drift on
Altered Real-World Data 148
521 Scenario 148
5.2.2 Method Application 150
523 Results 150
524 Discussion 155
53 Conclusion 155

6 Summary & Outlook

What the Future Holds 157

6.1 Summary 157
6.2 Outlook 160

A Appendix 161
A.1 Supplements for Case Study A 161
A1l Analysis. 161

A.1.2 Transformation 166

A.13 Filtering 167

A.l4 Selection 169

A.1.5 Configuration 169

A.2 Supplement for Case StudyB 171
A2.1 Scenario, 171
Publications 173
References 175

vii

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6

1.7
1.8

2.1

2.2

23

24

2.5

2.6

2.7

Reference Architecture Model Industry 4.0. by [Plal8, p. 8].

The smart factory as part of the internet of things and services
by [Pal3,p.23].
Shop floor at Breisacher Werkzeug- und Formenbau GmbH in
Bahlingen a.K., Germany. Photographed within the research
project Alto [GBE*22]. Photo credit Werner Breisacher.
Research focus of this thesis.
Decomposition of total lead time as understood in this thesis. . .
Simplified illustration of PPR-specific properties influencing LTP.
PPR-specific LTP as an enabler for smart scheduling.
Structure of this thesis.

OPP-based types of production according to [KLL22, p. 9] based
on [O1h03]. The MTO focus of this thesis is highlighted.
Different production organisation models based on [Sch06, p. 131]
and [GSTH14]. The job shop focus of this thesis is highlighted. .
Application domains of artificial intelligence according to [Lug09,
p-20fF]. . . .
Underfitting, appropriate fitting, and overfitting. Based on [GBC16,
p- 1131 .
Learning-problem-oriented view of machine learning as relevant
tothisthesis.
Examples of data visualisation techniques. Clockwise top left to
bottom left: histogram, box plot, correlation matrix, and scatter
plot. Basedon [Tuk77].
Label encoder on the top versus one-hot-encoder [ZC18, p. 78-79]
atthebottom.

O o0 O\

10

13

21

22

25

28

30

iX

List of Figures

2.8

29

2.10
2.11

2.12

2.13

2.14

3.1
32

33
34

35

4.1
4.2
43
4.4
4.5

4.6
4.7

4.8

Filter (F) vs. Wrapper (W) vs. Embedded Methods (E). Based
on [GEO06]. Ilustration inspired by [Sau20, p. 52].
Types of drifts where circles represent instances, colours repre-
sent different classes, and the dotted line indicates the decision
boundary. Original illustration by [GZB*14].
Concept drift patterns. Based on [GZB*14].
Comparing grid and random search over nine trials of minimising a
function with two parameters, one important and one unimportant.
Basedon[BB12].
Sketch of sequential halving with eight model configurations and
three halvings. Basedon [KKS13].
The ML development and deployment pipeline as supported by
current generation AutoML approaches. Based on and expanded
upon [HZC21].o
Phases of the CRISP-DM reference model by [CCK*00, p. 13]. .

LTP as both regression and classification problem.
Architecture of the closed-loop production controller with real
time LTP engine by [GPBG18]..

Cascading close loop model for PPC by Sauermann et al. [SHPS19].

Methodology for databased prediction and planning of job-specific
TT by Schuhetal. [SGS*20].
Tree of prediction model variants by Schuh et al. [SGS*20]. . . .

Target variables of the LTPmodel.
Finite static dataset versus infinite dynamic data stream.
Preconditions for the success of the method.
Overview of the method for AutoML-supported LTP.
Block one of the method for AutoML-supported LTP: Data Prepa-
TAtion.
Potential inner-company data sources.
Example distribution analysis of unique values in a categorical
column.
Example histogram analysis of both overall and individual process
target variables. L L

31

33
34

40

41

45
46

50

56
60

61
62

70
72
74
75

77
78

84

85

List of Figures

4.9
4.10
4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

424

4.25

Example box plot analysis for four variables. 86
Example correlation matrix for five variables. 87
Example scatter plot exploring the relationship between the target

variables. oo 88

Examples for data transformation activities with expert oversight.
Clockwise from the top left to the bottom left: extraction of meta
data from CAD / CAM, type conversion and recombination, string
splitting and interpretation, digitising and structuring handwritten
data. 90
Example feature substantiation in which the material string label
of a chrome steel with little informational value is transformed into
a set of parameters representing the material’s physical properties. 91

Merging of streamed data to data vectors for online learning. . . 92
Expert assessing recorded processing times with regard to their
plausibility. L 94
Application of an IQR-filter to the target variable with a factor of
LS. e 95

Identifying outliers with ML-based methods. On the left side, us-
ing a clustering approach such as DBSCAN [EKSX96]. And on the
right side, using an autoencoder’s reconstruction error [GBC16,

P-4l . 96
Exemplary application of a label encoder (top) and one-hot-
encoder (bottom) [ZC18,p. 78-79].. 97

Exemplary selection decisions on selecting, ignoring, and estimat-
ing individual columns both for training and prediction at runtime. 99
Block two of the method for AutoML-supported LTP: Model De-

velopment. 100
Model pipeline configuration pool generation as based on [MHM*21]. 102
Iterative training of the model pipelines. 102

Example application of sequential halving minimising the MAE
with eight model pipelines and a budget of 100,000 cumulative

model updates. Based on [KKS13]. 106
Block three of the method for AutoML-supported LTP: Model

Deployment. L L 107
Technical integration of the LTPmodel. 108

X1

List of Figures

4.26
4.27
4.28
4.29

4.30
4.31

5.1
52

53
54

5.5

5.6

5.7
5.8

59
5.10

5.11
5.12

5.13

5.14

5.15

Xii

Organisational integration of the LTP model into PPC. Based on
[SHPSI9]. o
The monitoring step within the LTP model control loop.

The maintenance step within the LTP model control loop.
Basic principle of LTP online inference and training with delayed
ground truth. L
Architecture of the LTP streaming pipeline for inference.

Architecture of the LTP streaming pipeline for training.

Target variables in the raw data over time.

Both target variables in relation (left) and the actual PT in relation
to the expert estimation (right) in the raw data.

Top ten processes executed in the raw data by frequency.

Top ten processes executed in the raw data by their share of the
total PTs.

Process chains as occurring in the raw data. Processes with a link
share below 5% are summarised under Other. Only the first six
links are displayed.

Main material groups according to DIN EN 10027-2:2015-07
[DIN15] in the raw data by frequency.

Transformations applied to theraw data.

Performance over time of the best ML models against the RMMs
andthebaseline..

MAE of the PT ML model for each process.

MAE of the PT ML model weighted by the frequency share of
eachprocess.

MAE of the TT ML model for each process.

MAE of the TT ML model weighted by the frequency share of
eachprocess.

The original filtered processing time in comparison to the altered
datasets of all four concept drift patterns.

PTP performance over time of the best ML models against the

RMMs and the baselines under all four concept drift sub-scenarios.

TTP performance over time of the best ML models against the

RMMs and the baselines under all four concept drift sub-scenarios.

109
111
113
115

116
117

129

129
130

131

132

133
135

140
141

142
143

144

149

152

154

List of Figures

Al
A2
A3
A4
A5

PTs per process over time in theraw data. 164
TTs per process over time in theraw data. 165
PTs per process over time in the filtered data. 167
TTs per process over time in the filtered data. 168
The original filtered TTs in comparison to the altered datasets of

all four concept drift patterns. 171

xiii

List of Tables

2.1
2.2

3.1
32

4.1
4.2
43

4.4

5.1
52
53
54
5.5
5.6
5.7
5.8

59

Types of production according to [Sch06, p. 129-130].
Simplified exemplary routing file based on [KLL22, p. 158].

Literature comparison on LTP and PTP.
Literature comparisonon TTP.

Example metrics to compute onadataset.
Example statistics computed on a per-column level.
Simplified summarisation of suggested suitable metrics for the
benchmarking of LTP models. TP = True Prositives, TN = True
Negatives, FP = False Positives, FN = False Negatives, Truth =
Ground Truths, Pred = Predictions
Assessment on the degree of AutoML-support for each method
] £ 0

Raw dataoverview.
Considerations of the seven Vs for case study A.
Statistical properties of the target variables in the raw data.
Filters and their effects on the transformed data.
Best-performing model pipelines versus the RMMs and baseline.
Top ten permutation feature importances of the PT proxy model.
Top ten permutation feature importances of the TT proxy model.
Best-performing model pipelines versus the RMMs and baselines
for the PTP under the concept drift scenarios sudden, incremental
(inc.), gradual, and reoccurring (reoc.).
Best-performing model pipelines versus the RMMs and baselines
for the TTP under the concept drift scenarios sudden, incremental
(inc.), gradual, and reoccurring (reoc.).

19

65
66

83
84

104

119

125
126
128
136
139
145
146

151

153

XV

List of Tables

Al
A2

A3

A4

A5

A.6

AT

A8

A9

XVi

Column descriptions of theraw data.
Amount of NaN-values in the raw data. Columns not listed showed
noNaN-values.
Categorical columns in the raw data. Columns not listed were not
deemed categorical.
Frequency-based percentage shares of all processes executed in
therawdata. L L
PT-based percentage shares of all processes executed in the raw

Column descriptions of the transformed data. Xs highlight which
columns have been additionally joined from previous operations
of the respective job and machine group.
Column descriptions of the selected data. Xs highlight which
columns have been additionally joined from previous operations
of the respective job and machine group.
Pool of important hyperparameters for the configuration step for
the ARFR [GBR*17] and OXTR [MNVdC22] algorithms.

List of publications.

162

162

162

163

166

169

Abbreviations

ADWIN
Al

Alto

ANN
API
ARF
ARFR
AutoML
BN

BO
CAD
CAM
CASH

CBR
CNC
CNN

Adaptive Windowing
Artificial Intelligence

Algorithm-based Optimisation of Timely Job Control in
Make-To-Order Production

Artificial Neural Network
Application Programming Interface
Adaptive Random Forest

Adaptive Random Forest Regressor
Automated Machine Learning
Bayesian Network

Bayesian Optimisation
Computer-aided Design
Computer-aided Manufacturing

Combined Algorithm Selection and Hyperparameter
Optimisation

Case-based Reasoner
Computerised Numerical Control

Convolutional Neural Network

XVii

Abbreviations

CSv Comma- / Character-separated Values

(E)DDM (Early) Drift Detection Method

DES Discrete Event Simulation
DNN Deep Neural Network

DT Decision Tree

EDA Exploratory Data Analysis
ERP Enterprise Resource Planning
ES Exponential Smoothing

ETO Engineer-To-Order

FIFO First In First Out

HPM Human Performance Modelling
HPO Hyperparameter Optimisation
(DIoS (Industrial) Internet of Services
(DIoT (Industrial) Internet of Things
IQR Interquartile Range

JSS Job Shop Scheduling

KMS Knowledge Management System
kNN k Nearest Neighbour

KSWIN Kolmogorov-Smirnov Windowing

LasR Lasso Regression
LLM Large Language Model
LR Linear Regression

XViil

LT
LTP
MA
MAE
MAPE
MAR
MES
ML
MLR
MSE
MTO
MO
NaN
NAS
NBC
NLP
OPP
OXTR
PDM
PT
PTP

PPC

Lead Time

Lead Time Prediction

Moving Average

Mean Absolute Error

Mean Absolute Percentage Error
Multivariate Adaptive Regression
Manufacturing Execution System
Machine Learning

Multinomial Logistic Regression
Mean Squared Error
Make-To-Order

Main Objective

Not-a-Number

Neural Architecture Search
Naive Bayes Classifier

Natural Languange Processing
Order Penetration Point

Online Extra Trees Regressor
Product Data Management
Processing Time

Processing Time Prediction

Production Planning and Control

XiX

Abbreviations

PPR
REST
RF
RMM
RMSE
RQ
RR
RT
SME
SNBC
SVM
SVR
TLT
TO
TT
TTP

WAUR

XX

Product-Process-Resource
Representational State Transfer
Random Forest

Rolling Mean Model

Root Mean Squared Error
Research Question

Ridge Regression

Regression Tree

Small and Medium Enterprises
Selective Naive Bayes Classifier
Support Vector Machine
Support Vector Regression
Total Lead Time

Technical Objective

Transition Time

Transition Time Prediction

Weighted Attribute Usage Ratio

1 Introduction

In Need of a Better Planning Basis for Job
Scheduling

Manufacturing industries face increasingly complex customer demands in
terms of product customisation and delivery times. Simultaneously, batch sizes
decline and the production needs to adapt to uncertainty, flexible demands, and
disruptions within the supply networks. Aside from the implications for pro-
duction planners, these circumstances also pose significant challenges for shop
floor operators, procurement managers, product developers, and many other
positions within the value creation network.

Science, industry, and the public attempt to meet these challenges by work-
ing towards a large-scale transformation of the manufacturing industries, in
Germany referred to as Industrie 4.0 (Industry 4.0) [Pla22]. Other economic
heavyweights put similar strategies into action such as the Industry IoT Consor-
tium (until 2021 Industrial Internet Consortium) in the United States of Amer-
ica [Obj22], Made in China 2025 [Shil7], or Society 5.0 in Japan [DHM*20].

At its core, Industry 4.0 describes a fourth industrial revolution through the
intelligent networking of machines and processes using information and com-
munication technology. This is meant to make production more data-driven,
flexible, and customer-oriented, optimise logistics, and enable a resource-
efficient circular economy [Pla22]. This revolution characterises a transfor-
mation away from the (physical) product as the sole conduit for value creation
and towards solutions and services, realised within globally connected value
networks and monetised through data-driven business models.

1 Introduction
In Need of a Better Planning Basis for Job Scheduling

In the 2030 vision for Industry 4.0 [Pla19], the authors outline three interlinked
strategic fields of action for a successful realisation:

e Autonomy of stakeholders and market participants as a means to guar-
antee competitiveness in digital business models. This area covers tech-
nology development, (IT-)security, and digital infrastructure.

e [nteroperability in terms of cooperation and open digital ecosystems as
a way to bolster plurality and flexibility among participants. The term
subsumes regulatory frameworks, standards, and integrational aspects
as well as decentralised systems and artificial intelligence (Al).

o Sustainability as in ensuring a high standard of living for future gener-
ations through modern industrial value creation. Work and education,
climate change mitigation and circular economy, and social participation
make up this field.

In order to contextualise this diverse range of Industry-4.0-related activities,
the Reference Architecture Model Industry 4.0 [Plal8] as shown in Figure 1.1
was developed. It provides an architectural orientation for the most important
aspects involved.

Life Cycle & Value Stream
IEC 62890 .,

p Hierarchy Levels

IEC 62264 // IEC 61512
Layers N

'
iProduct; ;Control Device: Work Centers ; iConnected World
EFieId Device EStation EEnterprise

Figure 1.1: Reference Architecture Model Industry 4.0. by [Plal8, p. 8].

The first dimension on the x-axis symbolises the individual product life cycle
all the way from the development or construction, maintenance and changes,
through production and use, to finally, the decommissioning. The y-axis as
second dimension concerns itself with the business side of things. It considers
the organisation and business processes the asset is embedded in, its functions,
the necessary data and access to it, the network integration as well as the
physical part of the asset itself.

1 Introduction
In Need of a Better Planning Basis for Job Scheduling

The third and final dimension on the z-axis describes the transformation to a
new form of factory hierarchy in which systems and machines are highly flex-
ible, with functions distributed through the network, which itself may cross
individual company boundaries. This enables participants to communicate
effectively with each other and directly interact across previously strictly hi-
erarchical levels. Furthermore, the products are considered an integral part
of the network and are thus not disjunct from the factory which produces
them [Plal8].

Within this complex research framework of Industry 4.0, one core concept
sticks out as the conduit for the shared efforts to achieve this grand vision,
the smart factory. It is defined by acatech, the German National Academy of
Science and Engineering, as:

»A single or a consortium of corporation(s), which employ(s)
information and communication technology for product develop-
ment, engineering of production systems, production, logistics,
and to flexibly interface with customers. The smart factory mas-
ters complexity, is less prone to errors, and increases production
efficiency. Within the smart factory, humans, machines, and re-
sources naturally communicate with each other as if they were all
participants in a social network.«

Translated from Promotorengruppe Kommunikation der Forschung-
sunion Wirtschaft - Wissenschaft and acatech - Deutsche Akademie
der Technikwissenschaften e.V., 2013, [Pal3, p. 87]

Figure 1.2 contextualises the smart factory within the technological environ-
ment. With cyber physical systems as a basis, the globally interconnected
smart factory operates within the (industrial) internet of things and services
(IIoT / TToS). Industry 4.0, and by extension the concept of the smart factory,
is interdisciplinary by nature. It is thus reliant on adjacent areas of interest,
such as the illustrated smart mobility, smart logistics, smart buildings, smart
products, and smart grids [Pal3].

1.1 Motivation

Figure 1.2: The smart factory as part of the internet of things and services by [Pal3, p. 23].

1.1 Motivation

Realisation of smart factories remains the subject of ongoing research and en-
gineering efforts. (Partially) smart factories in the real world are the exception
rather than the norm as the underlying technological and socio-economical
challenges are manifold. One such challenge is in the area of intelligent job
scheduling within the smart factory and its surrounding production network.
This is highly relevant, especially for small and medium enterprises (SME),
which form the backbone of the German manufacturing industries. In this con-
text, SME are characterised by their diverse IT landscapes supporting varying
degrees of automation. In addition, often producing highly customisable make-
to-order (MTO) products in small lot sizes with tight due dates adds to the
overall challenge of planning and scheduling these jobs in an optimal fashion.
The production schedule is stressed further by high priority orders coming in
on short notice as well as disruptions occurring on the shop floor or within the
supply chain.

1 Introduction
In Need of a Better Planning Basis for Job Scheduling

Contrary to the assembly line production of mass manufacturing, shop floors
in this MTO environment are typically set up as a collection of individual
work stations with an undirected flow of material between them. This type
of shop floor architecture is known as a job shop [Eve02, p. 168]. Figure 1.3
displays a typical SME shop floor with various, at times redundant, work
stations, loosely grouped together within the limitations of the surrounding
building. The degree of automation of these work stations ranges from entirely
manual (e.g. conventional turning, assembly, finishing) to highly automated
(e.g. CNC-machines).

Figure 1.3: Shop floor at Breisacher Werkzeug- und Formenbau GmbH in Bahlingen a.K., Ger-
many. Photographed within the research project Alto [GBE*22]. Photo credit Werner
Breisacher.

1.1 Motivation

The challenge of scheduling operations within this highly dynamic and flexible
environment forms a well-known combinatorial optimisation problem, accord-
ingly named the job shop scheduling (JSS) problem. An early comprehensive
definition of the JSS problem can be found in [Mel66]. In summary, it de-
scribes the combinatorial challenge of scheduling O operations of J jobs on M
machines in order to achieve an optimal schedule. Certain derivates of the JSS
problem have been described over the years, such as the more realistic flexible
Jjob shop scheduling problem [ML93]. As opposed to the original, there can
be alternative machines providing the same operations and multiple identical
machines can be grouped together.

The optimisation goal of the JSS problem and its derivates is usually the min-
imisation of overall product makespan. In practice however, the optimisation
goal is often multi-criterial. In addition to minimising the makespan, at times
conflicting goals are the maximisation of adherence to schedule, as in minimis-
ing the violation of delivery deadlines, or in recent years, exploiting energy
flexibility potentials in order to maximise the usage of renewable energy in
production [FSB*23].

As observed at partnering companies within the research project Alto, SME
from the MTO sector often prioritise adherence to schedule over other opti-
misation goals as their reputation relies on being flexible and punctual while
contractual penalties for delays can be steep [GBE*22]. Add to that the afore-
mentioned circumstances of operating in an environment where priority orders
with tight due dates concerning highly customised products are arriving on
short notice, optimising production for adherence to schedule becomes in-
creasingly difficult.

Traditional and widespread rule-based optimisation approaches, such as first in
first out (FIFO), shortest processing time, or the slack time rule [Sch06, p. 51],
are not sufficient to address these complexities in today’s production networks.
At the same time, the recent renaissance of Al-based methods, especially from
the sub-domain of machine learning (ML), opened new avenues to pursue novel
optimisation approaches in order to lay out the technological groundwork for
the smart factory. Thus, this thesis positions itself at the intersection between
the problem domain of job scheduling within the smart factory and the avenue
of new optimisation techniques enabled by Al as Figure 1.4 illustrates.

1 Introduction
In Need of a Better Planning Basis for Job Scheduling

Problem Domain Problem Scale Solution Domain
Industry 4.0
Artificial
Intelligence
Smart Factory
Job Scheduling Machine Learning
This Thesis

Figure 1.4: Research focus of this thesis.

1.2 Problem Statement

At the basis of any optimisation, regardless of the technique used, are the
input parameters. When it comes to the optimisation of production schedules,
one crucial variable is the estimated lead time (LT). It denotes the time a job
or operation takes until it is completed. When optimising for adherence to
schedule, production planners need to know the LT of a job so to not schedule
it too early for it to block more urgent jobs or cause storage cost, and not too
late so it will be finished before its due date. The fotal lead time (TLT) of a
job as understood in this thesis is decomposed into more detail as shown in
Figure 1.5.

1.2 Problem Statement

L Total Lead Time |

J6
Job Job
¥ >
Release aen

Input Buffer
‘Transport Time ‘Transport Time
Waiting Time

Waiting Time

Job
Processing Time

| | | |
1

[Transition Time [Transition Time !

Completion

Output Buffer

Work Station

Figure 1.5: Decomposition of total lead time as understood in this thesis.

While the TLT covers the entire makespan of a job from release to completion
within on a given shop floor, it is divisible further into processing time (PT)
and transition time (TT). PT denotes the value-adding time a job is actually
being worked on at a work station, i.e. a product being machined on a CNC-
machine. TT sub-divides into transport time and waiting time. Transport time
covers the time needed to move the product between work stations, i.e. by hand,
through a crane, driverless transport system, or similar. Waiting time denotes
the time the product spends at a work station or storage not being processed, i.e.
waiting in an input or output buffer for processing or transportation respectively.
Equation 1.1 formalises this straightforward relationship:

N
TLTjob = Z PT()peratinni + TT()peratinni (11)

i=1

Thus, the TLT of a job is simply the sum total of PT and TT for each operation
associated with this job. For simplicity, and unless otherwise stated, LT will
serve as an umbrella term for the above explained for the remainder of this
thesis.

In mass production or with larger lot sizes, fairly accurate LT can be derived by
measuring averages, for example as part of a REFA time study [REF16, p. 187
ff.]. This however is usually not applicable in MTO as lot sizes are small,
products are highly individual, and operations differ from job to job.

1 Introduction
In Need of a Better Planning Basis for Job Scheduling

An accurate lead time prediction (LTP) in an MTO scenario thus has to
occur product-process-resource- (PPR)-specific. Where the product is self-
explanatory, the resource is a machine, machine group, or indeed a human
operator, and a process is what is applied by the resource to the product in
order to refine it. All three elements of this PPR-model influencing LTP are
visualised in Figure 1.6.

» Geometry « Operations « Capabilities

« Material o Parameters « Condition

Influence

Il

[Lead Time Prediction J

Figure 1.6: Simplified illustration of PPR-specific properties influencing LTP.

In practice, LT are estimated by production planners based on experience
rather than data. Roughly 80% of companies are relying on static master data
as default values [SHH*18]. These inaccurate, and in the worst case plain
wrong, estimates lead to sub-optimal or even impossible schedules requiring
manual actions, e.g. ad-hoc re-planning during production. This, in turn,
negatively impacts previously mentioned key performance indicators such as
adherence to schedule or total output. Such, regardless of the method chosen to
solve the underlying scheduling problem, any optimisation algorithm relying
on inaccurate input data is set up to achieve subpar performance. Hence, there
is a need to improve the quality of LT predictions in order to also improve the
downstream planning and scheduling tasks.

10

1.2 Problem Statement

The fact that LTP in the MTO domain is so reliant on the circumstances under
which it is performed also poses a chance. A data-driven approach could
exploit product, process, and resource data in order to draw more accurate
predictions. Fortunately, with the advent of more sophisticated data mining and
Al-powered methods as well as the further digitalisation in the manufacturing
sector in recent years, collecting and exploiting this data has become feasible.

1.2.1 Main Objective

Considering these three key elements, the need for more accurate product-
process-resource-specific lead time prediction on one side, and the availability
of manufacturing data as well as Al-powered methods on the other side, the
main objective (MO) of this thesis is formulated as:

MO: End-to-end methodisation of a product-process-resource-
(PPR-) specific lead time prediction (LTP) for small and medium
enterprises (SME) from the make-to-order (MTQO) domain using
artificial intelligence (Al).

Figure 1.7 illustrates the MO laid out above. Information about the product,
its associated production processes, and resources on the shop floor capable to
implement these processes is to be exploited in order to achieve a more accurate
LTP, which in turn serves as an enabler for smart scheduling approaches.

Product -

Res
Process 1

- Lead)

Res B Ti[ne_
Prediction

Product
Properties

ISR

Py
@
@

Process ...

Enables

Main Objective of this Thesis

Figure 1.7: PPR-specific LTP as an enabler for smart scheduling.

11

1 Introduction
In Need of a Better Planning Basis for Job Scheduling

1.2.2 Research Questions

Further systemising the MO, the following research questions (RQ) serve as a
guideline for this thesis:

Data-related

RQ1.1: What data regarding products, processes, and resources
available in SME is suitable for LTP?

RQ1.2: How does this data need to be (pre-)processed in order to
serve as input for an Al-system?

Al-related

RQ2.1: Which Al-methods are suitable to generate predictive
models realising LTP?

RQ2.2: How can these predictive models be protected from per-
formance degradation over time?

Integration-related

RQ3.1: How can the deployment of these predictive models be
integrated into an SME’s system landscape on a technical level?
RQ3.2: How can the application of this AI-method be integrated
into an SME’s production planning and control on an organisa-
tional level?

1.3 Structure of this Thesis

In order to achieve the MO and contribute to answering the research questions,
this thesis is structured as pictured in Figure 1.8. After the previous introduction
and problem description as well the formulation of the objectives and research
questions in Chapter 1, the managerial and technical foundations are laid out
in the background in Chapter 2. This covers basics in production as well as
Al, especially automated machine learning.

12

1.3 Structure of this Thesis

Introduction
Motivation Problem Statement Objectives Research Questions

Background

Production Artificial Intelligence & (Automated) Machine Learning

State of the Art
Processing & Transition Time Prediction Research Gaps

Framework Description Architecture Assessment

Validation

Real-World & Concept Drift Case Studies Conclusion

Summary & Outlook
Highlights

Re-lteration

Figure 1.8: Structure of this thesis.

This is succeeded by a more narrowly focused, systemised view on the state of
the art in Chapter 3, showcasing relevant works on processing and transition
time prediction. Research gaps are highlighted as well. Describing the core
contribution of this thesis, Chapter 4 introduces a method for Al-supported LTP.
After laying out the framework in which the method is operated, it is described,
and a system architecture is sketched out. The method is theoretically assessed
and differentiated from the state of the art. In Chapter 5, it is validated against
two real-world case studies. Case study A provides unaltered real-world data
while in case study B, an artificial concept drift is introduced. The results of
both case studies are used to draw a conclusion on the practical ability of the
method to fulfil the main objective of this thesis. Finally, Chapter 6 re-iterates
the work conducted in thesis, highlights the results and contributions, and
provides an outlook into the future.

13

2 Background

The Managerial & Technical Foundations

Following the main objective and the associated research questions laid out in
Section 1.2, important fundamentals have to be established. The first part of
this chapter introduces the foundations of inner-company production planning
and control practices under which the main objective has to be achieved.
In contrast, the remainder of this chapter outlines artificial intelligence as
understood in this thesis with a special focus on automated machine learning.

2.1 Production

Production means the creation of goods through the combination of the factors
of production: land, labour, and capital. It denotes a transformative process
in which the inputs, the factors of production, are used to generate an output,
the goods. Thus, it contributes directly to the value-adding activities of a
company [KLL22, p. 3]. In this thesis, the terms production and manufacturing
are used interchangeably.

2.1.1 Production Types

Production can be divided into different types along varying criteria. Two type
schemes relevant to this thesis are laid out here. Schuh and Schmidt define
a type scheme based on lot size and repetition rate, i.e. how many products
are produced per job and how many jobs concerning the same product occur
within a given time period [Sch06, p. 129-130].

15

2 Background
The Managerial & Technical Foundations

Their scheme covers four types of production laid out in Table 2.1 with the
make-to-order (MTO) focus of this thesis highlighted.

Table 2.1: Types of production according to [Sch06, p. 129-130].

Type Lot Size Repetition Rate
One-Time small 0
Make-To-Order <50 <12

& Small Series

Series > 50 <24

Mass very large continuous

Kellner et al. describe a differentiation based on the position of the order
penetration point (OPP) [KLL22, p. 9]. According to Olhager, the OPP marks
the point in the value chain where a given product is linked to a specific
customer. It is therefore also referred to as the customer decoupling point
[O1h03]. Figure 2.1 illustrates typical positions of the OPP in companies’
value chains, highlighting the different types of production.

Make-To-Stock | T D eslgnAssembly‘—w
Assemble-To-Order n ‘ éssembly Shipping]

Make-To-Order i Shipping

Customer

Engineer-To-Order ‘ < Design Manufacturing Assembly Shipping]
Order Penetration Point (OPP) :' """"" S Forecast-based Processes Order-based Processes
(Push) (Pull)

Figure 2.1: OPP-based types of production according to [KLL22, p. 9] based on [OlIh03]. The
MTO focus of this thesis is highlighted.

16

2.1 Production

On one end, a late OPP favours standardised products made in bulk according
to market forecasts and with limited customer input. On the other end, (one-
time-)products are engineered and produced directly to specification, involving
the customer into the value chain early on. This thesis is aimed at the MTO
type of production where lot sizes and repetition rates are modest and the OPP
is located in the value chain prior to the manufacturing stage.

2.1.2 Production Organisation

The production can be organised in various ways, depending on the require-
ments and constraints set by, among others, the production type. This organ-
isation relates to the spatial positioning of resources as well as material flow
between those [Sch06, p. 130-131]. Schuh defines four distinct production
organisations. Extended by another one by Greschke et al., five organisations
are exemplary shown in Figure 2.2.

NLL RS NS CL TN Island Production Series Production Flow Production Matrix Production

Raw Parts Raw Parts Raw Parts Raw Parts Raw Parts
)
& P
=] = P4 F1]
2])
P2 P2 P2
" " & &
{FE P4 P4
!
Finished Parts J Finished Parts Finished Parts Finished Parts Finished Parts

- .:Pmcess1-4

Figure 2.2: Different production organisation models based on [Sch06, p. 131] and [GSTH14].
The job shop focus of this thesis is highlighted.

The job shop production is characterised by similar resources being grouped
together, for example as machine groups. The material flow is undirected
and already visited resources can be revisited. Contrary to this, in the is-
land production, resources are grouped together in a product-oriented fashion.
The material flow is again undirected though individual islands largely act
autonomously with great control over it. In the series production, resources
are set up based on semi-finished part groups. The material flow is directed,
however individual resources may be skipped as needed.

17

2 Background
The Managerial & Technical Foundations

Compared to the prior, the flow production enforces a rigid directional ma-
terial flow which is usually clocked [Sch06, p. 130-131]. Finally, the matrix
production as a more recent concept is aimed at realising high product vari-
ance in simultaneously high volumes. It does so by being highly flexible on
an unclocked schedule. However, this approach also raises complexities in
planning and resource allocation [GSTH14].

As previously mentioned, the choice of production organisation is often dic-
tated by the company circumstances and the production type. According to
Kellner et al., it can be generalised that a production with low complexity and
variability but high volume and degree of standardisation benefits from a flow
production. Contrary to that, a production with high complexity and variabil-
ity but low volume and degree of standardisation is more suited to a job shop
production [KLL22, p. 84]. The latter sets the frame of this thesis with the
contemplated companies operating in an MTO fashion typically organise their
production in a job shop.

2.1.3 Production Planning & Control

In order to facilitate the production, methods of production planning and
control (PPC) are employed. Production planning defines the subject and
processes of the production. Contrary to this, production control governs the
execution of these processes as part of the order fulfilment. According to
Schuh and Roesgen [Sch06, p. 28] as well as Kellner et al. [KLL22, p. 160],
PPC strives to fulfil the following goals:

e High adherence to schedule and readiness to deliver,

high flexibility and smooth capacity utilisation,

short lead times,

low capital tie-up,

low stock and procurement cost.

18

2.1 Production

In the short term, it attempts to do so by generating production schedules aiming
at fulfilling these, at times conflicting, goals as best as possible [KLL22, p. 161].
In the MTO scenario, a production schedule can be viewed as a fluent set of
jobs, each with its individual routing file. In conjunction with the bill of
materials, this defines the timed allocation of resources (e.g. raw materials,
machines, labour) and the operations or production processes to execute in
order to fulfil the job [KLL22, p. 156-158]. In the remainder of this thesis,
the terms operation and process are used interchangeably. Table 2.2 shows a
simplified exemplary routing file featuring five operations.

Table 2.2: Simplified exemplary routing file based on [KLL22, p. 158].

Some Exemplary Part | Job ID: 2023-42-A Routing File ID: 58390
Due Date: 01.09.2023 |Drawing ID: 135-246 | Material: 1.4104

Raw Weight: 6.2kg Fin. Weight: 4.0kg Quantity: 1

Operation Machine Group Est. Processing Time
01 Sawing MG-47-A 35 min.

02 Forging MG-52-E 126 min.

03 Rolling MG-25-B 14 min.

04 Hardness Testing MG-77-F 5 min.

05 Packaging MG-11-C 10 min.

IT-systems to support PPC and especially the generation of production sched-
ules are often using the enterprise resource planning (ERP) as a basis and
reside under various terms according to their respective foci. This includes
PPC-systems, manufacturing execution systems (MES), and advanced plan-
ning and scheduling systems [KLL22, p. 373-375]. However, in SME, which
are the primary focus of this thesis, system landscapes are heterogeneous and
especially in the MTO domain, PPC is often carried out manually with only
limited support from the above-mentioned systems.

19

2 Background
The Managerial & Technical Foundations

2.2 Artificial Intelligence

The term artificial intelligence (AI) was first coined in the 1950s [MMRS55].
A multitude of different definitions of Al have emerged since. Legg and Hutter
provide a comprehensive overview of definitions from researchers of various
fields [LHO7]. With regards to this thesis, three exemplary definitions by Al
researchers are highlighted below. Starting with Nilsson who simply states
that:

»Al [...] is concerned with intelligent behaviour in artefacts.«

Nils J. Nilsson, 1998, [Nil98]
Whereas Poole et al. more concretely define Al as:

»Computational [(artificial)] intelligence is the study of the design
of intelligent agents. An intelligent agent is a system that acts
intelligently: What it does is appropriate for its circumstances
and its goal, it is flexible to changing environments and changing
goals, it learns from experience, and it makes appropriate choices
given perceptual limitations and finite computation.«

David L. Poole et al., 1998, [PMG9S, p. 1]

In their standard textbook on Al, Russel and Norvig discuss what (artificial)
intelligence entails at great length and conclude that:

»[...] intelligence is concerned mainly with rational action. Ide-
ally, an intelligent agent takes the best possible action in a situation.
[Artificial intelligence studies] the problem of building agents that
are intelligent in this sense.«

Stuart J. Russell & Peter Norvig, 2016, [RN16, p. 30]

In order to present a more concrete idea of Al, Figure 2.3 illustrates the many ap-
plication domains Al covers such as but not limited to game playing, automated
reasoning and theorem proving, expert systems, natural language processing
(NLP), human performance modelling (HPM), planning and robotics, as well
as machine learning (ML) [Lug09, p. 20 ff.].

20

2.2 Artificial Intelligence

In relation to this thesis, ML is the most relevant application domain of Al
hence it is highlighted and discussed in detail in the subsequent section.

Game
Playing

Machine
Learning

Reasoning

Artifical
Intelligence

Robotics

Figure 2.3: Application domains of artificial intelligence according to [Lug09, p. 20 ff.].

2.2.1 Machine Learning

Similar to the history of Al, the origins of ML lie within the 1950s where
Samuel first investigated how computers could be set up to solve the game of
checkers without being explicitly programmed to by employing the process
of learning [Sam59]. A widely accepted formalised definition of ML was
decades later coined by Mitchell:

»A computer program is said to learn from experience E with
respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience
E.«

Tom Mitchell, 1997, [Mit97, p. 2]

21

2 Background
The Managerial & Technical Foundations

ML usually addresses tasks to which solutions are difficult or unpractical to
programme manually. Instead, experiences in the form of data are used to learn
from and develop a model which is able to solve the task. This is done using
a learning algorithm and this process is referred to as training. In order to
assess the ability of the model to solve the problem, task-specific performance
measures are computed and tracked accordingly. Popular performance mea-
sures are often error-distance-based, i.e. they measure the difference between
a model’s predictions and the ground truth [GBC16, p. 99-105].

The challenge in ML is for models to maintain a constant performance on new,
previously unseen data, which is referred to as generalisation. During training,
the performance measure is used to determine and minimise the training error.
Once the model is confronted with data is has not seen during training, the
testing error can be computed. The resulting difference between the two error
measures provides an idea on how well the model generalises. The ability of
the ML setup to minimise both the training error and the difference between
the training and testing error determines how well it will perform on the task in
practice. The circumstance of an ML algorithm failing to achieve a sufficiently
low training error is called underfitting. On the other hand, overfitting occurs
when an ML algorithm suffers from a large gap between training and testing
errors [GBC16, p. 110-113]. Figure 2.4 visualises the described.

Underfitting Appropriate Fitting Overfitting

O t O t O t
u‘ pui utpul ul Eu
o
© o
o
5

> Input > Input > Input

QO Ground Truth Prediction

Figure 2.4: Underfitting, appropriate fitting, and overfitting. Based on [GBC16, p. 113].

22

2.2 Artificial Intelligence

The input axis corresponds to the predictors, i.e. the variables to draw a pre-
diction from, while the output axis refers to the target variable to be predicted.
Inputs or predictors are also called features. The aforementioned ground truth
is also referred to as label in the context of the training. In the remainder of
this thesis, the respective terms are used interchangeably.

Types of Learning

ML is subdivided into different types of learning. These types can be broken
down further into learning problems and techniques. There are three distinct
learning problems relevant to this thesis:

o Supervised learning describes the approach of using a labelled historical
dataset, which contains both the predictor variables as well as the target
variable, to train and test a predictive model [GBC16, p. 105]. Each
data point is represented as a feature vector, a numerical representation
of the data [ZC18, p. 3]. It is of fixed size and is tied to a corresponding
target variable or label [Bis06, p. 3]. The term supervised stems from the
idea that there is some teacher (e.g. a human expert) who provides the
ground truth (label) to the algorithm so it can learn the correct relations
from it. Before training, the data is separated into training and test sets.
During training, an algorithm will be fed with both the training set’s
feature vectors and their corresponding labels. In the subsequent stage,
the trained model will be presented with the previously unseen feature
vectors from the test set on which it will make predictions. These
predictions are then compared against the test set’s labels in order to
measure the model’s ability to generalise [RN16, p. 696]. In practice,
obtaining labelled data can be a challenging task, often only achieved
through manual labelling by human experts. A supervised learning
problem comes in two flavours. A classification is present when the
labels fall into discrete categories, e.g. when categorising car shapes into
sedan, convertible, estate, etc. A special case is the binary classification
where there are only two classes, 1 or 0. For example, when trying
to detect whether a given image contains a cat (class 1) or not (class
0). A regression is present when the target variable is continuous, e.g.
when predicting the oil temperature of an engine under different running
conditions [RN16, p. 696 ff.].

23

2 Background
The Managerial & Technical Foundations

In some cases, a regression may be discretised to a classification by bin-
ning continuous variable ranges into fixed-size categories. An example
would be predicting the age bracket ([0-12], [13-18], [19-35], etc.) given
individuals belong to. The problem of lead time prediction as an ML
task can be modelled as either a regression or a classification which is
further discussed later in Section 3.1.

o Unsupervised learning, as opposed to its supervised counterpart, deals
with unlabelled data [GBC16, p. 105]. The most common unsupervised
learning task is clustering in which the algorithm tries to find clusters
of similar data points [RN16, p. 694-695]. As an example, a model
might cluster data about car shapes instinctively into the above men-
tioned classes without explicitly being told to, just by grouping together
similar data points. Another useful example from the production domain
would be the condition monitoring of an engine, where an unsupervised
learning algorithm tries to detect anomalies in the machine’s parameters
at any given time, highlighting potential faults [STB*22].

o Semi-supervised learning is a special case falling between the above-
mentioned. This problem type occurs when there is some part of
the data which is labelled and another, usually larger, part is unla-
belled [GBC16, p. 243-244]. And even the labels which are present
are not to be trusted universally as inaccuracies beyond noise may oc-
cur. Forreal-world problems, a clear-cut distinction between supervised,
semi-supervised, and unsupervised is rarely achieved [RN16, p. 695].
Especially with heterogeneous shop floor data from different sources,
in varying quantities and qualities, and often collected with human in-
volvement, semi-supervised as opposed to supervised learning has to be
expected.

The literature defines more learning problems and variations besides the ones
mentioned above. Detailed information on these can be found in textbooks
such as [Mit97, Vap98, Bis06, HTF09, Mur12, RN16, GBC16, WFH16, SB138,
MRT18]. Figure 2.3 summarises the previously discussed learning problems
as relevant to this thesis with the main focus on (semi-)supervised and rein-
forcement learning.

24

2.2 Artificial Intelligence

Artifical
Intelligence

Machine
Learning

Supervised
Learning

[Regression ICIassiﬁcation } ----------------- { Clustering IAugr?jr:?ation]

Semi-Supervised
Learning

Unsupervised
Learning

Figure 2.5: Learning-problem-oriented view of machine learning as relevant to this thesis.

Learning Techniques

Complementary to the learning-problem-oriented view on machine learning,
a technique-oriented view can be established. Again, the entire palette of
learning techniques can be found in the above-cited textbooks. For this thesis,
four techniques stick out and are briefly laid out below:

e Offline learning (or offline training, batch learning, batch training) is
the standard approach in traditional ML and describes the practice of
training a model on a finite amount of data collected at some point in
time [Murl2, p. 261]. In a supervised learning scenario in its simplest
form, the data is divided into a training and test set. The training set is
used to train the model using some algorithm and the test set, containing
data not yet seen by the model, is then used to assess its performance
on the given learning task. It is thus the simplest and most intuitive
technique to perform machine learning. However, during deployment
the model might encounter data that differs in its statistical properties
from the data the model was originally trained on and, since the model
cannot simply adjust itself to these changes, its performance degrades
over time. This is known as concept drift [GZB*14], which is discussed
in detail in Section 2.2.3.

25

2 Background
The Managerial & Technical Foundations

26

In this offline scenario, the only way to cope with concept drift is to
collect sufficient amounts of more recent data and retrain the model
from scratch. Offline training might also be unsuited when there is
simply too much data to fit into memory at once or when dealing with
continuous data streams, especially time-series-data. In the remainder
of this thesis, offline / batch learning / training are used synonymously.

Online learning, (or online training, incremental learning, incremen-
tal training) as opposed to offline learning, governs a learning ap-
proach where the model is trained incrementally on a case-by-case-
basis [HTF09, p. 397]. This means that data points are fed to the algo-
rithm individually, often in a continuos data stream. Thus, the model
can be trained even during deployment as it first predicts on a given data
point and is eventually told the ground truth which triggers an (ever so
slight) adjustment to the model [RN16, p. 752-753]. This approach has
two key advantages. For one, it is often used when the data volume is so
great, it simply would not fit into a given system’s memory all at once.
Hence the incremental approach allows the data to be fed as a stream and
thus never exceeds the system’s memory capacity. Another advantage
lies in the fact that the model is able to continuously learn and improve
its predictive power, and is thus, within limits, capable of adapting to
shifts in the underlying data [MRT18, 177-206]. Especially the second
advantage of lifelong learning makes online learning a very interesting
method to investigate for the ever-changing nature of problem spaces in
the context of a shop floor, especially within highly customised MTO
production. In the remainder of this thesis, online learning / training and
incremental learning / training are used synonymously.

Ensemble learning combines a collection of multiple models to solve a
problem [RN16, p. 748-752]. This approach is predicated on the idea
that, under given circumstances, a set of simpler models joined together
outperforms a singular, more complex model [HTF09, p. 605]. The
ensemble model is achieved often by weighting the individual models’
outputs and then averaging them together [GBCI16, p. 472]. Other
popular methods include but are not limited to boosting [MRT18, p. 145-
170], bagging [RN16, p. 760-762], and stacking [HTFO09, p. 290].

2.2 Artificial Intelligence

A key advantage of ensemble learning is that individual models can be
trained comparatively cheaply in a highly parallelised fashion, making
them suitable for periodic or event-driven retraining in order to maintain
model quality.

e Deep learning describes a method centred around artificial neural net-
works (ANN). A deep neural network contains many hidden layers
[Ben09]. Within these layers, multiple simple networks can be intel-
ligently wired together in order to form a complex network [GBC16,
p- 1-2]. These complex networks can be deployed to tackle complicated
learning problems which traditional machine learning techniques would
not be able to solve. DNNs frequently make headlines, for example when
IBM’s Deep Blue beat chess champion Gary Kasparov in 1997 [CHHO02],
or AlphaGo which mastered the game Go [SH16], and more recently the
powerful GPT large language models (LLM) [BMR*20]. While deep
learning may be able to address complicated learning problems, it is an
equally resource-hungry endeavour usually requiring vast amounts of
data, computational resources, and time [GBC16, p. 19-22].

2.2.2 Feature Engineering

The starting point for any learning technique however is the data, which is
often not in a shape suited for ML [Cad17, p. 13]. In order to produce data
an algorithm can successfully learn from, several important steps have to be
completed in order to transform this raw data into features. This process is
called feature engineering, often also associated with data pre-processing, and
covers a range of activities [ZC18, p. 3]. A first step forms the exploratory
data analysis (EDA) with the goal of establishing a fundamental understand-
ing of the data [Tuk77]. This is facilitated mostly by determining statistical
properties and producing human-readable visualisations. It is used to drive
the understanding of the data and discover relationships among it, providing a
basis for the downstream feature engineering activities. Figure 2.6 provides a
few selected examples of popular visualisation techniques.

27

2 Background
The Managerial & Technical Foundations

Number of
Observations

A
Lower " Upper
Quartile (1) Median quarile (@3)
Min Max
(ex. Outliers) (ex. Outliers)
> Value
VarY
A A
.o°o° 10
° ® 0 © Var C
o) (ONC) 05
© e o
(@) ®] Var B 0.0
O © O
0.5
o Oo Var A
O ° O
@) @) > -1.0
VarA VarB VarC

» Var X

Figure 2.6: Examples of data visualisation techniques. Clockwise top left to bottom left: his-
togram, box plot, correlation matrix, and scatter plot. Based on [Tuk77].

Following the EDA, the actual transformation from data to features may com-
mence. This includes cleaning the data of unwanted or erroneous data points
as well as handling missing values. Missing values are most commonly ad-
dressed either by outright deletion of the affected data points [AlIO1, p. 6-
8] or imputation of values, for example by replacing missing values with
means [Lit12, p. 69-72]. There are essentially two types of data: numerical or
continuous, and categorical or qualitative, which require different approaches.
Numerical variables often differ in magnitude, are skewed, or contain extreme
values which negatively impacts learner performance [Kuh20]. Scaling data to
counter magnitude issues can be achieved through standardisation or normal-
isation. In standardisation, from every variable value the variable’s mean is
subtracted and the result is divided by the variable’s standard deviation [GE06].
This is shown in Equation 2.1.

¥ = (i — i) Q2.1

1 o

28

2.2 Artificial Intelligence

In normalisation, each value is subtracted by the variable’s minimum and the
difference is divided by the variable’s maximum subtracted by its minimum
[AG19, p. 40]. This is shown in Equation 2.2.

(X; = Xmin,i)

x| = L omini] 2.2)

i (xmax,i _xmin,i)

Another popular preprocessing technique on numerical data is binning, whereby
a continuous variable is discretised as values are replaced by their assigned
bins. Binning may be conducted on the basis of fixed widths or quantiles.
An example would be the binning of a continuous age variable into discrete
age bins (0-12, 13-17, ..., 75+ years old) [ZC18, p. 10-15]. Depending on the
individual learning problem, more advanced techniques, such as Fourier trans-
formation, extraction of local features, linear and non-linear space embedding
methods, or non-linear expansions may be required to preprocess numerical
data [GEO6].

The second type of data, categorical one, is often represented through strings,
which most learning algorithms cannot process. An example would be country
names or assessments such as "good", "neutral", "bad". Transforming categor-
ical into numerical data is achieved through encoding [Kuh20]. There exist
numerous schemes to encode categorical data with various impacts on model
performance, depending on the learning problem and chosen algorithm. Two
of these, the label encoder and the one-hot-encoder [ZC18, p. 78-79], are
exemplary shown in Figure 2.7.

29

2 Background
The Managerial & Technical Foundations

-
Other G Label Encoder Other @
Columns gory Columns gory
Potential
Misinterpretation
R Category © / as Ordinal Data

2

1 Potential
ICurse of Dimensionality

"4
A =
Other Catego One-Hot-Encoder Other Category Category Category Category Category
Columns gory Columns A B Cc N
A Category 1 0 0 0 0
A = Category A
C r~ B = Category B - 0 0 1 0 0
C = Category C
E N= Ca't'égory n ® L © © €
- -

Figure 2.7: Label encoder on the top versus one-hot-encoder [ZC18, p. 78-79] at the bottom.

A label encoder is essentially a key-value-map where each unique category
value for any given category column in the data is assigned a number. During
the encoding stage, every categorical value encountered is transformed into its
numerical counterpart. This is one of the simplest form of encoding, both quick
to execute and easy to interpret. However, some ML algorithms might learn an
ordinal pattern from the encoded data which is not intended. It could thus lead
to false correlations being discovered by the model, thereby impacting model
performance. As an alternative on the opposite end of available encoding
methods, the one-hot-encoder circumvents this problem. It does so by remov-
ing the original category column while adding a new column for each unique
categorical value encountered. Each of these new columns contains a strictly
binary value, O for when the category is not present in the original feature
vector, and 1 when it is [ZC18, p. 78-79]. This prevents the ordinal problem of
the label encoder by providing a distinct feature for every category value but
does so at the cost of increasing the overall dimensionality of the data. In turn,
the increase in dimensionality might negatively affect training performance as
it leads to slower convergence. Even worse, it could lead to overfitting the
model. This phenomenon is referred to as the curse of dimensionality [Bel03].

30

2.2 Artificial Intelligence

There exist numerous approaches to mitigate this problem through dimension-
ality reduction achieved by feature selection. Three principal approaches in this

regard are filters, wrappers, and embedded methods, as shown in Figure 2.8.

Evaluation Single F Relevance F Feature F Performance Y
Feature In Subset Learning
Relevance Context Relevance Machine
F w w
Statistical Cross Performance
Tests Validation Bounds
Feature Heuristic F Exhaustive F Ne’s:t:rtilé: dbset F Single F
Subset / Stochastic (W w w Feature
A Search / Backward H
Generation Search I Ranking
Elimination

Figure 2.8: Filter (F) vs. Wrapper (W) vs. Embedded Methods (E). Based on [GE06]. Illustration
inspired by [Sau20, p. 52].

Filter, wrapper, and embedded methods are distinguished by which criteria
are used to evaluate features, how these criteria are estimated, and what
search strategy for subset generation is employed. Filter methods function
independently from the model, using statistical tests, such as correlation co-
efficients [GE06]. Correlation between features and outputs indicates strong
features while correlation among features should be minimised where pos-
sible [LCW*18]. Different methods include feature selection through the
Pearson correlation coefficient [Clel1, p. 107-111], the Spearman rank corre-
lation [Clel1, p. 113-119], the Chi? score [LS95], the Fisher score [GLH11],
or methods based on mutual information [BPZL12,LCW™*18].

Wrapper methods use the model performance metrics to determine a feature
subset and are thus dependent on the learning algorithm. Cross validation is a
popular wrapper technique where, in its simplest form, the data is divided into
arbitrary subsets of which one is used for testing and the others for training.
Subsets are then rotated and run until every subset has been used for testing
once. The total error is computed by averaging the errors of each run [GE06].

31

2 Background
The Managerial & Technical Foundations

Embedded methods are similar to wrappers but are directly integrated into
the learning algorithm. All methods can utilise search strategies to optimise
the process of discovering a sufficient subset of features. Furthermore, hybrid
approaches are possible whereby filers and wrappers or embedded methods
are combined in the learning system [GE06].

In an online learning scenario however, where data is arriving incrementally,
many of the aforementioned methods do not function properly as they are tai-
lored to offline learning where the entire dataset is available upfront [GRB*19].
A particular problem in this regard occurs when features become increasingly
or decreasingly important to the learning algorithm over time, which is referred
to as feature drift [NWNW12]. This is not to be confused with the aforemen-
tioned concept drift. In practice and where possible, running statistics can be
applied instead of static ones to realise filter methods [MHM™*21]. Examples
for more sophisticated algorithmic approaches would be fast online streaming
feature selection (Fast-OSFS) [WYD*13] and the scalable and accurate on
line approach for feature selection (SAOLA) [YWDP14]. However, Gomes
et al. note in a survey paper that the state of the art is not sufficient and new
methods for feature selection in data streams, particularly focused on adapting
to feature drift, must be developed in the future [GRB*19].

2.2.3 Concept Drift Handling

As previously mentioned in Section 2.2.1, in online learning a phenomenon
called concept drift may be encountered. Gama et al. state that a concept
in supervised learning describes the joint distribution P(y|X) where X are
the features and y the corresponding target variable. A concept drift occurs
when this joint distribution changes in a way that renders a model predicting
y from X unable to perform this task or it suffers significant performance loss
doing so [GZB*14]. This may creep in over time, thus it cannot be foreseen
during model development. An example from the manufacturing domain
could be a change in the shop floor configuration, e.g. the introduction of some
more efficient production process or resource resulting in lower lead times.
A fact which is unknown to any model trained on data from the old shop
floor configuration and potential cause for less accurate predictions ultimately
resulting in performance degradation.

32

2.2 Artificial Intelligence

Distinctions can be made with regards to the impact a concept drift might have
on a predictive model. Gama et al. differentiate between two types of drift as
shown in Figure 2.9. The left side of the figure illustrates the original data
distribution a model distinguishing two classes was trained on. In the middle,
real concept drift occurs as the data distribution P(y|X) is shifting, moving the
decision boundary and thereby invalidating the model. The right side shows
what is called a virtual drift in which P(X) changes but P(y|X) is unaffected.
The data distribution has changed but the decision boundary has not moved
and the model remains functional [GZB*14].

N\ Original Data \ Real Concept Drift N\ Virtual Drift
(O] @)
%o © e 8 ooO e} —-6'6'
C)O ° o o 1) o ° o o © ° 00 1) o o
0 0 o || T o © g 00 g o
© /7,00 ¢ 00 o° 09 o o
o o_ Oy
o ©o© 09094 0 o
oo®o 0%

Figure 2.9: Types of drifts where circles represent instances, colours represent different classes,
and the dotted line indicates the decision boundary. Original illustration by [GZB*14].

Within the subdomain of real concept drift, distinctions can be made to the
concept drift patterns as shown in Figure 2.10. The figure visualises how the
mean value of a given set of data shifts over time under different concept drift
patterns. Sudden concept drift occurs abruptly, showing a clear offset in the
mean. Incremental concept drift creeps in over time. Gradual concept drift
bounces back and forth for some time but ultimately converges on a stable new
concept. Lastly, reoccurring concept drift exhibits repeating shifts over time
which level back to the original mean before reoccurring. In reality of course,
a distinction between these patterns may not be clear cut and patterns might
evolve even further over time. As Webb et al. note, especially gradual concept
drift is difficult to define and characterise in reality [WHC*16]. It is also worth
pointing out that individual outliers are not considered concept drift in this
sense [GZB*14].

33

2 Background
The Managerial & Technical Foundations

A Sudden A Incremental
Mean Mean
> >
. ” N »
Time Time
A Gradual A Reoccurring
Mean Mean
> >
N > - >
Time Time

Figure 2.10: Concept drift patterns. Based on [GZB*14].

Handling concept drift is approached via two mechanisms. The defection
mechanism’s task is to identify concept drift as soon as it occurs. The detection
has to be robust enough to distinguish drift from outliers and noise. When
necessary, the adaptation mechanism then alters the underlying model in a way
so that it retains its performance on the learning problem at hand [GZB*14].

Concept drift detectors monitor the input data stream and / or model-related
performance criteria. They are typically based on methods revolving around
sequential analysis, statistical process control, monitoring distributions on
two different time-windows, or contextual methods, which combine different
approaches [GZB*14]. One of the earliest drift detectors is based on the
Page-Hinkley-Test which tracks the mean value of the observed variable and
signals drift detection once a given threshold is passed [Pag54]. Another
more recent and popular method is the Drift Detection Method (DDM), which
monitors the model’s error rate [GMCRO04]. DDM was later expanded into the
Early Drift Detection Method (EDDM) which operates on running statistics
and shows improved detection capabilities, particularly on gradual concept
drift [BGDF*06].

34

2.2 Artificial Intelligence

An example for a modern drift detector popular among practitioners is the
ADaptive WINdowing (ADWIN) algorithm [BG07]. As the name suggests,
ADWIN maintains a flexibly-sized sliding window of the most recent data
points. As long as the observed variable’s distribution remains static, the
window continues to grow in order to retain a high enough variance in the ob-
served data. The actual detection is realised by dividing the window into two
sub-windows and computing mean values of the observed variable for both.
Once the difference between the mean values in these sub-windows surpasses
a given threshold, i.e. concept a drift is detected, the older sub-window is
discarded, slashing the window in half. As the distribution stabilises, the win-
dow continues to grow again. Using separate detector instances with different
thresholds, a warning-detection-scheme can be implemented, whereby early
warnings of potential concept drifts can be issued while only actually adapting
a model once a significant enough concept drift occurred. As an alternative,
the Kolmogorov-Smirnov Windowing (KSWIN) drift detector also relies on
sliding windows, though fixed in size, but applies Kolmogorov-Smirnov tests
on two subsequent windows in order to identify concept drift [RHS20]. The
choice of detector is ultimately problem-specific though it is possible to form
detection-ensembles by combining multiple detectors [TO23].

Model adaptation can be conducted under two broad strategies. Blind adap-
tations are proactive and alter a model without explicit detection of a concept
drift. This is typically achieved by periodic retraining based on fixed-sized
sliding windows. Note that most online learners can be considered as blind
adaptation as models are adjusted to the most recent data. Informed strate-
gies are reactive by nature and require a trigger, e.g. a concept drift detector
signal, to be implemented. Adaptations either come in the form of a global
replacement, whereby the existing model is discarded and retrained entirely.
Or as a local replacement, whereby only some aspects of the existing model are
altered [GZB*14]. An example for the latter is the Hoeffding tree algorithm,
which realises an incrementally learning decision tree [DHOO].

35

2 Background
The Managerial & Technical Foundations

Given the node structure of the tree, the detector can be used to identify the node
at which a concept drift occurred. Based on the observation that nodes near the
tree root were generated from older and nodes near the leaves from newer data,
the adaptation mechanism then pushes up the newer information from the leave
nodes. Pruning the leaves afterwards, it therefore forgets information from the
time before the concept drift occurred [GZB*14]. Which detector-adaptation
scheme to use is ultimately problem-specific and not discussed further at this
point.

2.2.4 Automated Machine Learning

Developing ML models is a laborious and tedious work characterised by its
largely experimental nature. Repetitive tasks, such as algorithm selection or
hyperparameter optimisation (HPO), are often carried out in a trial-and-error
fashion. At the same time, the growing need for data-driven solutions is not
matched by the supply of ML experts. In a2015 article in the Harvard Business
Review, Frankel appropriately condensed this problem down to:

»Data Scientists Don’t Scale«

Stuart Frankel, 2015, [Fral5]

In this article, Frankel argues that human-powered data science is simply not a
scalable solution as there are not enough experts on the labour market. Hence
the automation of tasks within data science, and consequently ML, becomes
a necessity. This need has also been recognised by the scientific community,
leading to the subfield of automated machine learning (AutoML). In an early
work by Feurer et al., the authors provided a comprehensive definition:

»We define AutoML as the problem of automatically (without
human input) producing test set predictions for a new dataset
within a fixed computational budget.«

Matthias Feurer et al., 2015, [FKE*15]

36

2.2 Artificial Intelligence

The authors formalised this in Definition 2.3 as:

Fori=1,...n+m,letx; € R%denote a feature vector and y; € Y the
corresponding target value. Given a training dataset Dy 4in =
{(x1,¥1), ---» (Xn, yn)} and the feature vectors xp41, ..., Xn+m Of a test dataset
Diest = {(xn+1’ yn+l)» ooy (xn+ms yn+m)} drawn from the same
underlying data distribution, as well as a resource budget b
and a loss metric L(-,-) , the AutoML problem is to (automatically) produce

test set predictions Y,+1, ..., Yn+m- The loss of a solution

1 m
Vitls s Inm to the AutoML problem is given by — L(Pn+js Ynsj)-
—

J
(2.3)

Feurer et al. further state that AutoML may be viewed as a combined algorithm
selection and hyperparameter optimisation (CASH) problem. CASH was first
introduced by Thornton et al. as a combination of the two problems of first
selecting a suitable algorithm for a learning task and then optimising the hyper-
parameters associated with it [THHLB13]. The formal definition by Thornton
et al. is provided in Definition 2.4:

k
Ay € argmin 1 Z L(A;J), D:;)ain, Df»lilid) 2.4)
AU eA,1eAD) i=1

A denotes a set of algorithms while A represents the associated hyperparameter
spaces. The goal is to find the joint algorithm and hyperparameter setting
that minimises the loss on a dataset D over K cross-validation folds. CASH
is sometimes also referred to as the full model selection problem [EMS09]
[HKV19, p. 5]. However, when viewed from an online training perspective,
the definition provided in Equation 2.4 is not sufficient as it does assume finite
datasets whereas online training is centred around continuous data streams.
Hence, based on [FKE*15, Imb20], Kulbach et al. define the online CASH
problem as stated in Definition 2.5 [KMB*22]:

37

2 Background
The Managerial & Technical Foundations

Let A = {A(]), o A(R)} be a set of step independent algorithms,
and let the hyperparameters of each algorithm AY) have a domain AY).
Further, let S = ey, e, ..., e, ... be an ordered sequence of examples of
possibly infinite length and let t be the current observed example.
Further, let S~ = ey, ..., e; be an ordered sequence of past examples.
Each example e; = {x;, y;} is a tuple of p predictive attributes

x; = (i, ..., X;,p) and the corresponding label y;. Let L(Pg 2 7(ST), sY)

denote the loss that algorithm combination PY) achieves on a subset

of validation examples SV C S~ when trained on

T - . - T v
S* C S with hyperparameters A. Denote that S NS" = 0.
Then the Online CASH problem is to find the joint algorithm combination

and hyperparmeter setting that minimizes the loss:

« F 2 . Ty ¢V
g A A € argmin L(P,2=(5).87) (25)
pWeP . 1eAV) AcA,geG &4

In order to solve the CASH problem within the context of AutoML, Hutter
et al. describe three central methods, namely HPO [HKV19, p. 3-33], meta-
learning [HKV 19, p. 35-61], and neural architecture search [HKV 19, p. 63-77]
(NAS), which are briefly outlined in the following.

Hyperparameter Optimisation

Hyperparameters are parameters tied to the specific ML algorithm, as opposed
to the model, and are set before training commences. Every ML algorithm
is affected by hyperparameters which directly impact its performance. An
example for a hyperparameter is the learning rate @, which governs the step
size in the popular gradient descent algorithm [CZ13, p. 131-133]. A low
value might increase model quality at the cost of longer training time while a
high value facilitates faster convergence with the possibility of the algorithm
failing to find an optimal or near-optima solution.

38

2.2 Artificial Intelligence

Finding these values for such hyperparameters is usually referred to as HPO or
hyperparameter tuning and is often a labour-intensive manual trial-and-error-
process. In the context of AutoML, it is essential that HPO is conducted in
an automated fashion [HKV 19, p. 3-4]. The formalisation of this optimisation
problem is given by Hutter et al. in Definition 2.6 [HKV 19, p. 5].

/l* = argmin E(D;mm,Dvuli,d)NDV(L’ A/l, Dtrain’ Dvalid) (26)
AeA

For an algorithm A operating on a dataset D, HPO tries to find a combination
of hyperparameters 4 which minimises the loss L [HKV19, p. 5]. In practice
however, aside from the loss, multiple optimisation goals are often considered
[HB16]. This may include conflicting objectives, such as model complexity
versus training accuracy [Ige05].

To address the problem of HPO, several methods exist. Hutter et al. compiled a
summary of state of the art approaches [HKV 19, p. 7-18]. The authors broadly
divide them into two categories: blackbox HPO [HKV 19, p. 7-13] and multi-
fidelity optimisation [HKV19, p. 14-18]. Blackbox methods are sub-divided
further into model-free optimisation [HKV19, p. 7-8] and bayesian optimisa-
tion (BO) [HKV19, p. 9-13]. Model-free methods entail the well-known grid
search, sometimes also referred to as full factorial design [Mon13, p. 183-232],
where sets of values for each hyperparameter are defined and then organised
in a grid, which is then searched exhaustively for the best combination. Grid
search is computationally expensive as it scales exponentially with the dimen-
sionality of the search space. Hence random search poses an alternative where
hyperparameter combinations are sampled at random until a satisfying solu-
tion is found or a computational or time budget is exceeded [BB12]. In cases
where the impact of the different hyperparameters differs from one another,
this works better than grid search [HKV19, p. 7]. Figure 2.11 illustrates a
simplified example. Random search is able to evaluate more unique values for
the individual parameters while requiring the same amount of trials as grid
search does.

39

2 Background
The Managerial & Technical Foundations

Grid Search Random Search

Unimportant Parameter
@)
(@)
(@)
Unimportant Parameter
o

@) o o °

Important Parameter Important Parameter

Figure 2.11: Comparing grid and random search over nine trials of minimising a function with
two parameters, one important and one unimportant. Based on [BB12].

However, both grid and random search scale poorly compared to more advanced
methods. Hutter et al. note several more model-free approaches, namely
standard population-based methods such as evolutionary algorithms or particle
swarm optimisation [HKV 19, p. 8]. Especially the covariance matrix adaption
evolutionary strategy [LH16] is cited as both simple and competitive within
the frame of blackbox optimisation [BBO18].

Another popular technique is the aforementioned BO [HKV19, p. 9-13]. As
the name suggests, BO is leveraging the Bayes’ theorem [Joy21] insofar that
it utilises prior information to navigate the search space in order to find the
extrema more efficiently. It does so by defining a probabilistic surrogate
model, sometimes also referred to as surrogate function or response surface,
which is a Bayesian approximation of the objective function. It is vital that
the surrogate model can be evaluated efficiently [SSW*16]. Based on prior
knowledge, the acquisition function then selects the next best sample within
the search space for evaluation. In turn, the evaluating the sample triggers an
update of the surrogate model. This process is repeated until the optimum
or at least a satisfying solution is found, or until computational resources are
depleted [BCdAF10].

40

2.2 Artificial Intelligence

In contrast to the described blackbox approaches to HPO, multi-fidelity opti-
misation poses an alternative, especially for large data sets where exploring
different hyperparameter configurations is costly and time-consuming. At its
core, it tries to scale down the learning problem, optimise the hyperparameters
over this simplified problem, and then re-apply the results back to the original
problem [HKV19, p. 14-18]. This can be achieved through various techniques.
In its simplest form, reducing the overall data by only using small representative
subsets for training and HPO is sufficient to achieve satisfying performance
while saving training time [Pet00, VDB04,KPB15,SST16]. A more advanced
technique is learning curve-based prediction for early stopping, which, based
on few training iterations, extrapolates the learning curve for a given hyper-
parameter configuration and automatically terminates the training when the
predicted learning curve looks unpromising [DSH15]. Furthermore, bandit-
based algorithm selection methods exist which are concerned with choosing the
most promising algorithm and hyperparameter configurations from finite sets.
Popular algorithms include but are not limited to sequential halving [KKS13]
and Hyperband [LID*17]. Figure 2.12 illustrates the bandit-based approach of
sequential halving (by different authors also referred to as successive halving).

Performance

1st 2nd 3rd
Halving Halving Halving

(_ i

.~ i
3/ Best Model

r ' ! Configuration

Model ; ' '

Configurations* g ' :

",
\:
— i T I T » Budget %
0% 12.5% 25% 50% 100%

Figure 2.12: Sketch of sequential halving with eight model configurations and three halvings.
Based on [KKS13].

41

2 Background
The Managerial & Technical Foundations

The algorithm functions based on the assumption that high performing con-
figurations already present themselves in early stages of training and continue
to perform well over the entire training data. Starting from a large pool of
model configurations, each is fed portions of the data until enough computa-
tional budget is spent for a cut-off to occur. In this, the lower half of model
configurations on the performance curve is discarded. Training then continues
with the remaining half until the next cut-off point is reached and so on, until
only the best performing single model configuration remains [KKS13].

Noteworthy in this regard is also the relatively recent emergence of evolution-
based algorithms for online CASH, such as EvO AutoML by Kulbach et al.,
which utilises a genetic programming approach [KMB*22]. Note that different
optimisation techniques are not necessarily mutually exclusive. For example,
BOHB combines BO with Hyperband in order to ensure both high performance
and fast convergence [FKH18]. Lastly, algorithms exist which are able to
choose fidelities adaptively at runtime. For example, multi-task Bayesian
optimisation is able to dynamically switch between low- and high-fidelity
based on a given acquisition function, allowing for cheaper exploration in the
beginning of the optimisation process versus costly exploitation of promising
hyperparameter configurations towards the end [SSA13].

Meta-Learning

Meta-learning describes the process of learning to how to learn [HKV19,
p. 35]. In machine learning, this means applying experience gained on previ-
ous learning tasks to the problem at hand. To do so, meta-learning exploits
information about prior models and model evaluations as well as the task
properties [Vanl8]. Learning from prior models subsumes several popular
techniques. In transfer learning, models trained on some task are used as a
basis for training efforts on a new but similar task [TP98]. Another technique
which gained traction in recent years, especially in the context of deep learning,
is few-shot learning. Compared to transfer learning, few-shot learning is able
to produce capable models with very little training data. In that, it tries to
mimic humans in their ability to learn new tasks using prior experience and
few examples only [LUTG17].

42

2.2 Artificial Intelligence

Neural Architecture Search

NAS is an AutoML method targeted at training artificial neural networks
(ANN), especially in the context of deep learning. As the name suggests,
NAS primarily deals with engineering neural architectures in an automated
fashion [HKV19, p. 64]. It does so across three optimisation dimensions.
The search space dimension characterises all theoretically possible architec-
tures and is parameterised by the number of layers, the operations these layers
conduct as well as the hyperparameters associated with these operations. Tech-
niques exist to limit the potentially infinite search spaces beforehand. This in-
cludes simple measures, like limiting the maximum number of layers, but also
encompasses more advanced methods, such as crafting architectures by stack-
ing pre-defined cells (building blocks containing sub-architectures) [ZVSL18].
The second dimension search strategy defines the methods to systematically
explore the search space. To do so, it leverages the entire portfolio of op-
timisation techniques. This includes random or grid search as well as BO,
heuristics like evolutionary algorithms, gradient-based approaches, and finally,
meta-machine-learning in the form of reinforcement learning agents optimising
ANN architectures. The third dimension, the performance estimation strategy,
entails methods to speed up measuring the performance of different architec-
ture and parameter combinations as examining many training-validation cycles
is computationally expensive. These methods include but are not limited to
reducing training time by using less data or fewer training epochs in order to
generate low-fidelity performance estimates, extrapolating learning curves of
models trained on reduced data, warm-starting training processes based on
already trained models, and training one-shot models which can be viewed as
a supergraph from which subgraph models are derived which, in turn, inherit
the once-trained weights of the supergraph [EMH19].

Solutions

Based on the theoretical foundations established above, a multitude of different
AutoML solutions has emerged within recent years. Arguably the first one gain-
ing widespread recognition was Auto-WEKA by Thornton et al. [THHLB13].
It is based on the popular WEKA data mining and machine learning frame-
work [FHW16]. In its latest iteration, it utilises BO to achieve efficient HPO.

43

2 Background
The Managerial & Technical Foundations

Since the early days of AutoML, numerous other solutions have entered the
market, with a few examples being provided in the following. TPOT by Randal
S. Olson et al. [OBUM16] is built on top of scikit-learn [PVG*11] and is centred
around a tree-based pipeline and hyperparameter optimiser. It utilises genetic
programming to optimise entire machine learning pipelines. Auto-Keras by
Haifeng Jin et al. [JSH19] is an AutoML framework for the development of ar-
tificial neural networks, primarily providing NAS functionality using Bayesian
optimisation. It is built on top of the widely used TensorFlow [AAB*15]
API Keras [Chol5]. H2O0.ai by Erin LeDell and Sebastien Poirier [LP20]
provides a sophisticated AutoML suite for both conventional tasks and deep
learning. It covers pre-processing, training, HPO using random search, and
benchmarking of models. H20.ai can be interfaced with through various APIs
as well as a web-frontend. Thus, it is one of the more professionalised AutoML
frameworks aimed at providing a full-scale solution for the industry end-user.
Similar, however cloud-based, services are also provided by Big Tech, namely
Amazon SageMaker Autopilot [Ama22], Google Cloud AutoML [Goo22], and
Microsoft Azure Automated Machine Learning [Mic22]. In addition to so-
lutions marketing themselves as strictly AutoML, implementations of many
of the above-mentioned techniques can also be found in more traditional ML
solutions. An interesting framework to name here is River by Montiel et al.
which provides online learning as well as HPO techniques specifically tailored
to it [MHM™*21].

Discussion & Ongoing Research

The previous sections characterised AutoML alongside the three central meth-
ods HPO, meta-learning, and NAS as laid out by Hutter et al. [HKV19]. This,
in its scope limited, understanding of AutoML almost exclusively addresses
the in Definition 2.4 explained CASH problem. However, the ML develop-
ment pipeline entails more steps outside of model training and optimisation.
In 2021, He et al. [HZC21] reviewed the state of the art on AutoML from this
more holistic view and uncovered several ongoing research gaps. Among oth-
ers, they note that more application areas need to be explored as many studies
focus on computer vision tasks. The authors also argue that interpretability
and robustness, e.g. dealing with imperfect real-world or even adversarial data,
is an open issue.

44

2.2 Artificial Intelligence

He et al. further stress that AutoML solutions do not sufficiently cover the
entire machine learning pipeline, but instead tend to tightly focus on the model
training and optimisation aspect. Lastly, lifelong learning, e.g. in the form of
online training, is not provided by most current generation AutoML solutions.
Figure 2.13 summarises the findings as an overview of the machine learning
development and deployment pipeline, roughly highlighting to which extent
activities are supported by available AutoML solutions.

Seldom / not covered by AutoML

Somewhat covered by AutoML ‘

| Wellcovered by AutoL |

/ > DB- I ; / ; Column N/ ; Feature Bench- roduction”
Inlegrahor>> EDA Cea"'"g>> Seecmn>> Creation Heo >>%markmg>)> isation >>> DL
Type

Jrain-Test- \feature Re> Meta- (:]n::p(

Conversio Split mbinatior Leaning (e

Data Feature Lifelong
Streaming ‘Selection Learning

Dimensionality Reduction

Figure 2.13: The ML development and deployment pipeline as supported by current generation
AutoML approaches. Based on and expanded upon [HZC21].

Closing this section, an end-to-end solution to automate, or at least assist
the end user in the activities alongside, the ML development and deployment
pipeline is needed for AutoML to unfold its full potential. Regardless, the cur-
rent generation AutoML solutions provide enough sophisticated functionality
for this thesis to build upon and benefit from.

2.2.5 Machine Learning Engineering

In an effort to professionalise the development, deployment, and use of ML
models, starting from the 1990s several process models for ML engineering
have been conceived. One of the most popular ones to this day is the Cross In-
dustry Standard Process for Data Mining (CRISP-DM) [WHO0]. The process
model defines six phases in the life cycle of a data mining project, which are
illustrated in Figure 2.14.

45

2 Background
The Managerial & Technical Foundations

As shown, the phases are naturally arranged in an iterative way. Moving back
and forth depending of the outcome of a particular phase is deeply engrained in
the process model. These six phases are described in detail in the CRISP-DM

Data
Understanding

Data
Preparation

Modeling

Understanding
Deployment

Figure 2.14: Phases of the CRISP-DM reference model by [CCK*00, p. 13].

data mining guide by Chapman et al. [CCK*00]:

46

1. Business understanding makes up the first phase and starts with defining
the business needs and requirements. This is then translated into a data
mining problem and completed by establishing a rough plan on how to

proceed.

2. Data understanding describes the next phase in which data is collected
and analysed. The goal is to familiarise with the data, establish a bearing
on its quality, and potentially form early hypotheses on hidden informa-
tion relevant to the problem. Data and business understanding benefit
each other and therefore, bouncing back and forth between the two phases

is expected and encouraged.

2.2 Artificial Intelligence

3. Data preparation as a third phase deals with compiling the data set from
the raw data. This includes cleaning, transforming, and selecting subsets
of data.

4. Modelling is the subsequent phase in which the predictive model is
built. In the context of machine learning this would include algorithm
selection, training, and HPO. As this is a highly exploratory phase,
changes to the underlying dataset occur frequently. Hence, a back and
forth between data preparation and modelling is expected.

5. Evaluation denotes the fifth phase and dictates a reflection on the model
performance against the business needs and requirements. At the end
of this phase, a decision has to be made on whether to actually use the
model in production. If the model proves insufficient, backtracking to
the first phase of business understanding is possible in order to start the
process anew.

6. Deployment marks the last phase and generally aims at productionalising
the predictive model to be used in its target environment, fulfilling the
business needs and requirements. In a more generalised context, this
extends to the presentation of learnings generated from the data to key
stakeholders.

In the decades to follow, researchers sought to improve and built upon CRISP-
DM in various ways [AAHO8, MPCOF*17, ALAMM™*18]. Until recently, the
focus remained on the development of predictive models. However, with
the advent of the process model Machine Learning for Production [EFH*20]
and the Process Model for AI Systems Engineering [HSP*21], the application
area broadened and became more holistic, supporting the entire Al life cycle
and aiming at both engineering and operating end-to-end Al solutions. The
change of perspective includes emphases on customer integration, handover,
and operation as well as maintenance of Al systems. This thesis remains firmly
grounded in the tried and trusted process CRISP-DM prescribes yet at the same
time lends itself to the operation and maintenance focus of the more recent
process models.

47

2 Background
The Managerial & Technical Foundations

2.3 Chapter Summary

This chapter laid out the managerial and technical foundations for this thesis.
In Section 2.1, production was defined and different types and organisational
approaches were distinguished. Classification schemes for production types
were used to highlight the MTO focus of this thesis. Five models of production
organisation were discussed an the job shop production model was highlighted
as most relevant for this thesis. Concluding the production section, the concept,
goals, and system landscape of PPC were introduced. Section 2.2 described
the foundations of Al as relevant to this thesis. Several definitions of Al were
provided before settling for ML as the main Al-application domain. This
was briefly defined and further systemised by highlighting both the types of
learning, with supervised learning identified as the most relevant in the context
of this work, as well as introducing applicable learning techniques, such as
online learning. Considerations were given on different feature engineering
techniques for both offline and online learning. Then the problem of concept
drift in ML was introduced, the four archetypical concept drift patterns were
discussed, and various applicable detection and adaptation methods were pre-
sented. With the ML basics covered, AutoML was introduced as a means to
automate steps of the laborious ML engineering process. Its central meth-
ods HPO, meta-learning, and NAS were explained before mentioning existing
solutions and discussing the application potentials of AutoML in this thesis.
The section was concluded by a brief overview of process models for ML
engineering which serve as a framework for the method developed in this
thesis.

48

3 State of the Art

Towards Machine Learning for Lead Time
Prediction

Moving on from the fundamentals introduced in the previous chapter, the
following zeroes in on research directly relevant to this thesis. This more
narrow view on the subject is produced by a structured literature search and
subsequent review focusing on the state of the art regarding ML-supported
methods for lead time prediction (LTP). Starting with an overview of two
distinct approaches to formulate the problem in ML-terms, relevant works
tackling it are introduced in chronological order. The final sections summarise,
compare, and contextualise these works resulting in the highlighting of several
research gaps.

3.1 Machine-Learning-Supported Methods for
Lead Time Prediction

LTP can be formulated as both a regression as well as a classification problem.
Figure 3.1 illustrates the different problem formulations. When viewed as a
regression, the target variable lead time (LT) is seen as continuous. This allows
for more accurate predictions, given the model performance is high enough.
Contrary to this, a classification approach represents LT as a discrete set of
classes. Each class defines an interval on a continuous time scale.

49

3 State of the Art
Towards Machine Learning for Lead Time Prediction

Regression Classification
Operations Operations

on 3.90 on Medium
05 9.38 05 Long
o4| 175 04 | short
03 5.42 03 Medium
02 8.14 02 Long
o1 1.92 o1 Short

0 1 2 3 4 5 6 7 8 9 T 0 1 2 3 4 5 6 7 8 9 T

Continious Predicted Lead Time [class short | Class Medium Class Long

Figure 3.1: LTP as both regression and classification problem.

As seen in Figure 3.1, three classes, Short, Medium, and Long, are defined. The
class Short ranges from zero to two (exclusive) time units, Medium from two
to eight (exclusive) time units, and Long from eight time units onwards. This
approach has the distinct advantage of being easily interpretable. Especially
when exact predictions are not required, it provides a good ballpark estimate
for how long an operation is going to take. However, determining the number
of classes and defining their intervals is highly dependant on the problem
space. The literature knows examples for both regression and classification
approaches, with regression being the most discussed of the two, which are
highlighted in the following sections.

3.1.1 Scope & Structure of the Literature Review

In order to keep the review within the scope of this thesis, works specifically
targeting highly automated mass production are omitted. This mostly affects
works on predicting cycle time in semi-conductor manufacturing in highly
automated environments, unless these works carry some aspect particularly
relevant to this thesis. In some papers, it is unclear whether the authors
attempt to predict overall LT or just processing time (PT). Hence these are
subsumed under one section.

50

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

In addition, there is a body of work, driven mostly by a group around Giinther
Schuh, on transition time prediction (TTP) as a subset of LTP. These papers
are clearly separated from the main body of work on LTP and processing time
prediction (PTP) for a better understanding.

3.1.2 Lead & Processing Time Prediction

The literature on LTP and PTP is further divided into the above described
regression and classification approaches. Works on both are introduced in the
following.

Regression Approaches

As early as 2003, ML was first applied to estimate LT [RWO03]. Raymaakers
& Weijters predicted LTs in batch production found in the food, chemical, and
pharmaceutical industries. The authors randomly generated job data similar
to real-world examples. They then trained and tested regression models (RM)
and artificial neural networks (ANN) on the data. AANs outperformed the
RMs due to their ability to fit to complex non-linear relations.

Further research was conducted by Oztiirk et al. [OKOO06]. The authors worked
on LTP for make-to-order (MTO) production in a job shop environment. They
modelled three distinct scenarios, i.e. shop floor layouts, with six machines
each as well as ten different types of products which are produced in each of
the scenarios. The authors used simulation to generate training and test data
from their scenarios. They then used Cubist [Rul03], a tool to create rule-based
prediction models, to train and evaluate regression trees (RT) on the simulation
data. A key aspect of their work is an elaborate feature selection method based
on the assumption that the number of occurrences of an attribute in a Cubist
ruleset is a strong indicator of its predictive power. The authors developed a
weighted attribute usage ratio (WAUR), which is expressed in Equation 3.1 as:

N
WAUR; = ==~ (3.1)

51

3 State of the Art
Towards Machine Learning for Lead Time Prediction

Jj notates the Cubist rule index and N is the total number of rules in the ruleset.
w is the number of occurrences which match the rule j. x is one if attribute i is
used in rule j and zero otherwise. This ratio between zero and one is computed
for every feature out of the 26 features they used. A threshold is defined and
features with a WAUR below the threshold are removed from the model. The
authors tried different thresholds between 0.0 and 0.9 and then compared model
performances using the mean squared error (MSE) metric. They have found
that feature elimination based on the WAUR slightly improved the predictive
quality of a model up to a problem-specific threshold of about 0.5 to 0.7, when
the MSE begins to rise again sharply.

Using discrete event simulation (DES), Alenezi et al. simulated three different
multi-resource, multi-product, MTO shop floor scenarios: small, medium,
and large [AMTO8]. The small scenario was comprised of three product
types and three production resources (i.e. machines). The medium scenario
covered three products and ten production resources. And the large scenario
encompassed 10 product types and 20 production resources. The authors
trained and evaluated the four algorithms support vector machine / regression
(SVM / SVR), exponential smoothing (ES), moving average (MA), and ANN.
They furthermore experimented with different parameters such as kernels for
SVMs, smoothing constants for ES models, window sizes for MA models,
and layer architectures for AANs. Aside from the classic root mean squared
error (RMSE) as a performance metric, the authors also used the mean absolute
percent error (MAPE) to express relative performance differences. As aresult,
the authors found SVMs using a linear kernel and e-insensitive loss function
performing the best. In addition, they see a need for the development of more
adaptive models which generalise better over time in future research.

The group around de Cos Juez had access to a data set covering the production
of 524 batches of metallic components for the aerospace industry [dCGMT10].
It consisted of 12 features: batch size, CNC machining time, grinding time,
milling time, heat treatment time, surface treatment time, horizontal latheing
time, vertical latheing time, inspection test time, individual serial number
available (yes / no), raw material cost, and forecasted manufacturing cost. The
authors trained an SVM in order to predict overall LT. In addition, they trained
another model based on a Cox-Regression [Cox72] which outputted importance
values for the 12 features. Given this information, the authors proceeded to
optimise the model performance by removing eight of the twelve features.

52

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

They highlight that the additional information about the feature importances is
a powerful tool to better understand the factors involved in LTP.

In [MDF*14], the authors based their work on a real-world moulding company
which offers engineer-to-order (ETO) products. The group were able to utilise
detailed job data which was mostly of categorical nature and contained 10
features: number of cavities, type of hardening, side of injection, mould
size, core cap, number of ejector rings, temper evident (yes / no), type of
data, surface quality, and number of basic components. The authors also had
access to recorded LTs on an operation basis. Contrary to most ML-based
approaches in this section, the authors opted for a case-based-reasoner (CBR)
in conjunction with a similarity measure which is based on the Euclidean
distance between the features of the different jobs. They compiled a database
of completed jobs (cases). So when a new job arrives, this job is compared
to all other jobs in the database using the similarity measure. The CBR then
interpolates the LT of the new job based on the most similar already completed
job. Finally, the new job is stored in the database as a new case. In an example
job, the authors were able to achieve a highly accurate prediction which was
off by just 3.15%, or about 40 hours in total. However, they do not provide
more general metrics on the overall performance of their approach.

Another simulation-based approach was conceived by Li et al. [LYWF15]. The
authors aimed to predict LTs for a batch production semi-conductor manufac-
turing system containing 10 stations. They defined a multi-stage method which
is based on a comprehensive DES model. This model is used to identify strong
predictor variables and then perform design of experiments in order to provide
simulation data on the predictor variables. This simulation data is then used to
derive statistical RMs for LTP. An emphasis was put on considering variables
describing the shop floor state, i.e. job arrival times, production load, and
resource availability, as well as the interdependencies of multiple concurrent
jobs competing for a limited amount of production resources. Using the the
semi-conductor simulation model, the authors compared their approach to an-
other solely simulation-based method by Hopp and Sturgis [HS00]. [LYWF15]
showed that their own method outperformed the method by Hopp and Sturgis
across four out of six performance metrics.

53

3 State of the Art
Towards Machine Learning for Lead Time Prediction

Mori and Mahalec based their work on a real-world use-case in steel plate
production [MM15]. They describe the domain as one with high-variance
low-volume products where steel plates are made to order tailored to a specific
application. Hence PPS, and by extent also LTP, are problems depending on
a multitude of variables. The authors therefore defined a multi-stage approach
centred around Bayesian networks (BN) in conjunction with decision trees
(DT), allowing them to derive the network structure from historical data.
Using this network, they were able to predict the probability distributions of
production loads and production times. In order to validate their approach,
they used the available data to define two test cases. In the first case, they tested
their model under the circumstance that only variables associated with customer
demands are known. In the second test case, they also made information about
operating conditions available to the model. The authors found that their BN
model performed better in the second test case, i.e. when more features were
available, but was also satisfying the first test case. They emphasise that their
single-model approach covering both production loads and production times
is easier to maintain than having multiple models for the different variables.
However, they stress that more features regarding the shop floor state, such as
the amount of in-process inventory, the number of workers, and the failure rate
of each machine, could improve model performance.

An approach combining simulation and ML was conceived by a group around
Pfeiffer and Gyulai [PGKM16]. The authors built a simulation model for
wafer fabrication in a small-sized parallel flow shop system based on MES
log data using DES. They then used the simulation data to train and compare
the different algorithms RT, linear regression (LR), and random forest (RF).
RFs performed best, however, the authors highlighted that RFs are especially
sensitive to range changes in the predictor variables. Hence, they also consid-
ered model performance degrading over time due to distribution shifts in the
underlying predictor variables. Thus, the authors proposed active retraining
on fresh data to prevent models from degrading, for example by using their
simulation approach.

A second work by the group around Pfeiffer and Gyulai was based on a
use-case covering the production of optical lenses for eyeglasses in a flow
shop system [GPN*18]. These lenses are highly customised products and are
individually made to order. The authors used MES log data from the real-world
production to compare different methods for LTP.

54

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

They started out with an analytical method based on Little’s Law [Lit61] in
both periodic and rolling horizon configurations and then ran that against the
ML-based methods LR, RT, RF, and SVM / SVR. The analytical method based
on Little’s Law was outperformed by all other methods with RFs performing
the best. However, the authors stress that LR is simpler and thus easier to
interpret. They also found that periodic retraining was necessary to maintain
model performance and thus should be tightly integrated with the digital twin.

In another work by the same group, the authors conducted a case study on a
semi-conductor manufacturer whose shop floor was organised in a job shop
manner [LGA*18]. Data from the MES as well as information about the
machine status and the customers spanning over two years was provided to the
authors. They compared the different regression algorithms LR, ridge (RR)
and lasso regression (LasR), multivariate adaptive regression (MAR), SVM,
k nearest neighbour (kNN), RT (bagged, unbagged, and boosted), RF, as well
as ANN. Again, the RF performed best on this problem.

Finally, a fourth work by the group around Pfeiffer and Gyulai lays out the
concept of a new production data analytics tool for LTP [GPBG18]. Based on
a simulated case study around a flow shop production, the authors conceived
a closed-loop production controller which, powered by ML, predicts LT in
real time as well as suggesting decisions on job prioritisation. The system is
also capable of periodically retraining the models. Figure 3.2 illustrates the
proposed architecture.

55

3 State of the Art
Towards Machine Learning for Lead Time Prediction

4 I

Proposed System Periodic Re-Training
ML Model <

Predicted Lead Time

A

Parsed
Job Prioritisation Controller Training Data

New Job Arrival

A

—

Job Data

Job Priority Decision — Event Stream

» MES T

Simulation Model

ERP Data

Figure 3.2: Architecture of the closed-loop production controller with real time LTP engine by
[GPBGI18].

The authors proposed an event-driven architecture in which the model for lead
time prediction is fed an event, enriched with ERP data, for every new job
arriving. Once the prediction is made, the job prioritisation controller then
alters the job’s priority accordingly and feeds this information back into the
MES. The group tested their approach against a FIFO scheduler and a method
based on Little’s Law [Lit61] while measuring the total lateness of jobs with a
seven day horizon. Their ML-based system outperformed the other two. The
authors highlight that this event-driven approach with periodic retraining is
capable of adapting to the dynamic changes on the shop floor.

56

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

Classification Approaches

As stated in Section 3.1, LTP can be treated as a classification problem. Only
one work by Lim et al. was known at the time of writing in this regard [LYS19].
The authors used real-world data from different sources revolving around the
production of customisable electronics test and measurement equipment. After
merging the data, the authors removed outliers and performed feature engineer-
ing as well as encoding resulting in a total of 81 features. Later, they applied
recursive feature elimination and ended up with eight features used in their
model. In the following, they discretised the recorded continuos LTs into eight
different classes marking the LT in days. Finally, the authors trained an SVM
and compared the model to an RF and an ANN. The SVM model performed
best at an F-Score of 0.852. However, it exhibited longer training and infer-
ence times than the other algorithms. The group highlights that, aside from
the actual LTP, their classification approach also allows the easy identification
of products with critically long LT.

3.1.3 Transition Time Prediction

Aside from authors presenting methods for predicting entire LTs, there are two
groups explicitly attempting the prediction of TT. This covers the timespan the
product is waiting or being transported between two individual operations and
thus makes up a major part of the overall LT. As to how large that contribution is,
studies by a group around Schuh et al. provide various estimates. They argued
that up to 99% of overall LT are made up of TT [SPSF19]. In later works
this was lowered to 95% [SPM*19] and up to 90% [SGST20] respectively.
However, an exemplary case study showed that, when accounted for planned
off-time in shift schedules, TT only made up 41.3% of the overall LT [Sau20,
p- 187]. A further 43.4% was made up by these planned off-times and the
remaining 15.3% were PTs. Still, methodising TTP remains highly relevant.

Starting out as a work on understanding the factors influencing cycle time (there
defined as an accumulation of processing, inspection, transport, and other
waiting times) for a use-case in semi-conductor manufacturing, Meidan et al.
identified the waiting time as the most variable factor in their particular scenario
[MLRHI11]. They designed a simulation model based on the production of
flash memory chips and generated data on 123 simulation scenarios.

57

3 State of the Art
Towards Machine Learning for Lead Time Prediction

Applying pre-processing and filtering using conditional mutual information
maximization to the data, the authors brought down the number of features
from 182 to 50. They then applied a selective naive Bayes classifier (SNBC) in
order to predict one of the three discrete waiting time classes. They compared
their method regarding its accuracy against an ANN, a multinomial logistic
regression (MLR), and a DT. The SNBC put forward by the authors scored
comparably to the other methods though did not outperform them. As a more
important result, the authors note that out of the top 20 factors impacting any
given waiting time, eight are related to previous operations.

The group around Schuh et al. published a series of papers on predicting job-
specific TT. In their first work, the authors started out from a simulation-based
but real-world use-case in the aerospace sector [SPLS18]. In their scenario,
they have identified TT, especially waiting times, as the main driver of LT.
Arguing from this position, the authors presented a basic three step approach
to determine job-specific TTs:

1. Identification of influence factors, in which a company-specific set of
influence factors is derived from the raw data and then classified.

2. Analysis of influence factors, in which the influence factors are analysed
and relationships between them are uncovered.

3. Determination of output format, in which TTs are predicted and fed back
into the planning process.

Their second work was based a real-world use-case in the machining equipment
sector [SPSF19]. They applied an RT and found that, compared to the static
TTs set in the company’s ERP system, their approach was 61.0% to 73.2%
more accurate.

In parallel, the authors more closely investigated factors impacting TTP
[SPM*19]. Based on the method for TT classification presented by Mei-
dan et al. [MLRH11], the authors conceived a method for production staff to
identify key features with high impact on TT based on historical data. The
concept merges domain knowledge of the production staff with the available
hard data and was validated in a learning factory.

58

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

This method was further refined into a regression approach where the au-
thors compared the performance across four scenarios using real-world data
[SPH*19]. Scenarios I and II were dealing with raw data while III and IV were
comprised of the raw data enriched by expert knowledge. Furthermore, in
scenarios II and IV the models were subjected to hyperparameter optimisation
(HPO). Scenario IV, i.e. the combination of a data set enriched by expert
knowledge and HPO of the model, showed the best results. However, they do
note that introducing expert knowledge into the predictive model impacts the
planning which in turn impacts the prediction again. Hence, a control loop of
prediction and planning needs to be engineered carefully.

In a subsequent work, the authors did take a closer look at this proposed
control loop [SHPS19]. They identified three success factors for the accurate
prediction of TT:

* Data adequacy, which they describe as the availability, integrity, and
actuality of data.

o Feature estimation, which enables the forecast of future values of highly
dynamic features at the time of prediction.

* Measurement of the prediction performance and error allocation, which
prevent model performance from degrading over time.

Around these success factors, the authors designed a two-fold closed control
loop for TTP with integrated model monitoring and retraining. This cascading
close loop model for production planning and control (PPC) is illustrated in
Figure 3.3.

59

3 State of the Art

Towards Machine Learning for Lead Time Prediction

Disturbances
|

time
exc;fctfar-"iir'.; Order promising

4
Past
transition|
times
Proposed
closed loop
R —

Conventional
open loop.

Production Planning and Control

Transiion” B [Job release,

Release date,

sequence,
capaciies,
etc.

Fime Production pemm— capacily

planner . adjustmend,
(Re-)Planning sequencing, etc.

Production Control Loop

Transition time
prediction

Model control

|

Production

process

[Transition time

[Targets & thresholds [Application conditions

Figure 3.3: Cascading close loop model for PPC by Sauermann et al. [SHPS19].

The authors argue that in practice, planning activities are conducted in an open
loop approach with TT being estimated unspecifically and based on historical
averages. Thus they propose this integrated architecture of two cascading loops,
one controlling the prediction itself and the other governing the monitoring
and maintenance of the prediction model. They further refined their approach
by presenting a holistic eight-step method for predicting job-specific transition
times as shown in Figure 3.4 [SGS*20].

60

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

C

Business understandingand\ . .. Control loop for a high
data preparation ! y prediction quality

P

y :
specific . . Planning for | .
i ion \€--c--cmememeooToToian anning for improving
Modeling of production : production efficiency

B

independent

Evaluation of
prediction accuracy

Prediction of order-specific
transition times

Figure 3.4: Methodology for databased prediction and planning of job-specific TT by Schuh et

al. [SGS*20].

The method addresses both regression and classification tasks for TTP. The
eight steps are described below:

1.

Starting out based on the established CRISP-DM [WHOO0], the first step
covers business understanding and data preparation. This includes
analysing the application environment as well as ensuring the available
data is complete, consistent, and free of errors.

Step two, modelling of production and expert knowledge is conducted
in order to transform relevant relations from the application domain into
machine-readable data.

. In step three, feature selection is performed through a filter-wrapper

approach similar to the one presented by Meidan et al. [MLRH11].

The model training follows in step four where hundreds of models with
different combinations of filters, wrappers, and algorithms are trained
in parallel. The authors provide several default filters, wrappers, and
algorithms in their method but make clear that more can be integrated
in the future.

. In step five, measuring performance for the trained models is conducted

for the evaluation.

61

3 State of the Art
Towards Machine Learning for Lead Time Prediction

6. Provided the models outperform expert predictions, identifying influenc-
ing factors for TTP is the focus of step six.

7. Step seven deals with the integration of TTP into production planning
processes.

8. Finally, step eight governs the establishment of the control loop, mainly
for steps three to seven.

As for steps 3 and 4, all combinations of filters, wrappers, and algorithms for
both regression and classification as considered by the authors are illustrated
in Figure 3.5.

Classification Regression
Pearson FiS | Spearman none 1. Filter Pearson Spearman none
25% | 50% | 75% Top-Features 25% | 50% | 75%
DT [NBC | RF | none 2. Wrapper RT | RF |Ridge| none
Cv-5 | Cv-10 Cross-validation Cv-5 | Cv-10
3. Algorithm

FiS: Fisher Score; ANN: Artificial Neural Network; DT: Decision Tree;
k-NN: k-Nearest Neighbor; NBC: Naive Bayes Classifier; RF: Random Forest

Figure 3.5: Tree of prediction model variants by Schuh et al. [SGS*20].

In order to benchmark their approach, the authors considered a real-world use-
case in the machining equipment sector providing a dataset of over 13,000 jobs.
They benchmarked both classification and regression approaches against the
conventional manual predictions made by the production staff using a number
of algorithms: ANN, DT, kNN, naive Bayes classifier (NBC), RF, RT, and RR.

62

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

The highest accuracy of the classification approach was achieved by a DT at
29.8%, compared to 16.2% for the baseline manual prediction. As for the
regression approach, the best mean absolute error (MAE) was achieved by an
RF at 5.2 days, compared to 7.5 days for the manual prediction. The authors
propose that more research is being done in order to improve the models as
well as their integration into real-world system landscapes at manufacturing
enterprises.

In a subsequent work by the authors, a real-world use case regarding the
production of customised driving elements was investigated [SGST20]. The
novelty of this work lies within the problem modelling in which the group
attempted to perform TTP using a time-series data mining approach. A major
challenge in this regard is transforming the available production data into a
correctly ordered manufacturing time-series format. They argue that, from the
available data sources (machines, operations, jobs), only the job-specific data
should be considered as it is the only data which provides actual measured
points in time as opposed to static master data from the other sources. Another
challenge is aggregating this data in a meaningful way as any given point in
time may occur only once in the data set while in reality on the shop floor, many
actions occur concurrently. Some attributes, such as categorical data, are not
suitable for aggregation and have to be left out. This aggregation furthermore
inhibits job-specific TTP which the authors try to cope with by clustering the
jobs beforehand and then predicting TT for the job type in question. The group
them employed a convolutional neural network (CNN) to predict TTs on their
time-series dataset. After manual hyperparameter optimisation (HPO), the
model performed only slightly better than the conventionally planned TTs, with
aMAPE of 53.89% for the CNN and 59.39% for the conventional planning. The
authors concluded that, while their time-series approach is currently inferior
to their other approaches, more research has to be conducted. Especially
investigating other algorithms aside from a CNN as well as utilising automated
HPO is needed. Furthermore, according to the authors, modelling the problem
as a time sequence allowing for temporal data mining might yield better results.

63

3 State of the Art
Towards Machine Learning for Lead Time Prediction

Finally, the dissertation of Frederick Sauermann consolidates and expands
upon the research by Schuh et al [Sau20]. The work unites the concepts laid
out in the Figures 3.3, 3.4, and 3.5 and thus constructs a methodological basis
to integrate TTP into planning and scheduling tasks. It furthermore expands on
specific methods to preprocess relevant data, like cleaning and correction for
known downtimes [Sau20, p. 126 ff.] as well as TT-specific feature engineering
activities [Sau20, p. 130].

64

3.1 Machine-Learning-Supported Methods for Lead Time Prediction

3.1.4 Literature Comparison

With the state of the art laid out in detail, key findings are summarised in the
following. Tables 3.1 and 3.2 provide a compact overview.

Table 3.1: Literature comparison on LTP and PTP.

Reference Production Data Source Problem Type Algorithm(s) Key Result(s)
Domain(s)

[RWO03] Batch Simulation Regression RM, AAN AANs outperform
RMs.

[OKO06] MTO Simulation Regression RTs WAUR for feature se-
lection.

[AMTO8] MTO Simulation Regression SVM, ES, MA, | Linear kernel SVMs

AAN perform best. Adap-
tive models needed.

[dCGMT10] | Batch Real-World Regression SVM, Cox- | Cox-Regression for

Regression feature importances.

[MDF*14] ETO Real-World Regression CBR CBR & similarity
measure perform well,
emphasis on the use of
product data.

[LYWF15] | Batch Simulation Regression RM Emphasis on the use
of variables describ-
ing the shop floor
state.

[MM15] MTO, SS Real-World Regression BN, DT Prediction of prob-
ability distributions
rather than discrete
values.

[PGKM16] | MTO Simulation Regression RT, LR, RF RFs performed best,
simulation-based re-
training to prevent
model degradation.

[GPN*18] MTO Real-World Regression Little’s Law, LR, | RFs performed best,

RT, RF, SVM tight integration with
digital twin.

[LGA*18] Batch Real-World Regression LR, RR, LasR, | RFs performed best.

MAR, SVM,
kNN, RT, RF,
ANN
[GPBG18] | MTO Simulation Regression LL, Unspecified | Event-driven architec-
ML Algorithm | ture with periodic re-
training.

[LYS19] MTO, SS Real-World Classification SVM, RF, ANN | Discretisation / classi-

fication of LT.

65

3 State of the Art
Towards Machine Learning for Lead Time Prediction

Table 3.2: Literature comparison on TTP.

Reference Production Data Source Problem Type(s) | Algorithm(s) Key Result(s)
Domain(s)
[MLRHI11] | Batch Simulation Classification SNBC, ANN, | Waiting time predic-
MLR, DT tion, high impact of
previous operations.

[SPLS18] Unknown Simulation Regression - High-level concept for
TTP with ML.

[SPSF19] Unknown Real-World Regression RT Validation TTP with
ML.

[SPM*19] Unknown Real-World Classification SNBC Identification of
high-impact ~ factors
for TTP.

[SPH*19] Unknown Real-World Regression RT Combination of expert
knowledge and HPO.

[SHPS19] - - - - Close control loop ar-
chitecture.

[SGS*20] Unknown Real-World Both ANN, DT, kNN, | 8-Step Method for

NBC, RF, RT, | TTP.
RR

[SGST20] MTO Real-World Regression CNN TTP as a time-series
problem.

[Sau20] MTO Real-World Both ANN, DT, kNN, | Unification

NBC, RF, RT, |of [SHPS19]
RR and [SGS*20].

As can be seen, most authors applied a regression approach using supervised
learning. The data was sourced equally from simulations, usually using DES,
and the real world. Most real-world data came in form of log data from MES
or similar systems. Product data and data on the shop floor state were rarely
considered. Most works focused on benchmarking different algorithms for
LTP where model training and testing was done offline. Many authors noted
that models do not generalise well enough on new data. Later works such
as by Gyulai et al. started to consider online training, adaptive models as
well as integrational aspects with the automation pyramid [GPBG18]. The
group around Schuh et al. provides the most sophisticated body of work
combining both algorithmic and architectural aspects into a more holistic
method [SPLS18, SPSF19, SPM™*19, SPH*19, SHPS19, SGS*20, SGST20].

66

3.2 Research Gaps

However, they focus exclusively on TTP backed by expert knowledge. They are
also the only group that considered a time-series approach, though with mixed
results. The most comprehensive work on TTP was provided by Sauermann
[Sau20]. While many authors sought to automate certain aspects of the ML
engineering process, the utilisation of AutoML was not considered explicitly.

3.2 Research Gaps

Based on the review of the state of the art on ML methods for LTP, five research
gaps are highlighted that lie within the scope of this thesis:

* Unifying the work done with regards to LTP as an overall goal, with
PTP and TTP as crucial parts of it, into a holistic approach has not been
achieved yet.

* The problem of models generalising poorly to new circumstances, i.e.
handling concept drift, is often mentioned but rarely addressed ade-
quately.

* Following the previous research gap, most authors considered an offline
training approach. Little research has been done on applying online
training in this particular problem domain.

* While complex schemes for model development have been conceived,
the potential benefits of simplifying this undertaking by utilising Au-
toML technologies, especially in combination with an online training
approach, have not been investigated yet.

* Lastly, service-based model deployment and maintenance as well as in-
tegration with existing system landscapes, especially at SME, is outside
of the scope of most works.

67

3 State of the Art
Towards Machine Learning for Lead Time Prediction

3.3 Chapter Summary

This chapter provided an in-depth dissemination of the state of the art in ML-
supported LTP. After further systematising the problem of LTP into regression
and classification modelling approaches, it defined the scope and structure of
the successive literature review. It was found that the existing body of work
could be distinguished into papers on combined LTP and PTP as opposed to
works focusing on TTP. As a trend, early works experimented with various
ML algorithms and established the general feasibility of applying an ML
approach to LTP. Later works however revolved more around ML engineering
approaches and system architectures as well as integration into PPC. The studies
were summarised and compared based on their content along the categories
production domains (mostly Batch / MTO / SS), data sources (real-world /
simulation), problem types (classification / regression), algorithms, and key
results. Concluding the chapter, several research gaps were derived to guide
the work presented in this thesis. These highlight the need for a holistic
approach to LTP while addressing generally poor model generalisation and
adaptation as well as simplifying the model development process, rendering it
more accessible for SMEs.

68

4 A Method for AutoML-Supported
Lead Time Prediction

How to Leverage the Machine Learning
Potentials

Building on top of the research reviewed in the previous chapter, and especially
setting a focus on the existing research gaps, the following introduces a method
for AutoML-supported LTP. This chapter is starting with an overview of the
method’s technical objectives and preconditions, defining the framework in
which the method can be operated. It is followed by a brief overview of the
method itself and completed by detailed descriptions of every step along the
way. Furthermore, a suggested system architecture is sketched out. Finally,
the method is assessed based on the technical objectives and differentiated
from the other approaches laid out in Chapter 3. Earlier iterations of this
method were published in papers on prototyping ML-supported LTP using
AutoML [BO21] and benchmarking several AutoML solutions on two real-
world case studies [BTO22]. The method also builds on integrational aspects
conceptualised in another co-authored paper [SKK*23].

4.1 Framework

The applicability of the method is dependent on a set of assumptions and
preconditions laid out in this section. First however, the technical objectives
of the method, as in what is tried to be achieved, shall be clarified.

69

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

4.1.1 Technical Objectives

In Section 1.2.1 of this thesis, the MO was introduced as:

MO: End-to-end methodisation of a PPR-specific LTP for SME
from the MTO domain using Al

As was further explained in that section, LT divides into PT and TT. Therefore, a
model for LTP needs to predict two target variables: PT and TT. The prediction
needs to be performed for each operation a job undergoes as its total LT (TLT)
is the sum of all PTs and TTs of each operation, which was formalised in
Equation 1.1. For the remainder, note that an operation is considered as
the realisation of a process. As was described in Section 3.1, the target
variables can be modelled as either continuos, resulting in aregression problem,
or discrete as a set of classes, resulting in a classification problem. If not
stated otherwise, the method should therefore function the same way for both
approaches. Figure 4.1 highlights the model’s target variables within this
framework.

Res
Target

Res Variables

I

il
1

Figure 4.1: Target variables of the LTP model.

Furthermore, the LTP model is to learn from data using Al, supported by
AutoML techniques, in order to build-up sufficient predictive capacities. It
should also be equally integrateable and maintainable within an SME’s system
landscape.

70

4.1 Framework

Integrateable in the sense that it can be deployed, inferenced, monitored,
and updated within the company network. And maintainable as in able to
be updated in order to adjust to changing circumstances on the shop floor,
signalled through the detection of concept drift in the input data. Therefore,
the technical objectives (TOs) of this method are formally defined as follows:

TO1: Enable LTP by utilising AutoML to develop models capable
of predicting PPR-specific PTs and TTs.

TO2: Enable integration of the LTP models into a system land-
scape where they can be deployed, inferenced, monitored, and
updated.

TO3: Enable the LTP models to adjust to concept drifts in the
input data in order to maintain a constant performance.

4.1.2 Streaming Scenario

The method is aimed to function within a streaming usage scenario. In oppo-
sition to a static scenario, where data is being collected in a database and then
processed batch-wise, the streaming scenario assumes a constant flow from
various data sources with data being processed one-by-one once it becomes
available. This approach is chosen as it is closer to reality where data emerges
from different sources continuously, asynchronously, and independently of one
another. Figure 4.2 visualises the difference. These two scenarios also coincide
with the offline and online learning types, explained in Section 2.2.1.

71

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

(]

] (]

[

i)

>

.
0O
-

—
(I e Y

=
=
D5

Dataset Data Stream

Figure 4.2: Finite static dataset versus infinite dynamic data stream.

The streaming scenario furthermore assumes that the data is not stationary,
i.e. changes to its distribution or other properties may occur at any moment
in time. If the distributional changes negatively affect a predictive model’s
performance, concept drift is present [GZB*14]. An online learning approach
can leverage these circumstances by monitoring the data stream for concept
drift and adjust itself automatically once it occurs in order to maintain a high
performance. This adaptability is a major advantage over the static offline
approach.

In the context of a shop floor, the data stream is characterised by the different
data points being generated independently of one another on the shop floor
and within the surrounding company’s systems. This can be anything from
new jobs arriving, to feedback from work stations, up to sensor data being
recorded. An example for the non-stationarity of a shop floor environment
could be some upgrade of the machinery resulting in lower PTs, in turn affecting
the performance of a model attempting to predict these. If the predictive
model is able to detect the distributional change early, it can adapt to the new
circumstances and therefore maintain its performance.

72

4.1 Framework

4.1.3 Preconditions

Several preconditions need to be fulfilled in order to successfully apply the
method. These are built on and expanded upon the success factors for TTP as
laid out by Sauermann et al. [SHPS19].

o As with any approach centred around ML, access to data is paramount.
Viable data sources are described in Section 4.2.1. Not all data needs to
be available up front. The method is designed to function incrementally
and iteratively. Thus, acquiring the necessary data is part of the process.
However, some form of information system needs to be present and
accessible within the company.

o Naturally, management overseeing the method application are required
to commit the necessary resources to the undertaking. This is in terms
of both personnel, especially skilled labour from the areas of production
planning and the shop floor, and computational resources, with access
to the information system as well as computing power.

e Especially in the early stages of development, the availability of experts is
crucial. This refers to inner-company experts, be it managers, planners,
specialists, or similar. Their resources need to be committed to the
model development for it to succeed as some steps benefit greatly from
expert insight and assessment.

o Not a strict necessity but useful nonetheless is the availability of baseline
estimations for the target variables. These may be manual predictions by
production planners which can be used to establish a performance base-
line to benchmark the model against. If no baseline exists, performance
targets can be defined and adjusted as needed.

e Accurate shop floor reporting, especially of actual PTs and TTs, is of
utmost importance in order to maintain a high input data quality. Shop
floor staff need to be sensitised accordingly and provided with the right
tools to record accurate data.

73

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Figure 4.3 summarises the above-stated success factors for the method appli-
cation. With these in place, the next sections describe the method in detail.

LEUEEET] Resource Production
Commitment Insight

Method
Worker Accurate WIS Baseline
Reporting Estimations

Planner

Accessibility Information

System

Figure 4.3: Preconditions for the success of the method.

4.2 Description

The method for AutoML-supported LTP presented in this thesis is made up of
two stages with three blocks organising a total of twelve steps. The prototype
stage covers the process which leads to a first complete LTP model iteration
while the production stage is characterised by the use and adaptation of the
model. The method’s first block is revolving around the data preparation,
covering the steps sourcing, analysis, transformation, filtering, encoding, and
selection. This also includes tasks associated with feature engineering, which
is not placed separately but instead is realised as part of the activities within
the first block. The second block model development defines the three steps
configuration, training, and benchmarking. Finally, the third block model
deployment carries integration, monitoring, and maintenance as its associated
steps. Blocks one and two mimic the traditional tried and tested approach of
developing a predictive model. Block three is predicated on ideas from ML
operations on how to provide access to these models in production and ensure
they are maintained accordingly.

74

4.2 Description

AutoML support is considered at every step within the limits of current gen-
eration AutoML approaches. Figure 4.4 provides an overview. Detailed ex-
planations of each of the blocks and their respective steps is subject of the
remainder of this section.

A
Jo;_‘y _
Data pll)g

Sourcing

Analysis
N/

Transformation

N7

Filtering

N/
Encoding

Model

[Selection] [Configuration

Deployment

Training

\Z
Benchmarking

Figure 4.4: Overview of the method for AutoML-supported LTP.

Falling in line with ideas from software and ML engineering, represented in
models such as the in Section 2.2.5 previously mentioned CRISP-DM [WHO00],
the method is following a state of the art iterative and incremental approach.
While initially, the steps provide a logical sequential order to produce a first so-
lution, development cycles can and should be repeated to increase and maintain
high performance. Such, steps can be reverted to or repeated as needed and the
method execution is never considered done. The main idea behind the iterative
core of the method is providing a framework of constant self-improvement on
both a managerial and technical level within a given company.

75

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

The role of AutoML is highlighted by the connections to the different blocks.
As outlined in Section 2.2.4, current generation AutoML technology cannot
support every step in the same capacity, and some steps still rely on human
capabilities or technologies outside of AutoML. Future developments of Au-
toML technologies might lead to further AutoML substantiation within this
method, however this goes beyond the scope of this thesis.

76

4.2 Description

4.2.1 Data Preparation

Highlighted in Figure 4.5, the first block data preparation forms the starting
point of the method. As the name states, the main object of interest in this
block is the input data. The main goal is to obtain and shape the input data into
a state so that it can be used for the development of a functioning predictive
model. This block is therefore divided into six steps which are laid out in detail
below.

Deployment
7

\Z 7
\Z

Figure 4.5: Block one of the method for AutoML-supported LTP: Data Preparation.

77

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Sourcing

Sourcing suitable data poses the first challenge, especially for SME with het-
erogeneous system landscapes. Note that this is a highly individual task which
needs to be tailored to the data sources accessible in the given company.
Figure 4.6 provides an overview of potential inner-company data sources.
Arguably the most important information can be obtained from job data. Fol-
lowing the PPR-paradigm, data on products, processes, and resources can be
utilised as well. Finally, this data can be complemented further by expert
knowledge. Of course, these data sources cannot be strictly divided as they are
interlinked and share or build upon each other’s information in order to operate
the shop floor effectively. Note that some data can be considered (mostly) static
master data, e.g. CAD data or resource specifications, while other is strong
movement data, e.g. job data or shop floor state. From an ML perspective, it
is also important to acknowledge which data is available a priori, in terms of
at the time when the LTP is performed, and which data becomes available a
posteriori, as in after the associated process has been completed on the shop
floor and reported back to the system.

Job Data

« Configurations
« Customisations
. .

. Product Data Process Data | __._._ .

« CAD Data
« Material Properties

« Operation Sequences
« CAM Data

Data Sources

Expert Knowledge Resource Data

« PPR Insights
« Constraints
« Evaluation
. .

« Resource
Specifications
o Shop Floor State

Figure 4.6: Potential inner-company data sources.

78

4.2 Description

Starting on the top in the centre, job data is highlighted as the absolute mini-
mum of information needed to enable the method. This data contains concrete
customer orders, often including product configurations, lot sizes, customisa-
tions, and due dates but also activity logs and tracked progress. Note that this
might also include the a posteriori target variables PT and TT. As described
in Section 3.1.2, Meidan et al. already discovered that aggregated progress
data, especially information about previous operations, has a positive impact
on prediction quality [MLRHI11]. Suitable systems to extract this data from
are enterprise resource planning (ERP) or manufacturing execution systems
(MES).

On the top left corner, product data makes up the next relevant portion of
data. It encompasses information tied to the product model and is mostly
made up of static master data. This ranges from CAD-models and drawings,
through bills of materials, all the way down to concrete physical properties
of the materials used in the products, e.g. the forming temperature of some
type of steel. Product data can be obtained through ERP and product data
management (PDM) or similar systems. As mentioned in Section 3.1.2, the
importance of product data as a predictor for LTs was already recognised by
Mourtzis et al. [MDF*14].

Moving on to the top right corner, process data contains information de-
scribing the processes producing the product. This can range from operation
sequences to process parameters up to sophisticated computer-aided manufac-
turing (CAM)-data, containing detailed programmes. Suitable data sources
are MES or CAM systems.

The lower right corner represents the resource data. Static master data, such as
machine specifications and capabilities, come into play here. This is comple-
mented by movement data including personnel schedules, resource availability,
production load, and other shop floor circumstances, forming the combined
shop floor state as a data representation of the actual reality on the shop floor
at any given moment in time. Pointing back to the work by Li et al. mentioned
in Section 3.1.2, variables describing the shop floor state show high predictive
potential and can greatly influence lead time [LYWF15]. Resource data is
obtained from MES or industrial internet of things (IIoT) platforms.

79

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

As the lower left corner represents, the aforementioned data sources should be
complemented with expert knowledge. This encompasses mainly the know-
how of human experts (production planners, product developers, shop floor
staff) on the products, processes, resources, and overall operation of the shop
floor. Experts may also provide valuable constraints not explicitly modelled in
the systems and can help in the evaluation of predictive models generated by the
method. However, digitising expert knowledge is difficult, suitable sources for
structured data are knowledge management systems (KMS). Another promising
and more straightforward approach to harness expert knowledge is to enrich
raw data from the other sources through direct expert modelling, as proposed
by Schuh et al. [SPH*19]. These authors also note that careful considerations
should also be made regarding the adequacy of the data. Furthermore, experts
can be asked to rank or select potentially promising data in order to identify
features of high impact [SPM*19].

When assessing the adequacy of potential data and data sources for the method,
Big Data approaches can be applied. There exists a loose characterisation
scheme, based on the n Vs of data which originates back to the three Vs data
velocity, data volume, and data variety formulated by Laney in 2001 [LanO1].
Note that this notation has been extended to four, five, six, and more Vs by
various actors in different contexts and there is no standard scheme agreed
upon in the scientific community. However, it is still useful to consider various
aspects represented by these Vs. For this method, seven Vs stand out, as
explained below. However, this assessment approach is not a strict recipe for
application but rather highlights characteristics that should be considered when
assessing potential data sources.

* Volume describes the size of the data or the amount of data points. It
is not possible to define one strict threshold which must be met in order
for a data source to become suitable. Rather, it should be considered
individually whether the data is sufficient for its specific purpose. For
example, mostly static master data of material properties might be per-
fectly sufficient in low volume, representing just as many materials as
the given company processes. While movement data, like information
on jobs, is required in larger volume in order to cover the full spectrum
of operations and product variety in an MTO setting. As mentioned
previously, domain experts can be queried to support this assessment.

80

4.2 Description

* Velocity refers to the speed at which new data becomes available. As
discussed before, this is crucial as ground truth for important predictors
might become available late in the prediction and planning process or,
in case of the target variables, even only some time after the prediction.
This, in turn, affects monitoring and maintenance activities of the LTP
model. It is also worth noting that a flow of data (data stream) is
often encountered in reality. However, data streams in a production
environment are not steady with a constant flow rate. Rather, data
generation is tied to events on the shop floor or in the overall company
which can occur at any moment in time and independently of one another.
This includes for example new high-priority jobs being released causing
re-planning of the entire schedule, but also reaches all the way down to
progress reports from shop floor staff on individual jobs which arrive as
operations are completed.

e Variety denotes the differentiation into unstructured, semi-structured,
and structured data, which also covers considerations about data types.
In order to successfully train well-performing LTP models, structured
data is required. The availability of such is highly influenced by the
sate of digitisation in the company. In general, the more processes are
digitised, the more structured data is available since information systems
such as ERP or MES usually rely on state of the art relational databases as
their data backbones. It becomes more difficult when dealing with CAD
data or CAM programmes as useful information needs to be extracted
and transformed which can prove laborious. Extracting information
from paper-based shop floor data such as job tickets or printed drawings
with handwritten instructions is both laborious and prone to error. In
such cases, digitisation of these processes should be prioritised in order
to create more useful structured data sources.

* Veracity means the degree of trust in the data. IL.e. whether it is of
sufficient quality and accuracy, and if it is complete. Problems in this
regard may occur with any data that is entered manually. This extends to
manual input of static master data, such as information on the resources or
process parameters, all the way to shop floor reporting being inaccurate,
incomplete, or missing entirely. Principles and guidelines enforcing
double-checks of existing data and on entering new data help mitigate
these problems.

81

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

However, further digitisation of processes and reducing the need for
human input should be considered regardless. In any case, a certain
amount of erroneous data is to be expected and needs to be taken into
account when developing and using the LTP model.

* Value is assessed in order to rank the data according to its usefulness for
the LTP model. This is used to remove data sources with little value or
expand on others that provide information strongly benefiting the LTP
model. Again, expert knowledge can provide an orientation on the value
of various data and its sources. The value should be re-assessed after
every method iteration in order to identify the strongest predictors and
maintain performance long-term.

* Variability refers to differences and inconsistencies between different
data sources. This is likely to occur when working with multiple infor-
mation systems. Considerations need to be made on how to harmonise
and unify the data from different sources. A value-based selection helps
to reduce the complexity of the problem by ignoring data sources that
provide little value. However, some effort still remains in order to pro-
duce a structured, complete, and synchronised data stream composed
from multiple data sources.

* Volatility is the last of the seven Vs considered in this method and is
concerned with the lifecycle of the data. Specifically, the question of
how long any one data source or data point is valid should be answered.
As an example, changes on the shop floor or the company’s products or
processes can lead to concept drift in the data. If this concept drift is so
substantial that the performance of the LTP model is affected, adapting
itis required. In this case, the data from before the concept drift outlived
its usefulness as it does not reflect the current situation on the shop floor
any more. In this case, the old data needs to be ignored in subsequent
training efforts as to not jeopardise the model’s performance. A close
monitoring of the data stream and model performance in conjunction
with expert oversight help mitigate volatility issues.

On a purely technical level, information systems offer some form of interface to
extract data with. In the best case, a system provides a sophisticated interface,
such as a representational state transfer (REST-)API [Fie00], which allows for
specific querying and the return of structured data.

82

4.2 Description

Semi-automated, periodic file exports also present an option, although a less
comfortable one. Direct access to the underlying databases is often discouraged
by the system providers but stands as a last resort for automated data extraction.
Otherwise, data has to be extracted manually which is laborious and prone to
errors. AutoML-support for this step is limited. There exist AutoML solutions
which are able to perform simple queries for data on remote databases or
REST endpoints [LP20]. However, even when available, this functionality is
generally not sophisticated. Most AutoML solutions either offer file imports
(.CSV) or rely on third party data management solutions [The23].

Analysis

Following the sourcing of data, an analysis should be conducted. This step is
based on the exploratory data analysis (EDA) briefly introduced in Section 2.2.2
[Tuk77]. For this to be successful, a sufficient data sample is needed. No clear
statement can be made on how much data is enough. In manufacturing however,
to catch seasonal effects, a year’s worth of production data provides a good
starting point. To familiarise with the data, basic information on the columns
is collected. This includes data types and counts, especially of null or not-
a-number (NaN-)values which indicate missing or corrupted data. A simple
example is shown in Table 4.1.

Table 4.1: Example metrics to compute on a data set.

Column Data Type Count Total Count NaN
Column 1 Int 99,562 1,692
Column ...

Column N String 99,562 0

By reviewing the data with domain experts, columns may already be classified
as numerical or categorical data. As for numerical data, statistics such as
mean, standard deviation, min, max, and quartiles are computed, as shown in
Table 4.2.

83

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Table 4.2: Example statistics computed on a per-column level.

Statistic Column 1 Column ... Column N

Mean 7,811.36 -

Std 1,878.54 -

Min 3.65 -

25% 535.00 -

50% 1,994.00 -

75% 7,204.00 -

Max 1,249,697.00 -

For categorical columns, it is useful to compute the amount of unique values. In
addition, the distribution of each unique value may be analysed and visualised
to gain further insights. An example is presented in Figure 4.7.

Unique Value Distribution for

Column N
Value

Counts
A

40%
30%

20%
10% Unique

» Values /
CatA CatB CatC CatD Categories

Figure 4.7: Example distribution analysis of unique values in a categorical column.

84

4.2 Description

Especially interesting is information on processes to form an idea about what
the most often executed, time consuming, or time variable processes are.
A technique to further this understanding is applying histogram analysis on
both an overall and individual process level in order to visualise the value
distributions. This is shown exemplary in Figure 4.8.

Number of
Observations

A

Target Variable Distribution
All Processes

» Value

Distribution
Process A

Distribution
Process B

[T

\ 4

Distribution
Process C

Distribution
Process D

A\ 4

Figure 4.8: Example histogram analysis of both overall and individual process target variables.

Another established technique to specifically visualise locality, spread, and
skewness of numerical data is box plotting. This can be applied to numerical
columns in general but also to the target variable with regard to individual
processes as illustrated in Figure 4.9.

85

4 A Method for AutoML-Supported Lead Time Prediction

How to Leverage the Machine Learning Potentials

Locality, Spread, & Skewness of the overall Target Variable & for Processes A-C

, ()
Outliers
()
Max ‘
(ex. Outliers) ®
Upper !
Quartile (Q3)
Median
Lower
Quartile (Q1)
Min 8 S — —
(ex. Outliers)
—| o
Outliers (@)
Target Process Process Process
Var A B C

Figure 4.9: Example box plot analysis for four variables.

Further insight is gained by analysing columns outside of the target variable.
This includes process parameters, such as temperature, but also extends to
information on used materials or semi-finished products. Distribution analysis
is applied to generate an overview about how processes are typically executed
and what commonly used materials are.

As for the analysis of relationships between different columns, variables re-
spectively, the correlation measures among all are calculated. This is visualised
via a correlation matrix, highlighting strongly correlated variables, as shown
in Figure 4.10. In general, this approach allows to explore the relationships

between variables, thereby furthering the data understanding.

86

4.2 Description

However more specifically, this becomes important downstream as some ML
algorithms react more sensitively to correlated variables than others, potentially
impacting performance.

Correlations among Variables A-E

Var E
1.0

Var D
0.5
Var C 0.0
-0.5

Var B
-1.0

Var A

VarA VarB VarC VarD VarE

Figure 4.10: Example correlation matrix for five variables.

Aside from an aggregated correlation matrix, individual variables’ relation-
ships are visualised using a scatter plot. As an example, in Figure 4.11 the two
target variables PT and TT are put against each other. Of course, this analysis
may again be performed on an individual process level as well. Further recom-
mended plot analysis includes plotting target variables over time, for example
to visualise seasonal effects.

87

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

TT Processing Time in Relation to Transition Time

A
© 05
© 5
0°90° o°©°
OOOOO e
O 00O OOOO
©0% o0 o ©
o 0

> PT

Figure 4.11: Example scatter plot exploring the relationship between the target variables.

Depending on the shape of the available data, further company-specific analysis
may be performed as needed. As these analyses do not fall under the core
AutoML techniques, support in this regard is non-existent. Some solutions are
set up to automatically infer basic information such as mean values or NaN
counts [LP20]. However, for actual analysis, third party data management
frameworks [The23] in conjunction with visualisation tools [Hun07] provide
the technical basis.

Transformation

The analysis provided the groundwork for the next step transformation. This
serves as an umbrella term for several activities with the ultimate goal of
producing a unified, structured, and machine-readable data stream as a basis for
model development. Note that the activities described below are not following
a strict order. Also, a complete rundown of all potential activities cannot be
provided as this depends on the individual company and the circumstances it is
operating under. Furthermore, the transformation extends to activities falling
under the feature engineering. This governs feature generation, recombination,
and substantiation.

88

4.2 Description

As already discussed on data sourcing, not all data might be present in a
digitised and structured form. Depending on the data source, it could thus be
necessary to extract this data first. For example, in case of CAD-/ CAM-files or
similar artefacts, associated metadata or model-specific properties may be read
and persisted in tabular form. Relevant handwritten data is digitised and, like
other forms of manual data input, should be checked carefully. Considerations
should be made on any handwritten data source as to what extent it is worth
to transform it. Extracting already structured data from information systems
is possible by querying APIs or databases. For use in data streams, database
triggers or periodic polling present viable options so that recent data is always
pushed into the stream as soon as it emerges.

Furthermore, the cleaning of errors in the data poses an important activity.
This covers handling NaN values, either by removal or replacement. And
it entails plausibility checks with subsequent handling of implausible data
points. Incomplete or corrupted data should be identified and dealt with
through completion or removal on a case-by-case basis. As with the data
sourcing, experts can support this activity.

Another common technical activity are type conversions. This covers standard
string-to-number or date-to-number operations but also extends to breaking up
more complex data structures into arrays which are joined as columns into a
table structure. On the subject of processing strings, other operations might be
necessary. This includes breaking up strings which contain multiple pieces of
information, as is often the case with manually inputted data. As for numerical
data, be it integer or floating point, unit conversions are in order. Figure 4.12
illustrates some of the aforementioned transformation activities.

89

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

to_numeric("17.5") = 17.5

Structured

diff(28.01.2022 16:04, 30.01.2022 12:49) = 44.75h
Data

Counter
Stainless Steel w. < 2,5 % Ni; w. Mo

Group of Steels

- B - =

Figure 4.12: Examples for data transformation activities with expert oversight. Clockwise from
the top left to the bottom left: extraction of meta data from CAD / CAM, type conver-
sion and recombination, string splitting and interpretation, digitising and structuring
handwritten data.

Among the previous examples, strings were broken up to generate useful
features. This is taken one step further by substantiating the feature. Con-
sidering the example situation shown in Figure 4.12 top right. In this case,
the product material is represented as a string containing multiple pieces of
information, most notably the material number according to DIN EN 10027-
2:2015-07 [DIN15]. This number falls into three parts classifying a certain
type of steel. However, even the broken-up string in this form is still just
a categorical feature, providing limited informational value. Fortunately, by
querying additional data sources outside of the company, like a data sheet on
this particular steel, physical properties can be extracted, substantiating the
feature and expanding on the informational value. The hypothesis behind this
is that the physical properties of the material influence production processes
which in turn affect PTs. Thus, by enriching the data with these substan-
tiated features, stronger predictors are exposed. Substantiating the material
feature only serves as an example meant to encourage creative thought when
engineering features for the LTP model. Figure 4.13 illustrates this approach.

90

4.2 Description

Product

Simple Feature Substantiated Feature
Material: Forming Temp Min: 750°C
"1.4104 (X14CrMoS17) Forming Temp Max: 1.130°C

Chrome Steel" Machineability: 7
Corrosion Class: 2

Product
Properties

Ted

> Feature Substantiat-

Figure 4.13: Example feature substantiation in which the material string label of a chrome steel
with little informational value is transformed into a set of parameters representing the
material’s physical properties.

Special care should be applied to transformations on the target variables, PT
and TT. First, a common unit should be defined which is easily interpretable.
Depending on the company circumstances this may be minutes or hours but
also days or weeks. Furthermore, it is crucial to harmonise LT with regard
to the company’s shift calendar. This is done by subtracting LT by the time
which has passed outside of the regular working hours. This is important
when a company does not operate 24/7 as the inclusion of irrelevant off-times,
weekends, or holidays could negatively the LTP model’s performance. For
cases in which the working hours are not exactly known or vary in day to day
operations, Sauermann proposed a heuristic to derive a shift calendar from the
data [Sau20, p. 128]. This heuristic shift calendar is then applied to correct the
recorded LT.

A special case of time data and often encountered in this production envi-
ronment are timestamps. Note that these reference a single point in time and
require interpretation or transformation in order to draw useful information
from. One transformation is to split and extract certain repeating properties
from a timestamp such as daytime, weekday, or month, in order to identify
reoccurring relationships. In another approach, timestamps, i.e. points in
time, are transformed into time spaces by calculating the distance between
two timestamps, therefore putting them into relation. Analysing time spaces
between job arrivals and releases serve as an example of this approach.

91

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

The above transformed data from different sources has to be merged in order
to produce a cohesive data stream, as illustrated in Figure 4.14. The challenge
in a data streaming scenario is synchronising the different data sources. This
is achieved by buffering related events and only triggering the LTP model once
a complete data vector is produced. In practice, hybrid systems are in order as
static master data is seldom changing while movement data, such as job data,
is entering the system often yet infrequently. Solutions to the problem of data
merging will thus be highly individual to the company’s system landscape.

|:|/|:|>}|:|:|:|
mOrO g O
> |
mOE O -
O g O O -}
[
Data Stream W, Data Vectors

Figure 4.14: Merging of streamed data to data vectors for online learning.

After merging the data, as previously mentioned in Section 2.2.2, application
of the data scaling operations standardisation [GE06] or normalisation [AG19,
p- 40] should be considered carefully. Direct AutoML-support for this step
is limited. Often encountered functionality extends to simple NaN or miss-
ing value handling; type recognition and conversion are also found in some
solutions [LLP20]. However, for more sophisticated feature engineering tasks,
numerous third party tools have emerged in recent years. Some are focused
on temporal and relational datasets [KV15], provide feature recombination to
generate and evaluate new features [KSS16], or offer an entire collaboration
platform to support the process of feature engineering [SWV17]. Thus, the
transformation step is in part supported by such tools, yet it remains subject to
close expert oversight and manual experimentation in order to produce a viable
company-specific data stream for the successive steps.

92

4.2 Description

Filtering

The next method step is filtering, which is closely linked to its predecessor
transformation. The objective of this step is to remove unwanted data points
from the data stream. Unwanted data comes in several forms and can be ir-
relevant, implausible, incomplete, or even erroneous. Irrelevant data means
all data the LTP model does not benefit from. For example, data describing
operations not directly affecting PPR-specific LT, such as maintenance, are
filtered out. Implausible data has already been addressed briefly in the trans-
formation step and covers data points with values which cannot be explained.
If during transformation, these data points cannot be corrected, they should be
removed. Similar is in order for incomplete data. In some cases, outright erro-
neous data might be encountered. Errors may occur due to technical reasons
or, as is the case with manual inputs, human error. In the partially digitised
system landscapes of SMEs, errors in the data have to be expected and handled
accordingly.

Techniques to detect errors (and also implausibilities) can be subsumed under
the term outlier detection, where, in its simplest form, the statistical distribution
of a given variable is analysed to isolate data points situated far outside said
distribution. Depending on the scenario, these data points are filtered out
entirely or replaced by some value, for example an average. Outliers can
indicate an error in the data but might also be valid and just the consequence
of a rare event occurring. In an MTO scenario, such a rare event could
be the execution of some seldom required laborious process resulting in an
unusually high PT. Therefore, outliers should be detected and ideally reviewed
by experts on a case-by-case basis. An assessment should be formed whether a
learning algorithm could benefit from the outlier example or whether it should
be removed in order to not potentially degrade the performance of the LTP
model. Figure 4.15 illustrates the approach.

93

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Assessment

I {Normal
-4 - — —still Plausible
______________ Implausible
Process
» Time Unit
0 1 2 3 4 5 6 7

Figure 4.15: Expert assessing recorded processing times with regard to their plausibility.

As manual assessment is laborious, automating the identification of the right
cut-off points for implausible values can be achieved through various tech-
niques. An easy method for univariate outlier detection is based on the Z-
Score, whereby the distribution of a variable is transformed to a 0 mean and 1
variance. An outlier is then defined by a threshold which is the product of the
variance and a given factor, for example two or three times the variance. Thus,
any value beyond this threshold is defined as an outlier.

Another simple method is based on the interquartile range (IQR). In this, the
values of a variable (for example the target variable) are sorted by size and
divided into four quartiles around the median (Q1 - Q4). These quartiles mark
absolute points where 25%, 50%, 75%, and 100% of the variable’s values fall
below, with the median being positioned precisely on the second quartile at the
50th percentile. The IQR is then calculated by subtracting the first from the
third quartile, as shown in Equation 4.1.

IOR =03 -01 4.1

The IQR is then used to define a filter, which is produced by multiplying the
IQR with some factor, thereby defining a range of acceptable values around the
median. This is shown in Equation 4.2. Figuring out the best factor so that it
filters out the extremes while retaining most of the useful data is the challenge
with this approach and might require multiple iterations of experimentation.

94

4.2 Description

Filter = IQR = Factor “4.2)

The resulting IQR-filter is reapplied to the distribution in order to cut off values
outside of the filter range. This results in extremely high and low values being
removed from the data, as illustrated in Figure 4.16.

Number of
Observations
A IQR = Q3- Q1
b-- -l
Filter=IQR * 1.5
Removed Removed
Data Data

- Value of
J_ 7" Target Variable

Median
50th Percentile

Maximum

Minimum 100th Percentile

I

Q1 Q3
25th Percentile 75th Percentile

Figure 4.16: Application of an IQR-filter to the target variable with a factor of 1.5.

Filtering through the IQR is simple and easy to interpret but falls short when
multivariate outliers or anomalies occur. In these complex cases, more so-
phisticated approaches are in order. One algorithm popular to this day is
DBSCAN, originally developed by Ester et al. [EKSX96]. It presents a clus-
tering functionality similar to the k-Means algorithm with the difference that
the number of clusters does not need to be specified in advance. Subsequently,
any data point that cannot be assigned to a cluster, is an outlier of some form.
Another technique utilising deep learning is based on autoencoders. An au-
toencoder is a type of neural network that takes an input of data, encodes it into
a simplified representation, and then attempts to decode it back to its original
form [GBC16, p. 4].

95

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

However, to a degree there is always a reconstruction error, meaning more
complex data might not be perfectly reconstructed in the decoding phase. This
circumstance is exploited to detect data that does not fit the expected pattern by
defining a threshold over the reconstruction error as a means to detect outliers.
Figure 4.17 illustrates these two approaches.

1
|-
/ |)
I 13 [T Low Error, no Outlier
Outliers
T T p) or
i o O o | B High Error, Outlier
|-
Cluster Data Autoencoder Reconstruction
|

Figure 4.17: Identifying outliers with ML-based methods. On the left side, using a clustering
approach such as DBSCAN [EKSX96]. And on the right side, using an autoencoder’s
reconstruction error [GBC16, p. 4].

Of course, the techniques mentioned here are only examples and the filter
step is individual to the company’s circumstances, requiring expert insights.
As mentioned before, state of the art AutoML solutions can provide simple
NaN-value filtering but fall short on more sophisticated techniques [LP20]. The
statistical approaches via the Z-Score and the IQR shown above can be realised
with little effort through third party libraries [The23]. For the advanced ML-
based approaches, more sophisticated solutions for statistics or ML [PVG*11],
and especially neural networks [Cho15], offer various algorithms.

96

4.2 Description

Encoding

The next step in the first block is encoding. This means the transformation
from categorical data, usually represented by strings, to integers. It is nec-
essary as ML algorithms require numerical input data to learn from. In a
production scenario, categorical data is often encountered. It may denote
process IDs or materials, but can also stretch to information on customers or
resources. In Section 2.2.2, two encoding approaches, label encoding and
one-hot-encoding [ZC18, p. 78-79], where introduced. Figure 4.18 shows an
exemplary application of these two alternatives where process names defined
as strings are being encoded.

B

Other Label Encoder Other
Columns Process Columns Process
Sawing Category 0
o Sawing =0
Forging }* Millingg= 1 }* 2
Forging = 2
Milling Q A= N 1
- -
S
Other Procees One-Hot-Encoder Other Category Category Category Category
Columns Columns Sawing Milling Forging QA
Sawing Category 1 0 0 0 0
. Sawing = Category Sawing
Forging Milling = Category Milling r o o 1 0 0
Forging = Category Forging
Milling QA = Ca{égow QA 0 1 0 0 0
J

Figure 4.18: Exemplary application of a label encoder (top) and one-hot-encoder (bottom) [ZC18,
p. 78-79].

The choice of encoder for the LTP model is a decision depending on the
circumstances and especially on the available data. The aforementioned caveats
of both approaches shown here, the potential misinterpretation of data as
ordinal with the label encoder versus the curse of dimensionality with the
one-hot-encoder [Bel03], have to be weighed against each other carefully. An
iterative experimental approach is advisable.

97

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Another thing to be aware of is that introducing new categories, for example
due to changes on the shop floor, will result in the need to re-fit or extend
existing encoders. Most AutoML solutions provide basic encoding out of the
box. Some also attempt to guess whether a given column is of categorical
nature [LP20]. However, a degree of expert oversight is still required to
correctly handle categorical data.

Selection

The final step in the first method block is the selection. Contrary to an offline
scenario, in which this would be conducted along the two axis of columns
(features) and rows (test-train-splits), the online scenario only requires the
selection of columns (features) as all data points passing the filter step are
eventually fed the LTP model to learn from. As a starting point, all a posteriori
features are removed from the data as they are by definition not available
at the time of prediction. However, if deemed beneficial, these a posteriori
features may be estimated through additional predictive models. According to
Sauermann, considerations should include which features are worth estimating
based on their influence, at which point in time they should be estimated in
relation to the planning process, and which method is used to perform the
estimation. Sauermann also notes that the effort of developing these auxiliary
models should be minimised and simple statistical methods, such as linear
regression, considered [Sau20, p. 131-132]. Figure 4.19 illustrates a simple
selection example where the a priori available predictors are selected and
complemented by an estimated delayed predictor not yet available at the time
of prediction. Meanwhile, columns deemed irrelevant for the learning process
are ignored.

98

4.2 Description

Delayed

Select / Select /
Estimate Predict

Ignore Select

Figure 4.19: Exemplary selection decisions on selecting, ignoring, and estimating individual
columns both for training and prediction at runtime.

In offline learning, the heavy lifting of the selection step would be performed
by the filter, wrapper, and embedded approaches introduced in Section 2.2.2.
To reiterate, filter methods perform statistical operations on the input data to
compute filter thresholds, wrapper methods interact with the model to deter-
mine the selected features based on its performance, and embedded methods
are similar to wrapper methods though are directly integrated into the learning
algorithm [GE06]. As described in Section 3.1.3, Schuh et al. proposed a
filter-wrapper-algorithm scheme for TTP [SGS*20]. However, as previously
discussed in Section 2.2.2, these methods cannot be easily applied to an online
scenario as all data needs to be available for the training process. As for filters,
some can be adapted to function based on running statistical properties which
does not require the entire data to be available upfront [MHM™*21]. This, for
example, extends to a filter based on the Pearson correlation which is also
part of the proposed scheme by Schuh et al. For a more sophisticated ap-
proach tailored to online learning, the aforementioned Fast-OSFS [WYD*13]
or SAOLA [YWDP14] algorithms can be applied. The development of a
broader base of selection methods for online learning is however still a re-
search gap of its own [GRB*19].

99

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

As for AutoML-support for the selection step, existing solutions often provide
classic filter methods [OBUM16] or at least compute corresponding statistics,
such as feature importances [LP20].

4.2.2 Model Development

With the data preparation complete, the second block model development
commences as shown in Figure 4.20. The goal of this block is to use the
prepared data to systematically find the best performing LTP model among a
wide range of model configurations. To do so, three important steps have to
be taken which are explained in the following.

Transformation

Model

Selection Configuration
Deployment
Feature Engineering A
7 D 4
Benchmarking

Figure 4.20: Block two of the method for AutoML-supported LTP: Model Development.

100

4.2 Description

Configuration

The first step in this block is the configuration. This means setting up a pool
of different pipeline combinations of ML algorithms and their corresponding
hyperparameter settings. A model pipeline configuration consists of three
items:

1. The additional custom preprocessors can be set to apply algorithm-
specific alterations to the data which were not conducted in the data
preparation block. Specifically, this refers to additional filtering or
scaling methods and allows more fine-grained pipeline customisation as
some ML algorithms require additional preprocessing steps in order to
function properly. Thus, this item is entirely optional.

2. The algorithm refers to the concrete model type, i.e. RF, SVM, ANN,
or any other kind of ML algorithm. As concluded in Section 3.1.4,
studies have shown that especially tree-based algorithms, such as RF
[PGKM16, GPN*18, LGA*18] or DT [Sau20, p. 191], often perform
best in LTP. Other promising algorithms worth investigating include
SVM [AMTO08] and ANN [RWO03].

3. The hyperparameters refer to the always algorithm-specific parameter-
value-combinations. Finding the optimal hyperparameter values for any
given data-algorithm-combination poses a search problem and requires
a structured approach. Exploring as many viable combinations without
bloating the search space is key. In online learning, this can be achieved
by spanning a parameter grid with manually set value limits and step
intervals (randomised or fixed) in order to maintain control about both
the amount and variance of generated value combinations. This essen-
tially leads to the initial situation as with the grid and random search
approaches highlighted in Section 2.2.4 [BB12].

The above-mentioned approach of spanning a grid of viable hyperparameter
value combinations to be explored is extended to the overall configuration
step. In this, entire model pipeline configurations are created from various
pre-selected preprocessors, algorithms, and hyperparameter value limits as
well as step intervals. Based on this, the generation is automated by iterating
through the grid, instantiating all model pipeline configurations within the
defined pre-selections [MHM™*21]. Figure 4.21 illustrates this idea.

101

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Model Pipeline Configuration Configuration Pool

>

(Optional)
Additional Algorithm Hyper- > >)
Custom parameters
Preprocessors

Figure 4.21: Model pipeline configuration pool generation as based on [MHM*21].

This step is at the core of many AutoML solutions as was shown in Sec-
tion 2.2.4, yet the techniques applied vary [HKV 19, p. 3-33]. Unfortunately,
especially many of the techniques for hyperparameter optimisation are not
suited for online learning as not all data is available upfront. Therefore, the
above-presented and easy to interpret generative approach is mandated here.

Training

Following the configuration of the search space, the training of the generated
model pipelines commences. In an online learning scenario, this means that
individual data points are fed to the model pipelines in parallel one-by-one in
a vectorised fashion as soon as they emerge [HTF09, p. 397]. This mechanism
can be adjusted for batch data by simply iterating over it, mimicking a data
stream. Figure 4.22 visualises the principle.

Data Model Pipeline Pool

Figure 4.22: Iterative training of the model pipelines.

102

4.2 Description

Training a pool of model pipelines in parallel is at the core of AutoML solutions
[LP20]. However, depending on the size of the model pipeline pool, this
endeavour can become quite resource-intense as expensive computations have
to be performed for every model pipeline and both data and models have to be
kept in memory. Therefore, the next section on the subsequent step discusses
an approach to mitigate this overhead.

Benchmarking

The subsequent logical step is the benchmarking of the trained model pipelines
in order to identify the best-performing model. First however, a suitable metric
has to be chosen in order to compare different model pipelines according to
how well they solve the problem of LTP. Table 4.3 summarises a selected set
of metrics for both regression and classification performance assessments.

103

4 A Method for AutoML-Supported Lead Time Prediction

How to Leverage the Machine Learning Potentials

Table 4.3: Simplified summarisation of suggested suitable metrics for the benchmarking of LTP
models. TP = True Prositives, TN = True Negatives, FP = False Positives, FN = False
Negatives, Truth = Ground Truths, Pred = Predictions

Regression ‘ Classification
Mean Absolute Error (MAE) Accuracy (A)
1 & _ (TP, +TN,)
MAE = - mehi — Pred;| (4.3) = TP. TN, FP, 1 FN,)
=1 4.4
Mean Absolute Percentage Error |F1 Score (F1)
(MAPE)
1 <5 Truth: — Pred: (Precision * Recall)
_ 2 i i F1=2 4.6
MAPE = n Z' Truth; | : (Precision + Recall) (4.6)
i=1
4.5)
Mean Squared Error (MSE) F1 Score - Precision
1 - .. _ TP,
MSE = - Z(Truthi — Pred;)? Precision = (TPn+—FPn) 4.8)
i=1
4.7)
Root Mean Squared Error (RMSE) F1 Score - Recall
1< =")
RMSE = J = > \(Truth; - Pred;)? Recall =2+ rp —pnyy 410
n
i=1
4.9)

104

4.2 Description

Starting with the regression, four suitable metrics stand out. The simplest one
is the MAE, as it can be intuitively interpreted as the model’s mean deviation
from the ground truth, given in the chosen time unit (e.g. minutes, hours,
days). The MAPE relativises the MAE by outputting a mean percentage offset
between the predictions and the ground truth. The MSE is again built on top
of the MAE but by squaring the individual errors before summarisation and
subsequent division, higher errors are granted more impact on the resulting
score. Thus, the MSE reacts more sensitively when high individual errors are
to be avoided in particular. However, the squaring potentially leads to results
orders of magnitudes higher than the MAE, rendering it less interpretable.
Therefore, the RMSE reduces it back to interpretable levels by applying an
additional square root to the MSE. In case of higher errors during planning
leading to disproportionally higher cost during production, the RMSE should
be preferred over the MAE or MAPE.

In a classification, the simplest and most intuitive metric is the accuracy,
whereby the amount of correct predictions is divided by the amount of all
predictions, resulting in an easily interpretable percentage value. For a typically
non-binary classification problem such as LTP, the accuracy is calculated on a
per-class level and then averaged by weight in the class distribution. In cases
with a low tolerance towards errors (false positives and false negatives), the
F1 Score presents itself as an alternative. It is made up of the two components
precision, i.e. the percentage of correctly identified positives out of all predicted
positives, and recall, i.e. the percentage of correctly identified positives out of
all true positives and false negatives. This grants more sensitivity towards
misclassifications, especially false negatives. In the case that classification
errors during the planning stage result in very high cost, the F1 score should
be considered over the mere accuracy metric.

Following the selection of a suitable metric, the actual benchmarking of model
pipeline configurations commences. Different techniques for this benchmark
and selection process have been presented in Section 2.2.4. In order to provide
a brief example, the method sequential halving is proposed here [KKS13]. In
its simplest form, this algorithm consumes the population of model pipelines,
the chosen metric, and a budget of cumulative model updates as inputs. Based
on the size of the population and the set budget, it computes cut-off points,
often called rungs, at which the worst-performing half of the population is
discarded.

105

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

This process repeats until the budget is spent and the best-performing model
pipeline configuration remains. Figure 4.23 provides an exemplary visualisa-
tion.

MAE
A 1st 2nd 3rd
Halving Halving Halving
—~ - - -
I : :
— i i
Model . : '
Pipeline = \ . ‘ Best Model
Configurations \ ' , Pipeline
H : . Configuration
1 : ;
H ' : Cumulative
- i i i > Model
Updates
0 12,500 25,000 50,000 100,000

Figure 4.23: Example application of sequential halving minimising the MAE with eight model
pipelines and a budget of 100,000 cumulative model updates. Based on [KKS13].

Sequential halving ensures that the most promising members of the population
get to experience the most data while eliminating underperforming members
early on in the process in order to preserve scarce computational resources.
It is suitable for online learning as the data does not need to be available
up front. Instead, it can run on a stream over time, learn incrementally, and
eventually identify a well-performing model pipeline. Choosing a balanced
budget however is a difficult task depending on the resources available and
computation time decision makers are willing to allocate.

The benchmark step is very well covered by AutoML and similar solutions
[MHM*21]. However, making key decisions such as which metric to employ
or how much computational budget to allocate for the sequential halving is still
subject to expert judgement. Thus, experimentation during the prototype stage
is strongly encouraged.

106

4.2 Description

4.2.3 Model Deployment

Entering the third and final block model deployment marks the transition from
the prototype to the production stage. In this, the LTP model is exposed to
the real world in the three steps infegration, monitoring, and maintenance.
Figure 4.24 highlights the third method block.

NZ
N7

Deployment <

Feature Engineering
Monitoring Benchmarking

{ AutoML
Maintenance Support

N2
N2
N/

Figure 4.24: Block three of the method for AutoML-supported LTP: Model Deployment.

107

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

Integration

The first step of this block is the integration which refers to both the technical
and organisational integration of the LTP model into a company’s PPC. The
technical integration follows a web-based containerised microservice approach
[Woll7, p. 38-69]. It relies on REST in order to enable communication with a
company’s system landscape [FieO0]. Figure 4.25 provides an overview.

AL T

Planning < 1
System Model Pipeline

ﬂ Model Interface
- Model Container
. |:(>
Sources

Deployment Infrastructure
Data Payload

Figure 4.25: Technical integration of the LTP model.

The model pipeline is exposed through the model interface which is realised
by the aforementioned REST. Using containerisation, the model container cap-
sules the system environment in which the model pipeline’s technical infras-
tructure is provided isolated from the actual system and hardware the container
is running on. This in turn is provided by the deployment infrastructure which
supplies the underlying computing resources and can be tailored to a company’s
abilities and requirements as needed. This way, the LTP model is capsuled
independently from a company’s system landscape and can be deployed any-
where within the network. Planning tools may interact with the system through
its REST interface by providing the input data stream as new jobs arrive or
plans need to be updated, while in return receiving the model’s LT predictions.

108

4.2 Description

Contrary to a direct integration into existing systems such as ERP or MES,
the microservice approach generalises better towards a wide range of system
landscapes present in SME as it is more flexible, scalable, and maintainable.

For the organisational integration, Sauermann et al. proposed a cascading
closed loop model for PPC, which was discussed in Section 3.1.3 [SHPS19].
Aside from the conventional open PPC loop, this proposes a closed loop
interlacing PPC including replanning activities with a prediction model control
loop aimed at enabling model integration into PPC while at the same time
maintaining sufficient model performance. This is expanded upon here as
shown in Figure 4.26.

Disturbances
|

Production Planning & Control Release Date, i

O Target Sequence,
Lead Planning & Control Capacities,
e 2 i B | Job Release,

£ i ol
customer, (SR Capacity Production Lead Time
> Job Arrival "
Expectations| Planning) Adjustmend, Processes
‘ System (Re-)Planning Sequencing, etc.

Production Control Loop

Predicted Lead Time
(3
Model
Proposed Training
Closed Loop
—_—

Model

Conventional
o

Confguration Adjustments

Feature
Concept Drift Data |
Handling
L)

LTP Model
Control Loop

Data Sources

Past Lead Times

Figure 4.26: Organisational integration of the LTP model into PPC. Based on [SHPS19].

The LTP model control loop is altered to support online training as well as
monitoring and maintenance. The last two come in the form of concept drift
detection and adaptation, summarised under concept drift handling on the one
side, and a full model redevelopment on the other side. Compared to the
original concept by Sauermann et al., the concept drift handling allows to
automatically cope with performance losses due to model degradation over
time, at least within a reasonable limit.

109

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

In case the concept drift in the data is so severe that the model performance
cannot not be retained by the concept drift handling, a full model redevelopment
is triggered. These mechanisms are realised by the remaining method steps,
detailed in the subsequent sections.

AutoML support for the integration step is limited. In terms of technical
integration, some solutions offer low-level APIs which allow for functions
such as model inference through web-based interfaces [LP20]. However,
most solutions would require third party frameworks to realise the technical
integration. The organisational integration is highly problem- and company-
specific, therefore support by more generalised technical AutoML solutions is
not available. Instead, inner-company PPC processes have to be adjusted on a
case-by-case basis to leverage the full potential of the LTP model.

110

4.2 Description

Monitoring

As previously stated, the next step monitoring is two-fold. The inner prediction
model control loop deals with the concept drift detection (and subsequent adap-
tation). The outer loop entails conventional supervision of model performance
indicators, such as the error metrics discussed in Section 4.2.2. Figure 4.27
zooms in on the LTP model control loop.

Ground Truth

| Predictions

Expert
Judgement
Full Concept
Model Drift
Redevelopment Adaptation
.

Monitorin Performance Clglr?fe!p'
g Assessment Detection

Features & Ground Truth
Y
N]

Data
Sources

Inner Loop

Outer Loop

Figure 4.27: The monitoring step within the LTP model control loop.

111

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

For the inner loop, concept drift detectors monitor the input data stream and
/ or model-related performance criteria [GZB*14]. Recommended are the
in Section 2.2.3 aforementioned concept drift detectors EDDM [BGDF*06],
ADWIN [BGO07], or KSWIN [RHS20]. Typical parameters for these, such as
window sizes and sensitivities, are problem-specific and need to be adjusted
incrementally through experimentation. Some detectors explicitly express
distinct stages. These are warning, when concept drift is likely to occur in the
near future, and detection, when concept drift is actually detected.

Implementing the outer loop starts by settling for relevant performance indi-
cators. Typically, this is the metric chosen in the benchmarking step. Other
important metrics, depending on company-specific circumstances, could be the
computing resource intensity or training and inference time constraints. For
these metrics, targets, describing performance goals the LTP model should
fulfil, as well as thresholds, meaning performance boundaries the LTP model
must not undercut, need to be established by the management [SHPS19].

112

4.2 Description

Maintenance

Following the monitoring approach, the last step maintenance is again con-
ducted two-fold, along the inner and outer LTP model control loop. This is
highlighted in Figure 4.28.

Ground Truth

| Predictions

Concept
Drift
Adaptation

Model
Redevelopment

Maintenance

Performance
Assessment

Drift
Detection

Monitoring

‘ Concept ’

Features & Ground Truth
Y
N]

Data
Sources

Outer Loop Inner Loop

Figure 4.28: The maintenance step within the LTP model control loop.

On the inner loop, following a concept drift detection, the adaptation is trig-
gered. Referring to Section 2.2.3, an informed adaptation strategy is chosen
here. Depending on the model algorithm, this either results in a global or a
local model replacement. In a global replacement, a new model with the same
configuration is trained on the new data while in a local replacement, only parts
of the existing model are replaced [GZB*14]. This mechanism is implemented
differently by various algorithms.

113

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

As an example for an algorithm providing local replacement capabilities, the
Adaptive Random Forest (ARF) by Gomes et al. is highlighted here [GBR*17].
ARF is an extension of the RF algorithm which, amongst other features,
provides online learning and concept drift handling capabilities. To do so,
each tree within the forest commands its own drift detector, which is able to
express both warnings and detections. Should a warning occur, a replacement
tree starts to train in the background. On detection, this background tree is
then switched with the active foreground tree, which is discarded afterwards.
This mechanism ensures the ARF is robust towards various types of concept
drift and can adapt efficiently. Pre-selecting algorithms such as the ARF in the
configuration step earlier, ensures the inner LTP model control loop functions
to its fullest capacity.

The outer loop serves as the re-entry point for the first method block. If
performance degradation is so severe that the built-in concept drift handling
mechanisms are unable to cope with the underlying changes in the data, a full
model redevelopment is triggered. This means re-entering the data preparation
block, especially focusing on the analysis block in order to identify the exact
nature of the change but also to challenge previous assumptions.

AutoML support for both the monitoring and the maintenance steps is avail-
able but limited. It comes in the form of the aforementioned scheme of
automated concept drift detection and handling, such as implemented in the
ARF [GBR*17]. As maintenance is the last step, this concludes the main body
of the method description. In the following, a suitable system architecture to
implement the method is laid out.

114

4.3 System Architecture

4.3 System Architecture

Compared to the static scenario, operating within the streaming scenario re-
quires a different architectural approach. In a static scenario, data, including
the target variables’ ground truths, is collected and then processed batch-wise
to develop a predictive model, which is then deployed and can be inferenced at
runtime. This means training and inference activities are strictly divided. The
model cannot benefit from potentially new information contained in the data
it inferences on at runtime. Of course, this data can be collected and used to
trigger retraining at a later date, resulting in periodic model updates.

In contrast, in the streaming scenario both inference and training may occur
simultaneously and iteratively. The online training algorithm learns from every
example it is fed and builds up prediction performance over time. Although
this happens at some delay. Naturally, at the time the prediction is required,
i.e. during production planning, ground truth on the target variables is not yet
available as production processes have not been executed and reported on yet.
However, once ground truth does become available at a later date, it can be fed
to the online model in order for it to learn from and improve itself. Instead of
periodic model updates through retraining, online learning leads to frequent
although smaller model updates. Figure 4.29 illustrates this idea.

Model Inference at Planning Stage Model Update after Job Completion

Planning System

Inference

T »>> D r»O)

Finished Job Online Training Pipeline ‘

Interface

New Job
- no Ground Truth yet -

- with Ground Truth -

Model Update

» Time

Figure 4.29: Basic principle of LTP online inference and training with delayed ground truth.

115

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

4.3.1 Inference Pipeline

To realise this approach, a different, streaming-oriented architecture is required.
Figure 4.30 provides a sketch for the inference at the planning stage. As laid
out in Section 4.2.1, data is entering the stream processing from different data
sources. What then follows are implementations (processors) of the method
steps transformation (including merge), filtering, encoding, and selection as
detailed in that section. Data which went through this pipeline is then presented
to the model interface for inference. The model’s prediction is then passed
on to downstream applications such as the planning system, with which the
planner interacts.

Data Sourcing Stream Processing Integration Downstream

Data .
Source 1
Transformer
N Model |
Data Source P> Merger Filter Encoder Selector H Planning System
Interface

Transformer

Q—]
Data i Model

Data Source n

Figure 4.30: Architecture of the LTP streaming pipeline for inference.

4.3.2 Training Pipeline

The corresponding training pipeline is shown in Figure 4.31. The data flows
through the same processors as in the inferencing case but then enters the
model development block. In this, a concept drift detector will inspect defined
variables, though at least the target variables, for concept drift. This detector
follows a two-stage escalation scheme, defined by thresholds set in advance.
The first stage is the warning stage in which anomalies have been detected but
concept drift is not yet confirmed. The second stage is the actual confirmation
of a detected concept drift.

116

4.4 Assessment & Differentiation

Data Sourcing Stream Processing Integration

Data
Source 1
Data Source Filter Encoder Selector Model

Interface
ing & Deploym

RS

Data Source n

Figure 4.31: Architecture of the LTP streaming pipeline for training.

As presented in Section 4.2.3 and as long as no concept drift is present in
the data, the foreground model or model part, i.e. the part that is currently
deployed, is trained further. In case of a concept drift warning, a background
model or model part starts to train. If the concept drift is confirmed at some
point, the background model or model part is swapped in, replacing the fore-
ground one. Finally, access to the model is provided via the model interface
described in Section 4.2.3 which can be queried for inference. This concludes
the main body of the method and system architecture description.

4.4 Assessment & Differentiation

To summarise this chapter, the thesis’ main objective as defined in Section 1.2.1
was translated into three technical objectives in Section 4.1.1. These were then
put into the context of a data streaming scenario with associated precondi-
tions. Based on these, Section 4.2 then described a three block method for
AutoML-supported LTP. The method was complemented by system architec-
ture considerations in Section 4.3. In the following, both the conceptualised
method and system architecture are assessed against the technical objectives
as well as differentiated from the state of the art as it was laid out in Sec-
tion 3.1. In addition, the degree of available AutoML support for the method
is summarised as well.

117

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

4.4.1 Assessment of the Technical Objectives

To reiterate, the technical objectives of this thesis are defined in Section 4.1.1
as follows:

TO1: Enable LTP by utilising AutoML to develop models capable
of predicting PPR-specific PTs and TTs.

TO2: Enable integration of the LTP models into a system land-
scape where they can be deployed, inferenced, monitored, and
updated.

TO3: Enable the LTP models to adjust to concept drifts in the
input data in order to maintain a constant performance.

Assessing TO1, the first two method blocks data preparation and model de-
velopment are specifically designed to fulfil this goal. While the first method
block extracts and prepares data from PPR-specific data sources, the second
method block produces models capable of predicting both PTs and TTs for
single operations on given resources from this data. Both method blocks ap-
ply AutoML techniques where possible with a focus on model development
activities.

TO2 is achieved in part by method block three with the integration, monitoring,
and maintenance steps. In these, the deployment as a web-based containerised
microservice, which can be queried and monitored via REST, is outlined. On
a technical level, this is complemented by the training and inference pipeline
system architectures laid out in Section 4.3. The update capability is a core
mechanic of the online training approach laid out in the method steps training
and maintenance. On an organisational level, an LTP model control loop fully
integrated into PPC has been proposed in the integration step.

Lastly, TO3 is addressed via the method steps monitoring and maintenance.
State of the art concept drift detectors are proposed for the identification of
concept drifts in the input data. The adaptation is then realised by an informed
strategy with a preference for local model replacements. However, the proposed
LTP model control loop also allows for a full model redevelopment should local
adaptations not have the desired effect. Thus, the technical objectives laid out
in Section 4.1.1 are considered achieved by the proposed three-block method
and the complementing system architecture.

118

4.4 Assessment & Differentiation

4.4.2 Assessment of the AutoML Support

Table 4.4 summarises the degree of AutoML-support for each method step.
Details on the individual step assessments are provided in the respective sub-
sections of Section 4.2.

Table 4.4: Assessment on the degree of AutoML-support for each method step.

Block Step Degree of AutoML Support

Sourcing
Analysis
Transf ti
Data Preparation .rans' ofmation
Filtering
Encoding

Selection

Configuration
Model Development Training

Benchmarking

Integration
Model Deployment Monitoring

GGG 000 666,000

Maintenance

While the method block model development is adequately supported by Au-
toML, the method blocks data preparation and model deployment are sup-
ported in varying degrees only. Until more sophisticated AutoML solutions
are available, especially data preparation remains the most laborious task of
the proposed method.

119

4 A Method for AutoML-Supported Lead Time Prediction
How to Leverage the Machine Learning Potentials

4.4.3 Differentiation from Existing Methods for Lead Time
Prediction

As shown in Section 3.1, a large body of work on LTP focused on the overall
problem modelling, the application and comparison of individual ML al-
gorithms as well as feature engineering techniques [RW03, OKO06, AMTOS,
dCGMT10,MLRH11,MDF*14,LYWF15MM15,PGKM16,GPN*18,LGA*18,
LYS19]. There was furthermore a schism between works focusing on PTP on
the one hand and TTP on the other (see Tables 3.1 and 3.2 for references).
In contrast to these earlier works, the holistic method presented in this the-
sis provides an end-to-end recipe ranging from data preparation and model
development to the model deployment while at the same time unifying PTP
and TTP into one approach. It also reduces the complexity of the overall task
by employing AutoML techniques which is a novel approach in this problem
domain.

Few authors, namely Pfeiffer et al. [PGKM16], Gyulai et al. [GPBG18], and
Schuh et al. [SGS*™20] acknowledged the problem of performance degrada-
tion through concept drift and proposed routine or performance-based model
re-trainings. In opposition, the method presented here conceptualises a true
online learning approach with sophisticated concept drift detection and adap-
tation mechanisms. Lastly, the integration into PPC as addressed in detail by
Sauermann et al. was developed upon in this thesis in order to better incorporate
said online learning approach [SHPS19, Sau20].

120

4.5 Chapter Summary

4.5 Chapter Summary

This Chapter described the main contribution of this thesis: the method for
AutoML-supported LTP. It began by laying out the framework in which the
method is meant to be operated. As such, the main objective from Section 1.2.1
was further systemised into technical objectives in Section 4.1.1. The data
streaming scenario was outlined and preconditions for the method application
were provided. This was followed by an in-depth description of the method
which is organised in two stages, protoyping and production, dividing into
the three blocks data preparation, model development, and model deployment.
These three blocks are sub-divided into a total of twelve steps of which each
provides concrete guidelines and makes suggestions on suitable methods for
implementation. Subsequently, system architectures for inference and training
pipelines based on the streaming scenario and the method steps were illustrated.
Concluding the chapter, the designed method was successfully assessed against
the technical objectives from Section 4.1.1. Furthermore, the AutoML support
as provided by the state of the art was assessed based on its ability to cover each
method step. This yielded mixed results, thus highlighting potential research
gaps. Finally, the method presented in this thesis was sufficiently distinguished
from the existing methods for LTP summarised in Section 3.1.

121

5 Validation

A Practical Application

In this chapter, the described method for AutoML-supported LTP is validated
against two case studies. The first case study was already subject of a previous
work [BTO22]. The main difference is that the original paper considered an
offline learning approach whereas the method introduced in this thesis is based
around online learning. The second case study is an alternative version of
the prior, in which the data has been altered in order to assess the method’s
ability to handle concept drift. Details of both case studies are laid out in their
respective sections below. In the final section of this chapter, based on the
results of the case studies, the method is critically assessed.

5.1 Case Study A: Lead Time Prediction on
Real-World Data

This first case study, referred to as case study A, revolves around performing
LTP for an SME, mainly operating in the MTO domain. The case study was
developed within the publicly funded research project Altro (Algorithm-based
Optimisation of Timely Job Control in Make-To-Order Production), which ran
from 2020 to 2022 [GBE*22]. Data produced by this case study was also
used to conduct an LTP benchmark on AutoML solutions, although in a static,
non-streaming context [BTO22].

123

5 Validation
A Practical Application

5.1.1 Scenario

The company behind case study A is a Baden-Wiirttemberg-based medium-
sized enterprise mostly producing forging parts for various industries. The
jobs are largely MTO with small series orders complementing the portfolio.
The shop floor is organised as a flexible job shop, the smallest organisational
units are machine groups of which there are 26. These realise a total of 22
different production processes. PPC is conducted manually, mainly optimising
for adherence to schedule. The system landscape is defined by a proprietary
ERP system which governs job data and shop floor reporting. There is a
direct management access to the prioritisation of jobs via manually set priority
flags. High priority jobs arriving on short notice frequently disturb operations.
The shop floor operates in a single shift cycle on weekdays with occasional
overtime working hours on Saturdays and seldom on Sundays. Reporting
from the shop floor is handled manually via bar code scanning. During the
project, digital production monitors had been installed at every work station,
primarily displaying job priorities to the shop floor staff. Within the frame of
the case study, the company provided 99,526 historical data points spanning the
years 2019 to early 2021. These reference individual process executions and
include expert estimations for the PTs, which served as a baseline performance
indicator in the case study.

5.1.2 Method Application

Case study A covers the prototyping stage of the method with the two blocks
data preparation and model development. The productionisation via the third
block, model deployment, is not part of the case study. In the following,
the application of the respective method steps is discussed. The prediction
problem was modelled as a regression for both PT and TT with the MAE as
target metric.

124

5.1 Case Study A: Lead Time Prediction on Real-World Data

Sourcing

As stated before, 99,526 raw data points were sourced from the aforementioned
ERP system. This data was outputted as CSV files and provided an already
aggregated dataset. In order to mimic the streaming context, this data was
later fed to the ML components incrementally, though without the delays that
occurred in the real world. Table 5.1 summarises the key properties of the raw
data. The entire column model, including brief explanations, is available in
the appendix in Table A.1.

Table 5.1: Raw data overview.

General Properties

Total Rows 99,526
Total Columns 30

From 08.01.2019
To 25.02.2021
Rows from 2019 42,625
Rows from 2020 52,156
Rows from 2021 4,745

Unique Values

Jobs 15,478
Machine Groups 26
Processes 22
Materials 601
Target Variables

Time Unit Minutes
PT Baseline MAE 115.19
TT Baseline MAE n/a

125

5 Validation
A Practical Application

As stated before, the data contains expert estimations for the PTs. Stacked
against the recorded actual PTs, i.e. the ground truth, a mean absolute error of
115.19 minutes was calculated. This serves as a performance baseline for the
method results. Unfortunately, the raw data does not contain expert estimations
on the TTs, thus there is no baseline available in this case. Concluding the
sourcing step, Table 5.2 contains the considerations of the seven Vs as proposed
in Section 4.2.1:

Table 5.2: Considerations of the seven Vs for case study A.

\% Assessment

Volume In the data provided, there are 99,526 data points with 30 columns
each, resulting in 2,985,780 values. Eight columns are deemed
static master data. The ERP system already provides aggregated
or computed values such as adherence to schedule.

Velocity With the available data spanning 2.14 years and assuming a year
has 250 working days, statistically roughly 186 data points are
created per working day, or 23 per working hour. The creation rate
does not follow a uniform distribution but instead fluctuates based
on events occurring shop floor, seasonal trends, etc.

Variety As the data is already aggregated by the ERP system, it arrives in a
structured form. However, data types vary between numeric, string,
date, and datetime. Strings are often aggregated, representing
multiple pieces of information.

Veracity Parts of the data are managed manually. This relates to static master
data, such as materials and their properties but also to the PTs and
TTs recorded by barcode scanning. These manual inputs reduce
the overall trust in the data as errors have to be expected.

126

5.1 Case Study A: Lead Time Prediction on Real-World Data

Value A value assessment on different data sources cannot be produced
here as the ERP system is the only source available. However, the
columns contain some redundancies which can be removed safely
without reducing the data’s overall value. The data expresses infor-
mation on products, processes, resources, and the target variables,
which weighs in its favour. However, the information expressed is
superficial and lacks detail.

Variability A variability assessment on different data sources cannot be pro-
duced here as the ERP system is the only source available.

Volatility Given the data stretches over the beginning of the COVID-19 pan-
demic in 2020, it is plausible that concept drift occurred due to
the pandemic’s effects on public health and changes in the German
legislation to contain the pandemic as well as subsequent effects
on the company’s processes and staff availability. However, a clear
indication can only be given after completing the first iteration of
the method cycle.

Analysis

Analysis of the raw data showed an amount of NaN-values which are quantified
per column in the appendix in Table A.2. These are exclusively due to missing
values. At first glance, corrupt or unintelligible data was not identified. Six
categorical columns were determined, which are displayed in the appendix in
Table A.3. The most important statistical properties were calculated for the
target variables’ columns, as shown in Table 5.3.

127

5 Validation
A Practical Application

Table 5.3: Statistical properties of the target variables in the raw data.

Statistic PT TT
Mean 130.19 1,945.39
Standard Deviation 331.31 3,703
Min 0.00 0.00
25% 8.92 0.00
50% 33.23 270.21
75% 120.07 2,485.00
Max 20,828.28 161,299.82
Share of Total LTs 6.27% 93.73%

As expected, PTs are in general much lower than TTs. Interesting to note is the
large spread between minima and maxima on both target variables. Especially
the occurrence of zero values, but also the extremely large maxima values in
the thousands, indicate the presence of outliers in the data. This is even the
case despite the data being corrected with regards to non-working hours by the
ERP system beforehand. About 14% of the PTs and 33% of the TTs in the raw
data are between zero and one minute. These values seem implausible though
could be explained by human errors in the manual barcode scanning. L.e. staff
failing to report process executions entirely or reporting them in bulk. It was
not possible to establish the precise reason for these outliers during analysis.
The high range also impedes the suggested visualisation of the target variables’
distributions as histograms and box plots. For better visibility, Figure 5.1 shows
scatter plots of the target variables plotted against the timeline.

128

5.1 Case Study A: Lead Time Prediction on Real-World Data

Processing Time

20000

15000

' 10000

5000

PROCESS_ACTUAL_PROCESSING_TIME

160000
140000
2020 2021 ' 120000

100000

! 80000

60000

40000

PROCESS_ACTUAL_TRANSITION_TIME

20000

0

0 20000 40000 60000 80000 100000
Index

Transition Time

i

.

2020

2021

0 20000 40000 60000 80000
Index

Figure 5.1: Target variables in the raw data over time.

100000

In this, the extremely large outliers become clearly visible with the overwhelm-
ing majority of the data points accumulating at the bottom of both plots. There
are some similarities for both target variables with plunges around the 40,000
and 95,000 data point marks and subsequent rises shortly after. These can
be explained by the Christmas and new year’s holidays taking place around
the time frames these data points fall into. A visible effect of the COVID-19
pandemic cannot be corroborated here. Further analysis into the relationships
between the target variables as well as the baseline is shown in Figure 5.2.

160000
140000
' 120000
100000

! 80000

PROCESS_ACTUAL_TRANSITION_TIME
PO
s 3
8 8
8 8
s 8

20000

Processing to Transition Time

Actual to Estimated Processing Time

®
3
S
3

6000
14000

2000
|

PROCESS_ESTIMATED_PROCESSING_TIME_MANUAL

o

0 5000 10000 15000 20000
PROCESS_ACTUAL_PROCESSING_TIME

0 5000 10000 15000

PROCESS_ACTUAL_PROCESSING_TIME

20000

Figure 5.2: Both target variables in relation (left) and the actual PT in relation to the expert

estimation (right) in the raw data.

129

5 Validation
A Practical Application

As appears on the plot, the target variables behave slightly disproportional
to one another. However, correlation analysis shows a very weak positive
coefficient of 0.07 between the target variables. The baseline estimation for
the PT appears to underestimate the ground truth but correlation analysis
shows a weak positive coefficient of 0.35. Further correlation analysis on
the numerical columns yielded no strong correlations. This is apart from the
fact that processes and machine groups naturally form pairs as the latter are
typically clustered by the processes their support. In the raw data, 59 unique
process-machine-group-combinations were identified. This means there is an
n:m relationship between processes and machine groups which execute them.
Continuing, Figure 5.3 informs about the most commonly executed processes
derived from the raw data.

Top Ten Processes Executed By Frequency

Sawing

Forging

Final Control & Packaging
Measurement Control Marking

Hardness Testing

Rolling

Preturning

PROCESS_DESCRIPTION

Setting Up
Testing for Mixed-Up Components

Finish Turning

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Per Cent

Figure 5.3: Top ten processes executed in the raw data by frequency.

These top ten processes account for a combined 91.81% of all processes
executed within the raw data. Sawing and forging typically provide the first
two steps in any job sequence. From there, these sequences branch into more
product-specific processes. When analysing the share of PT per process over
all accumulated PTs, the list shifts slightly.

130

5.1 Case Study A: Lead Time Prediction on Real-World Data

Figure 5.4 shows that preturning makes up more than a quarter of all PTs with
sawing being second just under 25%. PT-wise, forging only makes up only
around 4% of all accumulated PTs.

Top Ten Processes Executed By Processing Time

Preturning

Sawing

Milling

Finish Turning

Forging

! Measurement Control Marking

Setting Up

PROCESS_DESCRIPTION

Turning
Sampling

Hardness Testing

0 5 10 15 20 25
Per Cent

Figure 5.4: Top ten processes executed in the raw data by their share of the total PTs.

It is worth pointing out that the raw data contains setup processes as well as
maintenance or holding processes which are not directly furthering the product.
Also, the company distinguishes the stages of a turning activity into different
processes. The complete list of processes and their shares within the raw data
is given in the appendix in Tables A.4 and A.5. In addition, the PTs and TTs
per process over time are provided in the appendix in Figures A.1 and A.2
respectively.

Following the individual process analysis, more insight was gained by review-
ing the process chains which are realising the job executions. As there are
15,478 jobs in the raw data spread over 99,526 data points representing indi-
vidual process executions, statistically each job is realised by a process chain
with a length of six. However, it is worth noting that some jobs only appear
with one or two process executions in the raw data.

131

5 Validation
A Practical Application

In some cases, this is due to the fact that jobs started or finished outside of the
2019 to 2021 data window and are thus only partially available. In opposition,
there are some jobs with multiple rework processes, leading to longer process
chains. The longest process chain on record is 47 long. Figure 5.5 visualises
the most often occurring process chains, capping the visualisation at six.

1. Process 2. Process 3. Process 4. Process 5. Process 6. Process
~6% ~5%
Setting Up Setting Up
~77% ~12% ~8% ~5%
Sawing Sawing Sawing Sawing
~11% ~66%
Forging Forging
~11% ~36%
Rolling Rolling

~23%
Testing

~5%
(Control Marking

-

~10% ~12%
Preturning Preturning
~23%
Testing
J

'
'

~8%
Preturning

~11%
(Control Markin (Control Marking,

~13% ~17%
Final Control & Final Control &
~12% ~15% ~23% ~13% ~13% ~19%
Other Other Other Other Other Other
~8% ~13% ~18% ~27% ~40%
End End End End End

Figure 5.5: Process chains as occurring in the raw data. Processes with a link share below 5% are
summarised under Other. Only the first six links are displayed.

~5%

)
)

Testing

/)
/)

~11% ~17%

G
G

Control Markin,

—

~1%
Final Control &

—

T
Ve

A typical job starts with a sawing process followed by forging, rolling, hardness
testing, and ends with final control and packaging. However, for the 15,478 jobs
in the raw data, 4,690 uniquely different process chains were identified. And
this does not include varying parameters within these processes themselves.
This goes to highlight the great variety in MTO production where every job is
differing from the next one in some aspect.

132

5.1 Case Study A: Lead Time Prediction on Real-World Data

Continuing the analysis, further insight was gained by visualising the processed
materials, as shown in Figure 5.6.

Main Material Groups

1 Steels —
2 Non-Ferrous Heavy Metals .

-1 Undefined I

3 Non-Ferrous Light Metals

Main Material Group

10 20 30 40 50 60 70 80
Per Cent

o -

Figure 5.6: Main material groups according to DIN EN 10027-2:2015-07 [DIN15] in the raw data
by frequency.

The classification is based on the DIN EN 10027-2:2015-07 [DIN15], which
dictates a scheme of main material groups and associated subgroups. Displayed
here are only the main material groups. As derived from the raw data, out of
the 601 different materials processed by the company 85% belong to the group
of steels, followed by the group of non-ferrous heavy metals at 8%. About 4%
cannot be identified by this scheme as the material number is incomplete or
missing from the data. The remainder is made up of non-ferrous light metals.

Further analysis performed on the remaining columns lead to the detection
of sporadic anomalies where date columns contained implausible values. For
example, some job release dates were earlier than job approval dates. These
were attributed to system defaults automatically filling NULL values.

133

5 Validation
A Practical Application

In summary, the analysis yielded the following key insights:

134

Both PTs and TTs show high variances and outliers in the form of
implausibly low and high values, indicating an overall poor data quality.
The reasons are unclear but it is likely that human errors in the manual
barcode scanning before and after each process execution are one major
cause. Thus, these outliers need to be addressed in the subsequent steps.

PTs only make up 6.27% of the total LTs, falling in line with previous
findings from other studies [SPSF19, SPM*19,SGST20]. However, this
assertion is under limited confidence due to outliers present in the data.

Both PTs and TTs had already been corrected for non-working hours by
the ERP system.

The top ten processes by frequency account for over 91.81% of all
processes executed. If measured by PT share, this number goes up to
94.25%.

A typical job is realised by six different processes. Though the data
shows a high variance with the amount of processes per job ranging
from one to 47.

In 85% of the jobs, a type of steel (main material group 1 as per [DIN15])
is the main material.

5.1 Case Study A: Lead Time Prediction on Real-World Data

Transformation

During transformation, six major adjustments were performed on the data.
These are summarised in Figure 5.7 and laid out in detail below.

Type Conversions String Splitting '>{ Date Conversions
Joining Previous Feature .
Operations Substantiation }<‘ EatelGonEctions

Figure 5.7: Transformations applied to the raw data.

First, type conversions were performed, where possible from string to numeric
values. Within this adjustment, the NaN values were replaced by sensible
defaults. This was followed by the string splitting, where strings were broken
up into different columns, often followed by another type conversion, to sepa-
rate the information within them. In some instances, characters were dropped
entirely. An example is breaking up the six-character material number into the
main material group (1st character), sub material group (3rd and 4th charac-
ters), and counter (5th and 6th characters). In this instance, the separator (2nd
character) was dropped, as it represented no useful information. In the next
adjustment, all date and datetime columns were converted into Unix notation
as numeric values in milliseconds. Subsequently, the date anomalies detected
during the analysis step where corrected by adjusting job approval and release
dates to the same day. In the following, results of the string splitting were used
to perform feature substantiation by creating new features from the individual
split components. Further substantiation was achieved by recombining differ-
ent features. I.e. distances between absolute date values have been calculated
to create features representing time spaces instead of points in time. In the
last adjustment, for each row, the rows of the previous operations were joined
to it. This ensures a learning algorithm can harness information on previous
operations as was suggested by Meidan et al. [MLRHI11]. The adjustment was
performed based on the previous operation within the same job but also based
on the previous operation on the same machine group.

135

5 Validation
A Practical Application

This last adjustment of joining of previous operations has two caveats which
need to be highlighted here. For once, it varies how many machines make
up one machine group. A portion of the machine groups in the company
are effectively only one machine or work station but others operate multiple
machines in parallel. Thus, the previous operation might have been executed
on a different machine and has no impact on the job at hand. In order to
maintain a consistent column model, this was not distinguished further and the
caveat was accepted. The more pressing concern with this approach though
is the fact that, depending on the time span between the conclusion of the
previous operation and (re-)planning the current one, this information needs
to be considered a posteriori. It thus would not necessarily be available at
the time of prediction. For purposes of investigating the potential impact of
information on previous operations, this adjustment was done regardless. The
resulting column model is available in the appendix in Table A.6.

Filtering

The filtering of the transformed data was conducted separately to create filtered
data tailored to both target variables. Table 5.4 provides an overview of the
filters and the number of removed rows.

Table 5.4: Filters and their effects on the transformed data.

Filter Rows Removed Rows Remaining
Processing Time 99,526
IQR Factor 1.5 11,507 88,019
Material Type Undefined 3,590 84,429
Processing Time <= 1 13,480 70,949
Irrelevant Process 4,674 66,275
Transition Time 99,526
IQR Factor 1.5 9,307 90,219
Material Type Undefined 3,816 86,403
Irrelevant Process 4,119 82,284

136

5.1 Case Study A: Lead Time Prediction on Real-World Data

The IQR filter refers to the interquartile range method introduced in Sec-
tion 4.2.1. Its purpose is to remove the outliers and it was only applied to the
respective target variable with a factor of 1.5. The next filter removed all data
points with undefined materials. For the filtered data for the PT prediction,
another filter was applied which removed any value up to one minute to root
out implausible and impossible PTs. This was not performed for the TT variant
as additional analysis revealed some consecutive operations occur within the
same machine group, rendering it likely that at least a portion of zero or near-
zero TTs are plausible and genuine. The last filter takes out rows containing
processes deemed irrelevant. These extend to setup, waiting, maintenance, and
downtime process dummies. Plots of the resulting filtered data are available
in the appendix in Figures A.3 and A 4.

Encoding & Selection

The last two steps of the data preparation are combined here as they were
implemented in their simplest form. For the encoding, a label encoder was
used to encode 15 categorical columns. This includes columns added during
the transformation step. The selection was performed manually by removing
job IDs, dates (points in time), manual estimations for LTs and PTs as well
as the a posteriori columns, including the ground truth which was set apart
for the training step. The resulting column model spans 60 columns and is
available in the appendix in Table A.7. This concluded the first method block
data preparation.

Configuration, Training, & Benchmarking

Beginning the second method block model development, considerations went
into the pre-selection of learning algorithms and their hyperparameter bound-
aries for the configuration step. As was shown in Section 3.1.4, tree-based
methods performed well on LTP [PGKM16, GPN*18, LGA*18]. Therefore,
online learning counterparts of the classic RF were pre-selected. This choice
fell on the aforementioned ARFR by Gomes et al. [GBR*17] and the online
extra trees regressor (OXTR) by Mastelini et al. [MNVdC22]. A parameter
grid was laid out for both algorithms. Boundaries for the most important
parameters are provided in the appendix in Table A.8.

137

5 Validation
A Practical Application

Feature scaling was applied as custom preprocessor. Technically, this should
not be important with tree-based algorithms but preliminary experimentation
showed a positive effect on performance. Hence, a total of 540 model pipelines
were generated for each target variable.

The in Section 2.2.4 proposed sequential halving algorithm by Karnin et al.
[KKS13] was then applied to the configuration pool in order to identify the
most promising model pipelines based on the MAE metric. This was done once
for each target variable, PT and TT. Therefore, a budget of 50,000 cumulative
model updates per run was set. The entire data was fed to the algorithm
incrementally in order to mimic the online learning scenario.

As stated before, the baseline to validate against were the expert estimations
contained in the data. These however were only available for PTs. In or-
der to establish a secondary baseline for a data-driven model for both target
variables, a lightweight statistical approach, the rolling mean model (RMM),
was implemented as well. This was a simple table structure of rolling mean
values which were continuously computed for each process. As predictions,
the current rolling mean values for the processes in question were returned.

138

5.1 Case Study A: Lead Time Prediction on Real-World Data

5.1.3 Results

In order to analyse the results, the selected hyperparameters and performance-
related outputs were tracked. Table 5.5 summarises the results of the ML
models produced by the method in opposition to the aforementioned RMMs
and the expert estimation baseline.

Table 5.5: Best-performing model pipelines versus the RMMs and baseline.

(Hyper-)Parameter Processing Time Transition Time
Best ML Model

Algorithm ARFR OXTR
n_models 50 100
max_features 25% 25%
max_depth None 5
min_samples_split 3 3

MAE 35.95 880.15
Improvement over Baseline 37.96% n/a
Improvement over RMM 03.41% 05.74%
Rolling Mean Model (RMM)

MAE 37.22 933.73
Improvement over Baseline 35.77% n/a
Baseline

MAE 57.95 n/a

The ML models produced by the method performed best for both target vari-
ables, however the RMMs come in as close seconds. Far off for the target
variable PT resides the expert estimation baseline. Figure 5.8 visualises the
performance over time for both target variables. On the x-axis lies the data
point index, the y-axis marks the MAE.

139

5 Validation
A Practical Application

Processing Time - All Models Transition Time - All Models

60 |
1000

50

W 40 w 600
w _ I
= =
30 | 400
200
20 —— Best ML Model
Rolling Mean Model —— Best ML Model
| —— Baseline 0 —— Rolling Mean Model
10
0 10000 20000 30000 40000 50000 60000 0 20000 40000 60000 80000
Index Index

Figure 5.8: Performance over time of the best ML models against the RMMs and the baseline.

The expert estimation baseline is drawn as a constant. The curves for the
data-driven models show that the rolling mean models start off with a lower
error rate but are undercut by the ML models at some point. Furthermore,
for PT, the slight downward slope of the error curve indicates a potential for a
performance increase if more data was available. However, with the currently
available data, the ML models only perform slightly, though consistently, better
than the RMMs. Noteworthy for all models is a consistent rise of the error rate
around the 30,000th data points index which remained unexplained.

140

5.1 Case Study A: Lead Time Prediction on Real-World Data

Error Analysis

The performance represented by the MAE was analysed further to gain deeper
insights. Figure 5.9 shows the MAE on a per process level for the PT prediction.

Processes By MAE - Processing Time

Drilling
Milling

Finish Turning
Preturning
Sampling
Sawing
Reworking
Turning

Measurement Control Marking
Centering

PROCESS_DESCRIPTION

Testing for Mixed-Up Components
Forging
Final Control & Packaging

Overall
MAE

Hardness Testing

Rolling

0 10 20 30 40 50 60 70

Figure 5.9: MAE of the PT ML model for each process.

As seen by the above average error rates, drilling, milling, (pre- / finish) turning,
sawing, and reworking processes are harder to predict for the ML model than
the other processes. However, this illustration does not take into account the
frequency of the processes, i.e. how commonly these are executed. As was
shown in Figure 5.3, sawing makes up about a fifth of all processes executed.
Preturning accounts for less than 10%, finish turning for around 2.5%, and
the other hard to predict processes for even less. Therefore, a more useful
conclusion can be drawn if the process-individual error rates are weighted by
their frequency in the data. Figure 5.10 illustrates this adjustment.

141

5 Validation
A Practical Application

Processes By Weighted MAE - Processing Time

Sawing

Forging

Preturning

Measurement Control Marking
Final Control & Packaging
Hardness Testing

Rolling

Sampling

Reworking
Milling

PROCESS_DESCRIPTION

Testing for Mixed-Up Components
Finish Turning

Turning

Drilling

Centering

0 2 4 6 8 10
Weighted MAE

Figure 5.10: MAE of the PT ML model weighted by the frequency share of each process.

When adjusted for frequency, the sawing process stands out as both often exe-
cuted and hard to estimate for the ML model. This is followed by the forging
process which however shows a below-average MAE and preturning which,
similar to sawing, occurs frequently but is difficult to predict. Discussions
with the experts at the company revealed that the sawing process is problem-
atic in various ways. The machine group in question was understaffed and
underequipped yet came into play early on in most jobs. Hence, delays or
inaccurate estimations affected the entire schedule, negatively impacting the
overall adherence. This bottleneck was later addressed by installing multiple
new sawing workstations.

142

5.1 Case Study A: Lead Time Prediction on Real-World Data

The same analysis was conducted for the TT prediction. In Figure 5.11, the
MAE on a per process level is depicted. Only five processes show a below

average MAE.

Hardness Testing

Centering

Drilling

Milling

Preturning

Forging

Sampling

Turning

Machining

Reworking

Testing for Mixed-Up Components
Measurement Control Marking

PROCESS_DESCRIPTION

Final Control & Packaging
Finish Turning

Rolling

Sawing

Processes By MAE -

Transition Time

Overall

MAE

0 200 400 600 800
MAE

1000 1200 1400 1600

Figure 5.11: MAE of the TT ML model for each process.

Applying the weighting approach introduced before, Figure 5.12 shows the
MAE adjusted for frequency. This changes the picture in that both forging and
hardness testing occur frequently but are hard to predict TTs for. The fact that
forging and the subsequent hardness testing are typical direct follow-ups to the
already problematic sawing process, presents a possible explanation for this

occurrence.

143

5 Validation
A Practical Application

Processes By Weighted MAE - Transition Time

Forging

Hardness Testing
Measurement Control Marking
Final Control & Packaging
Sawing

Preturning

Rolling

Testing for Mixed-Up Components
Milling

Reworking

Sampling

Finish Turning

PROCESS_DESCRIPTION

Turning
Drilling
Centering
Machining
(I) 2|0 4|0 6|0 Sb 160 léO 14|10
Weighted MAE

Figure 5.12: MAE of the TT ML model weighted by the frequency share of each process.

Feature Analysis

Complementing the error analysis, further investigation on the predictive
capabilities of the selected features was performed. In order to calculate
these feature importances, a permutation feature importance approach was
applied [BreO1]. In this, consecutive testing runs are performed in which in-
dividual feature values are permuted, thus breaking the relationship between
the features and the target variable. On each run, the model performance is
measured in order to determine the impact of the permuted feature, returning
a feature importance score. This is only an approximation of the predictive
capability though as it only measures the importance an individual feature
has to a concrete model. Drawing a generalised conclusion on the predictive
capability of an individual feature is not possible with this approach. Further-
more, a testing set of data previously unseen by the model is required, hence
the trained online model cannot be reused for this analysis. Therefore, offline
proxy counterparts to the best performing online models were trained using
the same hyperparameters and an 80%-20% train-test-split. Table 5.6 shows
the results for the PT.

144

5.1 Case Study A: Lead Time Prediction on Real-World Data

Table 5.6: Top ten permutation feature importances of the PT proxy model.

Feature Score
PROCESS_ID 0.240 + 0.004
MACHINE_GROUP_ID 0.194 + 0.003
PREV_PROCESS_ID_MACHINE_GROUP 0.098 + 0.002
DATE_PLANNED_DELIVERY _ 0.029 + 0.001
INTERNAL_EXTERNAL_DELTA
PREV_MACHINE_GROUP_ID_JOB 0.019 £ 0.001
CUSTOMER_ID 0.017 + 0.001
PART_DESCRIPTION 0.016 + 0.001
PREV_PROCESS_ID_JOB 0.016 + 0.001
PREV_MACHINE_GROUP_LOAD_ 0.015 + 0.001
MACHINE_GROUP

MATERIAL_SUB_TYPE_INDEX 0.011 + 0.001

The highest importance to the model has the PROCESS_ID, which is expected
considering the comparatively good performance of the RMM, which itself is
centred around this feature. Next up is the MACHINE_GROUP_ID which, as
the analysis method step showed, is correlated to the PROCESS_ID in that each
process can only be executed on a specific machine group or set of machine
groups. Although there is an n:m relationship, these two features have to be
considered weak proxies for one another. Lastly, looking at the third highest
importance, is interesting to note that the process previously run on the same
machine group carries some importance. Below these however, the feature
importance scores drop drastically. The same analysis was performed for the
TT prediction with the results shown in Table 5.7.

145

5 Validation
A Practical Application

Table 5.7: Top ten permutation feature importances of the TT proxy model.

Feature Score
PREV_MACHINE_GROUP_ID_JOB 0.087 + 0.001
PREV_PROCESS_ID_JOB 0.059 + 0.001
PREV_DATE_PLANNED_DELIVERY_ 0.057 + 0.001
INTERNAL_EXTERNAL_DELTA

PROCESS_ID 0.054 + 0.001
PREV_MACHINE_GROUP_ 0.051 £ 0.001
ATTENDANCE_RATE_JOB

MACHINE_GROUP_ID 0.040 + 0.001
PREV_RUN_ID_JOB 0.018 + 0.000
PREV_WORK_SEQUENCE_ID_JOB 0.015 + 0.000
WORK_SEQUENCE_ID 0.009 + 0.000
RUN_ID 0.008 + 0.000

As expected, features describing relationships to previous processes or machine
groups affect the TT prediction the most. A familiar pattern emerges as features
denoting processes and machine groups score highest. Features relating to the
production sequence also play a role, though it is a minor one. However,
feature importance is generally on a lower order of magnitude than in case of
the PT prediction.

146

5.1 Case Study A: Lead Time Prediction on Real-World Data

5.1.4 Discussion

In summary, case study A applied the first two blocks of the method for
AutoML-supported LTP as described in Section 4.2 to a real world dataset
from a medium-sized company of the MTO domain. When pitted against
expert estimations and a simple RMM, it was determined that the method
consistently produced the highest-performing predictive models. It was found
that the error rates showed high variances across the different processes. For
some processes, estimating LT was harder than for others. Furthermore, the
performance gap between the ML models and their rolling mean counterparts
leaves room for improvement. As was analysed, one explanation for this is the
overall poor data quality of the real-world dataset. Thus, the best course of
action in order to leverage the full potential of the method is to improve the
quality of the input data.

147

5 Validation
A Practical Application

5.2 Case Study B: Lead Time Prediction under
Concept Drift on Altered Real-World Data

The second case study, referred to as case study B, is built upon case study A.
It introduces artificial concept drift and is designed to assess the capability of
the method to mitigate this negative impact on the model performance.

5.2.1 Scenario

The basic scenario is the same as in case study A. However, since it is unknown
whether concept drift is present in the original data, it was altered by deliber-
ately introducing artificial concept drift. Based on the concept drift patterns
introduced in Section 2.2.3, the four sub-scenarios sudden, incremental, grad-
ual, and reoccurring were created [GZB*14]. This was conducted for both
target variables. In order to produce comparable results, several assumptions
were established across all sub-scenarios:

o Filtered data from case study A was used as a basis in order to remove
the impact of outliers on the target variable distributions.

e Concept drift only occurred on the target variables.
e Only one pattern of concept drift occurred per sub-scenario.

e Concept drift only affected the latter half of the data, except for the
reoccurring drift sub-scenario as this normalises in between cycles.

e At maximum, 75% of the data points within the affected portion of the
data were altered.

e Concept drift magnitude was set to a maximum of two standard devia-
tions of the respective target variable. Only positive concept drift, i.e.
an increase of the respective target variable’s value, was applied.

Figure 5.13 illustrates the resulting four concept drift data sets for the target
variable PT in comparison to the original data. The resulting image for the TT
looks similar and is therefore omitted here though attached in the appendix in
Figure A.5.

148

5.2 Case Study B: Lead Time Prediction under Concept Drift on Altered Real-World Data

Filtered Processing Time - No Concept Drift

H
F 400
H
£ 300
8
E
5200
B
2
£ 100
8
g
o
o 10000 20000 30000 40000 50000 60000 70000
Index
Filtered Processing Time - Sudden Concept Drift
H
F 400
H
& 300
8
£
5200
g
o
i 100
g
8
£
o
o 10000 20000 30000 40000 50000 60000 70000
Index
Filtered Processing Time - Incremental Concept Drift
H
F 400
1%
H
& 300
£
5200
g
o
i 100
g
8
£
o
3 10000 20000 30000 40000 50000 60000 70000
"
Filtered Processing Time - Gradual Concept Drift
H
£ 400
H
& 300
8
£
S 200
&
b
£ 100
¢
o
0 10000 20000 30000 40000 50000 60000 70000
Index
Filtered Processing Time - Reoccurring Concept Drift
H
F 400
H
& 300
8
£
E4
g0
o
i 100
g
8
g
o
0 10000 20000 30000 40000 50000 60000 70000

Figure 5.13: The original filtered processing time in comparison to the altered datasets of all four
concept drift patterns.

149

5 Validation
A Practical Application

As intended, the sudden drift sub-scenario shows an abrupt shift on the latter
half of the data, immediately plateauing out on the new normal. The incre-
mental drift sub-scenario is similar to the sudden drift one but instead, the
shift occurs steadily over time. In the gradual drift sub-scenario, the shift is
bouncing up and down before plateauing out. Finally, the reoccurring drift
sub-scenario establishes a repeated upward and downward cycle which does
not plateau out. All of these concept drifts are deliberately breaking the rela-
tionships between the features and the target variables, thus forcing the models
to adapt to the changing circumstances in order to maintain performance.

5.2.2 Method Application

The method was applied for each of the four sub-scenarios separately. As the
data was already transformed and filtered, the method application started at
the encoding step and then proceeded exactly as in case study A. The third
method block model deployment was partially realised in order to examine
how the concept drift detection and adaptation mechanisms would function
when confronted with this altered real-world data. Therefore, the inner loop
of the monitoring step was implemented by applying ADWIN concept drift
detectors with a warning-detection scheme as laid out in Section 4.2.3 [BG07].
As for the concept drift adaptation in the subsequent maintenance step, an
informed strategy with local replacement was chosen. This was realised by the
aforementioned ARFR [GBR*17] and OXTR [MNVdC22] algorithms. Lastly,
the RMM was trained as a baseline in the same way as it was done in case
study A.

5.2.3 Results

The selected hyperparameters and performance outputs for all four sub-
scenarios were tracked in the same way as in case study A. For a more
concise reporting in the following, the sub-scenarios are subsumed under the
target variables.

150

5.2 Case Study B: Lead Time Prediction under Concept Drift on Altered Real-World Data

Processing Time

Table 5.8 summarises the results for the target variable PT in all four sub-
scenarios. The best ML models resulting from the method application are
compared to the RMMs and the unchanged expert baseline estimations.

Table 5.8: Best-performing model pipelines versus the RMMs and baselines for the PTP under the
concept drift scenarios sudden, incremental (inc.), gradual, and reoccurring (reoc.).

(Hyper-)Parameter Sudden Inc. Gradual Reoc.
Best ML Models

Algorithm ARFR

n_models 75

max_features 25%

max_depth None
min_samples_split 5

MAE 44.12 43.85 42.81 46.71
Improvement over Baseline 50.00% 37.59% 41.58% 44.13%
Improvement over RMM 1491% 05.84% 09.89% 13.90%

Rolling Mean Models (RMMs)
MAE 51.85 46.57 47.51 54.25
Improvement over Baseline 41.24% 36.43% 35.17% 35.12%

Baselines
MAE 88.24 73.26 73.28 83.61

The best ML model pipelines share the same algorithm and hyperparameters
across all four sub-scenarios. The recorded MAEs show a drastic improvement
ranging from 37% to 50% when compared to the unadapted expert estimation
baselines, which themselves are surging due to the underlying concept drifts.
However, the ML models also show an improvement between 5% and 15% in
all four sub-scenarios over the RMMs.

151

5 Validation
A Practical Application

Especially in the sudden and reoccurring concept drift sub-scenarios, the
RMMs are unable to adapt quickly to the changing distribution of the target
variable and thus get outperformed by the ML models. Figure 5.14 illustrates
the performance over time of all models in every of the four sub-scenarios.

Processing Time - All Models - Sudden Concept Drift Processing Time - All Models - Incremental Concept Drift
90 80
80 70
70
60
60
w w 50
<50 _— E _—
i
- 40 _—
40 \ //_’ e —
30
30
—— Best ML Model 2 —— Best ML Model
20 —— Rolling Mean Model —— Rolling Mean Model
| — Baseline | — Baseline
10 10
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Index Index
Processing Time - All Models - Gradual Concept Drift Processing Time - All Models - Reoccuring Concept Drift
80 90

70

60

50

AE

40 — /_/\/"_/
40
30
30
20 —— Best ML Model —— Best ML Model
—— Rolling Mean Model 20 —— Rolling Mean Model
| —— Baseline | —— Baseline
10 10
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Index Index

Figure 5.14: PTP performance over time of the best ML models against the RMMs and the baselines
under all four concept drift sub-scenarios.

As expected, once the concept drifts emerge, the performance curves of the
ML models and the RMMs start to part way. In all sub-scenarios, the RMMs
are unable to adapt to the concept drift as quickly as the ML models. The
largest offset between the two performance curves is observed in the sudden
concept drift sub-scenario with an abrupt rise while the lowest offset is seen
in the incremental concept drift sub-scenario as the change occurs slowly over
time, granting both models to adapt more easily.

152

5.2 Case Study B: Lead Time Prediction under Concept Drift on Altered Real-World Data

Both the gradual and reoccurring concept drift sub-scenarios show the perfor-
mance curves bouncing up and down as the change is not occurring consistently
and thus makes it more difficult for the models to adapt.

Transition Time

The results of the TTP under all four concept drift sub-scenarios are shown in
Table 5.9. As stated before, there is no expert estimation baseline hence only
the best ML models and RMMs are compared to one another.

Table 5.9: Best-performing model pipelines versus the RMMs and baselines for the TTP under the
concept drift scenarios sudden, incremental (inc.), gradual, and reoccurring (reoc.).

(Hyper-)Parameter Sudden Inc. Gradual Reoc.
Best ML Models

Algorithm OXTR

n_models 50

max_features 25%

max_depth 5

min_samples_split 3

MAE 1,148.35 1,155.62 1,113.80 1,240.27
Improvement over RMM 13.84% 02.41% 08.08% 12.88%

Rolling Mean Models (RMMs)
MAE 1,332.78 1,184.11 1,211.72 1,423.62

The overall picture is similar to the PTP under concept drift. Improvements of
the best ML models over the RMMs range from a mere 2% to over 13%. The
sub-scenario where the offfset is lowest is again under incremental concept
drift. Figure 5.15 supports these findings with a visualisation of the error
curves over time.

153

5 Validation
A Practical Application

Transition Time - All Models - Sudden Concept Drift Transition Time - All Models - Incremental Concept Drift
1400
1200
1200
1000
1000
800
800
< < 600
= 600
400
400
200 200
—— Best ML Model —— Best ML Model
0 ~—— Rolling Mean Model 0 ~—— Rolling Mean Model
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Index Index
Transition Time - All Models - Gradual Concept Drift Transition Time - All Models - Reoccurring Concept Drift
1200 1400
1000 1200
1000
800
800
< 600 <
= =
600
400
400
200 200
—— Best ML Model —— Best ML Model
0 ~—— Rolling Mean Model 0 ~—— Rolling Mean Model
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Index Index

Figure 5.15: TTP performance over time of the best ML models against the RMMs and the
baselines under all four concept drift sub-scenarios.

Similar to the error curves for the PTP, the MAEs spike once concept drift
emerges, though the ML models adapt sooner than the RMMs. The point
where the RMMSs’ error curves surpass the ML models’ depends on the type
and the magnitude of the concept drift.

154

5.3 Conclusion

5.2.4 Discussion

To summarise, case study B was designed as a close replication of case study
A with one key difference: it used case study A’s data and introduced four
distinct types of concept drift, based on the concept drift patterns described in
Section 2.2.3 and referred to as the four sub-scenarios [GZB*14]. Then, the
method blocks one and two, as well as the monitoring and maintenance steps
of block three, were applied. The results were similar to the findings of case
study A in that the ML models consistently outperformed expert estimation
baselines as well as the RMMs. It was also found that the ML models, thanks
to their adaptive nature, were able to rapidly adapt to concept drift and thus
maintain performance. The speed of the adaptation was largely dictated by the
concept drift pattern and magnitude.

5.3 Conclusion

In this chapter, the method laid out in Section 4.2 was applied to two case
studies. Case study A used real-world data to validate the first two method
blocks data preparation and model development. Case study B was built on
real-world data modified by introducing artificial concept drift in order to val-
idate the third method block model deployment and specifically its concept
drift detection and adaptation mechanisms. The results were discussed indi-
vidually and are now used to assess the method against the thesis” MO which
Section 1.2.1 introduced as:

MO: End-to-end methodisation of a PPR-specific LTP for SME
from the MTO domain using Al.

The method covers the entire machine learning pipeline from data preparation
via model development all the way to model deployment and is thus end-to-
end. It enables PPR-specific LTP as the developed models are tailored toward
predicting PT and TT for a given process refining a specific product on a
selected resource.

155

5 Validation
A Practical Application

Al is employed in the form of ML which is tailored toward SME from the MTO
domain by utilising AutoML techniques as these are aimed at simplifying
the model development and thus enable non-experts to create ML models.
Following the assessment of the technical objectives in Section 4.4.1 and
based on the results of the method execution within the two case studies, the
MO is considered achieved to a satisfying degree.

However, there are two caveats which need to be addressed. For once, the
case studies showed that, while consistent, the degree of outperformance of
simpler statistical models by ML is limited. It is thus questionable whether this
performance increase justifies the overhead of using the method. As analysis
revealed, there are issues with the data quality in the case studies. It is thus
reasonable to expect a larger degree of outperformance with an increase in
data quality, rendering the cost-benefit-relation more in favour of applying the
method. Thus the priority for companies seeking to apply the method should
be to ensure a consistently high data quality.

The second caveat concerns the AutoML support which, while highly useful
in the model development phase, overall falls behind its potential. A large
portion of the effort required to apply the method falls into its first block data
preparation, which is hardly supported by AutoML. Thus companies cannot
rely on AutoML and domain specialists alone to apply the method but still
require data science support for a successful application.

156

6 Summary & Outlook

What the Future Holds

This last chapter concludes this thesis. It first summarises the highlights of the
previous chapters before providing an outlook into the future.

6.1 Summary

As was motivated in Chapter 1, manufacturing industries face increasingly
complex customer demands in terms of product customisation and delivery
times while simultaneously being met with market uncertainty and disruptions
within supply networks. Especially small and medium enterprises (SME)
from the make-to-order (MTO) domain seek new approaches to uphold their
adherence to schedule in the light of these challenges. As such, methods for
the smart scheduling of manufacturing jobs gained traction in recent years
due to advances in artificial intelligence (Al), and particularly in machine
learning (ML). The basis for any smart job scheduling approach however is
a prediction of the lead time (LT) as this forms a crucial input variable for
the job scheduling algorithm. LT is the sum of processing time (PT), i.e. the
value adding time, and transition time (TT), i.e. the time spent waiting or
being transported. Today, this often manual prediction lacks the necessary
accuracy, especially when considering the highly customised products of the
MTO domain. Factors influencing LT are manifold and can be product-,
process-, or resource- (PPR-) specific. Meanwhile, the advances in ML allow
for data-driven approaches to automate this prediction. On the one hand,
automated ML (AutoML) techniques pose a promising research avenue as
automation of complex ML engineering processes would directly empower
domain specialists in the manufacturing enterprises.

157

6 Summary & Outlook
What the Future Holds

On the other hand, online ML provides the ability to adapt to changes negatively
impacting ML performance, such as concept drift, which are to be expected in
the highly dynamic environment of a shop floor in MTO production. Therefore,
this thesis set out the main objective of an end-to-end methodisation of a PPR-
specific LT prediction (LTP) for SME from the MTO domain using Al in the
form of AutoML as well as online ML.

Chapter 2 laid out the managerial and technical foundations for this thesis. The
term production was defined and different types and organisational approaches
were distinguished. Classification schemes for production types were used to
highlight the MTO focus of this thesis. Five models of production organisa-
tion were discussed an the job shop production model was highlighted as most
relevant for this thesis. Concluding the production section, the concept, goals,
and system landscape of PPC were introduced. Furthermore, the foundations
of Al as relevant to this thesis were discussed. Several definitions of Al were
provided before settling for ML as the main Al-application domain. This
was briefly defined and further systemised by highlighting both the types of
learning, with supervised learning identified as the most relevant in the context
of this work, as well as introducing applicable learning techniques, such as
online learning. Considerations were given on different feature engineering
techniques for both offline and online learning. Then the problem of con-
cept drift in ML was introduced, the four archetypical concept drift patterns
were discussed, and various applicable detection and adaptation methods were
presented. With the ML basics covered, AutoML and its methods as well as
concrete solutions were introduced as means to automate steps of the laborious
ML engineering process. Concluding the chapter, a brief overview of process
models for ML engineering was given which serve as a framework for the
method developed in this thesis.

Chapter 3 provided an in-depth dissemination of the state of the art in ML-
supported LTP. After further systematising the problem of LTP into regression
and classification modelling approaches, the scope and structure of the suc-
cessive literature review was defined. It was found that the existing body of
work could be distinguished into papers on combined LTP and PT prediction
as opposed to works focusing on TT prediction. As a trend, early works exper-
imented with various ML algorithms and established the general feasibility of
applying an ML approach to LTP.

158

6.1 Summary

Later works however revolved more around ML engineering approaches and
system architectures as well as integration into PPC. The studies were sum-
marised and compared based on their content along the categories production
domains (mostly Batch / MTO / SS), data sources (real-world / simulation),
problem types (classification / regression), algorithms, and key results. Con-
cluding the chapter, several research gaps were derived to guide the work
presented in this thesis. These highlight the need for a holistic approach to
LTP while addressing generally poor model generalisation and adaptation as
well as simplifying the model development process, rendering it more acces-
sible for SMEs.

Chapter 4 described the main contribution of this thesis: the method for
AutoML-supported LTP. It began by laying out the framework in which the
method is meant to be operated. As such, the main objective was further
systemised into technical objectives. The data streaming scenario was outlined
and preconditions for the method application were provided. This was followed
by an in-depth description of the method which is organised in two stages,
protoyping and production, dividing into the three blocks data preparation,
model development, and model deployment. These three blocks are sub-
divided into a total of twelve steps of which each provides concrete guidelines
and makes suggestions on suitable methods for implementation. Subsequently,
system architectures for inference and training pipelines based on the streaming
scenario and the method steps were illustrated. Concluding the chapter, the
designed method was successfully assessed against the technical objectives.
Furthermore, the AutoML support as provided by the state of the art was
assessed based on its ability to cover each method step. This yielded mixed
results, thus highlighting potential research gaps. Finally, the method presented
in this thesis was sufficiently distinguished from the existing methods for LTP.

Chapter 5 validated the method in two case studies. Case study A was based on
a real-world dataset from an SME operating in an MTO fashion. Case study B
altered the real-world dataset by introducing artificial concept drift in order to
assess the method’s capabilities to prevent performance degradation under such
circumstances. The resulting LTP models were benchmarked against baseline
expert estimations, available for PT only, as well as simple statistical models.
For case study A, it was found that the LTP models’ errors were reduced by
35% over the expert baseline and 3% to 6% over the statistical models.

159

6 Summary & Outlook
What the Future Holds

In case study B, depending on the type of concept drift, improvements ranged
from 38% to 50% over the baseline and 2% to 15% over the statistical models
respectively. Further findings included a large variety in error magnitudes
depending on the underlying production processes as for some LTs are more
difficult to predict than for others. While the LTP models generated by the
method presented in this thesis already consistently outperform both the expert
baseline as well as the statistical models, and are capable of addressing concept
drift, it is expected that improvements in data quality will render these models
more effective in order to leverage the full potential.

6.2 Outlook

With an ongoing digitisation in SMEs in general, and on the shop floor in
particular, higher volume and variety of structured data are expected to be
available in the future. With the shift away from paper-based job scheduling and
since manual data inputs have been identified as a key source of data errors in the
case studies, further automation of the job scheduling and execution monitoring
will lead to an increase in overall data quality. In turn, this will render the
application of the method more attractive as prediction errors decline.

Advancements toward improving and broadening of AutoML techniques form
another avenue of improvement. Namely refining interpretability and robust-
ness could have a positive effect on the model performance. This can be
expanded upon by supporting other tasks in the ML pipeline outside of the
model development, such as data preparation and model maintenance, in order
to achieve true end-to-end AutoML support. These improvements would em-
power especially SME to apply more data-driven analytics and optimisations,
such as the method presented in this thesis, to their operations.

Lastly, the advent of generative Al in the form of large language models (LLM)
opens an interesting direction for future research. These could help bridge the
gap between domain specialists’ needs and AutoML solutions’ functionalities
by actively supporting labour-intense or difficult method steps. For example,
users could request analysis or transformations from LLMs in their own domain
language. This would provide another cornerstone in the empowerment of
SME to develop their own customised Al solutions.

160

A Appendix

A.1 Supplements for Case Study A

A.1.1 Analysis

Table A.1: Column descriptions of the raw data.

Column Data Type Remark

JOB_ID Numeric Distinctly identifies a job.

JOB_DESCRIPTION String Descriptive characterisation for each job.

PART_DESCRIPTION String Additional information on the product and processing step. Six different values.

CUSTOMER_ID String Distinctly identifies a customer.

PRIO_CLASS_1-4 Boolean Four company-specific prioritisation flags.

MATERIAL_DESCRIPTION String European standard (EN) material number.

MATERIAL_FORMING_TEMP String Max-Min forming temp T asa string.

MATERIAL_SPECIFIC_WEIGHT Numeric Specific weight of the material.

DATE_REGISTERED Date Date of job registration.

DATE_APPROVED Date Date of approval (release) for production.

DATE_PLANNED_DELIVERY_INTERNAL Date Internal due date of the job.

DATE_PLANNED_DELIVERY_EXTERNAL Date Customer delivery date of the job.

MACHINE_GROUP_ID Numeric Distinctly identifies a machine group.

MACHINE_GROUP_LOAD Numeric Load factor of the machine group at the time of reporting. At times > 1.

MACHINE_GROUP_ATTENDANCE_RATE Numeric Staff availability [0, 1] of the machine group at the time of reporting.

JOB_ESTIMATED_LEAD_TIME Numeric Estimated lead time of the job in days.

PROCESS_ID Numeric Distinctly identifies a type of process.

PROCESS_DESCRIPTION String Describes a type of process.

PROCESS_ESTIMATED_PROCESSING_ Numeric Estimated processing time of this operation. Baseline variable.

TIME_MANUAL

WORK_SEQUENCE_ID Numeric Planned position in the work sequence.

RUN_ID Numeric Reported position in the work sequence.

DATE_FROM Datetime Reported start datetimestamp.

DATE_TO Datetime Reported end datetimestamp.

PROCESS_ACTUAL_PROCESSING_TIME Numeric Reported processing time of this operation. Target variable.

PROCESS_ACTUAL_TRANSITION_TIME Numeric Reported transition time between this and the previous operation. Target
variable.

ACTUAL_TO_ESTIMATED_PROCESSING_TIME Numeric A posteriori [0, 1] relationship between the estimated and actual processing
times.

ADHERENCE_TO_SCHEDULE Numeric A posteriori [0, 1] measuring if the operation was executed on time.

161

A Appendix

Table A.2: Amount of NaN-values in the raw data. Columns not listed showed no NaN-values.

Column NaN-Values
PART_DESCRIPTION 2
MATERIAL_DESCRIPTION 7
MATERIAL_FORMING_TEMP 4,757
DATE_PLANNED_DELIVERY_INTERNAL 38,158

Table A.3: Categorical columns in the raw data. Columns not listed were not deemed categorical.

Column Categories
PART_DESCRIPTION 6
CUSTOMER_ID 641
MATERIAL_DESCRIPTION 601
MACHINE_GROUP_ID 26
PROCESS_ID 22
PROCESS_DESCRIPTION 22

Table A.4: Frequency-based percentage shares of all processes executed in the raw data.

PROCESS_DESCRIPTION Share (%)
Sawing 17.8255
Forging 13.2578
Final Control & Packaging 12.4359
Measurement Control Marking 11.6643
Hardness Testing 9.8175
Rolling 7.9668
Preturning 7.8050
Setting Up 47204
Testing for Mixed-Up Components 3.7458
Finish Turning 2.5702
Milling 2.4466
Reworking 1.8930
Sampling 1.8478
Turning 1.3795
Waiting for Material 0.2492
Waiting for QA 0.1999
Drilling 0.1135
Maintaining 0.0271
Centering 0.0161
Downtime / Repairing 0.0141
Machining 0.0030
Sawing Endings 0.0010

162

A.1 Supplements for Case Study A

Table A.5: PT-based percentage shares of all processes executed in the raw data.

PROCESS_DESCRIPTION Share (%)
Preturning 27.847299
Sawing 23.720506
Milling 15.955609
Finish Turning 9.925687
Forging 4.138404
Measurement Control Marking 2.939754
Setting Up 2.843955
Turning 2.554872
Sampling 2202137
Hardness Testing 2.121552
Final Control & Packaging 1.910601
Reworking 1.635673
Rolling 0.997453
Testing for Mixed-Up Components 0.767323
Drilling 0.155988
Waiting for QA 0.148877
Waiting for Material 0.069273
Machining 0.033440
Maintaining 0.015723
Downtime / Repairing 0.008433
Centering 0.007440
Sawing Endings 0.000000

163

A Appendix

i | i i i I
H L H |
i | b
1 i
i i i
H 8. B
1 i 1 . it i f
i : .

R i i Aiiic

i

fjigigic fgieeic FREETEC OFEiRFEC 0§ § § 4 ¢ §idifc fig§ic gggpec FAEETC Gfgiaic f i i °

Figure A.1: PTs per process over time in the raw data.

164

A.1 Supplements for Case Study A

EEEE]

Figure A.2: TTs per process over time in the raw data.

165

A Appendix

A.1.2 Transformation

Table A.6: Column descriptions of the transformed data. Xs highlight which columns have been
additionally joined from previous operations of the respective job and machine group.

Column Prev. Op. Job Prev. Op. Remark
M-Grp.

JOB_ID X Distinctly identifies a job.

JOB_DESCRIPTION X Descriptive characterisation for each job.

PART_DESCRIPTION X Additional information on the product and processing step. Six differ-
ent values.

CUSTOMER_ID X Distinctly identifies a customer.

CUSTOMER_CLASS X Class derived from the customer id pattern.

PRIO_CLASS_1-4 X Four company-specific prioritisation flags.

MATERIAL_DESCRIPTION X European standard (EN) material number.

MATERIAL_TYPE X Main material group.

MATERIAL_SUB_TYPE X Sub material group.

MATERIAL_SUB_TYPE_INDEX X Sub material group counter.

MATERIAL_FORMING_TEMP_MIN X Min forming temperature.

MATERIAL_FORMING_TEMP_MAX X Max forming temperature.

MATERIAL_FORMING_TEMP_MIN_MAX_ X Distance between min and max forming temperature.

DELTA

MATERIAL_SPECIFIC_WEIGHT X Specific weight of the material.

DATE_REGISTERED X Date of job registration.

DATE_APPROVED X Date of approval (release) for production.

DATE_PLANNED_DELIVERY_INTERNAL X Internal due date of the job.

DATE_PLANNED_DELIVERY_EXTERNAL X Customer delivery date of the job.

DATE_REGISTERED_APPROVED_DELTA X Distance between job registration and release.

DATE_REGISTERED_PLANNED_INTERNAL _ X Distance between job registration and internal due date.

DELTA

DATE_APPROVED_PLANNED_INTERNAL_ X Distance between job release and internal due date.

DELTA

DATE_REGISTERED_PLANNED_EXTERNAL_ X Distance between job registration and customer delivery date.

DELTA

DATE_APPROVED_PLANNED_EXTERNAL_ X Distance between job release and customer delivery date.

DELTA

DATE_PLANNED_DELIVERY_INTERNAL_ X Distance between internal due date and customer delivery date.

EXTERNAL_DELTA

MACHINE_GROUP_ID X Distinctly identifies a machine group.

MACHINE_GROUP_LOAD X Load factor of the machine group at the time of reporting. At times >
1.

MACHINE_GROUP_ATTENDANCE_RATE X Staff availability [0, 1] of the machine group at the time of reporting.

JOB_ESTIMATED_LEAD_TIME X Estimated lead time of the job.

PROCESS_ID X Distinctly identifies a type of process.

PROCESS_DESCRIPTION X Describes a type of process.

PROCESS_ESTIMATED_PROCESSING_ X X Estimated processing time of this operation. Baseline variable.

TIME_MANUAL

WORK_SEQUENCE_ID X X Planned position in the work sequence.

RUN_ID X X Reported position in the work sequence.

DATE_FROM X X Reported start datetimestamp.

DATE_TO X X Reported end datetimestamp.

PROCESS_ACTUAL_PROCESSING_TIME X X Reported processing time of this operation. Target variable.

PROCESS_ACTUAL_TRANSITION_TIME X X Reported transition time between this and the previous operation.
Target variable.

ACTUAL_TO_ESTIMATED_PROCESSING_TIME =~ X X A posteriori [0, 1] relationship between the estimated and actual pro-
cessing times.

ADHERENCE_TO_SCHEDULE X X A posteriori [0, 1] measuring if the operation was executed on time.

166

A.1 Supplements for Case Study A

A.1.3 Filtering

oo

Ea!
.
§o
[-
i
E.
H

Figure A.3: PTs per process over time in the filtered data.

167

A Appendix

FYEEEE

-
:
:
i

FEEiE e

i~ -
i -
ol -

Figure A.4: TTs per process over time in the filtered data.

168

A.1 Supplements for Case Study A

A.1.4 Selection

Table A.7: Column descriptions of the selected data. Xs highlight which columns have been
additionally joined from previous operations of the respective job and machine group.

Column Prev. Op. Job Prev. Op. Remark
M-Grp.
PART_DESCRIPTION X Additional information on the product and processing step. Six differ-
ent values.
CUSTOMER_ID X Distinctly identifies a customer.
CUSTOMER_CLASS X Class derived from the customer id pattern.
PRIO_CLASS_1-4 X Four company-specific prioritisation flags.
MATERIAL_DESCRIPTION X European standard (EN) material number.
MATERIAL_TYPE X Main material group.
MATERIAL_SUB_TYPE X Sub material group.
MATERIAL_SUB_TYPE_INDEX X Sub material group counter.
MATERIAL_FORMING_TEMP_MIN X Min forming temperature.
MATERIAL_FORMING_TEMP_MAX X Max forming temperature.
MATERIAL_FORMING_TEMP_MIN_MAX_ X Distance between min and max forming temperature.
DELTA
MATERIAL_SPECIFIC_WEIGHT X Specific weight of the material.
DATE_REGISTERED_APPROVED_DELTA X Distance between job registration and release.
DATE_REGISTERED_PLANNED_INTERNAL _ X Distance between job registration and internal due date.
DELTA
DATE_APPROVED_PLANNED_INTERNAL_ X Distance between job release and internal due date.
DELTA
DATE_REGISTERED_PLANNED_EXTERNAL_ X Distance between job registration and customer delivery date.
DELTA
DATE_APPROVED_PLANNED_EXTERNAL_ X Distance between job release and customer delivery date.
DELTA
DATE_PLANNED_DELIVERY_INTERNAL_ X Distance between internal due date and customer delivery date.
EXTERNAL_DELTA
MACHINE_GROUP_ID X Distinctly identifies a machine group.
MACHINE_GROUP_LOAD X Load factor of the machine group at the time of reporting. At times >
1.
MACHINE_GROUP_ATTENDANCE_RATE X Staff availability [0, 1] of the machine group at the time of reporting.
PROCESS_ID X Distinctly identifies a type of process.
WORK_SEQUENCE_ID X X Planned position in the work sequence.
RUN_ID X X Reported position in the work sequence.

A.1.5 Configuration

Table A.8: Pool of important hyperparameters for the configuration step for the ARFR [GBR*17]
and OXTR [MNVdC22] algorithms.

Parameter

Value Pool

preprocessing
n_models
max_features
metric

max_depth
min_samples_split
drift_detector

Feature Scaling

10, 25, 50, 75, 100

256%, 506%, 75%, 100%, sqrt, log2
MAE

5, 10, Unlimited

3.5.10

ADWIN

169

A Appendix

170

A.2 Supplement for Case Study B

A.2 Supplement for Case Study B

A.2.1 Scenario

Filtered Transition Time - No Concept Drift

§

g

g

R S g
O Rt i o
N e e

PROCESS, ACTUAL TRANSITION_TIME
g 8

Index

§

g

3

§

R A e DI

PROCESS_ACTUAL_TRANSITION_TIME

70000
Index

§

g

g

PROCESS, ACTUAL TRANSITION_TIME
H

40000 50000
Index
Filtered Transition Time - Gradual Concept Drift

§

g

g

PROCESS, ACTUAL TRANSITION_TIME
H

50000

Index
Filtered Transition Time - Reoccurring Concept Drift

§

g

g

mssmmm
-

Index

Figure A.5: The original filtered TTs in comparison to the altered datasets of all four concept drift
patterns.

171

Publications

Table A.9: List of publications.

Year Title Authors Reference
2015 A Comparison of Agent-Based Coordi- | Janek Bender, [BKM15]
nation Architecture Variants for Auto- | Stefan Kehl,
motive Product Change Management | Jorg P. Miiller
2019 Closed-Loop-Engineering — Enabler | Janek Bender, [BDFO19]
for Swift Reconfiguration in Plant En- | Jana Deckers,
gineering Simon Fritz,
Jivka Ovtcharova
2019 VR-gestiitztes Closed-Loop- | Janek Bender, [BDKO19]
Engineering fiir schnelle Rekon- | Jana Deckers,
figurationsprozesse im Anlagenbau Lucas Kirsch,
Jivka Ovtcharova
2021 Prototyping Machine-Learning- | Janek Bender, [BO21]
Supported Lead Time Prediction |Jivka Ovtcharova
Using AutoML
2022 Benchmarking ~ AutoML-Supported | Janek Bender, [BTO22]
Lead Time Prediction Martin Trat,
Jivka Ovtcharova
2022 Unsupervised Anomaly Detection and | Chenwei Sun, [STB*22]
Root Cause Analysis for an Indus- | Martin Trat,
trial Press Machine based on Skip- | Janek Bender,
Connected Autoencoder Jivka Ovtcharova,
George Jeppesen,
Jan Bér
2023 Towards a B2B integration framework | Viktor Schubert, [SKK*23]

for smart services in Industry 4.0

Steffen Kuehner,
Tobias Krauss,
Martin Trat,
Janek Bender

173

Publications

namic demand response system for
maximizing the use of renewable
electricity in production processes

Martin Trat,
Bashyal Atit,
Tina Boroukhian,
Mine Felder,
Mischa Ahrens,
Janek Bender,
Sebastian GroB,
Daniel Steiner,
Christoph July,
Christoph Dorus,
Thorsten Zoerner

2023 Sensitivity-Based Optimization of Un- | Martin Trat, [TBO23]
supervised Drift Detection for Categor- | Janek Bender,
ical Data Streams Jivka Ovtcharova
2023 Energy-Flexible Job-Shop Scheduling | Mine Felder, [FSB*23]
Using Deep Reinforcement Learning | Daniel Steiner,
Paul Busch,
Martin Trat,
Chenwei Sun,
Janek Bender,
Jivka Ovtcharova
2024 Artificial-intelligence-enabled dy- | Hendro Wicaksono, [WTB*24]

174

References

[AAB*15]

[AAHOS]

[AG19]

[ALAMM™18]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang
Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems, 2015. Available at:
http://download.tensorflow.org/paper/whitepaper2015.pdf.
Last visited on 14.12.2023.

Mouhib Alnoukari, Zaidoun Alzoabi, and Saiid Hanna. Apply-
ing adaptive software development (ASD) agile modeling on
predictive data mining applications: ASD-DM methodology.
In 2008 International Symposium on Information Technology,
pages 1-6. IEEE, 2008.

Plamen P. Angelov and Xiaowei Gu. Empirical Approach
to Machine Learning, volume 800. Springer International
Publishing, Cham, 2019.

Santiago Angée, Silvia I. Lozano-Argel, Edwin N. Montoya-
Munera, Juan-David Ospina-Arango, and Marta S. Tabares-
Betancur. Towards an Improved ASUM-DM Process Method-
ology for Cross-Disciplinary Multi-organization Big Data &
Analytics Projects. In Lorna Uden, Branislav Hadzima, and
I-Hsien Ting, editors, Knowledge Management in Organiza-
tions, volume 877 of Communications in Computer and Infor-

175

References

[ALI01]

[Ama22]

[AMTO08]

[BB12]

[BBO18]

[BCdAF10]

[BDFO19]

[BDKO19]

[Bel03]

176

mation Science, pages 613—-624. Springer International Pub-
lishing, Cham, 2018.

Paul D. Allison. Missing Data. Quantitative Applications
in the Social Sciences Ser. SAGE Publications, Incorporated,
Thousand Oaks, 2001.

Amazon.com, Inc. Amazon SageMaker Autopilot, 2022.
Available at: https://aws.amazon.com/sagemaker/autopilot/.
Last visited on 19.08.2022.

Abdulrahman Alenezi, Scott A. Moses, and Theodore B.
Trafalis. Real-time prediction of order flowtimes using sup-
port vector regression. Computers & Operations Research,
35(11):3489-3503, 2008.

James Bergstra and Yoshua Bengio. Random Search for
Hyper-Parameter Optimization. Journal of Machine Learn-
ing Research, 13(10):281-305, 2012.

BBOB. Black-box Optimization = Benchmarking
(BBOB) workshop series, 2018. Available at:
http://numbbo.github.io/workshops/index.html. ~ Last vis-
ited on 13.05.2022.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tu-
torial on Bayesian Optimization of Expensive Cost Func-
tions, with Application to Active User Modeling and Hi-
erarchical Reinforcement Learning, 2010. Available at:
http://arxiv.org/pdf/1012.2599v1.

Janek Bender, Jana Deckers, Simon Fritz, and Jivka
Ovtcharova. Closed-Loop-Engineering — Enabler for Swift
Reconfiguration in Plant Engineering. In Proceedings of the
European Modeling and Simulation Symposium, 2019, pages
138-144. 2019.

Janek Bender, Jana Deckers, Lucas Kirsch, and Jivka
Ovtcharova. VR-gestiitztes Closed-Loop-Engineering fiir
schnelle Rekonfigurationsprozesse im Anlagenbau. In
Tagungsband VAR? 2019 — Realitiit erweitern, pages 273-282.
2019.

Richard Ernest Bellman. Dynamic programming. Dover Pub-
lications, Mineola, N.Y, dover ed. edition, 2003.

References

[Ben09]

[BGO7]

[BGDF*06]

[Bis06]

[BKM15]

[BMR*20]

[BO21]

Yoshua Bengio. Learning Deep Architectures for Al. Founda-
tions and Trends® in Machine Learning, 2(1):1-127, 2009.

Albert Bifet and Ricard Gavalda. Learning from Time-
Changing Data with Adaptive Windowing. In Chid Apte,
David Skillicorn, Bing Liu, and Srinivasan Parthasarathy, edi-
tors, Proceedings of the 2007 SIAM International Conference
on Data Mining, pages 443—-448, Philadelphia, PA, 04262007.
Society for Industrial and Applied Mathematics.

Manuel Baena-Garcia, José Del Campo-AVila, Raul Fidalgo,
Albert Bifet, Ricard Gavalda, and Rafael Morales-Bueno.
Early drift detection method. In Fourth international work-
shop on knowledge discovery from data streams, volume 6,
pages 77-86, 2006.

Christopher M. Bishop. Pattern recognition and machine
learning. Computer science. Springer, New York, NY, 2006.

Janek Bender, Stefan Kehl, and Jorg P. Miiller. A Comparison
of Agent-Based Coordination Architecture Variants for Auto-
motive Product Change Management. In Jorg P. Miiller, Wolf
Ketter, Gal Kaminka, Gerd Wagner, and Nils Bulling, edi-
tors, Multiagent System Technologies, volume 9433 of Lecture
Notes in Computer Science, pages 249-267. Springer Interna-
tional Publishing, Cham, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems, NIPS 20,
Red Hook, NY, USA, 2020. Curran Associates Inc.

Janek Bender and Jivka Ovtcharova. Prototyping Machine-
Learning-Supported Lead Time Prediction Using AutoML.
Procedia Computer Science, 180:649-655, 2021.

177

References

[BPZL12]

[BreO1]

[BTO22]

[Cad17]

[CCK*00]

[CHHO2]

[Chol5]

[Clel1]

[Cox72]

[CZ13]

[dCGMT10]

[DHOO]

178

Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Lujan.
Conditional Likelihood Maximisation: A Unifying Frame-
work for Information Theoretic Feature Selection. The Journal
of Machine Learning Research, 13:27-66, 2012.

Leo Breiman. Random Forests. Machine Learning, 45(1):5—
32,2001.

Janek Bender, Martin Trat, and Jivka Ovtcharova. Bench-
marking AutoML-Supported Lead Time Prediction. Procedia
Computer Science, 200:482-494, 2022.

Field Cady. The Data Science Handbook. John Wiley & Sons,
Inc, Hoboken, New Jersey, 2017.

Pete Chapman, Julian Clinton, Randy Kerber, Thomas
Khabaza, Thomas Reinartz, Colin Shearer, and Riidiger Wirth.
CRISP-DM 1.0: Step-by-step data mining guide. 2000.

Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu.
Deep Blue. Artificial Intelligence, 134(1-2):57-83, 2002.

Francois Chollet. Keras, 2015. Available at:
https://github.com/fchollet/keras. Last visited on 16.08.2022.

Thomas Cleff. Deskriptive Statistik und moderne Datenanal-
yse: FEine computergestiitzte Einfiihrung mit Excel, PASW
(SPSS) und STATA. Lehrbuch. Gabler Verl. Springer Fachme-
dien, Wiesbaden, 2., iiberarb. und erw. aufl. edition, 2011.

David R. Cox. Regression Models and Life-Tables. Journal
of the Royal Statistical Society. Series B (Methodological),
34(2):187-220, 1972.

Edwin K. P. Chong and Stanislaw H. Zak. An Introduction
to Optimization. Wiley Series in Discrete Mathematics and
Optimization. Wiley, 2013.

Francisco Javier de Cos Juez, Paulino Jose Garcia Nieto, Javier
Martinez Torres, and Javier Taboada Castro. Analysis of
lead times of metallic components in the aerospace indus-
try through a supported vector machine model. Mathematical
and Computer Modelling, 52(7-8):1177-1184, 2010.

Pedro Domingos and Geoff Hulten. Mining high-speed data
streams. In Proceedings of the sixth ACM SIGKDD interna-

References

[DHM*20]

[DIN15]

[DSH15]

[EFH*20]

[EKSX96]

[EMH19]

[EMS09]

[Eve02]

[FHW16]

[Fie00]

tional conference on Knowledge discovery and data mining,
pages 71-80, 2000.

Atsushi Deguchi, Chiaki Hirai, Hideyuki Matsuoka, Taku
Nakano, Kohei Oshima, Mitsuharu Tai, and Shigeyuki Tani.
What Is Society 5.0? In Society 5.0, pages 1-23. Springer
Singapore, Singapore, 2020.

DIN EN 10027-2:2015-07, Bezeichnungssysteme fiir Stdhle_-
Teil_2: Nummernsystem; Deutsche Fassung EN_10027-
2:2015, 2015.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hut-
ter. Speeding Up Automatic Hyperparameter Optimization of
Deep Neural Networks by Extrapolation of Learning Curves.
In IJCAI 2015.

Marlene Eisentrdger, Christian Frey, Andreas Herzog,
Ali Moghiseh, Lukas Morand, Julius Pfrommer, Henrike
Stephani, Anke Stoll, and Lars Wessels. ML4P: Vorgehens-
modell Machine Learning for Production, 2020.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei
Xu. A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proceedings of the Sec-
ond International Conference on Knowledge Discovery and
Data Mining, KDD’96, pages 226-231. AAAI Press, 1996.
Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neu-
ral Architecture Search: A Survey. J. Mach. Learn. Res.,
20(1):1997-2017, 2019.

Hugo Jair Escalante, Manuel Montes, and Luis Sucar. Par-
ticle Swarm Model Selection. Journal of Machine Learning
Research, 10:405-440, 2009.

Walter Eversheim. Organisation in der Produktionstechnik 3.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

Eibe Frank, Mark A. Hall, and Ian H. Witten. The WEKA
Workbench. In Online Appendix for "Data Mining: Practical
Machine Learning Tools and Techniques". 2016.

Roy Thomas Fielding. Architectural styles and the design of
network-based software architectures. University of Califor-
nia, Irvine, 2000.

179

References

[FKE*15]

[FKH18]

[Fral5]

[FSB*23]

[GBC16]

[GBE*22]

[GBR*17]

[GEO6]

180

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Tobias Springenberg, Manuel Blum, and Frank Hutter.
Efficient and Robust Automated Machine Learning. In Pro-
ceedings of the 28th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’15, pages
2755-2763, Cambridge, MA, USA, 2015. MIT Press.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust
and Efficient Hyperparameter Optimization at Scale. In Jen-
nifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 1437—
1446. PMLR, 2018.

Stuart Frankel. Data Scientists Don’t Scale, 2015. Available at:
https://hbr.org/2015/05/data-scientists-dont-scale. Last visited
on 30.12.2021.

Mine Felder, Daniel Steiner, Paul Busch, Martin Trat, Chenwei
Sun, Janek Bender, and Jivka Ovtcharova. Energy-Flexible
Job-Shop Scheduling Using Deep Reinforcement Learning.
Hannover : publish-Ing, 2023.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. Adaptive computation and machine learning. The
MIT Press, Cambridge, Massachusetts and London, England,
2016.

Josef Gramespacher, Wener Breisacher, Alexander Essig,
Janek Bender, and Matthias GloB. Alto - Algorithmengestiitzte
Optimierung der termingerechten Auftragssteuerung fiir die
Organisationsablaufe der Einzelfertigung. TIB - Technische In-
formationsbibliothek Universitdtsbibliothek Hannover, 2022.

Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal,
Fabricio Enembreck, Bernhard Ptharinger, Geoff Holmes, and
Talel Abdessalem. Adaptive random forests for evolving data
stream classification. Machine Learning, 106(9-10):1469—
1495, 2017.

Isabelle Guyon and André Elisseeff. An Introduction to Fea-
ture Extraction. In Isabelle Guyon, Masoud Nikravesh, Steve
Gunn, and Lotfi A. Zadeh, editors, Feature Extraction, volume

References

[GLH11]

[GMCRO4]

[Goo022]

[GPBGI18]

[GPN*18]

[GRB*19]

[GSTH14]

207 of Studies in Fuzziness and Soft Computing, pages 1-25.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized
Fisher Score for Feature Selection. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intel-
ligence, UAT’11, pages 266273, Arlington, Virginia, USA,
2011. AUAI Press.

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Ro-
drigues. Learning with Drift Detection. In David Hutchi-
son, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friede-
mann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum,
Ana L. C. Bazzan, and Sofiane Labidi, editors, Advances in
Artificial Intelligence — SBIA 2004, volume 3171 of Lecture
Notes in Computer Science, pages 286-295. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

Google LLC. Google Cloud AutoML, 2022. Available at:
https://cloud.google.com/automl. Last visited on 19.08.2022.

David Gyulai, Andrds Pfeiffer, Jilia Bergmann, and Viola
Gallina. Online lead time prediction supporting situation-
aware production control. Procedia CIRP, 78:190-195, 2018.

David Gyulai, Andras Pfeiffer, Gdbor Nick, Viola Gallina,
Wilfried Sihn, and L4sz16 Monostori. Lead time prediction in
a flow-shop environment with analytical and machine learning
approaches. IFAC-PapersOnLine, 51(11):1029-1034, 2018.

Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul
Barddal, and Jodo Gama. Machine learning for streaming
data: state of the art, challenges, and opportunities. ACM
SIGKDD Explorations Newsletter, 21(2):6-22, 2019.

Peter Greschke, Malte Schonemann, Sebastian Thiede, and
Christoph Herrmann. Matrix Structures for High Volumes and
Flexibility in Production Systems. Procedia CIRP, 17:160—
165, 2014.

181

References

[GZB*14]

[HB16]

[HKV19]

[HSO00]

[HSP*21]

[HTFO9]

[HunO7]

[HZC21]

[Ige05]

182

Jodo Gama, Indré Zliobaité, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. A survey on concept drift adap-
tation. ACM Computing Surveys, 46(4):1-37, 2014.

Daniel Horn and Bernd Bischl. Multi-objective parameter con-
figuration of machine learning algorithms using model-based
optimization. In 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pages 1-8. IEEE, 2016.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Auto-
mated Machine Learning. Springer International Publishing,
Cham, 2019.

Wallace J. Hopp and Melanie L. Roof Sturgis. Quoting man-
ufacturing due dates subject to a service level constraint. /1E
Transactions, 32(9):771-784, 2000.

Constanze Hasterok, Janina Stompe, Julius Pfrommer,
Thomas Usléander, Jens Ziehn, Sebastian Reiter, Michael We-
ber, and Till Riedel. PAISE®: Das Vorgehensmodell fiir
KI-Engineering, 2021.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman.
The elements of statistical learning: Data mining, inference,
and prediction. Springer series in statistics. Springer, New
York, second edition edition, 2009.

John D. Hunter. Matplotlib: A 2D graphics environment.
Computing in Science & Engineering, 9(3):90-95, 2007.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A
survey of the state-of-the-art. Knowledge-Based Systems,
212:106622, 2021.

Christian Igel. Multi-objective Model Selection for Sup-
port Vector Machines. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan,
Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough
Tygar, Moshe Y. Vardi, Gerhard Weikum, Carlos A. Coello
Coello, Arturo Hernandez Aguirre, and Eckart Zitzler, editors,
Evolutionary Multi-Criterion Optimization, volume 3410 of
Lecture Notes in Computer Science, pages 534-546. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

References

[Imb20]

[Joy21]

[JSH19]

[KKS13]

[KLL22]

[KMB*22]

[KPB15]

[KSS16]

Alexandru-Ionut Imbrea. An empirical comparison of auto-
mated machine learning techniques for data streams, 2020.
Available at: http://essay.utwente.nl/80548/.

James Joyce. Bayes’ Theorem. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, 2021.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-Keras: An
Efficient Neural Architecture Search System. In Ankur Tere-
desai, Vipin Kumar, Ying Li, Rémer Rosales, Evimaria Terzi,
and George Karypis, editors, Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1946-1956, New York, NY, USA, 2019.
ACM.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost Opti-
mal Exploration in Multi-Armed Bandits. In Sanjoy Dasgupta
and David McAllester, editors, Proceedings of the 30th Inter-
national Conference on Machine Learning, volume 28 of Pro-
ceedings of Machine Learning Research, pages 1238-1246,
Atlanta, Georgia, USA, 2013. PMLR.

Florian Kellner, Bernhard Lienland, and Maximilian Lukesch.
Produktionswirtschaft. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2022.

Cedric Kulbach, Jacob Montiel, Maroua Bahri, Marco Hey-
den, and Albert Bifet. Evolution-Based Online Automated
Machine Learning. In Jodo Gama, Tianrui Li, Yang Yu, En-
hong Chen, Yu Zheng, and Fei Teng, editors, Advances in
Knowledge Discovery and Data Mining, volume 13280 of
Lecture Notes in Computer Science, pages 472-484. Springer
International Publishing, Cham, 2022.

Tammo Krueger, Danny Panknin, and Mikio Braun. Fast
Cross-Validation via Sequential Testing. J. Mach. Learn. Res.,
16(1):1103-1155, 2015.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Ex-
ploreKit: Automatic Feature Generation and Selection. In
2016 IEEE 16th International Conference on Data Mining
(ICDM), pages 979-984. IEEE, 2016.

183

References

[Kuh20]

[KV15]

[LanO1]

[LCW*18]

[LGA*18]

[LHO7]

[LH16]

[Lit61]

[Lit12]

[LID*17]

[LP20]

184

Max Kuhn. Feature Engineering and Selection: A Practical
Approach for Predictive Models. Chapman and Hall/CRC Data
Science Ser. CRC Press LLC, Milton, 2020.

James Max Kanter and Kalyan Veeramachaneni. Deep feature
synthesis: Towards automating data science endeavors. In
2015 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 1-10. IEEE, 2015.

Doug Laney. 3D Data Management: Controlling Data Vol-
ume, Velocity, and Variety: Techreport, 2001.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter,
Robert P. Trevino, Jiliang Tang, and Huan Liu. Feature Selec-
tion: A Data Perspective. ACM Computing Surveys, 50(6):1—
45, 2018.

Lukas Lingitz, Viola Gallina, Fazel Ansari, David Gyulai, An-
dras Pfeiffer, Wilfried Sihn, and Laszl6 Monostori. Lead time
prediction using machine learning algorithms: A case study
by a semiconductor manufacturer. Procedia CIRP, 72:1051—
1056, 2018.

Shane Legg and Marcus Hutter. A Collection of Definitions
of Intelligence. Frontiers in Artificial Intelligence and Appli-
cations, 2007.

Ilya Loshchilov and Frank Hutter. CMA-ES for Hyperparam-
eter Optimization of Deep Neural Networks, 2016. Available
at: http://arxiv.org/pdf/1604.07269v1.

John D. C. Little. A Proof for the Queuing Formula. Opera-
tions Research, 9(3):383-387, 1961.

Roderick J. A. Little. Statistical analysis with missing data.
Wiley Blackwell, Chichester, West Sussex, 3. rev. ed. edition,
2012.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. J.
Mach. Learn. Res., 18(1):6765-6816, 2017.

Erin LeDell and Sebastien Poirier. H20 AutoML: Scalable
Automatic Machine Learning. 7th ICML Workshop on Auto-
mated Machine Learning (AutoML), 2020.

References

[LS95]

[Lug09]

[LUTG17]

[LYS19]

[LYWF15]

[MDF*14]

[Mel66]

[MHM*21]

Huan Liu and Rudy Setiono. Chi2: feature selection and dis-
cretization of numeric attributes. In Proceedings of 7th IEEE
International Conference on Tools with Artificial Intelligence,
pages 388-391. IEEE Comput. Soc. Press, 1995.

George F. Luger. Artificial intelligence: Structures and strate-
gies for complex problem solving. Pearson/Addison-Wesley,
Boston, Mass., 6. ed., pearson international ed. edition, 2009.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum,
and Samuel J. Gershman. Building machines that learn and
think like people. The Behavioral and brain sciences, 40:e253,
2017.

Zhong Heng Lim, Umi Kalsom Yusof, and Haziqah Sham-
sudin. Manufacturing Lead Time Classification Using Sup-
port Vector Machine. In Halimah Badioze Zaman, Alan F.
Smeaton, Timothy K. Shih, Sergio Velastin, Tada Terutoshi,
Nazlena Mohamad Ali, and Mohammad Nazir Ahmad, edi-
tors, Advances in Visual Informatics, volume 11870 of Lecture
Notes in Computer Science, pages 268—278. Springer Interna-
tional Publishing, Cham, 2019.

Mingi Li, Feng Yang, Hong Wan, and John W. Fowler.
Simulation-based experimental design and statistical model-
ing for lead time quotation. Journal of Manufacturing Systems,
37:362-374, 2015.

Dimitris A. Mourtzis, Michael Doukas, Katerina Fragou, Kon-
stantinos Efthymiou, and V. Matzorou. Knowledge-based Esti-
mation of Manufacturing Lead Time for Complex Engineered-
to-order Products. Procedia CIRP, 17:499-504, 2014.

P. Mellor. A Review of Job Shop Scheduling. OR, 17(2):161,
1966.

Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Ge-
offrey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine,
Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, and Al-
bert Bifet. River: machine learning for streaming data in
Python. Journal of Machine Learning Research,22(110):1-8,
2021.

185

References

[Mic22]

[Mit97]

[ML93]

[MLRHI1]

[MM15]

[MMRS55]

[MNVdC22]

[Mon13]

[MPCOF*17]

186

Microsoft ~ Corporation. Microsoft Azure Au-
tomated Machine Learning, 2022. Available
at: https://azure.microsoft.com/services/machine-

learning/automatedml/. Last visited on 19.08.2022.

Tom M. Mitchell. Machine learning. McGraw-Hill series in
computer science. WCB/McGraw-Hill, Boston, Mass., 1997.

Bart L. MacCarthy and Jiyin Liu. Addressing the gap in
scheduling research: a review of optimization and heuristic
methods in production scheduling. International journal of
production research, 31(1):59-79, 1993.

Yair Meidan, Boaz Lerner, Gad Rabinowitz, and Michael Has-
soun. Cycle-Time Key Factor Identification and Prediction in
Semiconductor Manufacturing Using Machine Learning and
Data Mining. IEEE Transactions on Semiconductor Manufac-
turing, 24(2):237-248, 2011.

Junichi Mori and Vladimir Mahalec. Planning and schedul-
ing of steel plates production. Part I: Estimation of production
times via hybrid Bayesian networks for large domain of dis-
crete variables. Computers & Chemical Engineering, 79:113—
134, 2015.

John McCarthy, Marvin L. Minsky, Nathaniel
Rochester, and Claude E. Shannon. A Proposal for
the Dartmouth Summer Research Project on Arti-
ficial Intelligence, 1955. Available at: http://www-
formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.
Last visited on 06.01.2022.

Saulo Martiello Mastelini, Felipe Kenji Nakano, Celine Vens,
and Andre Carlos Ponce Leon Ferreira de Carvalho. Online
Extra Trees Regressor. IEEE transactions on neural networks
and learning systems, PP, 2022.

Douglas C. Montgomery. Design and analysis of experiments.
Wiley, Hoboken, NJ, 8. ed. edition, 2013.

Fernando Martinez-Plumed, Lidia Contreras-Ochando, Céesar
Ferri, Peter Flach, José Hernandez-Orallo, Meelis Kull, Nico-
las Lachiche, and Maria José Ramirez-Quintana. CASP-DM:
Context Aware Standard Process for Data Mining, 2017.

References

[MRT18]

[Mur12]

[Nil98]

[NWNW12]

[Obj22]

[OBUM16]

[OKO06]

[O1h03]

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.
Foundations of machine learning. Adaptive computation and
machine learning. The MIT Press, Cambridge, Massachusetts
and London, England, second edition edition, 2018.

Kevin P. Murphy. Machine learning: A probabilistic perspec-
tive. Adaptive computation and machine learning series. The
MIT Press, Cambridge, Massachusetts and London, England,
2012.

Nils J. Nilsson. Artificial intelligence: A new synthesis. Mor-
gan Kaufmann, San Francisco, Calif., 1998.

Hai-Long Nguyen, Yew-Kwong Woon, Wee-Keong Ng, and
Li Wan. Heterogeneous Ensemble for Feature Drifts in Data
Streams. In David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar,
Moshe Y. Vardi, Gerhard Weikum, Pang-Ning Tan, Sanjay
Chawla, Chin Kuan Ho, and James Bailey, editors, Advances in
Knowledge Discovery and Data Mining, volume 7302 of Lec-
ture Notes in Computer Science, pages 1-12. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

Object Management Group. Industry IoT Consortium, 2022.
Available at: https://www.iiconsortium.org/. Last visited on
18.11.2022.

Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Ja-
son H. Moore. Evaluation of a Tree-based Pipeline Optimiza-
tion Tool for Automating Data Science. In Tobias Friedrich,
Frank Neumann, and Andrew M. Sutton, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference
2016, pages 485492, New York, NY, USA, 07202016. ACM.

Atakan Oztiirk, Sinan Kayaligil, and Nur E. Ozdemirel. Man-
ufacturing lead time estimation using data mining. European
Journal of Operational Research, 173(2):683-700, 2006.

Jan Olhager. Strategic positioning of the order penetra-
tion point. International Journal of Production Economics,

85(3):319-329, 2003.

187

References

[Pal3]

[Pag54]

[Pet00]

[PGKM16]

[Plal8]

[Pla19]

[Pla22]

[PMGO8]

[PVG*11]

188

Promotorengruppe Kommunikation der Forschungsunion

Wirtschaft — Wissenschaft and acatech — Deutsche Akademie

der Technikwissenschaften e.V. Umsetzungsempfehlungen

fiir das Zukunftsprojekt Industrie 4.0: Abschlussbericht

des Arbeitskreises Industrie 4.0, 2013. Available at:

https://www.acatech.de/publikation/umsetzungsempfehlungen-
fuer-das-zukunftsprojekt-industrie-4-0-abschlussbericht-des-

arbeitskreises-industrie-4-0/. Last visited on 11.11.2022.

Ewan S. Page. Continuous Inspection Schemes. Biometrika,
41(1/2):100, 1954.

Johann Petrak. Fast Subsampling Performance Estimates for
Classification Algorithm Selection: Technical Report TR-
2000-07, 2000.

Andrés Pfeiffer, David Gyulai, Botond Kadar, and Laszlé
Monostori. Manufacturing Lead Time Estimation with the
Combination of Simulation and Statistical Learning Methods.
Procedia CIRP, 41:75-80, 2016.

Plattform Industrie 4.0. RAMI4.0 - a reference framework
for digitalisation, 2018. Available at: https://www.plattform-
140.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-
introduction.html. Last visited on 10.11.2022.

Plattform Industrie 4.0. Shaping Digital Ecosystems
Globally, 2019. Available at: https://www.plattform-
140.de/IP/Redaktion/EN/Standardartikel/vision.html. Last vis-
ited on 18.11.2022.

Plattform Industrie 4.0. Industrie 4.0 - What is
it?, 2022. Available at: https://www.plattform-
i40.de/TP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-
is-industrie40.html. Last visited on 18.11.2022.

David L. Poole, Alan K. Mackworth, and Randy Goebel. Com-
putational intelligence: A logical approach. Oxford Univ.
Press, New York and Oxford, 1998.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu

References

[REF16]

[RHS20]

[RN16]

[Rul03]

[RWO03]

[Sam59]

[Sau20]

[SB18]

[Sch06]

Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

REFA Bundesverband e.V. Beschreibung von 30 Standard-
methoden des Industrial Engineerings. In Industrial Engi-
neering, pages 45-279. REFA Bundesverband e.V, Darmstadt,
2016.

Christoph Raab, Moritz Heusinger, and Frank-Michael
Schleif. Reactive Soft Prototype Computing for Concept Drift
Streams. Neurocomputing, 416:340-351, 2020.

Stuart J. Russell and Peter Norvig. Artificial intelligence:
A modern approach. Always learning. Pearson, Boston and
Columbus and Indianapolis, third edition, global edition edi-
tion, 2016.

RuleQuest Research. Cubist, 2003. Available
at: https://www.rulequest.com/index.html. Last visited on
21.04.2021.

Wenny H.M. Raaymakers and Ton Weijters. Makespan es-
timation in batch process industries: A comparison between
regression analysis and neural networks. European Journal of
Operational Research, 145:14-30, 2003.

Arthur L. Samuel. Some Studies in Machine Learning Us-
ing the Game of Checkers. IBM Journal of Research and
Development, 3(3):210-229, 1959.

Frederick Sauermann. Datenbasierte Prognose und Pla-
nung auftragsspezifischer Ubergangszeiten. Disserta-
tion, Rheinisch-Westfilische Technische Hochschule Aachen,
2020.

Richard S. Sutton and Andrew Barto. Reinforcement learning:
An introduction. Adaptive computation and machine learning.
The MIT Press, Cambridge, Massachusetts and London, Eng-
land, second edition edition, 2018.

Giinther Schuh. Produktionsplanung und -steuerung: Grund-
lagen, Gestaltung und Konzepte. VDI-Buch. Springer, Berlin,
3., vollig neu bearb. aufl. edition, 2006.

189

References

[SGS*20]

[SGST20]

[SH16]

[SHH*18]

[Shil7]

[SHPS19]

[SKK*23]

[SPH*19]

190

Giinther Schuh, Andreas Giitzlaff, Frederick Sauermann,
Oliver Kaul, and Nicolas Klein. Databased prediction and
planning of order-specific transition times. Procedia CIRP,
93:885-890, 2020.

Giinther Schuh, Andreas Giitzlaff, Frederick Sauermann, and
Theresa Theunissen. Application of time series data mining
for the prediction of transition times in production. Procedia
CIRP, 93:897-902, 2020.

David Silver and Demis Hassabis. AlphaGo: Mastering the
ancient game of Go with Machine Learning, 2016. Available
at: https://ai.googleblog.com/2016/01/alphago-mastering-
ancient-game-of-go.html. Last visited on 04.02.2022.

Melissa Seitz, Lasse Hartel, Marco Hiibner, Lukas Merkel,
Johannes be Isa, Friederike Engehausen, Matthias Schmidhu-
ber, Frederick Sauermann, and Philipp Hiinnekes. PPS-Report
2017/2018. ZWF Zeitschrift fiir wirtschaftlichen Fabrikbe-
trieb, 113(12):840-844, 2018.

Christoph Mingtao Shi. ,,Made in China 2025: Chinas Vi-
sion zu Industrie 4.0. Wirtschaftsinformatik & Management,
9(2):70-77, 2017.

Frederick Sauermann, Marcel Hagemann, Jan-Philipp Prote,
and Giinther Schuh. Control loop for a databased prediction of
order-specific transition times. In Jens Peter Wulfsberg, Wolf-
gang Hintze, and Bernd-Arno Behrens, editors, Production
at the leading edge of technology, pages 463—472. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2019.

Viktor Schubert, Steffen Kuehner, Tobias Krauss, Martin Trat,
and Janek Bender. Towards a B2B integration framework for

smart services in Industry 4.0. Procedia Computer Science,
217:1649-1659, 2023.

Giinther Schuh, Jan-Philipp Prote, Philipp Hiinnekes, Freder-
ick Sauermann, and Lukas Stratmann. Impact of Modeling
Production Knowledge for a Data Based Prediction of Transi-
tion Times. In Farhad Ameri, Kathryn E. Stecke, Gregor von
Cieminski, and Dimitris Kiritsis, editors, Advances in Pro-
duction Management Systems. Production Management for

References

[SPLS18]

[SPM*19]

[SPSF19]

[SSA13]

[SST16]

[SSW*16]

[STB*22]

[SWV17]

the Factory of the Future, volume 566 of IFIP Advances in
Information and Communication Technology, pages 341-348.
Springer International Publishing, Cham, 2019.

Giinther Schuh, Jan-Phillip Prote, Melanie Luckert, and Fred-
erick Sauermann. Determination of order specific transition
times for improving the adherence to delivery dates by using
data mining algorithms. Procedia CIRP, 72:169-173, 2018.

Giinther Schuh, Jan-Philipp Prote, Marco Molitor, Frederick
Sauermann, and Seth Schmitz. Databased learning of influ-
encing factors in order specific transition times. Procedia
Manufacturing, 31:356-362, 2019.

Glinther Schuh, Jan-Philipp Prote, Frederick Sauermann, and
Bastian Franzkoch. Databased prediction of order-specific
transition times. CIRP Annals, 68(1):467-470, 2019.

Kevin Swersky, Jasper Snoek, and Ryan P. Adams. Multi-Task
Bayesian Optimization. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran
Associates, Inc, 2013.

Ashish Sabharwal, Horst Samulowitz, and Gerald Tesauro.
Selecting Near-Optimal Learners via Incremental Data Allo-
cation, 2016. Available at: https://arxiv.org/abs/1601.00024.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams,
and Nando de Freitas. Taking the Human Out of the Loop: A
Review of Bayesian Optimization. Proceedings of the IEEE,
104(1):148-175, 2016.

Chenwei Sun, Martin Trat, Janek Bender, Jivka Ovtcharova,
George Jeppesen, and Jan Bér. Unsupervised Anomaly Detec-
tion and Root Cause Analysis for an Industrial Press Machine
based on Skip-Connected Autoencoder. In 2022 21st IEEE
International Conference on Machine Learning and Applica-
tions (ICMLA), pages 681-686. IEEE, 2022.

Micah J. Smith, Roy Wedge, and Kalyan Veeramachaneni.
FeatureHub: Towards Collaborative Data Science. In 2017
IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 590-600. IEEE, 2017.

191

References

[TBO23]

[The23]

[THHLB13]

[TO23]

[TP98]

[Tuk77]

[Van18]

[Vap9s8]

[VDBO04]

192

Martin Trat, Janek Bender, and Jivka Ovtcharova. Sensitivity-
Based Optimization of Unsupervised Drift Detection for Cat-
egorical Data Streams. KIT Scientific Working Papers ; 208,
2023.

The pandas development team. pandas-dev/pandas: Pandas,
2023. Available at: https://pandas.pydata.org/. Last visited on
24.02.2023.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. Auto-WEKA: Combined Selection and Hy-
perparameter Optimization of Classification Algorithms. In
Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
Jingrui He, Robert L. Grossman, Ramasamy Uthurusamy, In-
derjit S. Dhillon, and Yehuda Koren, editors, Proceedings of
the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 847-855, New York,
NY, USA, 2013. ACM.

Martin Trat and Jivka Ovtcharova. Designing concept drift
detection ensembles: A survey. In 2023 IEEE 10th Interna-
tional Conference on Data Science and Advanced Analytics
(DSAA), pages 1-10. IEEE, 2023.

Sebastian Thrun and Lorien Pratt. Learning to Learn: Intro-
duction and Overview. In Sebastian Thrun and Lorien Pratt,
editors, Learning to Learn, pages 3—17. Springer US, Boston,
MA, 1998.

John W. Tukey. Exploratory data analysis. Addison-Wesley
series in behavioral science Quantitative methods. Addison-
Wesley, Reading, Mass., 1977.

Joaquin Vanschoren. Meta-Learning: A Survey, 2018. Avail-
able at: http://arxiv.org/pdf/1810.03548v1.

Vladimir Vapnik. Statistical learning theory. A Wiley-
Interscience publication. Wiley, New York and Weinheim,
1998.

Antal Van Den Bosch. Wrapped progressive sampling search
for optimizing learning algorithm parameters. In Proceed-
ings of the Sixteenth Belgian-Dutch Conference on Artificial
Intelligence, pages 219-226, 2004.

References

[WFH16]

[WHOO]

[WHC*16]

[Woll7]

[WTB*24]

[WYD*13]

[YWDP14]

[ZC18]

[ZVSL18]

Tan H. Witten, Eibe Frank, and Mark A. Hall. Data Mining:
Practical Machine Learning Tools and Techniques. Morgan
Kaufmann Series in Data Management Systems. Elsevier Ref-
erence Monographs, s.1., 4. aufl. edition, 2016.

Riidiger Wirth and Jochen Hipp. CRISP-DM: Towards a
standard process model for data mining. Proceedings of the
4th International Conference on the Practical Applications of
Knowledge Discovery and Data Mining, 2000.

Geoftrey I. Webb, Roy Hyde, Hong Cao, Hai Long Nguyen,
and Francois Petitjean. Characterizing concept drift. Data
Mining and Knowledge Discovery, 30(4):964-994, 2016.

Eberhard Wolff. Microservices: Flexible software architec-
ture. Addison-Wesley, Boston and Munich, 2017.

Hendro Wicaksono, Martin Trat, Atit Bashyal, Tina
Boroukhian, Mine Felder, Mischa Ahrens, Janek Bender, Se-
bastian GroB3, Daniel Steiner, Christoph July, Christoph Dorus,
and Thorsten Zoerner. Artificial-intelligence-enabled dynamic
demand response system for maximizing the use of renewable
electricity in production processes. The International Journal
of Advanced Manufacturing Technology, 2024.

Xindong Wu, Kui Yu, Wei Ding, Hao Wang, and Xingquan
Zhu. Online feature selection with streaming features. /[EEE
transactions on pattern analysis and machine intelligence,
35(5):1178-1192, 2013.

Kui Yu, Xindong Wu, Wei Ding, and Jian Pei. Towards Scal-
able and Accurate Online Feature Selection for Big Data. In
2014 IEEE International Conference on Data Mining, pages
660-669. IEEE, 2014.

Alice Zheng and Amanda Casari. Feature engineering for ma-
chine learning: Principles and techniques for data scientists.
O’Reilly, Beijing and Boston and Farnham and Sebastopol and
Tokyo, first edition edition, April 2018.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.
Le. Learning Transferable Architectures for Scalable Image
Recognition. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8697-8710. IEEE, 2018.

193

	Zusammenfassung
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	IntroductionIn Need of a Better Planning Basis for Job Scheduling
	Motivation
	Problem Statement
	Main Objective
	Research Questions

	Structure of this Thesis

	BackgroundThe Managerial & Technical Foundations
	Production
	Production Types
	Production Organisation
	Production Planning & Control

	Artificial Intelligence
	Machine Learning
	Feature Engineering
	Concept Drift Handling
	Automated Machine Learning
	Machine Learning Engineering

	Chapter Summary

	State of the ArtTowards Machine Learning for Lead Time Prediction
	Machine-Learning-Supported Methods for Lead Time Prediction
	Scope & Structure of the Literature Review
	Lead & Processing Time Prediction
	Transition Time Prediction
	Literature Comparison

	Research Gaps
	Chapter Summary

	A Method for AutoML-Supported Lead Time PredictionHow to Leverage the Machine Learning Potentials
	Framework
	Technical Objectives
	Streaming Scenario
	Preconditions

	Description
	Data Preparation
	Model Development
	Model Deployment

	System Architecture
	Inference Pipeline
	Training Pipeline

	Assessment & Differentiation
	Assessment of the Technical Objectives
	Assessment of the AutoML Support
	Differentiation from Existing Methods for Lead Time Prediction

	Chapter Summary

	ValidationA Practical Application
	Case Study A: Lead Time Prediction on Real-World Data
	Scenario
	Method Application
	Results
	Discussion

	Case Study B: Lead Time Prediction under Concept Drift on Altered Real-World Data
	Scenario
	Method Application
	Results
	Discussion

	Conclusion

	Summary & OutlookWhat the Future Holds
	Summary
	Outlook

	Appendix
	Supplements for Case Study A
	Analysis
	Transformation
	Filtering
	Selection
	Configuration

	Supplement for Case Study B
	Scenario

	Publications
	References

