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Abstract

We specify a Bayesian, geoadditive Stochastic Frontier Analysis (SFA) model to assess

hospital performance along the dimensions of resources and quality of stroke care in

German hospitals. With 1,100 annual observations and data from 2006 to 2013 and risk-

adjusted patient volume as output, we introduce a production function that captures quality,

resource inputs, hospital inefficiency determinants and spatial patterns of inefficiencies.

With high relevance for hospital management and health system regulators, we identify per-

formance improvement mechanisms by considering marginal effects for the average hospi-

tal. Specialization and certification can substantially reduce mortality. Regional and hospital-

level concentration can improve quality and resource efficiency. Finally, our results demon-

strate a trade-off between quality improvement and resource reduction and substantial

regional variation in efficiency.

1 Introduction

Most OECD countries are characterized by a steady increase of hospital expenditures, which

account for a substantial and increasing share of overall health care costs [1–3]. Reforms have

been implemented to induce cost containment in the hospital sector, e.g., the introduction of

activity-based hospital budgets. Increasing cost pressures have triggered concerns that hospi-

tals face a trade-off between quantity of patients treated and quality of care provided [4–7]. As

a consequence, the importance of hospital quality in managerial decision-making, policy-mak-

ing, and health economics research is increasing. Hospitals have to optimize the relationship

between cost and quality in order to provide high quality services using as few resources as

possible. In particular, hospital clinical and administrative managers today often have to

decide where to reduce resource investments while ensuring continued high levels of service
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quality [8]. Furthermore, for hospitals with different environmental characteristics and for dif-

ferent medical conditions, the optimal balance between service quality and efficiency might

differ substantially [9].

Both cost and quality of health care have been shown to vary widely among countries,

regions, and providers [10–14], suggesting an enormous potential for quality improvements

and cost reductions. Regarding stroke care, for example, 30-day mortality increases by more

than 8 times when moving from the best emergency care units to the worst emergency care

units in the Berlin metropolitan area. At a national level, this difference is even more dramatic

[15]. Despite these differences the importance of outcome service quality of medical services

has not been fully reflected in the hospital efficiency literature [16]. Due to the lack of appro-

priate measures to incorporate quality in efficiency analysis, and difficulties in hospital quality

measurement itself, models of hospital efficiency have rather focused on ad-hoc output mea-

sures such as patient and procedure volumes. The most important hospital production compo-

nent, quality of care, has often been neglected [17–19].

In a seminal paper, [20] apply Stochastic Frontier Analysis (SFA) to estimate a multi-prod-

uct cost function. To account for outcome quality differences and distinct patient populations,

they include quality metrics as output variables, including a case-mix index (CMI) and 30-day

risk-adjusted mortality. Their results emphasize the sensitivity of efficiency estimates with

regard to the inclusion of quality measures. [21] highlight the non-trivial impact of including

outcome quality measures or patient burdens of illness on efficiency estimates and hospital

rankings. Based on cross-sectional regressions, [22] find higher cost inefficiency associated

with a higher mortality rate in Florida hospitals, but in a separate study they fail to detect an

association between cost inefficiency and care outcomes [23]. The authors explain these con-

tradictory results with regional differences in the relationship between hospital quality and

cost inefficiency. In summary, most approaches to include quality into hospital efficiency esti-

mations are restricted to stylized Data Envelopment Analysis (DEA) models and obtain incon-

clusive results [18, 24–28]. As a consequence, little of the hospital efficiency research has been

translated into policy or service delivery [29, 30].

The existing studies are often limited to cross-sectional data, hospital samples are restricted

regionally or to a single ownership group. Quality indicators are often not risk-adjusted, and

rarely include extended time-frames after hospital discharge. Likewise, hospital efficiency and

outcome quality is often examined for the entire hospital or jointly for several medical condi-

tions, which is problematic, especially when outcome quality is considered, given condition-

specific risk and resource profiles [31]. Furthermore, the existing hospital efficiency literature

has rarely accounted for spatial patterns of hospital performance, which have been detected,

e.g., for Germany [32, 33] or for England [34, 35]. Neglecting common performance patterns

of hospitals in the same or neighboring regions might induce systematic biases to inefficiency

scores and estimated effects of their determinants, if quality varies not only between providers

but across regions [36–38]. Stressing the importance of taking into account geographic clus-

ters, [39] analyze the effectiveness of the US Hospital Readmission Reduction Programm

(HRRP) in reducing hospital readmission and find that localizing benchmarks to reduce dis-

persion of readmission rates makes hospital quality improvement initiative more effective.

As demonstrated, existing studies on hospital efficiency face important limitations that

impact their validity and generalizability, and have limited the relevance for policy and man-

agement applications. However, developing a more robust and comprehensive method to

estimate hospital efficiency including quality of care is important to aid medical, policy and

managerial decision makers on allocation of limited resources and the difficult balance

between resource efficiency and quality of care improvement in health care systems that face

demands for expanded services and increasing cost pressures.
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To respond to this challenge, this study, proposes and implements a new methodology to

estimate quality-adjusted hospital efficiency at scale. We further apply this model to a specific

medical condition to investigate the determinants of hospital performance. Our aim is to iden-

tify the effects of care specialization, service line certification and treatment concentration on

the efficiency of care provision for a hospital’s risk-adjusted patient pool. As production out-

put, we propose a risk-adjusted and medical condition-specific measure of hospital patient vol-

ume. This modification reduces the risk that unmeasured differences in hospital outputs affect

estimated efficiencies. In contrast to [20], we do not further adjust the output term by quality,

but rather include realized outcome quality as inputs. Holding the output term constant, hos-

pitals are encouraged to minimize poor quality (mortality and readmissions) and resources in

order to treat patients efficiently. Thus, we propose a more comprehensive notion of (risk-

adjusted) hospital performance that includes both quality of care and resource efficiency.

Moreover, technical efficiency is captured at the medical condition and medical department as

the relevant levels of analysis [40], which differentiates between quality-adjusted technical effi-

ciency of different medical departments even within one hospital. At the same time, we take

correlated spatial patterns among hospitals into account.

We focus our analysis on the acute care for stroke patients, which is characterized by high

variation of quality of care [41, 42]. Quality of care in stroke treatment is especially relevant for

survival, disability, and long term cost of care. Stroke is a leading cause of disability, morbidity,

and mortality in both developed and developing countries, with 6.7 million deaths globally

each year [43]. Due to demographic changes and high costs of treatment, follow-up, and reha-

bilitation, stroke care poses a major challenge to the entire health care system. At the same

time, advances in stroke care promise improvements in care outcome quality [44–46], and

associated reductions in long term cost of care [47]. Hospitals adopt these care improvements

to different degrees creating quality performance differentials between care providers.

For the empirical implementation, we merge an information rich unbalanced panel data set

for the time period 2006 to 2013 with a newly proposed, Bayesian geoadditive SFA model. The

data set includes structural and quality metrics at the hospital and medical department level,

with a focus on standardized stroke mortality (SMR) and readmissions, as well as the structural

determinants of stroke outcomes, such as stroke unit capacities and certification. Recently pro-

posed spatial SFA models control for spatial dependence by specifying either spatial lags of the

output variable [48], of the input variables [49] or of the inefficiency term [50]. However, none

of these models do control for individual heterogeneity, which is taken into account by other

non-spatial SFA models [51–53]. The flexibility of the applied Bayesian SFA approach exceeds

the flexibility of the former models by allowing a distinguished analysis of individual heteroge-

neity and observable characteristics of inefficiency, while accounting for space dependent pat-

terns of local performance by including geoadditive predictors of technical inefficiencies.

Based on estimated efficiency scores we determine slack resources and estimate the saving

potential in terms of quality improvements (saved deaths and readmissions) and resource real-

locations if stroke care is provided efficiently. We thus aim to develop a methodology that can

help multi-hospital provider groups and health service regulators to assess quality-adjusted

technical efficiency to identify best-practice providers and identify potential for quality and

efficiency improvements.

2 Data and methods

2.1 Data

The empirical approach is based on an unbalanced panel data set, which combines four dis-

tinct data sources and comprises annual observations for 2006 until 2013 for more than 1,100
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stroke treating German acute care hospitals. The panel data set is unique in time coverage,

number of hospitals included, and scope of variables at the medical department, hospital and

regional level. The panel data set provides a novel opportunity to jointly evaluate hospital effi-

ciency and quality of care for a specific medical condition and at the medical department level.

As a first data source, we process structural hospital and medical department data (e.g.,

ownership, number of beds, disease and procedural case volumes) from publicly accessible

hospital report cards, which are available for 2006, 2008, 2010, 2012 and 2013. The report

cards are part of the mandatory external quality monitoring system initiated in the early 2000s

and operated by the executive authority in the German health care system, the Federal Joint

Committee (Gemeinsamer Bundesausschuss, G-BA). Resource inputs (physician and nurse

staff levels) are aggregated from the relevant medical departments and weighted by the share

of stroke patients treated in each department. This provides a more exact measurement of the

resource inputs at the relevant unit of analysis.

As a second data source, we integrate stroke outcome quality, such as the risk-adjusted

30-day mortality ratio and 30-day readmissions, as well as stroke case volumes, computed by

the hospital report card initiative Quality Assurance with Routine Data (QSR). The QSR

scheme is operated by the largest German sickness fund the AOK (Allgemeine Ortskranken-

kasse), and employs administrative in- and outpatient data of AOK insured patients. The out-

come quality measures cover three different stroke types: Intracerebral hemorrhage (ICD Code

I61, 12% of all cases in Germany in 2014), Ischemic stroke (I63, 86%) and Stroke not specified as
hemorrhage or ischemic stroke (I64, 2%). The AOK uses its administrative patient data to calcu-

late risk-adjusted outcome rates for each hospital. The data enables detailed annual risk-adjust-

ments by means of logistic regressions that include patient-specific risk-factors such as age,

gender, and co-morbidities (diabetes, hypertension, etc.) [54]. The indicators cover a 30-day

time period after hospital discharge, which is important for a more comprehensive quality of

care assessment.

As a third data source, we integrate stroke unit information from the German Stroke Soci-

ety (Deutsche Schlaganfall Gesellschaft, DSG). The data covers, inter alia, information on

which hospitals operate DSG-certified stroke units and the time period of certification. The

DSG stroke unit certificate stipulates an integrated, co-located, and high resource stroke care

model that takes into account evidence-based care guidelines [55], which in many dimensions

go beyond the average (non-certified) stroke unit infrastructure. As documented in Table 1,

for 2013 the data set includes 219 hospitals with DSG-certified stroke units (with on average

619 stroke patients), 235 hospitals with a non DSG-certified stroke unit (340 stroke patients),

and 937 hospitals without a stroke unit (64 stroke patients).

Lastly, we integrate regional district-level data on number of general practice physicians

and economic indicators from the INKAR database hosted by the German Federal Institute

for Research on Building, Urban Affairs, and Spatial Development.

2.2 The Bayesian geoadditive stochastic frontier model

In comparison with DEA analyses, flexible SFA models have an important advantage. SFA

addresses the concerns that DEA models quantify all departures from the best practice frontier

as inefficiencies, including those caused by random events and measurement errors. This

might lead to an overestimation of inefficiency [56]. For the modelling of hospital efficiency

including quality of care metrics, random events and measurement errors are of particular

concern.

In a stylized form, SFA models of technical efficiency consist of a formalized production

technique linking an output and input variables, and a random deviation from the production
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technique that comprises idiosyncratic noise and technical inefficiencies. We rely on a flexible

SFA model proposed by [57] that builds upon earlier contributions, such as [58], [59], [60],

[61], [51], [52], [53]. While SFA has become a standard parametric approach in modelling effi-

ciency and efficiency-enhancing potentials in the provision of goods or services by economic

entities such as firms, households, farms, and hospitals, the incorporation of spatial depen-

dence in SFA models and other deterministic approaches to inefficiency modelling is in its

infancy. The model addresses the important distinction between (time-invariant) determi-

nants of inefficiency from patterns of unobserved heterogeneity by means of scaling of random

inefficiency [52, 53]. Formally, the model reads as

yit ¼ Z
ðyÞ
it þ vit � uit;

¼ Z
ðyÞ
it þ vit � u�it exp ðZðuÞit Þ;

ð1Þ

where yit denotes the (log) output of individual (i.e., hospital) i at time t, Z
ðyÞ
it and Z

ðuÞ
it are pre-

dictors shaping the deterministic component of production and the distribution of technical

inefficiencies, respectively. Concrete specifications of these predictors can be found in Eqs (6)

and (7). The term vit is an idiosyncratic noise term and u�it is a positive random variable invok-

ing a wedge between actual output and its efficient counterpart. Joint with the formalization in

(1), the following assumptions constitute the observation model that we use to evaluate quality

of health care provision:

1. The predictor Z
ðyÞ
it allows to relate the observable output yit to covariates, and individual and

time effects. Metric covariates may contribute linearly to Z
ðyÞ
it or in a more complex nonlin-

ear manner which is formalized by means of so-called penalised splines [62, 63]. In addi-

tion, the predictor might process information inherent in categorical variables. The

Table 1. Means and sums of selected variables (2013).

all cert.

SU

not cert.

SU

no

SU

others

number of hospitals 1883 219 235 937 492

hospital size
beds 270.6 658.5 435.0 226.0 104.4

inpatient cases (in k) 10.1 25.9 17.5 8.7 2.2

stroke patients
sum of stroke patients (in k) 274.5 135.5 79.9 60.0 -

share of stroke patients (in %) 100 49.4 29.1 21.8 -

ICD diagnosesa per hospital 145.8 618.9 339.9 64.0 -

OPS proceduresb per hospital 119.0 679.8 322.2 0.2 -

QSR case volume per hospital 70.7 204.9 117.1 22.7 -

QSR quality indicatorsc

standardized mortality ratiod 1.0 0.9 0.9 1.0 -

observed mortality rate (in %) 14.8 12.3 12.8 16.0 -

observed readmission rate (in %) 13.6 11.8 12.2 14.3 -

aIncludes ICD codes I61, I63 and I64.
bOPS procedure volume can be higher than ICD diagnoses volume because OPS procedures are also applied in case of other ICD diagnoses not included in this article´s

set of ICD stroke diagnoses (e.g., G45 = transient ischemic attack).
cSimple average across hospitals without weigthening based on patient volume.
dThe risk-adjusted mortality ratio relates the observed stroke mortality to the expected stroke mortality based on the number of patients treated and their risk-profiles.

https://doi.org/10.1371/journal.pone.0203017.t001
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composition of the Bayesian regression design is specific for all these effect types. We refer

to [57] for a more detailed discussion of model representations for geoadditive SFA regres-

sion, as well as further methodological references therein to the broad framework of (Bayes-

ian) structured additive regression.

2. To describe random deviations of actual output from the efficient frontier, technical ineffi-

ciency uit obeys the following structure

uit ¼ u�itait; ait ¼ exp
�

Z
ðuÞ
it

�
; u�it � N þ

�
m�u; ðs

�
uÞ

2
�
; ð2Þ

where N þ
is short for the truncated normal distribution nesting the half normal distribu-

tion ðm�u ¼ 0Þ as a special case. At the empirical side, small means μ� > 0 might be difficult

to detect in light of the composite disturbance that describes deviations between actual and

efficient output. Scaling technical inefficiency as in (2) has been first proposed by [52]. As

an implication, uit exhibits a truncated normal distribution with parameters

mit ¼ m�uait and ðs2
uÞit ¼ ðs

�
uÞ

2
ait: ð3Þ

3. Economic entities providing goods or services are subject to measurable and unobservable

local conditions. Accordingly, the predictor Z
ðuÞ
it allows a decomposition as

Z
ðuÞ
it ¼ Z

ðoÞ
it þ fspatðdistiÞ; ð4Þ

where Z
ðoÞ
it relates inefficiency to observable covariates, and fspat(disti) accounts for unob-

servable spatial conditions of (in)efficient output provision of the district hosting the i-th

entity (denoted disti). As formalized in (4), the ‘district’ might be considered to provide a

third data dimension apart from the individual hospital and time dimension. [64] provide

strong evidence for the informational content of random regional effects for the modelling

of hospital efficiency in Germany. The rightmost component in (4) allows a further distinc-

tion into spatially (i.e., positively) connected effects (fstruct(disti)) and purely random effects

(funstruct(disti)), i.e.,

fspatðdistiÞ ¼ fstructðdistiÞ þ funstructðdistiÞ: ð5Þ

The structured part (fstruct) refers to a specific neighbourhood structure being a (symmetric

but possibly weighted) relation based on, e.g., common borders, cross-border care models,

and cross-regional academic medical centers. In a Bayesian formulation, such effects can be

modelled by means of Gaussian Markov random field priors [65]. Similar to temporal auto-

regressions, the systematic part of spatial dependence shrinks with the distance between

districts so that the positive correlation among neighbouring districts captured by means

of fstruct(disti) generalizes similar structures as so-called spatially autoregressive models

[66]. Altogether, the complete effect fspat in (5) subjects economic performance to geo-

graphical information, which likely invokes performance dependence among neighbouring

districts, but also allows the occurrence of pure random effects to capture district-specific

differences.

4. As an implication of the nonlinear model structure that results from the scaling of u�it , the

predictor structure for Z
ðyÞ
it and Z

ðuÞ
it may overlap. For identification purposes Z

ðuÞ
it does not

contain an intercept, as this is represented by the scale of u�it .
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5. The idiosyncratic noise vit and innovations to inefficiency u�it are independent within and

across all entities and time.

In its most flexible specification, the SFA approach in [57] allows the use of predictors for

all distribution parameters and hence also for σv, the specification of m�u 6¼ 0, nonlinear effects

for metric variables or different prior structures for all involved unknown parameters. In this

analysis, we focus on fspat offering a geoadditive resolution of quality of health care and add

the following assumptions to facilitate model identification and interpretation: (i) The pre-

dictors for s�u, σv contain solely intercepts while m�u is set to zero, and (ii) metric covariates are

modelled linearly to capture effects of such variables by a single slope coefficient. On the

implementation side, we (i) assume flat priors for all coefficients of linear effects, while (ii)

for the unit and district-specific random effects we specify multivariate Gaussian priors with

zero mean vectors and marginal variances that themselves are supposed to have inverse

gamma prior distributions. To capture the structured spatial effect by Markov random field

priors, (iii) the districts are considered as neighbours if they share common borders. The

strength of the spatial structure is controlled by a variance parameter with inverse gamma

hyperprior.

2.3 Stochastic frontier modelling of quality and efficiency

The formal representation in Eq (1) is operationalized in terms of an input-oriented stroke

quality production function. For the output, we utilize the volume of stroke patients adjusted

for their risk-profiles. It is computed by scaling-up the expected 30-day stroke mortality for

hospital i at time t, ExpMorit, (calculated by the QSR initiative based on patient risk profiles

and patient volumes [54]) with the inverse of the hospital average annual 30-day observed

mortality rate at time t,ObsMorRatet , i.e. RisAdjPatVolit ¼ ExpMorit=ObsMorRatet .
We specify two distinct types of input variables. First, the 30-day observed mortality

(ObsMorit) and the number of readmitted patients after 30 days (ObsReadmit) serve as mea-

sures of quality of care. Second, to account for resource use, we include the number of (full-

time equivalent) physicians (Physit) and nurses (Nursit) as input variables.

Relying on a Cobb-Douglas production function, we follow [67] to correct for zero input

values, i.e., the optimal level of realized quality—no deaths or readmissions—by including two

dummy variables (DObsMorit ) and (DObsReadmit ) in the production function. The variables take on the

value of 1 when observed mortality or readmission are zero, respectively. This procedure

allows us to preserve a substantial proportion of sample observations with an optimal level of

quality, i.e., zero values for one or both of the variables ObsMorit and ObsReadmit. Neglecting

these observations might result in seriously biased estimators of the parameters of the produc-

tion function [67]. The empirical production function reads as

log ðRisAdjPatVol itÞ ¼ b0 þ b1DObsMorit þ b2DObsReadmit

þb3 log ðObsMor�itÞ þ b4 log ðObsReadm�itÞ

þb5 log ðPhysitÞ þ b6 log ðNursitÞ

þlt þ vit � u�it exp
n

Z
ðuÞ
it

o
;

ð6Þ

whereDkit ¼ 1 if kit = 0,Dkit ¼ 0 if kit> 0 and k�it ¼ max ðkit;DkitÞ with k 2 {ObsMor, ObsReadm}.

Year effects are included as λt for t = {2008, 2010, 2012, 2013}, with 2006 providing the reference
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year. We specify the inefficiency term (Z
ðuÞ
it ) in (6) as

Z
ðuÞ
it ¼ fspatðdistiÞ þ tt þ d1Specit

þd2MSStrDisit þ d3NumStrHospDisit þ d4 log ðPatShaStrokeitÞ

þd5MedDepConit þ d6SUCertit þ d7SUnonCertit þ d8GPsPerDisit
þd9 log ðHosBeditÞ þ d10PrivHosit þ d11NonProfHosit þ d12Teachit
þd13UniHosit þ d14ShaI61it þ d15ShaI64it þ d16DiagConit;

ð7Þ

where the variables governing hospital inefficiency (Z
ðuÞ
it ) allow a classification into six groups:

specialization, certification, centralization, outpatient care, spatial structure and other control

variables. Similar to the production function we also model year effects for the inefficiencies

with τt.
Stroke specialization. We include a hospital-level stroke specialization measure in form

of the stroke patient share of all inpatient cases treated annually in a hospital (PatShaStrokeit).
With a relatively high stroke patient share, stroke treatment process and investment require-

ments have increased priority for the hospital and its staff. Likewise, staff is more experienced

in and focused on stroke treatment. In previous studies, medical focus through specialization

has been shown to have a positive impact on hospital quality performance, both through posi-

tive spillover effects and commonalities [68].

More importantly, we consider the existence of a stroke unit as a specific structural measure

of specialization. In stroke units, care is provided by an interdisciplinary team of experts,

including neurologists, cardiologists, radiologists and neuro- and vascular surgeons. These

experts are co-located in a specialized site with 24/7 availability and dedicated stroke diagnos-

tic equipment such as CT scanners. These infrastructure and procedural conditions allow

accurate and early diagnosis of type and extend of stroke. The [44] found consistent evidence

that more organized stroke care is associated with improved outcome quality, especially in

seperate stroke units with dedicated staff and facilities. We capture stroke unit specialization

through the variable SUnonCertit, which marks hospitals that perform 10 or more complex

stroke procedures (German procedure (OPS) codes 8-891 and 8-89b) in a stroke unit annually

[69], but have not received a special stroke service line certification.

Certification. Hospital certificates confirm the compliance with general structural, pro-

cess, and quality management standards or specific treatment guidelines set by medical spe-

cialty associations. To get approved, hospitals have to reach those higher-than-normal

standards and fix systematic problems, which is supposed to result in better and more efficient

inpatient care. However, empirical evaluations of the benefits of certification have shown

inconclusive results with regard to improvements of patient safety and quality of care [70–73].

In our empirical model, the stroke unit variable CertSUit differentiates hospitals that have

received a stroke unit certification from the German Stroke Society (DSG) from other

hospitals.

Centralization. Centralization of service provision has been demonstrated to improve

outcome quality and reduce costs [74–77]. In particular, centralization can lead to a more opti-

mal regional care model based on economic considerations, patient needs, and quality of care.

However, political resistance often hinder centralization of care [78]. In this study, we distin-

guish inter- and intra-hospital centralization. The former is quantified at the district level via

hospital market shares for stroke patients (MSStrDisit), as well as the number of hospitals in

one district treating stroke patients (NumStrHospDisit). The latter is included in form of a Her-

findahl Hirschman Index (HHI) of the medical department stroke patient shares within one

hospital (MedDepConit).
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Outpatient care. General practitioners (GPs) and specialists in outpatient care monitor

stroke risk factors, such as obesity, high blood pressure, and diabetes. GPs also provide the

continuum of care after hospital discharge, in particular post-hospital observation and recov-

ery from in-hospital conditions. GP density and continutiy of care can thus positively affect

inpatient outcome quality if outpatient care is readily available in the hospital district [79–82].

Underlying spatial structures. Several studies find that quality of care varies across

regions [36, 37]. Moreover, as shown by [33], spatial clusters characterize German hospital

performance, and [35] find similar effects for England. Ignoring this form of dependence can

affect estimation accuracy and might also induce systematic biases to inefficiency scores and

estimated effects of their determinants [66]. Moreover, if spatial clusters exist for both the

dependent and explanatory variables, estimated relationships might appear stronger than they

actually are [38]. Due to the difficult definition of a hospital market, we consider two rival spa-

tial structures to ensure robustness of the empirical findings. On the one hand, we rely on the

districts to define a hospitals’ region and, on the other hand, on a broader classification based

on the European Nomenclature of Units for Territorial Statistics (NUTS2) level. However,

these artificial market boundaries cannot be assumed to reflect the true hospital markets,

which might have an overlapping structure, e.g., due to patient flows. To capture both, corre-

lated (overlapping) structures between the regions and region-specific effects, we separate the

geoadditive effects in a structured part assigning a Markov random field prior, and an unstruc-

tured effect with identically distributed Gaussian prior (see also Section 2.2 for details). More-

over, through both effects, we are able to account for regional differences in health status and

behaviour.

Control variables. The empirical model also includes control variables common in the

empirical hospital literature, such as hospital size measured through the number of hospital

beds (HosBedit), ownership type (PrivHosit and NonProfHosit), university hospital (UniHosit),
teaching status (Teachit) and general, hospital-level specialization (Specit). While other studies

include hospital beds as production inputs, we treat beds as an exogenous efficiency influence

for two reasons. First, in Germany the number of hospital beds for each medical speciality is

fixed through state-level hospital plans in the short- and mid-term [83]. Second, the total num-

ber of hospital beds, which aggregates number of beds in the different medical departments,

does not characterize information pertinent to the actual medical departments that treat stroke

patients. We control for overall hospital-level specialization, as specialized hospitals and medi-

cal departments can respond more rapidly and comprehensively to unanticipated and rare

treatment complications. Specifically, we employ the [84] specialization measure, which cap-

tures specialization by treatment area depending on volume thresholds, i.e., the average num-

ber of patients treated nationally (or 80% of the hospital’s patients) in a specific diagnostic

category (Specit). Furthermore, the particualar stroke types are associated with different

resource requirements and distinctive survival and complication risks [85, 86]. To account for

this, we include the composition of stroke patients for each hospital, which is approximated by

the share of hemorrhage stroke relative to ischemic stroke (sh − I61it and sh − I64it), as well as

the distribution of the 3 types (DiagConit). Lastly, we control for the number of thrombec-

tomies conducted in each hospital (ShaTRHOMBit) to take into account high resource require-

ments, better treatment outcomes and more severe stroke cases associated with thrombectomy

treatments. Table 2 shows some descriptive statistics of the considered variables.

3 Results

In this section, we present our results in five steps. First, in order to base the empirical analysis

on the appropriate model, we evaluate various model specifications, which differ with regard
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Table 2. Descriptive statistics: Mean and standard deviation (in parentheses).

Variable 2006 2008 2010 2012 2013

number of hospitals 1133 1121 1085 1096 1087

output variable
log(RisAdjPatVol) 3.74

(1.17)

3.62

(1.31)

3.39

(1.47)

3.28

(1.52)

3.28

(1.59)

input variables
DObsMor 0.08

(0.27)

0.11

(0.31)

0.15

(0.36)

0.15

(0.36)

0.16

(0.36)

DObsReadm 0.09

(0.29)

0.11

(0.32)

0.16

(0.36)

0.18

(0.38)

0.17

(0.37)

log(ObsMor �) 1.80

(1.11)

1.74

(1.17)

1.62

(1.25)

1.56

(1.27)

1.52

(1.29)

log(ObsReadm �) 1.55

(1.07)

1.53

(1.17)

1.47

(1.23)

1.44

(1.24)

1.46

(1.25)

log(Phys) -0.58

(1.39)

-0.60

(1.56)

-0.67

(1.69)

-0.65

(1.71)

-0.62

(1.77)

log(Nurse) 0.64

(1.39)

0.54

(1.55)

0.50

(1.73)

0.49

(1.77)

0.53

(1.82)

explanatory variables
Spec 1.37

(0.75)

1.34

(0.74)

1.46

(0.83)

1.36

(0.81)

1.35

(0.81)

MSStrDis 0.31

(0.31)

0.31

(0.32)

0.31

(0.33)

0.29

(0.32)

0.30

(0.33)

NumStrHospDis 6.69

(8.13)

6.93

(8.52)

6.85

(8.57)

7.52

(9.15)

7.48

(9.21)

log(PatShaStroke) -4.42

(1.16)

-4.50

(1.30)

-4.61

(1.44)

-4.62

(1.53)

-4.66

(1.51)

log(HosBed) 5.52

(0.77)

5.51

(0.78)

5.51

(0.80)

5.50

(0.81)

5.51

(0.81)

PrivHos 0.17

(0.38)

0.18

(0.38)

0.19

(0.39)

0.21

(0.41)

0.21

(0.41)

NonProfHos 0.44

(0.50)

0.44

(0.50)

0.45

(0.50)

0.43

(0.50)

0.43

(0.50)

Teach 0.39

(0.49)

0.43

(0.49)

0.47

(0.50)

0.50

(0.50)

0.52

(0.50)

UniHos 0.03

(0.18)

0.03

(0.18)

0.03

(0.18)

0.03

(0.18)

0.03

(0.18)

MedDepCon 0.87

(0.19)

0.87

(0.19)

0.85

(0.19)

0.84

(0.20)

0.83

(0.20)

ShaI61 0.09

(0.10)

0.10

(0.10)

0.11

(0.11)

0.11

(0.11)

0.11

(0.10)

ShaI64 0.18

(0.22)

0.11

(0.18)

0.10

(0.18)

0.09

(0.18)

0.09

(0.17)

DiagCon 0.69

(0.18)

0.73

(0.17)

0.73

(0.17)

0.73

(0.16)

0.73

(0.16)

SUCert 0.08

(0.26)

0.07

(0.25)

0.11

(0.31)

0.10

(0.30)

0.11

(0.32)

SUnonCert 0.14

(0.35)

0.20

(0.40)

0.25

(0.43)

0.24

(0.42)

0.24

(0.43)

log(GPsPerDis) 3.93

(0.16)

3.90

(0.16)

3.88

(0.16)

3.86

(0.16)

3.84

(0.17)

�refers to k�it ¼maxðkit ;DkitÞ, where Dkit ¼ 1 if kit = 0 and Dkit ¼ 0 if kit > 0 with k 2 {ObsMor, ObsReadm}

https://doi.org/10.1371/journal.pone.0203017.t002
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to the inclusion of unobservable heterogeneity. Second, we display parameters describing the

variation in the quality-expanded notion of hospital performance. The findings are checked

for robustness against alternative performance definitions by excluding some input variables.

Third, we analyze spatial patterns of inefficiencies in care provision when controlling for

unobservable local conditions of hospital efficiency. Fourth, based on estimated efficiency

scores and respective marginal effects of the underlying explanatory variables, we quantify

slack resources and the associated potential for quality improvements or resource reductions

as efficiency improvements. Lastly, we subject our results to a series of robustness checks.

In all models, we employ a total of 120,000 Markov Chain Monte Carlo (MCMC) iterations.

To reduce autocorrelations, we delete the first 20,000 iterations (burn-in) and store each 100th

iterate (thinning). We check convergence of the chains graphically in terms of the sampling

paths and autocorrelation plots. To ensure numerical stability, we center the output and input

variables by subtracting their means. For the discussion of empirical results, we regard particu-

lar effects to be ‘significant’ if a certain posterior credibility interval does not contain zero

effects. The models were estimated in the open source software BayesX [87], where an imple-

mentation of the geoadditive SFA models is provided.

3.1 Model selection

The diagnostic results of alternative models are displayed in Table 3. Starting with hospital

individual effects, we extend the model by random effects varying on a regional level to take

unobservable local conditions into account. Germany comprises 438 districts or 38 NUTS2

regions for which we allow spatial dependence patterns of technical inefficiencies. While each

NUTS2 region hosts at least one hospital, the sample comprises hospitals which are located in

415 of the 438 districts. In consequence, for the specified spatial effects, the random Markov

field (structured spatial pattern) obtains effects for all districts, while unstructured (random)

spatial contributions are only determined for districts that host at least one hospital.

To assess model fit, we use the deviance information criterion (DIC) [88]. The DIC of the

model neglecting any spatial dependence (Model 1) exceeds the DIC of rival models. The spec-

ification of region-specific random effects to explain variations in inefficiency improves model

accuracy substantially. This result indicates the presence of regional patterns in hospital per-

formance. In general, the district level (Models 2–4) is more appropriate to account for these

unobservable local conditions than the broader NUTS2 level (Models 5–7). The specification

of both, a structural and a non-structural spatial random effect at the district level, achieves the

best model fit (i.e., the lowest DIC). This is also confirmed in terms of the Watanabe-Akaike

information criterion (WAIC) [89]. As a consequence, the following discussion of the results

is mainly based on Model 2.

3.2 Estimated parameters

Table 4 provides estimated parameters of the best fitting quality-and-resource Model 2 along

with the results for two models with alternative input specifications concentrating each only

on one performance dimension, the quality-only Model 8 or the resource-only Model 9. On

the left hand side of Table 4, we show the estimated coefficients for the production function

and the model fit results for the three different models. On the right hand side, we show the

estimated coefficient for the inefficiency terms. In order to analyze potential trade-offs

between outcome quality and staff resources, we include the input variables as explanatory var-

iables describing variations of inefficiencies when they are not incorporated in the production

function. We also display effects (standardized coefficients) resulting from an estimation based
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on standardized output and respective input variables (zero mean, unit variance) to facilitate a

comparison of their relative importance.

Production function. Across all model specifications, the estimated output elasticities of

the (non-zero) input variables are positive and significant. The coefficients of the dummy vari-

ables identifying zero input observations are significantly negative. These estimates can be

interpreted as the mean number of risk-adjusted stroke patients, i.e., 0.7 (= exp(−0.329)) or 0.8

(= exp(−0.186)), if the observed mortality or readmission is zero, respectively. The negative

year effects relative to the base year 2006 decrease over time until 2012 and, thus, represent a

trend towards quality improvements. This might be explained through medical technology

progress, improved evidence-based guidelines for care provision or health policy changes.

Standardized output elasticities of both resource variables (physician and nurse staff levels) are

smaller than the elasticities of the quality indicators. The higher proportionality between the

output term (risk-adjusted patient volume, based on the expected 30-day mortality) and the

quality input terms (observed 30-day mortality and readmissions) might serve as an explana-

tion here. The standardized effect of the physician staff level is stronger than that of nurse staff

levels, since physicians are critical for care provision and outcomes by making the crucial diag-

nostic and treatment decisions. The output elasticity of observed mortality is about 44% higher

than that of 30-day readmissions. Relative to readmissions, observed mortality has a higher

proportionality with risk-adjusted patient volume, which is calculated based on each hospital´s

expected mortality.

Effects on hospital performance. The estimated inefficiency effects for the different mod-

els offer some evidence for a trade-off between quality improvement and resource reduction.

For instance, in Model 9, where quality is neglected in the production function, the negative

effects of both quality indicators on the inefficiency term suggest that hospitals offering worse

quality are able to provide stroke care relatively more resource efficient. Similarly, the effects

of both dummy variables, DObsMor and DObsReadm, identify high quality hospitals (no deaths or

readmissions) as relatively less efficient. This result underlines the importance to expand the

traditional approach of considering only costs or resources by integrating quality measures in

hospital performance assessment. The estimated effect of physicians (log(Phys)) differs sub-

stantially from that of nurses (log(Nurse)) in Model 8, in which physicians (nurses) have a

positive (negative) effect on quality performance. However, this interpretation might be mis-

leading due to the high correlation of both input terms (> 0.94, unconditionally), which might

explain the negative correlation of the coefficients. To clarify this issue, we have applied a Prin-

cipal Component analysis to separate potentially different effects that are masked within both

variables. We have found a negative effect on inefficiency of the component, which explains

about 97% of the variation and highly correlates with both input variables (> 0.99). The second

component, which correlates negatively (positively) with nurses (physicians), has also a

Table 3. Model selection criteria for distinct specifications of spatial structures.

districts NUTS2

no spatial struct & unstruct struct unstruct struct & unstruct struct unstruct

(1) (2) (3) (4) (5) (6) (7)

DIC 2817.6 2581.7 2591.0 2595.7 2766.7 2768.0 2766.2

WAIC 2975.8 2742.3 2750.8 2750.9 2933.2 2935.2 2932.3

based on 5522 observations (i.e. 1294 hospitals in 415 district and 38 NUTS2 regions)

https://doi.org/10.1371/journal.pone.0203017.t003

Quality and efficiency of German hospitals

PLOS ONE | https://doi.org/10.1371/journal.pone.0203017 September 6, 2018 12 / 30

https://doi.org/10.1371/journal.pone.0203017.t003
https://doi.org/10.1371/journal.pone.0203017


Table 4. Estimated linear effects.

Production function (Z
ðyÞ
it ) Effects on inefficiency (Z

ðuÞ
it )

Variables qual & res qual only res only qual & res qual only res only

(2) (8) (9) (2) (8) (9)

const 0.470��� 0.490��� 0.609���

DObsMor −0.329��� −0.306��� 0.319���

DObsReadm −0.186��� −0.180��� 0.246���

log(ObsMor �) 0.397��� 0.420��� −0.517���

stand. coeff. 0.339 0.358
log(ObsReadm �) 0.282��� 0.314��� −0.287���

stand. coeff. 0.236 0.262
log(Phys) 0.056��� 0.264��� −0.235���

stand. coeff. 0.063 0.318
log(Nurse) 0.015� 0.073��� 0.129���

stand. coeff. 0.016 0.077
2008 −0.025�� −0.025�� −0.053��� 0.064 0.061 −0.076

2010 −0.085��� −0.085��� −0.144��� 0.235��� 0.217��� −0.063

2012 −0.107��� −0.106��� −0.175��� 0.253��� 0.241��� 0.031

2013 −0.056��� −0.052��� −0.116��� 0.362��� 0.352��� 0.146��

MSStrDis −0.829��� −0.743��� −0.136

MedDepCon −0.228�� −0.148 −0.909���

NumStrHospDis 0.009�� 0.008�� −0.003

log(PatShaStroke) −0.252��� −0.200��� 0.003

SUnonCert −0.592��� −0.584��� −0.020

SUCert −1.167��� −1.295��� −0.056

log(GPsPerDis) −0.004 −0.019 0.129

Spec −0.022 −0.001 0.156���

log(HosBed) −0.555��� −0.482��� −0.036

PrivHos 0.310��� 0.251��� 0.090

NonProfHos 0.158��� 0.133��� −0.107��

Teach −0.069� −0.040 −0.038

UniHos 0.175 0.137 0.455���

ShaTRHOMB 0.052 0.185 −1.144��

ShaI61 0.619��� 0.639��� −0.099

ShaI64 −0.299��� −0.303��� −0.258���

DiagCon 0.394��� 0.318��� 0.429���

s2
v 0.142 0.148 0.141

s2
u 2.301 1.982 0.439

g ¼ s2
u=ðs

2
v þ s2

uÞ 0.9419 0.9305 0.7569

TE (in %) 73.0 72.3 68.2

DIC 2581.7 2856.3 3817.2

WAIC 2742.3 2994.9 3956.7

Significance levels:

��� 1%;

�� 5%;

� 10%;

based on 5522 observations

https://doi.org/10.1371/journal.pone.0203017.t004
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negative effect. Although explaining less than 1% of the variation, the second component

might govern the positive effect of the variable log(Nurse) on inefficiency.

The two variables measuring centralization have both negative effects on the inefficiency. A

comparison of the results across the models offers a decomposition of the efficiency improve-

ments, since the strength of the effects varies across the model specifications. The impact of

market (MSStrDisit) and of the number of stroke care hospitals in one district (NumStrHosp-
Dis) is weaker when quality is not taken into account (Model 9). The concentration of stroke

patients in medical departments (MedDepConit) has a stronger effect in comparison with mod-

els including quality (Model 2 and 8). Thus, the internal concentration (of stroke patients

within the hospital across medical departments) affects mostly the resource use, while the

external concentration (market share and number of stroke care hospitals) has stronger effects

on the quality component of efficiency.

Specialization in stroke treatment, relative to other conditions (PatShaStrokeit), and (non-

certified) stroke-units (SUnonCertit) have no effect on resource efficiency. However, if out-

come quality of care is taken into account, both specialization measures have significantly

negative effects on inefficiency. Similarly, the certification of stroke units (CertSUit) enhances

quality performance (Model 2, Model 8), but not resource efficiency (Model 9). Accordingly

to Model 2, hospitals with a DSG-certified stroke unit exhibit less inefficiencies than hospitals

with non-certified stroke units (−1.167 vs. −0.592).

Similar to other literature on hospital performance, private, for-profit hospitals face higher

inefficiencies than public hospitals [33, 90]. In our estimations, the latter result holds for pri-

vate, non-profit hospitals only if quality is taken into account. The effect is negative if the per-

formance is assessed only in terms of resources and contradicts with previous findings [33,

91]. The financial straits for private, non-profit hospitals [92] might have provoked cost con-

tainment efforts, by increasing resource efficiency at the cost of quality performance.

The respective performance differential for university hospitals varies over the input specifi-

cations. It is only significant if quality is excluded. On average, university hospitals treat more

severe cases with a higher CMI compared with non-university acute care hospitals. Including

quality measures corrects for the more complex and resource intensive tertiary care provided

by university hospitals.

The shares of the different stroke types, sh − I61it and sh − I64it, obtain effects which are in

line with expectations. The treatment of intracerebral hemorrhage (I61) is more complex and

faces higher risks and mortality for the patients in comparison with the treatment of the refer-

ence group, i.e., ischemic stroke (I63). Furthermore, with a higher share of I61, the critical

diagnostic and therapeutic distinction between I61 and I63 needs to be undertaken more fre-

quently, which increases complexities. However, these complexities do not affect resource

efficiency. Patients with an early stage or preliminary stroke, not classified as hemorrhage or

ischemic stroke, (I64) are treated most efficiently, irrespective of whether quality is accounted

for or not.

In contrast to our expectation, a higher concentration of stroke type diagnoses (DiagConit)
enhances inefficiencies. Higher concentration on one particular diagnosis might result in

diseconomies of scale. Hospitals that face a high concentration of relatively low resource con-

suming stroke patients (e.g., with diagnosis I64) might also hold ready fixed resources for

eventually more complex stroke admissions. With regard to the latest treatment innovations, a

higher number of thrombectomy procedures increases resource efficiency, possibly due to a

shorter length of stay [93]. However, ShaTRHOMBit has no significant effect in the combined

quality performance and resource efficiency model, which might be explained by thrombect-

omy being used in more severe cases, with severity not directly captured in the QSR risk-

adjustment.
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Similar to the centralization of stroke treatment at the district level, hospital beds have a

negative effect on inefficiency only if quality is accounted for. Larger hospitals with more beds

might benefit from improved economies of scale and more experience resulting in higher qual-

ity. Resource efficiency is not affected by hospital size.

Spatial patterns of hospital performance. To visualize the spatial pattern of the regional

effects entering the predictor of the inefficiency term (Z
ðuÞ
it ) in Eq (7), we display its centered

posterior mean in Fig 1 for each German district. Non-colored, white areas indicate districts

without sample observations. In contrast to the structural spatial effect (left hand side), the

unstructured spatial effect (center) contributes to the composite spatial effect (right hand side)

with markedly less variation. In total, favourable local conditions for the treatment of stroke

patients are detected, in particular, for hospitals in Eastern and Southern Germany, while hos-

pitals in North-Eastern and Western Germany are characterised by higher inefficiencies in the

treatment of stroke patients.

A spatial decomposition of the inefficiencies into quality (deceased patients, Fig 2) and

resources (staff levels, Fig 3) underlines the previous finding that an efficient use of resources

is not always in line with high quality treatment of patients. While some regions in Western

Germany show an efficient use of resources (e.g., within North Rhine-Westphalia or Rhine-

land-Palatinate), they lack behind other regions in Eastern Germany (e.g., within Brandenburg

or Saxony) if quality performance is considered. However, some regions (e.g., within Baden-

Wuerttemberg) perform well in terms of quality performance as well as resource efficiency.

3.3 Estimated (in)efficiencies

Slack resources. Accordingly to the best fitting quality-and-resource Model 2, the overall

posterior mean of technical efficiency is 0.730, indicating a sizeable potential for quality

improvement and/or resource reallocation. To quantify such potentials for an average hospital

(sample means of all input and explanatory variables), we compute slack resources, i.e.,

Fig 1. Centered estimated regional random effects of Model 2: Quality & resources.

https://doi.org/10.1371/journal.pone.0203017.g001
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resources in excess of those needed under full efficiency (for methodological details see eq (12)

in S1 Appendix). We show the respective posterior distributions in Fig 4 for each input vari-

able (in levels). If the average hospital boosts its performance to an efficient treatment of stroke

patients, the mortality can be reduced by up to 6.26 (63.70%) deaths per year, which is close to

Fig 2. Centered estimated regional random effects of Model 8: Quality only.

https://doi.org/10.1371/journal.pone.0203017.g002

Fig 3. Centered estimated regional random effects of Model 9: Resources only.

https://doi.org/10.1371/journal.pone.0203017.g003
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the maximum quality improvement for readmissions. In 2013 the means of observed mortality

and readmission were 9.83 and 8.82, respectively. Similarly, we can also compute the slack

resources for each observation evaluated at the (MCMC) posterior mean, obtaining for 2013

total numbers of nation-wide saved deaths and readmissions of 2630 (24.62%) and 2951

(30.78%), respectively.

Marginal effects. To highlight the economic relevance of those variables that describe the

inefficiency, we provide their marginal effects on both technical efficiency and slack resources.

If the latter are positive or negative, the effect quantifies how much of an input can be reduced

or increased to achieve the same level of output (for methodological details see eqs (9) and (13)

Fig 4. Posterior distribution of slack resources.

https://doi.org/10.1371/journal.pone.0203017.g004
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in S1 Appendix). All effects shown in Table 5 are evaluated at the means of the underlying vari-

ables. Of particular interest are the marginal effects of treating patients in certified and non-

certified stroke units, concentrating stroke treatment in fewer medical departments at the hos-

pital level, and concentrating stroke treatment in fewer hospitals at the district level.

For example, hospitals with a DSG-certified stroke unit are characterized by a 0.026 (3.3%)

higher technical efficiency in comparison with hospitals that treat stroke patients but do not

operate a stroke unit. By closing their lacks of efficiency, these hospitals could increase their

treatment quality by reducing stroke mortality by 0.927 or readmissions by 1.079 per year.

When moving stroke treatment from hospitals without a stroke unit to hospitals with a non-

certified stroke unit, mortality (readmissions) can be reduced by 0.401 (0.472).

3.4 Robustness checks

To validate our results, we subject our analysis to a series of robustness checks, based on our

best fit quality-and-resource Model 2. Results are presented in Table 6 for key variables.

As a more general formulation of our Cobb-Douglas production function, we estimate a

translog model (10) and obtain very similar results for all relevant coefficients and model fit

diagnostics. Likewise, rescaling the quality measures by adding 0.5 to each observation prior

Table 5. Marginal effects on efficiency and slack resources (Model 2).

Variables Marginal effect on TE (×100) Marginal effect on slack resources

mort30d readm30d phys nurses
Spec 0.027 −0.010 −0.012 −0.016 −0.204

MSStrDis 1.253��� −0.453��� −0.533��� −0.566��� −5.361�

NumStrHospDis −0.015�� 0.005�� 0.006�� 0.008�� 0.110

log(PatShaStroke) 0.400��� −0.148��� −0.175��� −0.202��� −2.531�

log(HosBed) 0.888��� −0.324��� −0.382��� −0.420��� −4.455�

PrivHos −0.449��� 0.170��� 0.202��� 0.255��� 4.267�

NonProfHos −0.258��� 0.097��� 0.115��� 0.145��� 2.227�

Teach 0.092 −0.034 −0.041 −0.049 −0.664

UniHos −0.235 0.089 0.106 0.143 2.157

MedDepCon 0.319�� −0.118�� −0.140�� −0.166�� −2.058

ShaTRHOMB −0.016 0.011 0.016 −0.004 0.161

ShaI61 −1.000��� 0.384��� 0.460��� 0.624��� 13.159�

ShaI64 0.482��� −0.178��� −0.210��� −0.241��� −2.862�

DiagCon −0.627��� 0.239��� 0.285��� 0.368��� 6.696�

SUCert 2.660��� −0.927��� −1.079��� −1.012��� −7.016�

SUnonCert 1.105��� −0.401��� −0.472��� −0.508��� −5.027�

log(GPsPerDis) 0.108 −0.040 −0.047 −0.064 −0.841

2008 −0.087 0.033 0.039 0.047 0.668

2010 −0.314��� 0.118��� 0.141��� 0.174��� 2.779�

2012 −0.357��� 0.135��� 0.160��� 0.200��� 3.294�

2013 -0.499��� 0.189��� 0.226��� 0.288��� 5.014�

Significance levels:

��� 1%;

�� 5%;

� 10%

https://doi.org/10.1371/journal.pone.0203017.t005
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to log-transformation (Model 11) to handle optimal realized quality (zero mortality and/or

readmissions) inputs achieves identical results as our first choice dummy variable approach.

To test alternative specifications of the non-certified, stroke unit variable SUnonCertit, we

half and double the required number of complex stroke procedures for stroke unit identifica-

tion, based on our baseline of 10 procedures. As before, the results of these models (12-13) are

qualitatively equivalent. Additionally, we add in Model 14 variables that differentiate between

younger (1-2 years) and older certificates (3-4 years). The results are comparable, but older

certificates show a weaker effect (−1.070) than younger certificates (−1.252). This is possibly

due to the fact that organizational processes and structural provisions optimized before and

during the certification process might loose some rigour over time.

The robustness of the specified spatial structure is tested by including in Model 15 several

district-level control variables such as annual mortality per 1,000 inhabitants, the average age

of the population and unemployment rate in addition to the spatial structures. These variables

do not improve model accuracy and their estimated effects are insignificant. This reflects the

inclusion of regional health status due to the risk-adjusted patient population of each hospital

and the structured and unstructured spatial structures. In addition, we examine two mixed-

level models with NUTS2-level structured effects and district-level unstructured effects and

vice versa (Models 16-17). Results are identical to our base-line Model 2.

Table 6. Robustness-checks.

selected Variables base-line

model

Translog

prod-fun

rescaling zero-

inputs

SUnonCert SUCert
age

health

variables

fstr(disti) &

funstr(NUTS2i)

fstr(NUTS2i)

&

funstr(disti)

matching

&

DID
(> 5) (> 20)

(2) (10) (11) (12) (13) (14) (15) (16) (17) (18)

MSStrDis −0.829��� −0.892��� −0.843��� −0.816��� −0.803��� −0.812��� −0.799��� −0.845��� −0.839���

MedDepCon −0.228�� −0.228�� −0.212�� −0.213�� −0.211�� −0.202�� −0.205�� −0.180�� −0.216��

NumStrHospDis 0.009�� 0.009� 0.008� 0.009�� 0.009�� 0.009�� 0.008� 0.004 0.011��

log(PatShaStroke) −0.252��� −0.207��� −0.245��� −0.258��� −0.256��� −0.257��� −0.258��� −0.253��� −0.262���

SUnonCert (> 10) −0.592��� −0.669��� −0.603��� −0.587��� −0.587��� −0.567��� −0.592���

SUnonCert (> 5) −0.489���

SUnonCert (> 20) −0.665���

Dm × SUnonCert
(> 10)

−1.370���

SUCert −1.167��� −1.265��� −1.182��� −1.098��� −1.197��� −1.163��� −1.108��� −1.194���

SUCert (1-2y) −1.252���

SUCert (3-4y) −1.070���

Dm × SUCert (DID) −0.580��

(1 − Dm) × SUCert −2.259���

log(GPsPerDis) −0.004 −0.007 −0.040 −0.058 −0.072 −0.060 −0.037 −0.135 −0.125

log(MortalityDis) −0.069

log(PopageDis) −0.065

log(UnemplrateDis) 0.087

log(GDPpCapDis) 0.010

Significance levels:

��� 1%;

�� 5%;

� 10%;

Dm is a dummy variable: 1 for observations of matched hospitals and 0 else

https://doi.org/10.1371/journal.pone.0203017.t006
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Lastly, we safeguard the results of our certification variable for causal inference. Due to a

potential self-selection of better performing hospitals pursuing certification, the existence of

reverse causality cannot be excluded (see e.g. the findings of [94]). We adapt the procedure of

[95] to the SFA context and apply in Model 18 a combination of a matching approach and a

Difference-In-Difference (DID) estimation to investigate the impact of certification on hospi-

tal performance. In a first step, we use propensity-score matching to ensure that any observed

differences between certified and non-certified hospitals can be attributed to certification. To

achieve a balance between both groups of hospitals in their baseline characteristics, we match

each hospital becoming certified during the sample period with a non-certified hospital. In a

second step, we estimate a DID specification of our best fitting Model 2. We include all obser-

vations in the estimation to achieve a comparable production frontier. However, we model

specific effects on the inefficiency term for the pairs of matched hospitals. We also estimate

specific effects for non-matched hospitals. The results confirm the previous finding that hospi-

tal inefficiency is reduced by certification; however, the effect in the DID Model 18 is smaller.

4 Discussion

In the following, we highlight four main implications. First, we discuss the improved efficiency

for certified stroke units and the potential quality benefits of treating stroke patients in stroke

units only, as well as the possible gains from within-hospital concentration of stroke care. Sec-

ond, we examine the potential for resource reallocations due to efficiency improvements asso-

ciated with specialization, certification and concentration. Third, we stress the potential

benefits from regional concentration of stroke care. Fourth, we comment on the regional dif-

ferences in hospital technical inefficiencies. In addition, we address some shortcomings of

dataset and methodology.

Stroke unit specialization and certification

In general, health policy makers, regulators, provider groups and payers could initiate substan-

tial further consolidation and concentration of stroke care in certified centers of excellence. In

2013, 136,000 stroke patients (49%) were treated in certified stroke units while 80,000 patients

(29%) were treated in non-certified stroke units and 60,000 (22%) stroke patients were treated

in hospitals without a stroke unit (see Table 1). Certified and non-certified stroke units, on

average, have a risk-adjusted stroke mortality of 0.9, while hospitals without a stroke unit have

a risk-adjusted mortality of 1.0. A large share of stroke patients has not been treated in the best

manner. Our results highlight the benefit of (further) care specialization and certification.

The twice-as-large efficiency gain for hospitals with certified stroke units can be explained

by the increased expertise, better infrastructure and higher service level requirements for

DSG-certified stroke units. For example, the DSG requires in its stroke unit manual a mini-

mum of 250 annual stroke patients treated and a minimum level of 1.5 full time equivalent spe-

cialized nursing staff per stroke unit bed for a local stroke unit [96]. In preparation for the

DSG audits, the stroke care team reviews and updates process plans, which can lead to

improved outcome quality and efficiency after the certificate is granted. As indicated by the

certification timing effect identified in the robustness section confirms, the effect is particular

strong in 1-2 year after certification.

Exploiting the quality differences between the different stroke treating hospitals at the

national level can result in substantial quality of care improvements and reductions of annual

stroke deaths. If all stroke patients that are currently treated at hospitals without a stroke unit

were treated at hospitals with a non-certified stroke unit, the average 30-day mortality for the

937 hospitals without a stroke unit could be reduced by 0.401 deaths, ceteris paribus. At the

Quality and efficiency of German hospitals

PLOS ONE | https://doi.org/10.1371/journal.pone.0203017 September 6, 2018 20 / 30

https://doi.org/10.1371/journal.pone.0203017


country level, this could result in annually 376 fewer stroke deaths after 30 days (i.e.,�1%

decrease of German national stroke mortality in 2013). Even more, if all patients from hospi-

tals without a stroke unit were treated at hospitals with a certified stroke unit, national stroke

mortality could be reduced by 868 deaths (�2% reduction), ceteris paribus. Similar benefits

could be achieved for readmissions. With regard to optimal resource allocation, not all cur-

rently stroke-treating hospitals shall set-up a (certified) stroke unit, but instead, centralizing

stroke care in those hospitals that run a high-quality (i.e., certified) stroke unit could result in a

more efficient and higher quality stroke care provision. To implement this concentration, a

two stage policy approach appears feasible. In the first stage, regulators might require that

stroke patients can only be treated in stroke units and, in a second stage, in DSG-certified

stroke units only.

Intra-hospital concentration

Next to specialization and certification, hospitals can also concentrate their acute and rehabili-

tative care within a specialized medical department or stroke unit. Depending on size and

specialization, hospitals often undertake care for one treatment area in several medical

departments. Stroke care is a particularly good example as stroke diagnostic and therapeutic

interventions can be performed by, e.g., the internal medicine, cardiology, and neurology

departments. In 2013, only 381 hospitals provided stroke care in one medical department, 261

hospitals treated stroke patients in two medical departments, 128 hospitals treated stroke

patients in 3 medical departments, and 339 hospitals treated stroke patients in at least 4 medi-

cal departments.

The negative and significant coefficient for hospital-level stroke care centralization (Med-
DepConit) in Model 2 (see Table 4) indicates that, in fact, organizational care and process

changes to enhance within-hospital centralization can improve efficiency and care outcome

quality. Following acute treatment in a stroke unit, patients can continue to be treated on this

same specialized stroke unit or within a less intensive care setting rather than being relocated

to different wards based on free hospital bed capacity. Considering the marginal effect for

observed 30-day mortality of -0.142 and the average level of within-hospital, stroke care cen-

tralization of 0.83, mortality can be reduced by 0.023 deaths for the average hospital, if within-

hospital stroke care centralization is maximally concentrated (at a HHI of 1). Extrapolating

within-hospital effects to the national level, this could have a mortality reduction effect of 33

deaths per year.

Regional concentration of stroke treatment

Regional concentration provides further potential for efficiency and outcome quality improve-

ments. Currently, stroke care is undertaken by 1,391 hospitals (in 2013) in 415 districts in Ger-

many. Case volumes range from 10 or less in the 110 hospitals with lowest volumes to 1,000 or

more in the largest 27 stroke hospitals. There are almost 800 hospitals that provide care for less

than 250 patients annually (DSG requirement for regional stroke unit), and 587 hospitals that

provide care for less than 100 stroke patients. Likewise, in 2013 a single district hosts, on aver-

age, 7.5 hospitals that provide stroke care. There are 154 districts with 1 or 2 stroke hospitals,

173 districts with 3-5 hospitals, 60 districts with 6–10 hospitals, and 16 districts with more

than 10 stroke hospitals.

To demonstrate the benefits from regional concentration, we highlight the inefficiency

reducing effects of district hospital market share for stroke care. With a marginal effect of

0.013 on technical efficiency and an efficiency increasing elasticity of -0.453 for the average

hospital, increases of the stroke hospital market share can substantially enhance efficiency and
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quality of care. When increasing the market share for half of the hospitals (696 hospitals) from

an average of 30% to a share of 63% (mean plus one SD), annual national stroke mortality and

readmissions could be reduced by 347 deaths and 408 cases per year, respectively, ceterius

paribus.

Especially for emergency conditions, elapsed time until treatment is critical. In many coun-

tries, the recommended time window for stroke treatment after the onset of symptoms is 3.0

to 4.5 hours [97]. In their review of stroke treatment guidelines and studies, [97] emphasize

the benefits of bypassing hospitals without a stroke unit in favor of treatment at more distant

hospitals with a stroke unit. Similarly, several studies have shown the benefits of treating stroke

patients in a more centralized model with specialized hospitals as opposed to a decentralized

model with several smaller, non-specialized community hospitals [98, 99].

Regional variation in technical efficiency

Focusing on resource efficiency only, some studies have found higher efficiencies for regions

in Western and Northern Germany [100]. As a methodological distinction, however, we also

include observed quality as an input and risk-adjust the output patient volume for specific

patient risk-factors rather than considering CMIs. Furthermore, we evaluate efficiency for a

specific treatment area and not for the overall hospital, which avoids the grouping of treatment

areas. These methodological advances can possibly explain the following differences in the

results. Including quality in the efficiency estimations, we find sizable inefficiencies for hospi-

tals located in North Rhine-Westphalia (NRW), and, in particular, in the Rhein-Ruhr region.

When excluding quality from the production function, hospitals located in NRW become rela-

tively more efficient, which is in line with results in [100]. Interestingly, several regions (e.g., in

Eastern Germany) with resource inefficiencies show a higher ability to produce better outcome

quality.

Trade-off between quality and resource inputs

Our results illustrate the managerial potential to reduce or reallocate resource inputs while

keeping stroke care quality measured in terms of observed mortality and readmissions con-

stant. As the marginal effects on the staff slack resources (see Table 5) demonstrate, the effi-

ciency enhancing effects of specialization, certification, regional concentration, and higher

stroke patient share are substantial with regard to staff resources. When specialization and

concentration increase, the productivity of both nurses and physicians increases, which can

free up resources for reallocation, or as described above, might be invested in quality improve-

ments. While a difficult choice, clinical and administrative hospital managers have to regularly

decide on how to allocate limited resources more efficiently. Modelling such trade-offs can

support health services managerial resource allocation. Ideally, organizational inefficiencies

can be reduced through a combination of quality of care improvements and resource realloca-

tions. This will achieve the highest reduction of the inefficiency gap since the marginal effect

from reallocated units decreases the closer one gets to the efficiency frontier. Managerial and

policy interventions should address both dimensions simultanously.

Limitations

With regards to the data and methodology employed, we consider several limitations, which

might impact the interpretation of the results. The QSR outcome quality indicators are based

on AOK patient-level data and address the quality of care for AOK stroke patients treated in

each hospital. Hence, outcome quality data is limited to AOK insured patients and quality

data for patients insured with other public sickness funds and private health insurers is not
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included. However, the AOK is by far the largest health insurer in Germany, with an overall

market share of 35% among publicly insured patients and a range of state-level market shares

between 21% and 51%. This indicates that AOK patient data covers a large share of inpatient

treatments and lets us assume representativeness of the AOK outcome data [101]. Further-

more, the morbidity-oriented risk structure compensation scheme within the public sickness

fund system indicates that AOK patients, on average, are older and have a weaker health status

compared with the rest of the statutory health insurance (SHI) population [102]. While this

could possibly lead to an overestimation of the potential inefficiencies, the majority of such a

bias is controlled for when using risk-adjusted outcomes.

In addition, risk-adjustment based on administrative data, as opposed to clinical data, has

limitations with regards to risk factors included. Most importantly, administrative data currently

does not allow adjustments for disease severity levels and the degree of consciousness at admit-

tance. Yet, the risk factors that are included in the risk-adjustment methodology, i.e. age and

obesity, are shown to correlate with severity and consciousness. More general, risk-adjustment

only accounts for measurable and reported risk-factors, with many important risk factors for

adverse outcomes not measurable based on current methods of administrative data-based risk-

adjustment, e.g., preoperative function status, or not consistently reported (e.g., obesity) [103].

Furthermore, mortality and readmissions are only two, albeit important, aspects of stroke

quality of care. Other factors such as health-related quality of life [104] and patient-reported

outcomes such as pain, selfcare, mobility, and health gain [105], are also important, and can

have even stronger impacts on hospital choice [106]. As our results demonstrate, including

multiple outcome quality aspects is important. When we include 30-day readmission only as

an inefficiency determinant, an increase in 30-day readmissions reduces inefficiencies and

indicates a trade-off between mortality and readmission as two distinct components of out-

come quality [107]. Lastly, the laboratory used for this study was the German hospital land-

scape and results on other European countries might differ. A cross-country analysis at the

hospital-level is in general not possible due to limited data availability and comparability of

hospital level quality and structural data across countries.

5 Conclusions

In order to estimate a quality-expanded notion of hospital efficiency, we employ an innovative

geoadditive SFA model with realized quality as an input and risk-adjusted patient volume as

output. Past hospital efficiency research has mostly neglected quality of care, due to the diffi-

culties in and drawbacks of risk-adjustment techniques and data availability. Research has also

often neglected the potential for spatial patterns of inefficiency, which is especially problematic

in local and regional settings with specific legislation and demand patterns such as hospital

markets.

To address these shortcomings, we expand the notion of technical efficiency in three

important directions. First, we include measures of realized poor quality as input variables for

the production function. Second, we develop a standardized and risk-adjusted patient volume

output measure based on the standardized mortality ratio. Third, we include spatial factors as

inefficiency determinants. Altogether, these three methodological advances improve the appli-

cability of technical efficiency estimations in a hospital service provision setting and can possi-

bly increase the relevance and adoption of efficiency modelling in health policy making. This

expanded notion of technical efficiency also informs efficiency estimations in broad service

operations research.

Our findings confirm that quality of care as well as spatial structures are highly important

in shaping hospital technical efficiency. An overall hospital efficiency mean of 0.730 highlights
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the efficiency losses for the average hospitals, with regard to both quality and resource usage in

stroke care. These inefficiencies have several important determinants. Specialization through

a stroke unit improves outcome quality of care and resource efficiency. These effects are fur-

ther strengthened if the stroke units are certified in accordance with highest standards (DSG

certification). Within-hospital stroke care concentration at one medical department as well as

regional stroke care concentration can also reduce inefficiencies and annual stroke mortality.

Based on the marginal effects on slack resources, we highlight substantial quality of care

improvement potentials at both the hospital and the national level.

With regards to data and methodology used, some drawbacks exist. Using outcome quality

indicators based on AOK patient data only, using only two outcome quality criteria and the

underlying risk-adjustment methodology not including severity and consciousness at admit-

tance are important limitations. However, the impact of the limitations is sufficiently small to

ensure validity, reliability and generalizability of the results.

In general, this work provides clear evidence for the importance of including quality of care

in hospital and other service operations efficiency modelling. The examined setting—a regu-

lated market with a mix of private for-profit, private non-profit and public hospital ownership,

with fixed prices and in the short-to-mid term fixed capacities—is common in many health

care systems. Operationalizing the increasingly important and widespread concept of risk-

adjusted, hospital-level mortality in a quality-enhanced SFA production function enables

more comprehensive technical efficiency estimates in all countries, with available measures of

standardized mortality ratios at a medical condition level (e.g., Germany, the US, the UK, and

the Netherlands). Government agencies, health care regulators, and larger hospital chains

(e.g., NHS Care Quality Commission in England, or the Hospital Corporation of America) can

adopt the methodology to assess a quality-expanded notion of technical efficiency for their

respective markets and hospitals. At a medical condition level, best practice hospitals provid-

ing optimal quality of care given their patient, resource and regional market constraints can be

identified. Furthermore, medical care can be concentrated at these centers of excellence to

increase both the quality of care provided to patients, and optimize resource utilization in

health service provision. Additional research can expand the methodology to other treatment

areas, such as other emergency conditions like acute myocardinal infarction or elective proce-

dures such as hip and knee replacement.
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100. Augursky B, Schmitz H. Effizienz von Krankenhäusern in Deutschland im Zeitvergleich: Endbericht;

2010. Available from: https://econstor.eu/bitstream/10419/69926/1/735282447.pdf.
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