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Abstract

The present thesis is dedicated to the stability analysis of systems with a constant
state delay. A control engineer is confronted with this class of systems whenever
a feedback law cannot react instantaneously to the system variables but only with
a fixed time delay.

An essential prerequisite for the further stability analysis in a nonlinear or uncer-
tain system is the ability to test for stability in a linear nominal system. Therefore,
as a first contribution, the present thesis derives a necessary and sufficient crite-
rion for delay-independent stability, and it shows how to determine the critical
delay at which an initial stability is lost.

Concerning the further stability analysis, which equals the analysis of robustness
of the nominal system, so-called complete-type Lyapunov–Krasovskii functionals
can be used. The present thesis proposes a new numerical approach to this known
concept. The approach is based on an approximation of the time-delay system
by an ordinary differential equation. Only a matrix-valued Lyapunov equation
has to be solved to obtain a finite-dimensional approximation of the Lyapunov–
Krasovskii functional.

However, the numerical method also opens up the possibility to determine better
adapted functionals that can rely on a more general algebraic Riccati equation
instead of the Lyapunov equation. Motivated by this finding, the present thesis
introduces a newclass of Lyapunov–Krasovskii functionals—so-calledLyapunov–
Krasovskii functionals of robust type. These draw on methods from the field of
absolute stability. In particular, the achievable robustness statements are signifi-
cantly less restrictive than those of Lyapunov–Krasovskii functionals of complete
type.
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Deutsche Kurzfassung

Die vorliegende Dissertation widmet sich der Stabilitätsanalyse von Systemen, die
eine konstante Zustandstotzeit aufweisen. Der Regelungstechniker sieht sich mit
dieser Systemklasse konfrontiert, sobald ein Reglergesetz nicht instantan, sondern
nur mit einer festen Zeitverzögerung auf die Systemgrößen reagieren kann.

Für Stabilitätsbetrachtungen in nichtlinearen oder unsicherheitsbehafteten Syste-
men sollte zunächst die Stabilität eines linearenNominalsystems bestimmtwerden
können. Diesbezüglich stellt die Arbeit ein notwendiges und hinreichendes Krite-
rium für totzeitunabhängige Stabilität auf und zeigt wie die kritische Totzeit, bei
der eine anfängliche Stabilität verloren geht, bestimmt werden kann.

Zur weitergehenden Stabilitätsanalyse, die einer Analyse der Robustheit des
Nominalsystems gleichkommt, lassen sich sogenannte vollständige Lyapunov-
Krasovskii-Funktionale verwenden. Die Arbeit schlägt einen neuen numerischen
Zugang zu diesem bekannten Konzept vor. Er basiert auf einer Approximation
des Totzeitsystems durch eine gewöhnliche Differentialgleichung. Lediglich eine
matrixwertige Lyapunov-Gleichung muss gelöst werden, um eine endlichdimen-
sionale Approximation des Lyapunov-Krasovskii-Funktionals zu erhalten.

Die numerische Methode eröffnet aber auch die Möglichkeit, angepasstere Funk-
tionale aufzustellen, die auf einer allgemeineren algebraischen Riccati-Gleichung
anstelle der Lyapunov-Gleichung basieren können.Motiviert durch diese Erkennt-
nis führt die vorliegende Arbeit eine neue Klasse von Lyapunov-Krasovskii-
Funktionalen ein – sogenannte robuste Lyapunov-Krasovskii-Funktionale. Diese
beruhen auf Methoden aus dem Bereich der absoluten Stabilität. Insbesondere
sind die erreichbaren Robustheitsaussagen signifikant weniger restriktiv als jene
von vollständigen Funktionalen.
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Notation

Notation Related to Functions

C([a, b],Rn) continuous Rn-valued functions on [a, b]

C short notation for C([−h, 0],Rn)

L2([a, b],Rn) square integrable Rn-valued functions on [a, b]

L2 short notation for L2([−h, 0],Rn) or L2([−h, 0],Cn)

M2 M2 = L2([−h, 0],Rn)× Rn or L2([−h, 0],Cn)× Cn

∥ϕ∥C norm in C, ∥ϕ∥C = maxθ∈[−h,0] ∥ϕ(θ)∥

⟨ϕ1, ϕ2⟩L2
L2 inner product of ϕ1, ϕ2 ∈ L2([−h, 0],Cn),
i.e., ⟨ϕ1, ϕ2⟩L2

=
∫ 0

−h(ϕ2(θ))
Hϕ1(θ) dθ

∥ϕ∥L2
L2-norm of ϕ ∈ L2([−h, 0],Cn),
i.e., ∥ϕ∥L2 =

√
⟨ϕ, ϕ⟩L2〈[

ϕ1
r1

]
,
[
ϕ2
r2

]〉
M2

M2 inner product of
[
ϕ1
r1

]
,
[
ϕ2
r2

]
∈M2,

i.e.,
〈[
ϕ1
r1

]
,
[
ϕ2
r2

]〉
M2

=
∫ 0

−h(ϕ2(θ))
Hϕ1(θ) dθ + rH2 r1

AC absolutely continuous functions

PN ([a, b],Rn) Rn-valued polynomials of degree at most N
defined on [a, b]

0n[a,b]
vector-valued zero function on [a, b],
i.e., ϕ = 0n[a,b]

⇐⇒ ϕ(θ) ≡ 0n ∈ Cn, θ ∈ [a, b]

xiii



Notation

A ∗ adjoint of an operator A

a⊗ b dyadic product between two functions a ∈ M2 and b ∈
M2, see Def. A.2.3

K set of class-K functions,
K = {κ ∈ C([0,∞),R≥0) : κ(0)=0, strictly increasing}

D+
(eq)V upper right-hand derivative of V : X → R along solutions

of (eq), i.e., if xt ∈ X denotes the state of (eq) at time
t ≥ 0, then D+

(eq)V (x0) = lim supt→0+
V (xt)−V (x0)

t

D+
f V D+

f V := D+
(1.4)V , derivative of V along solutions of the

linear system (1.4)

D+
(f+g)V D+

(f+g)V := D+
(1.2)V , derivative of V along solutions of

the perturbed system (1.2)

pk(·) k-th Legendre polynomial

Tk(·) k-th Chebyshev polynomial of first kind

ℓk(·) Lagrange interpolation polynomial w.r.t. the k-th interpo-
lation node

bk(·) k-th Bessel polynomial

padé[N/N ](f) Padé approximant of order [N/N ] of the function f

H∞(C+,Cp×m) Hardy space of holomorphic Cp×m-valued functions on
C+

H∞ short notation for H∞(C+,Cp×m)

∥G∥∞ H∞-norm of G ∈ H∞,
i.e., ∥G∥∞ = sups∈C+ ∥G(s)∥2 = supω∈R ∥G(iω)∥2

(R(s))p×m p ×m matrices with entries being real-rational functions
(i.e., ratios of polynomials with real coefficients) of s ∈ C
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Notation

Notation Related to Rn or Cn

λk(M) k-th eigenvalue of a matrixM ∈ Cn×n, k ∈ {1, . . . , n}
(arbitrarily ordered)

σ(M) spectrum ofM ∈ Cn×n, i.e., σ(M) =
⋃
k{λk}

λk(M,E) k-th eigenvalue of a matrix pencil (M,E),
λk(M,E) ∈ σ(M,E) = {λ ∈ C : det(λE −M) = 0}

ρ(M) spectral radius ofM ∈ Cn×n,
i.e., ρ(M) = maxk |λk(M)|

α(M) spectral abscissa ofM ∈ Cn×n,
i.e., α(M) = maxk Reλk(M)

rk(M) rank of a matrixM ∈ Cm×n

In identity matrix in Cn×n

0m×n, 0n zero matrix of dimensionm× n, zero vector in Cn

ek k-th canonical basis vector of Cn

MH =M
⊤ conjugate transpose ofM ∈ Cn×n

Q ≻ (⪰) 0n×n positive (semi)definiteness of Q ∈ Cn×n, implicitly re-
quiring that Q = QH

λmin(Q), λmax(Q) smallest and largest eigenvalue of Q = QH ∈ Cn×n

He(M) Hermitian part ofM ∈ Cn×n,
i.e., He(M) = 1

2 (M +MH)

sym(M) symmetric part ofM ∈ Cn×n,
i.e., sym(M) = 1

2 (M +M⊤)

diag(m1, . . . ,mn) diagonal matrix with entriesm1, . . . ,mn

blkdiag(A1, . . .,Am) block diagonal matrix built from matrices A1, . . . , Am
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Notation

A⊗B Kronecker product of matricesA ∈ Cm×n andB ∈ Cr×s,

i.e.,

[
A11 ··· A1n

...
...

Am1 ··· Amn

]
⊗B =

[
A11B ··· A1nB

...
...

Am1B ··· AmnB

]
∈ Cmr×ns

A⊕B Kronecker sum of matrices A ∈ Cn×n and B ∈ Cs×s,
i.e., A⊗ Ir + In ⊗B

A− generalized inverse of a matrix A ∈ Cm×n,
i.e., A− ∈ Cn×m (not necessarily unique): AA−A = A

[ A1 A2 ] block matrix [A1 A2] emphasizing that the submatrices
A1 ∈ Cn×nN , A2 ∈ Cn×n are differently sized

vec(M) vectorization ofM ∈ Cm×n

∥x∥ arbitrary norm of x ∈ Cn

∥x∥2 Euclidean norm of x ∈ Cn, i.e., ∥x∥2 =
√
xHx

∥M∥2 spectral norm ofM ∈ Cm×n,
i.e., ∥M∥2 =

√
λmax(MHM)

µ2(M) logarithmic norm w.r.t. the spectral norm,
i.e., µ2(M) = λmax(

1
2 (A

H +A))

(wk)k∈I a vector with entries wk,
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1 Introduction

Imagine a controller at an oscillating system always undertakes what would have
been correct a short time ago. Clearly, such a well-meant controller can have
the opposite effect to what was intended. Unfortunately, a delayed controller
action is the rule rather than the exception: measurements, communication, data
processing or the actuator response almost always cause a delay. Fortunately,
in most standard control loops these time delays are very small and therefore
negligible—but, how can we recognize how much delay is small and which one
will be harmful? This is one of the first questions tackled in the present thesis.
Already the otherwise effortless eigenvalue-based test for exponential stability of
an equilibrium is no longer a trivial task once time delays are involved. However,
regardless ofwhether delays are involved or not, such a confirmation of exponential
stability for a nominal linear (respectively linearized) system is usually not enough.
Neglected additional nonlinear terms or uncertainties call for a further analysis
enabling regional or global stability results or robustness bounds. In a delay-free
system, this motivates the construction of a Lyapunov function. How to proceed
if a time delay is involved? Answering this second question, in fact, constitutes
the major part of the present thesis.

Although this work is primarily theoretical in nature, it has a very clear practical
motivation as time delays are ubiquitous in control systems (still noting that many
applications call for generalizations to multiple or time-varying delays, which, for
the sake of compactness, are not covered in the present thesis—see the outlook in
Section 8.2). Consider, for instance, networked systems like energy systems that
are to become smart. In this field, wide area measurement systems are a great
innovation. However, the goal cannot be to just watch the energy system swing
into a blackout, and, therefore, the wide-area measurement system must become

1



1 Introduction

a wide-area control system. Because of the significant communication-induced
delay, the closed-loop system becomes a time-delay system [141, 201, 193, 202,
145]. In fact, this delay is considered to be one of the most important obstacles for
the implementation of wide area control systems [147]. The system need not even
be such a large scale one. Already in the control of microgrids, the time delay
problem is seen to be a very critical issue [195, 126, 164]. In the end, even small
delaysmight be harmful since smallness is relative and amatter of the relevant time
scales. For instance, in the control of power converters, the time delay is less than
a half millisecond and still a cause of instability [58, 173, 92, 150, 205]. Contrary
to the common intuition, in certain ranges, the delay in power converters can also
have a stabilizing effect [206, 189, 188]. In any case, it definitely should not be
neglected, although this is frequently done in the literature. Besides of the fact
that any closed loop system becomes a time-delay system once the controller does
not act instantaneously, many other examples could be mentioned from various
disciplines, be it inherent time delays in systems from mechanical engineering,
biology, economy, or other fields. See, e.g., [172, 95, 67, 112, 36] and references
therein.

1.1 System Class

If a control law u = k(x) is designed for a system ẋ = p(x, u), it is usually
assumed that the closed loop obeys the delay-free dynamics ẋ = p(x, k(x)) =:

F0(x). If, however, the controller acts with a delay h > 0 (induced by the required
measurements, by network communication, by calculation times or by the actuator
response), then the resulting closed loop dynamics become ẋ(t) = p(x(t), k(x(t−
h))) =: F (x(t), x(t − h)), which is a retarded functional differential equation
(RFDE).

In contrast to the delay-free case, for time-delay systems the specification of
an initial vector x(0) ∈ Rn does not bear enough information to calculate the
solution x(t), t ≥ 0. Already ẋ(0) depends on x(−h) and similar holds for ẋ(t)
on t ∈ [0, h). That is why an initial function x0(t) = x(t) on t = θ ∈ [−h, 0]

2



1.1 System Class

is required. The RFDE state xt ∈ C([−h, 0],Rn) at time t ≥ 0 accordingly
describes the solution segment on the preceding delay interval [t− h, t], defined
as

xt(θ)
def
= x(t+ θ), θ ∈ [−h, 0]. (1.1)

In the present thesis, the thus considered RFDE

ẋ(t) = F (x(t), x(t− h))

= A0x(t) +A1x(t− h)︸ ︷︷ ︸
f(xt)

+ g̃
(
x(t), x(t− h)

)︸ ︷︷ ︸
g(xt)

(1.2)

is decomposed into a linear part, ẋ(t) = f(xt) with A0, A1 ∈ Rn×n, and a
possibly nonlinear term g(xt). For notational compactness, the perturbation
g : C([−h, 0],Rn) → Rn;ϕ 7→ g(ϕ) is assumed to be time-invariant. Still,
the results straightforwardly extend to a time-varying (t, ϕ) 7→ g(t, ϕ) (see Re-
mark 5.3.3). Note that, throughout this thesis, the delay is assumed to be constant.
Moreover, for simplicity, g is assumed to be locally Lipschitz continuous, ensur-
ing well-posedness of (1.2), see [82]. Furthermore, g(0n[−h,0]

) = 0n. Various
scenarios give rise to the decomposition in (1.2).

1. The nonlinearity g(xt)might consist of higher order terms representing the
remainder from a linearization ẋ(t) = A0x(t) +A1x(t− h).

2. The nonlinearity g(xt) might involve a saturation, which is frequently
encountered if a delayed control law operates on a constrained input.

3. Uncertainties ∆0,∆1 ∈ Rn×n added to A0, A1 in (1.2) can be addressed
by g(xt) = ∆0x(t) + ∆1x(t− h).

3
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1.2 A Template from Delay-Free Systems

The present thesis is concerned with the time-delay system (1.2). However, as a
template and for comparison, it is worth taking a look at the analogous delay-free
system

ẋ(t) = F0(x(t)) = Ax(t) + g(x(t)), (1.3)

A ∈ Rn×n, g ∈ C(Rn,Rn), g(0n) = 0n. In that delay-free system, the following
simple approach is possible, see, e.g., [108].

i Clearly, exponential stability holds for the zero equilibrium of the nominal
linear system ẋ = Ax if and only if all eigenvalues of A have negative
real parts. If ẋ = Ax represents the linearization of ẋ = Ax + g(x), the
latter also implies local asymptotic stability of the zero equilibrium in the
nonlinear system.

ii However, such a local statement is usually not enough, and a Lyapunov
function is additionally desirable for the further analysis of the overall
system. The probably simplest concept lies in the construction of a quadratic
Lyapunov function V (x) = x⊤Px that provides a desired negative definite
derivative D+

(ẋ=Ax)V (x) = −x⊤Qx along the solutions of the nominal
linear system. To this end, only the corresponding Lyapunov equation
PA + A⊤P = −Q must be solved for P , which requires just one line of
Matlab code. With Q being chosen positive definite, the solution P of the
Lyapunov equation is well known to be positive definite if and only if A is
Hurwitz [108]. The largest possible coefficient k1 > 0 in k1∥x∥22 ≤ V (x)

is simply given by the smallest eigenvalue of P .

iii The Lyapunov function V (x) constructed in this way also has a negative
definite derivative along the solutions of ẋ = Ax + g(x) provided the
perturbation g is sufficiently small—to bemore precise, if ∥g(x)∥2≤ γ∥x∥2
with γ < λmin(Q)

2λmax(P ) [108]. Consequently, this linear norm bound γ is a
robustness bound, which characterizes admissible terms g(x) that do not
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compromise the global exponential stability known from the nominal linear
system. Of course, a nonlinear term g(x) might not remain globally below
such a linear norm bound. The linear norm bound might instead be satisfied
locally on some setG = {x ∈ Rn : ∥g(x)∥2 ≤ γ∥x∥2}. Then any sublevel
set of V (x) within that set G is guaranteed to belong to the domain of
attraction. For instance, if there is some radius r > 0 such that the linear
norm bound is known to be satisfied on Br = {x ∈ Rn : ∥x∥2 < r} ⊆ G,
then such a subset of the domain of attraction is given by the sublevel set
{x ∈ Rn : V (x) < k1r

2} ⊆ Br ⊆ G with k1 from ii, cf. [108].

1.3 Methods for Proving Stability in
Time-Delay Systems

As a counterpart to the simple delay-free template i fromSection 1.2, the following
considerations focus on the linear nominal time-delay system

ẋ(t) = A0x(t) +A1x(t− h) =: f(xt) (1.4)

with A0, A1 ∈ Rn×n, h > 0. Stability terms are defined similar to the ODE
case and will formally be given in Definition 4.5.2. So far, however, it suffices to
note that for the linear time-delay system (1.4), asymptotic stability of the zero
equilibrium1 coincides with (global) exponential stability of the zero equilibrium
[82, Thm. 5.3 in Ch. 6], i.e., the solutions x(t) from all initial functions x0 ∈
C([−h, 0],Rn) decay exponentially according to

∃b < 0,∃c ≥ 1,∀t ≥ 0 : ∥x(t)∥ ≤ cebt∥x0∥C , (1.5)

where ∥x0∥C
def
= maxθ∈[−h,0] ∥x0(θ)∥.

1 The zero equilibrium refers to the zero state 0n[−h,0]
in the state space C([−h, 0],Rn), i.e., the

vector-valued zero function on the delay interval [−h, 0].
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The effect of the additional perturbation g(xt) in (1.2) will be tackled in the
subsequent Section 1.4. However, anyway, if g(xt) only represents the remainder
from a linearization (scenario 1 in Section 1.1), asymptotic stability of the zero
equilibrium in the linear system (1.4) already implies local asymptotic stability of
the zero equilibrium in the overall system (1.2) (principle of linearized stability,
[57]).

Remark 1.3.1. This linearization-based local statement of stability, in fact, can
also be drawn as a conclusion from the robustness considerations in the next
section. Similar to template iii, these considerations provide some nonzero linear
norm bound γ characterizing admissible perturbations g(xt) in (1.2). By defini-
tion, a little-o term2 g(xt) where g(ϕ) ∈ o(ϕ), respectively g̃

([ x(t)
x(t−h)

])
where3

g̃(ζ) ∈ o(ζ), locally satisfies any linear norm bound γ. Thus, however small
the linear norm bound γ on admissible perturbations from the next section will
become, higher order terms g(xt) that are neglected in a linearization always
remain below that bound if the consideration is restricted to a local domain G
of sufficiently small states xt. Therefore, local asymptotic stability of the zero
equilibrium in the overall system (1.2) can immediately be concluded from the
asymptotic stability in the linearized system as the latter comes along with such
a nonzero admissible linear norm bound.

As described in Section 1.1, the considerations in the present thesis are not
restricted to this special case of perturbations g(xt) that represent the remainder
of a linearization. However, also inmore general cases, the ability to prove stability
of linear RFDEs, which is the subject of the present section, is immanent.

2 In fact, the principle of linearized stability calls for the Fréchet differentiability of the RFDE right-
hand side at ϕ = 0n[−h,0]

in C([−h, 0],Rn), which exactly amounts to the decomposability in
a linear part f(xt) and a rest g(xt) that is a little-o term.

3 Note that g̃(ζ) ∈ o(ζ) is defined by lim∥ζ∥→0
∥g̃(ζ)∥
∥ζ∥ = 0, which by the ε-δ-definition of the

limit becomes ∀ε > 0, ∃δε > 0 : ∥ζ∥ < δε ⇒ ∥g̃(ζ)∥
∥ζ∥ < ε, respectively, ∥g̃(ζ)∥ < ε∥ζ∥.

Concerning (1.17), choose ζ =
[ x(t)
x(t−h)

]
and ε = γ.
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1.3 Methods for Proving Stability in Time-Delay Systems

Similar to the delay-free template i, the characteristic roots, which are the
solutions s ∈ C of the characteristic equation

det(sIn −A0 − e−shA1) = 0 (1.6)

(being derived from an exponential ansatz or from a Laplace transform), are
still meaningful: The zero equilibrium of (1.4) is exponentially stable for a
certain delay h > 0 if and only if all characteristic roots s have a negative
real part [82]. However, in contrast to the n eigenvalues of A in the delay-free
case i from Section 1.2, there is generically an infinite number of roots s ∈ C
that solve (1.6), which makes the stability analysis more involved. In the last
decades, various approaches for proving stability have been established, see, e.g.,
[76, 149, 113, 67, 31] and references therein.

There are approaches that aim at a numerical calculation of the most important
characteristic roots for a given delay, see, e.g., [30, 194, 185, 64, 97]. Some
of these rely on the eigenvalue computation of a matrix that describes an ODE
approximation of the time-delay system. Such ODE approximations (see Chap-
ter 3) will play a central role in the present thesis, but the field of application will
be different.

Probably the majority of literature on stability in time-delay systems from the
last two decades ends up with linear matrix inequalities (LMIs). There-
fore, a brief glance is in order. These LMIs might, for instance, result from
Lyapunov–Krasovskii (LK) functionals (cf. Theorem 4.5.1). The following
example demonstrates such an approach. Alternatively, LMIs might result from
Lyapunov–Razumikhin functions, or from treating the time delay as an uncer-
tainty in robustness approaches. See [82, 67, 31, 18].

Example 1.3.2. Consider the simple LK functional

V (xt) = x⊤(t)Px(t) +

∫ t

t−h
x⊤(η)S x(η) dη, (1.7)

7
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P, S ≻ 0n×n. Its derivative along solutions of (1.4)

D+
f V (xt)

= (A0x(t) +A1x(t− h))
⊤
Px(t) + x⊤(t)P (A0x(t) +A1x(t− h))

+ x⊤(t)Sx(t)− x⊤(t− h)Sx(t− h)

=

[
x(t)

x(t− h)

]⊤([
PA0 +A⊤

0 P PA1

A⊤
1 P 0n×n

]
+

[
S 0n×n

0n×n −S

])[
x(t)

x(t− h)

]

gives rise to the following LMI criterion:
If there exists a matrix P = P⊤ ∈ Rn×n and a matrix S = S⊤ ∈ Rn×n such
that[

PA0 +A⊤
0 P + S PA1

PA1 −S

]
≺ 02n×2n, P ≻ 0n×n, S ≻ 0n×n, (1.8)

then the zero equilibrium of (1.4) is asymptotically stable [31, Thm. 5.6.1], [67,
Prop. 3.3], [76, Prop. 5.14].

The above criterion does not depend on the delay h in (1.4). Thus, it can either
be concluded that the asymptotic, respectively exponential, stability holds for
all delays h > 0, which is called delay-independent stability, or nothing is
concluded. To obtain a delay-dependent result, double-integral terms are usually
incorporated in V , and D+

f V (xt) is no longer equal to some quadratic form in
[x⊤(t), x⊤(t−h)]⊤ but only upper bounded by some quadratic form in a possibly
larger augmented vector [31]. A kind of competition has developed as to how
nonconservative LMIs can be set up [167, Tab. 1]. What they have in common,
however, is that non-conservative criteria usually come along with large LMIs.

When looking for non-conservative LK functionals, one will quickly stumble
upon the fact that so-called LK functionals of complete type [110, 111] give rise
to a necessary and sufficient condition for asymptotic stability. However, proving
stability is originally not the raison d’être of such functionals. On the contrary,
decisive results on these functionals (in particular, the formula for a lower bound

8
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[110, 137]) only apply if stability has already been proven beforehand. Rather,
complete-type and related LK functionals are the counterpart to template ii in the
delay-free discussion from Section 1.2. Nevertheless, in the delay-free template,
it would also be possible (but there is no reason to do so), instead of calculating
the eigenvalues of A in i, first to solve the Lyapunov equation PA+A⊤P = −Q
from ii for some Q ≻ 0, and then to test whether P (and thus also the Lyapunov
function x⊤Px) is positive definite—which it is if and only if A was Hurwitz.
However, how this approach translates to time-delay systems has long been an
open question. It has only recently been resolved by Egorov, Gomez, and Mondié
[60, 72, 142], describing how at all to conclude stability from the so-called
delay Lyapunov matrix function, which is a building block of the corresponding
complete-type and related LK functionals (see Remark 4.4.1). Still, in the present
thesis, the reason why complete-type and related LK functionals are considered
is not to prove stability in the linear system, but it is their role in the robustness
analysis as a counterpart to the template iii from Section 1.2. The latter will be
discussed in the next section. In accordance with the template i, stability will
instead be proven a priori based on a consideration of the characteristic equation.

There are various methods for proving stability of the linear RFDE (1.4) that
directly rely on the characteristic equation (1.6). If the stability only holds
for sufficiently small delays h ∈ [0, hc), such approaches can exactly determine
the (first) critical delay hc at which exponential stability is lost, thus proving
exponential (equivalently asymptotic) stability for the overall interval of delays
h ∈ [0, hc) at once. Some of these methods resort to an evaluation of the
determinant in (1.6) yielding the quasipolynomial

det(sIn −A0 − e−shA1) = pn(s)e
−nhs + . . .+ p1(s)e

−hs + p0(s) (1.9)

(each pk(s), k ∈ {0, . . . , n}, is a polynomial of degree at most n−k), respectively
the corresponding bivariate polynomial

det(sIn −A0 − zA1) = pn(s)z
n + . . .+ p1(s)z + p0(s), (1.10)

9
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[160, 175, 109, 87, 187, 44, 171, 169]. Others are based on eigenvalues of
matrix pencils with block matrices containing Kronecker products of A0 and
A1 [41, 132, 148]. Moreover, there are so-called frequency sweeping tests. In
particular, delay-independent exponential stability holds if and only if A0 and
A0 +A1 are Hurwitz, and

∀ω > 0 : ρ
(
(iωIn −A0)

−1A1

)
< 1, (1.11)

[50, Thm. 1.3], [42], [40], [96], where ρ(M) = maxk |λk(M)| is the spectral
radius ofM ∈ Cn×n.

The criteria listed up to this point, however, are not very insightful in terms of how
A0 and A1 may look like without resorting to numerical computations. Mori’s
criterion for delay-independent exponential stability

µ2(A0) + ∥A1∥2 < 0, (1.12)

[143], with µ2(A0)
def
= λmax

(
1
2 (A0 +A⊤

0 )
)
, provides some more insights. How-

ever, Mori’s criterion is rather conservative. Similarly insightful but less conser-
vative is

max
φ∈[0,π]

α(A0 + eiφA1) < 0, (1.13)

relying on the spectral abscissa α(M)
def
= maxk∈{1,...,n} Reλk(M) of the

parameter-dependent matrix M(φ) = A0 + eiφA1 ∈ Cn×n. Criterion (1.13)
seems to be little known in this form, but it is a direct consequence of results by
Datko [50, Thm. 1.2] and Kamen [106]. Unfortunately, (1.13) is only a sufficient
not yet necessary criterion for delay-independent exponential stability. However,
it will be further developed in Chapter 2 of the present thesis.

10
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1.4 Lyapunov–Krasovskii Functionals of
Complete Type

Complete-type [110, 111] and related [136] LK functionals are a recent field of
research [204, 103, 117, 102, 142, 6]. As already mentioned above, these LK
functionals are the counterpart to the Lyapunov-equation-based construction of
Lyapunov functions in the template ii from Section 1.2.

Instead of the desired Lyapunov function derivative D+
(ẋ=Ax)V (x) encountered

in ii, the desired LK functional derivative along solutions of the nominal linear
RFDE (1.4) has to be prescribed. This derivative is commonly set as

D+
f V (xt) = −x⊤(t)Q0x(t)− x⊤(t− h)Q1x(t− h)

−
∫ 0

−h
x⊤(t+ θ)Q2x(t+ θ) dθ (1.14)

[110], with freely chosen Q0 ≻ 0n×n, Q1, Q2 ⪰ 0n×n.

If Q0,1,2 ≻ 0n×n, the LK functional V (xt) that accomplishes (1.14) is called an
LK functional of complete type [110, Thm. 2.11]. The known formula for the
solution of (1.14)

V (xt) = x⊤(t)Ψ(0; Q̃)x(t) + 2

∫ 0

−h
x⊤(t)Ψ(−h− η; Q̃)A1x(t+ η) dη

+

∫ 0

−h

∫ 0

−h
x⊤(t+ ξ)A⊤

1 Ψ(ξ − η; Q̃)A1x(t+ η) dη dξ

+

∫ 0

−h
x⊤(t+ η)

[
Q1 + (h+ η)Q2

]
x(t+ η) dη (1.15)

relies on the so-called delay Lyapunov matrix function4 Ψ( · ; Q̃) : [−h, h] →
Rn×n associated with Q̃ = Q0 + Q1 + hQ2. This matrix-valued function Ψ

4 Ψ(s; Q̃) is commonly denoted by U(s) in the literature
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is defined via a matrix-valued time-delayed boundary-value problem (given in
Appendix B.1.1) that first has to be solved semi-analytically (Proposition B.1.2)
or numerically.

Regarding the numerical calculation of such functionals, the following should
be noted. There are some seemingly related LMI [74, 75] or sum of squares
approaches [151] that, however, do not seek for the actual complete-type LK
functional. Rather they are inspired by the structure of the integral formula
in (1.15), which promises to provide a necessary and sufficient stability crite-
rion if appropriate kernel functions could be reproduced. Concerning the actual
complete-type or related LK functional given in (1.15), it is a recent field of
research how to make these functionals numerically traceable. Such numerical
results, however, either rely on the knowledge of the delay Lyapunov matrix
function4 Ψ, [72, 60, 142, 136, 134, 48, 10, 62], or they aim to determine Ψ,
[61, 140, 69, 94]. A different approach will be provided in Chapter 4.

As in the template ii, a lower bound on the functional plays a special role. If
Q1 ≻ 0n×n, and if the nominal system is exponentially stable, then there exists a
k1 > 0 such that the functional has a quadratic lower bound of the form

k1∥x(t)∥2 ≤ V (xt) (1.16)

[110, Lem. 2.10]. Similar to the template, the coefficient k1 in (1.16) is, for
instance, relevant in estimations of domains of attraction [137]. Still, in contrast
to the ODE case ii, where the minimum eigenvalue of P gives the best possible
coefficient k1, nothing is reported about the conservatism of known formulas for
k1 in (1.16) [110, 137]—this issue, however, will also be tackled in Chapter 4.

It remains to discuss the counterpart of point iii in the template. Indeed, the
robustness analysis of time-delay systems is an important application of complete-
type [111, 137, 110] and related LK functionals [135, 6, 182]. The analogy to
the template iii in terms of complete-type LK functionals is as follows. Not
only the derivative D+

f V (xt) along solutions of the nominal RFDE satisfies the
requirements of the classical LK theorem (by construction), but also the derivative

12
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D+
(f+g)V (xt) along solutions of the perturbed RFDE (1.2) still satisfies these

requirements, whenever g(xt) = g̃(x(t), x(t − h)) in (1.2) remains below the
linear norm bound [137]

∥g̃(x(t), x(t− h))∥2 ≤ γ
∥∥∥[ x(t)

x(t−h)

]∥∥∥
2

(1.17)

with γ <
min

{
λmin(Q0)
2+h∥A1∥2

, λmin(Q1)
1+h∥A1∥2

, λmin(Q2)
∥A1∥2

}
λmax(Ψ(0))

. (1.18)

See, e.g., [137, 182, 6, 3] on results regarding how to estimate the domain of
attraction within the set on which that linear norm bound is valid.

1.5 Objectives and Outline

The objectives of the present thesis are in alignment with the template from
delay-free systems given in Section 1.2.

I Concerning a counterpart to point i in the template, Section 1.3 above
already makes clear that various techniques come into question for proving
stability. However, a trade-off between the conservatism of the criteria and
their complexity is noticeable. The increasing complexity also comes along
with a vanishing insight in terms of howA0 andA1 actually might look like
in order not to hamper stability. Therefore, the objective in Chapter 2 is to
extend the insightful formula (1.13) to a necessary and sufficient criterion
for delay-independent exponential stability, and, if exponential stability
only holds for sufficiently small delays h ∈ [0, hc), to provide the exact
critical delay hc at which this stability is lost. The focus is on the simplicity
and interpretability of the gained results.

II The determination of complete-type and related LK functionals is far more
elaborate than the simple Lyapunov equation from their delay-free tem-
plate ii. With the objective to benefit from the enormous simplification that
comes along with the treatment of ODEs in contrast to RFDEs, Chapter 3
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1 Introduction

discusses ODE-approximation schemes of time-delay systems. By employ-
ing the presented ODE approximations,Chapter 4 intends to provide a new
numerical approach to complete-type or related LK functionals which only
requires to solve (a sequence of) Lyapunov equations. Another objective is
the computation of a less conservative lower-bound coefficient k1 in (1.16).
Additionally to the computational advantages, the approach also aims at
theoretical insights offered by the analogy to the stability theory of ODEs.

III Although robustness considerations have been the original purpose of
complete-type LK functionals when introduced in [111], the linear norm
bound (1.17) is very restrictive. Therefore, Chapter 5 aims to introduce
a class of quadratic LK functionals that provides less restrictive robustness
bounds. This goal will be achieved by replacing the template of the Lya-
punov equation from ii by the template of an algebraic Riccati equation
and by using methods from the realm of absolute stability. Chapter 6
tackles the thus introduced LK functionals of robust type by the numerical
approach from Chapter 4, making the proposed functionals numerically
traceable and establishing the link to known concepts in the simpler setting
of delay-free systems. Chapter 7 aims at proving the convergence of that
numerical approach.
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2 Stability Criteria from an
Insightful Perspective on the
Characteristic Equation

This chapter is devoted to the analysis of stability in the nominal linear system
(1.4). As a first step, a framework of three possible perspectives on a two-variable
formulation of the characteristic equation is proposed. One of these perspectives,
perspective (PZ), gives rise to the known frequency-sweeping test (1.11). In
contrast, the particularly insightful criterion mentioned in (1.13) is related to
perspective (PS). Frequency-sweeping is not only associated with a necessary
and sufficient delay-independent criterion but also with a formula for the critical
delay hc if stability holds for h ∈ [0, hc). Thus, the chapter aims to develop an
analogous theory based on the simpler perspective (PS).

The chapter is organized as follows. After the introduction of the framework of
possible perspectives in Section 2.1, the problem of determining the first critical
delayhc is tackled inSection 2.2 bymeans of a constrainedminimization problem.
Then the new necessary and sufficient criterion for delay-independent exponential
stability is derived in Section 2.3. It shows that the required extension of (1.13)
only has to incorporate special cases of maxφ∈[0,π] α(A0 + eiφA1) = 0. To
this end, the following non-trivial consequence of delay-independent exponential
stability must be proven: Eigenvalues ofM(φ) := A0 + eiφA1, as φ increases,
cannot move between the left and right complex half-plane only by tunneling
through the origin. The section closes with some corollaries, including Mori’s
criterion that has already been encountered in (1.12). Finally, the main points of
the chapter are listed in Section 2.4.
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

The contributions of this chapter are prepublished in

[S1] Scholl, T. H.; Gröll, L.: Stability criteria for time-delay systems from an
insightful perspective on the characteristic equation. IEEE Transactions on
Automatic Control 68 (2023) 4, 2352–2359.

2.1 Considerations Based on a Two-Variable
Formulation

Consider a reformulation [104] of the characteristic equation (1.6) with two vari-
ables s and z := e−sh

det(sIn −A0 − zA1) = 0. (2.1)

Section 2.1.1 introduces various forbidden sets SC+ ,SiR,S0,Sstr for s and z
to describe some required preliminaries in a uniform manner. Relying on that
foundation, possible perspectives on (2.1) are discussed in Section 2.1.2.

2.1.1 Forbidden Sets*

Delay-independent exponential stability holds if and only if for all delays h ≥ 0

no characteristic root s from the characteristic equation (1.6) occurs in C+, and
thus if and only if no (s, z) from the forbidden set

SC+ :=
{
(s, z) ∈ C2 : s ∈ C+, z = e−sh, h ∈ R≥0

}
(2.2)

satisfies (2.1). Assume for a given delay h ≥ 0 there is indeed no characteristic
root s in C+. If h is varied, the occurrence of a characteristic root in C+ must be
preceded by a crossing of the imaginary axis, i.e., s = iω, ω ∈ R, at some h = hc

* The author has prepublished Section 2.1.1 in [S1], ©2023 IEEE.
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2.1 Considerations Based on a Two-Variable Formulation

(continuous dependence of the real part of the rightmost characteristic root on
changes in h is proven in [49]). Hence, already a forbidden set

SiR :=
{
(s, z) ∈ C2 : s = iω, z = e−iωhc , ω ∈ R, hc ∈ R≥0

}
(2.3)

is decisive: The zero equilibrium of (1.4) is delay-independently exponentially
stable if and only if no (s, z) from the forbidden set SiR satisfies (2.1), provided
exponential stability is proven for an arbitrary explicit delay, e.g., for zero delay.
For zero delay, the system equation (1.4) simplifies to

ẋ(t) = (A0 +A1)x(t), (2.4)

and therefore A0 + A1 is required to be Hurwitz. Furthermore, the range of ω
considered in (2.3) can be restricted to ω ∈ R \ {0} since

a) s = iω = 0 with hc <∞ (and thus z = 1) would be a root for all h ≥ 0 in
(1.6) and contradicts A0 +A1 Hurwitz;

b) s → iω = 0 as h → ∞ is beyond the definition of delay-independent
exponential stability which considers only finite delays.

That is why a new parameter φ ∈ R can be introduced that substitutes the free
parameter hc ≥ 0 by

hc = −φ
ω
, ω ̸= 0, (2.5)

which will be decisive in Section 2.2. Hence, the variable z in (2.3),

z = e−iωhc = eiφ, φ ∈ R, (2.6)

becomes an arbitrary complex number with |z| = 1. This decoupling of s and z
leads to the following two-variable criterion by Hale, Infante, and Tsen [81].
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

Theorem 2.1.1 (Two-variable criterion [81, Thm. 2.4]). The zero equilibrium
of (1.4) is delay-independently exponentially stable if and only if A0 + A1 is
Hurwitz and no (s, z) from the forbidden set

S0 := {(s, z) ∈ C2 : s = iω, |z| = 1, ω ∈ R \ {0}} (2.7)

satisfies (2.1).

Note that s = iω = 0 is not part of the forbidden set S0. If A0 + A1 is Hurwitz
and if even no (s, z) from the larger set

Sstr := {(s, z) ∈ C2 : s = iω, |z| = 1, ω ∈ R} (2.8)

satisfies (2.1), the zero equilibrium is referred to as strongly delay-independently
exponentially stable [21]. This stability term has no underlying definition in
terms of the solutions x(t), but it merely addresses what is covered by considering
instead of (2.7) the coarser but simpler forbidden set (2.8). The latter amounts to
the classical two-variable criterion by Kamen [106, 104].

The equilibriummight be delay-independently exponentially stable without being
strongly delay-independently exponentially stable. In other words, s = iω = 0

combined with |z| = 1, which does not hamper delay-independent exponential
stability, must indeed be excluded in the forbidden set (2.7). This fact has initially
been overseen in the literature, but already the following scalar system provides
such an example [106].

Example 2.1.2 (Non-strong delay-independent exponential stability). In

ẋ(t) = −x(t)− x(t− h), (2.9)

the zero equilibrium is, despite of being delay-independently exponentially stable,
not strongly delay-independently exponentially stable. The decisive element turns
out to be (s0, z0) = (0,−1), which satisfies (2.1) with s+1+ z = 0. It hampers
strong delay-independent exponential stability by (s0, z0) ∈ Sstr from (2.8), while
not belonging to the forbidden set S0 for delay-independent exponential stability
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2.1 Considerations Based on a Two-Variable Formulation

from (2.7). Indeed, although s0 = 0 is an element of the imaginary axis and
|z0| = 1, it holds (s0, z0) ̸∈ SiR in (2.3) since there is no finite hc such that
e−iωhc = z0 when ω = 0.

2.1.2 A Framework of Three Perspectives*

In order to determine whether any forbidden (s, z) ∈ S0 satisfies (2.1), i.e.,
satisfies det(sIn − A0 − zA1) = 0, several perspectives on this two-variable
formulation in terms of classical eigenvalue problems are appropriate.

(PS) For any given z, the variable s in (2.1) can be seen as an eigenvalue of
the matrix A0 + zA1, cf. [105]. In S0, or whenever (2.6) is used, values
z = eiφ are of interest. This motivates to define

sk(φ) := λk(A0 + eiφA1), (2.10)
φ ∈ R, k ∈ {1, . . . , n}.

Theorem 2.1.1 requires that no (sk(φ), eiφ) belongs to S0, i.e., sk(φ) must
satisfy

∄(φ, k) : Re(sk(φ)) = 0 with Im(sk(φ)) ̸= 0. (2.11)

(PZ) For any given s, the variable z in (2.1) can be seen as an eigenvalue of the
matrix pencil (sIn − A0, A1), cf. [40]. In S0, values s = iω ̸= 0 are of
interest. This motivates to define1

zk(ω) := λk(iωIn −A0, A1), (2.12)
ω ∈ R \ {0}, k ∈ {1, . . . , n}.

Theorem 2.1.1 requires (iω, zk(ω)) ̸∈ S0, i.e., zk(ω) must satisfy

∄(ω, k) : |zk(ω)| = 1. (2.13)
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

Alternatively, 1
z is seen as an eigenvalue of the dual pencil (A1, sIn−A0).

If A0 is Hurwitz, sIn − A0 in the latter is invertible for s = iω, and thus
(2.12) also results from

1

zk(ω)
= λk

(
(iωIn −A0)

−1A1

)
(2.14)

(provided k in (2.12) and (2.14) is chosen correspondingly).

(PSZ) Both s and z can be seen as eigenvalues, cf. [100]. To this end,

(sIn −A0 − zA1) v = 0n×1, s, z ∈ C, v ∈ Cn (2.15)

must be complemented by a second equation, incorporating that s = iω =

−s and z = e−iφ = 1
z are characteristic properties in S0, cf. [87, 44]. The

conjugate complex of (2.15) with w := v serves this purpose. A quadratic
two-parameter eigenvalue problem in s and z emerges [100]

(A0−sIn+zA1 ) v = 0n×1 (2.16a)
(A1 +zA0+szIn)w = 0n×1 (2.16b)

with solution tuples (sk, zk), k ∈ {1, . . . , 2n2}. Theorem 2.1.1 requires
that (sk, zk) ̸∈ S0, i.e., sk and zk must satisfy

∄k : Re(sk) = 0, Im(sk) ̸= 0, and |zk| = 1. (2.17)

If elements (s, z) in the forbidden set S0 have been identified, no matter by which
perspective, stability is only delay-dependent. Then, based on the corresponding
values of φ in z = eiφ and ω in s = iω, critical delays at which roots on the
imaginary axis occur can be concluded from (2.5), cf. [40, 44, 41]. Provided

* The author has prepublished Section 2.1.2 in [S1], ©2023 IEEE.
1 Some of the n eigenvalues can be infinite. Since their number n∞ (algebraic multiplicity) equals

the dimension of the nilpotent matrixN in Weierstrass’ canonical form with rk(N) ≥ 0, it holds
n∞ ≥ n− rk(A1).
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2.2 Delay-Dependent Stability

exponential stability holds for the system with zero delay (2.4), the initial expo-
nential stability gets lost at the smallest of these critical delays, which thus bounds
the exponentially stable initial delay interval [0, hc).

2.2 Delay-Dependent Stability

The following section is divided into two parts. First, the approach to determine
hc is explained in Section 2.2.1. Then, some examples are given in Section 2.2.2.

2.2.1 Determination of the First Critical Delay*

The main result of this section, Theorem 2.2.2, gives a constrained minimization
problem based on perspective (PS) for the first critical delay hc. The result
is complementary to the (PZ)-based frequency sweeping approach [76, Thm.
2.2], which is reformulated into a constrained optimization form in the following
theorem. Note that (2.18) describes the minimum2 positive value of (2.5) for
(ω, k)-pairs in (PZ) that hamper (2.13).

Theorem 2.2.1 (Delay interval of exponential stability by (PZ), cf. [76, Thm.
2.2]). Based on (2.12) define

hc := inf
(ω,k)∈(0,∞)×{1,...,n}

(
−arg−zk(ω)

ω

)
subject to |zk(ω)| = 1

(2.18)

with arg−z := φ ∈ (−2π, 0] such that z = |z|eiφ. If A0 + A1 is Hurwitz and
hc <∞, then the equilibrium of (1.4) is exponentially stable for h ∈ [0, hc) and
not exponentially stable at h = hc.

* The author has prepublished Section 2.2.1 in [S1], ©2023 IEEE.
2 In (2.18) and (2.20), the infimum is only required to cope with an empty constraint set and can

otherwise be replaced by a minimum operator.
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

Similarly, the proposed approach will describe the minimum positive value of
(2.5) for (φ, k)-pairs in (PS) that hamper (2.11).

A disadvantage of (2.18) is that zk(ω) is considered on an unbounded set ω ∈
(0,∞). In contrast, for perspective (PS), the evaluation of eigenvalues sk(φ),
(2.10), can be restricted to the bounded set φ ∈ [0, π]. Values of sk(φ) on the
whole domain φ ∈ (−∞,∞) are still needed to gain all critical delays from (2.5),
but they can be reconstructed from those on [0, π] due to symmetry.

Note that the objective function in (2.20) below is nothing more than

h(φ, k) :=


− φ

Im sk(φ)
if Im sk(φ) < 0,

∞ if Im sk(φ) = 0,
2π−φ

Im sk(φ)
if Im sk(φ) > 0,

(2.19)

which, for the sake of compactness, is written with the modulo operation, i.e.,
(±φ mod 2π) ∈ [0, 2π).

Theorem 2.2.2 (Delay interval of exponential stability). Based on the eigenval-
ues sk(φ) := λk(A0 + eiφA1) define

hc := inf
(φ,k)∈(0,π]×{1,...,n}

sgn
(
− Im sk(φ)

)
φ mod 2π

| Im sk(φ)|
subject to Re sk(φ) = 0

(2.20)

with inf ∅ = ∞ and sgn(0)φ mod 2π
0 := ∞. If A0 + A1 is Hurwitz and hc <∞,

then the zero equilibrium of (1.4) is exponentially stable for h ∈ [0, hc) and
not exponentially stable at h = hc. The zero equilibrium of (1.4) is delay-
independently exponentially stable if and only ifA0+A1 is Hurwitz and hc = ∞.

Proof. Due to (2.4), A0 + A1 being Hurwitz is necessary. As defined in (2.5),
critical delays can be expressed by hc = −φ

ω , where ω = Im sk(φ) in perspective
(PS). According to Section 2.1, critical delays occur for any (φ, k) ∈ R ×
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2.2 Delay-Dependent Stability

{1, . . . , n} with Re sk(φ) = 0 and Im sk(φ) ̸= 0. Hence, the minimum positive
critical delay is

hc = inf h0(φ, k) with h0(φ, k) := − φ

Im sk(φ)

subject to Re sk(φ) = 0 and Im sk(φ) ̸= 0

h0(φ, k) > 0

φ ∈ (−∞,∞) and k ∈ {1, . . . , n}.

The requirement Im sk(φ) ̸= 0 can be dropped since the corresponding objective
function value, which is ∞ by definition, can only be optimal if there is no other
element in the constraint set, while an empty constraint set yields the same result
hc = inf ∅ = ∞. It has to be shown that onlyφ ∈ (0, π] instead ofφ ∈ (−∞,∞)

is relevant. Only φ ≥ 0 must be considered because

sk(−φ) = λk

(
A0 + eiφA1

)
= λk̃(A0 + eiφA1) = sk̃(φ) (2.21)

holds for some k̃ ∈ {1, . . . , n}, and thus h0(−φ, k) = h0(φ, k̃). Furthermore,
only φ ∈ [0, 2π) can lead to an optimum since sk(φ + 2lπ) = sk(φ), l ∈ N,
implies h0(φ+ 2lπ, k) > h0(φ, k). Additionally, φ ̸= 0 since A0 +A1 Hurwitz
implies Re sk(0) ̸= 0. Hence, in a first step, only φ ∈ (0, 2π) is relevant.
Positivity h0(φ, k) > 0 is achieved if and only if Im sk(φ) < 0, which gives
the first case in (2.19) and allows to drop h0(φ, k) > 0 from the constraints.
In a second step, the domain can be restricted to (0, π] by considering for any
φ ∈ [π, 2π) the corresponding φ̃ ∈ (0, π]withφ = 2π−φ̃. Since sk(φ) = sk̃(φ̃),
it holds h0(φ, k) = − φ

Im sk(φ)
= − 2π−φ̃

(− Im sk̃(φ̃))
, which gives the third case in

(2.19) for Im sk̃(φ̃) > 0.
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

Re sk(ϕ)
h(ϕ, k)

ϕ

λ1 = 0.00000−0.25000i
λ2 = 0.00000−0.50000i
λ3 = −1.00000 − 1.41421i

λ1 = +0.35355 − 0.35355i
λ2 = +0.17678 − 0.17678i
λ3 = 0.00000−1.00000i

k
=

3

Figure 2.1*: Example 2.2.3. Zeros of Re sk(φ) = Reλk(A0 + eiφA1), k ∈ {1, 2, 3}, form the
constraint set in Theorem 2.2.2 (circles). Among these (φ, k) pairs, the smallest value
of h(φ, k) =

(
sgn

(
− Im sk(φ)

)
φ mod 2π

)
/ (| Im sk(φ)|), see (2.19), is attained

by hc = h( 3π
4
, 3) = 3

4
π, which is indicated by the color bar. Thus, stability holds for

delays h ∈ [0, 3
4
π).

2.2.2 Examples on the First Critical Delay*

The constraint set in (2.20)

C := {(φ, k) : Re sk(φ) = 0} (2.22)

contains zeros of the real parts from all n eigenvalue functions φ 7→ Re sk(φ),
k ∈ {1 . . . , n}. The next example demonstrates that a restriction to zeros of the
spectral abscissa function φ 7→ maxk Re sk(φ) is indeed not possible. Moreover,
Figure 2.1 provides a simple graphical evaluation of Theorem 2.2.2.

Example 2.2.3 (Relevance of all eigenvalues in Theorem 2.2.2). Consider

ẋ(t) =

[
0 0 0

0 0 0

1 1 −1

]
x(t) +

[
− 1

4 0 0

0 − 1
2 0

0 0 −
√
2

]
x(t− h).

* The author has prepublished Section 2.2.2 in [S1], ©2023 IEEE.
* The author has prepublished Figure 2.1 in [S1], ©2023 IEEE.
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2.2 Delay-Dependent Stability

The eigenvalues required in Theorem 2.2.2 are s1(φ) = − 1
4e

iφ, s2(φ) = − 1
2e

iφ,
s3(φ) = −1 −

√
2eiφ. Figure 2.1 visualizes that the constraint set consists of

three elements C = {(π2 , 1), (
π
2 , 2), (

3π
4 , 3)}. At these (φ, k)-pairs, the objective

function of (2.20), see the color bar, takes the values {2π, π, 34π} =: H . Hence,
hc = minH = 3

4π.

Remark 2.2.4 (Numerical determination of φ). The graphical evaluation of the
optimization problem already provides a rough result for the critical delay with
little effort. To evaluate the optimum (2.20) precisely, the values ofφ in (2.22) can,
e.g., be determined as minima of φ 7→ mink∈{1,...,n} |Re sk(φ)|. To this end,
local minima from a pointwise evaluation can be refined by fminbnd in Matlab
with tightened tolerances. Alternatively, the values of φ or 2π − φ are derived
by perspective (PSZ) as arguments of z = eiφ if a routine like quad_twopareig
[155, 146] is available to compute (sk, zk). The proof of [41, Thm. 3.1] reveals
that another way is to search for valid values of z in the spectrum of a 2n2-
dimensional matrix pencil σ

([
0n2×n2 In2

−In⊗A⊤
1 −A0⊕A⊤

0

]
,
[

In2 0n2×n2

0n2×n2 A1⊗In

])
, where

⊗,⊕ denote Kronecker product and sum.

The system in the following example is a frequently used benchmark in the context
of LMI-based criteria [166, 79].

Example 2.2.5 (Analytically determined hc). The zero equilibrium of

ẋ(t) =

[
−2 0

0 −0.9

]
x(t) +

[
−1 0

−1 −1

]
x(t− h)

is exponentially stable for h < hc :=
arccos(−0.9)√

1−0.92
≈ 6.17258 and not exponen-

tially stable at h = hc.

Reasoning: A0 + A1 is Hurwitz as required in Theorem 2.2.2. The eigenvalues
sk(φ) := λk(M(φ)) of the triangular matrixM(φ) := A0 +eiφA1 are obvious.
Since Re s2(φ) = −2 − cosφ ̸= 0 and Re s1(φ) = −0.9 − cosφ, the con-
straint set (2.22) consists of the single point (φc, kc) := (arccos(−0.9), 1) with
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

skc(φc) = −i sinφc = −i
√
1− 0.92. Since Im(skc(φc)) < 0, Theorem 2.2.2

yields hc = φc

| Im skc (φc)| =
arccos(−0.9)√

1−0.92
.

In fact, the triangular structure of Example 2.2.5 allows the stability analysis to
be reduced to an analysis of scalar systems (so-called Hayes equations [85]). The
following example shows that perspective (PS) is particularly insightful in this
case. The results are well known [82, p. 135 / Fig. 5.1], but the usual derivations
are quite laborious.

Example 2.2.6 (The scalar case). Consider (1.4) with n = 1, i.e., ẋ(t) =

a0x(t) + a1x(t− h), a0, a1 ∈ R. The Hurwitz condition3

a0 + a1 < 0 (2.23)

forms the non-red open region in Figure 2.2. Theorem 2.2.2 only depends on
s1(φ) = a0 + eiφa1 for φ ∈ [0, π]. In the complex plane, the latter can be
visualized as a 180◦ rotation around a0 from a0 + a1 to a0 − a1, see the gray
semicircle in Figure 2.2 with (a0, a1) = (−3, 0.5). Depending on the end point
a0 − a1, three cases have to be distinguished:

a) For (2.23) combined with a0 − a1 < 0, i.e., a0 + |a1| < 0, the constraint
set in (2.20) is empty, and thus hc = ∞ (dark-green triangle in the stability
chart, strong delay-independent exponential stability).

b) For (2.23) combinedwitha0−a1 = 0, i.e., a0 = a1 < 0, the denominator of
the objective function in (2.20) is zero, and thus hc = ∞ (white dashed line
in the stability chart, non-strong delay-independent exponential stability).

c) For (2.23) combined with a0 − a1 > 0, consider in Figure 2.2 the blue
and ochre arcs. Theorem 2.2.2 yields hc = φc

|ω(φc)| as the quotient of the

3 According to [46], exponential stability cannot be gained by increasing the delay in the scalar
system. Hence, a0+a1 < 0, which ensures that exponential stability holds for h = 0, is not only
necessary for exponential stability ∀h ≥ 0 or ∀h ∈ [0, hc), but even necessary for exponential
stability at some h ∈ R≥0.
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a0

a
1 unstable ∀h ≥ 0a) ES ∀h ≥ 0, strongly

b)
ES
∀h
≥
0,

no
t str

on
gly

c) ES if 0 ≤ h <
ϕc

|ω(ϕc)|

a0 + eiϕa1

Re

Im

-3 -2.5 1

a0a0 + a1

ω(ϕc)

ϕc

Figure 2.2*: Example 2.2.6. Stability chart for scalar systems ẋ(t) = a0x(t)+a1x(t−h) indicating
for which parameter combinations exponential stability (ES) holds. The white box above
gives for highlighted points an evaluation of φ 7→ a0 + eiφa1 in the complex plane.
The gray point (a0, a1) = (−3, 0.5) provides delay-independent exponential stability,
whereas (−0.75,−1) in blue gives exponential stability for h < 3.66 and (1,−1.05)
in ochre gives exponential stability for h < 0.97.

* The author has prepublished Figure 2.2 in [S1], ©2023 IEEE.
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

rotation angle φc ∈ (0, π) at which the imaginary axis is met and the
corresponding section of the imaginary axis |ω(φc)|. That is

hc =
φc

|a1| sinφc
with φc = arccos(−a0

a1
) (2.24)

=
arccos(−a0

a1
)√

a21 − a20
.

Moreover, the following should be noted.

*) If (2.23) is satisfied, exponential stability holds at least for sufficiently
small delays (differently shaded green areas in Figure 2.2). Given a fixed
delay h > 0, the exponentially stable region in the (a0, a1)-parameter
plane is derived by solving h < hc in (2.24) for |a1| = −a1 < φc

h sinφc

and a0 = −a1 cos(φc) < φc

h cot(φc). Its boundary {[a0, a1]⊤ =
φc

h sinφc
[cosφc,−1]⊤ : φc ∈ (0, π)} for h = hc ∈ {0.5, 1, 2, 4} is shown

as boundary of the (h < hc) regions in Figure 2.2.

**) Provided a0 < 0, the critical delay is always larger than the critical delay
with a0 = 0 since the blue arc reveals that a larger angle φc > π

2 is
combined with a smaller |ω(φc)| < |a1|. Hence, hc > π

2|a1| if a0 < 0 and
a1 < 0.

2.3 Delay-Independent Stability

The section is structured as follows: Section 2.3.1 introduces the criterion for
delay-independent exponential stability, which is then applied to some examples
in Section 2.3.2. Moreover, Section 2.3.3 derives some corollaries.

28



2.3 Delay-Independent Stability

2.3.1 A Necessary and Sufficient Criterion*

The main result in this section, stated in Theorem 2.3.4, provides a necessary and
sufficient delay-independent stability criterion based on perspective (PS). It aims
to be complementary to the following well-known (PZ)-based criterion4, where
(2.25) ensures that zk(ω) in (2.14) satisfies (2.13).

Theorem 2.3.1 (Frequency sweeping [76, Thm. 2.1]). The zero equilibrium of
(1.4) is delay-independently exponentially stable if and only if A0 and A0 + A1

are Hurwitz and

∀ω > 0 : ρ
(
(iωIn −A0)

−1A1

)
< 1. (2.25)

A graphical evaluation of the spectral radius (2.25) over ω ∈ (0,∞) is proposed
in [76, 42]. Similarly, the present section is concerned with an evaluation of the
spectral abscissa

α(A0 + eiφA1) = max
k∈{1,...,n}

Re sk(φ) (2.26)

over φ ∈ [0, π] to ensure that sk(φ) in (2.10) satisfies (2.11).

According toTheorem2.2.2, there are two scenarios that lead to delay-independent
exponential stability:

(i) A0 + A1 is Hurwitz and the constraint set of (2.20) is empty, i.e., for all
φ ∈ [0, π] no eigenvalue sk(φ) occurs on the imaginary axis;

* The author has prepublished Section 2.3.1 in [S1], ©2023 IEEE.
4 The spectral radius ρ

(
(iωIn−A0)−1A1

)
can also be recognized as the structured singular value

ofGux(s) = (sI −A0)−1A1, addressing ẋ(t) = A0x(t) +A1u(t), to which the diagonally
structured Gxu(s) = e−shIn is applied in closed loop [42].
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

(ii) A0 +A1 is Hurwitz and there is no other denominator in (2.20) than zero,
i.e., eigenvalues on the imaginary axis occur for some (φ, k), but these are
exclusively located at the origin.

Case (i) describes strong delay-independent exponential stability (2.8). It will
be addressed by α(A0 + eiφA1) < 0 for all φ ∈ [0, π], cf. (1.13). Case (ii)
is the special case of non-strong delay-independent exponential stability. Ob-
viously, it can occur with maxφ∈[0,π] α(A0 + eiφA1) = 0, which becomes
visible in Example 2.2.6 b). Whether case (ii) can also be accompanied by
maxφ∈[0,π] α(A0 + eiφA1) > 0 is not that obvious. Starting in C− for φ = 0,
the n eigenvalues sk(φ), k ∈ {1, . . . , n}, move continuously in the complex
plane as φ increases. Case (i) bans eigenvalues from the imaginary axis, and
thus they cannot reach the right half-plane. However, case (ii) describes a gap in
the imaginary axis: the occurrence of eigenvalues at the origin does not hamper
delay-independent exponential stability. Thus, the question arises whether eigen-
values can move from the left half-plane to the right half-plane only by tunneling
through the origin. This question is motivated further in the following remark.

Remark 2.3.2 (Crossing of the origin). In contrast to the roots5 of (1.6), the
eigenvalues sk(φ) in (2.10) can move from C− through the origin to C+ as
φ increases. Such an example is provided in Figure 2.3a, which shows for
A0 =

[−1 1
−1 −1

]
, A1 =

√
2
[
0 −1
1 0

]
the union of eigenvalue paths6 {sk(φ) : φ ∈

R, k ∈ {1, 2}}. However, since the movement back to C− in this example is not
through the origin, hc = ∞ does not result as a minimum in Theorem 2.2.2. In
Figure 2.3b there is indeed no other crossing point of the imaginary axis than the
origin. Thus, Theorem 2.2.2 would lead to the conclusion of delay-independent
exponential stability, provided A0 + A1 was Hurwitz. Figure 2.3b can, e.g.,

5 Because of case a) in Section 2.1, roots s of the characteristic quasipolynomial (1.6) cannot move
through the origin in the complex plane as h increases. Note that the only relation between
M(φ) = A0+eiφA1 and the delay equation (1.4) is that non-zero purely imaginary eigenvalues
sk(φ) = iω ̸= 0 of M(φ) at some φ coincide with non-zero purely imaginary roots s of (1.6)
at some h.

6 An evaluation of the union of eigenvalue paths is proposed in [139], where, however, zero crossings
in the manner of Figure 2.3b are not taken into account.
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Re

Im

(a)

Re

Im

(b)

Figure 2.3*: As discussed in Remark 2.3.2, eigenvalues sk(φ) can cross the origin.

be realized by A0 =
[−1 1

0 1

]
, A1 = [ 0 0

1 0 ] or by A0 =
[−1 1

0 1

]
, A1 =

[
0 0
−1 0

]
,

but both are not fulfilling A0 + A1 Hurwitz, although the latter example with
α(A0 +A1) = 0 is very close.

The proof of Theorem 2.3.4 will show that case (ii) indeed cannot be accompanied
by zero crossings in the manner of Figure 2.3b. Thus, if there is a φ ∈ [0, π]

with α(A0 + eiφA1) > 0, non-delay-independent exponential stability is proven
immediately. The proof makes use of the following statement.

Lemma 2.3.3 ([81, Cor. 2.7]). If Theorem 2.1.1 holds, then A0 is Hurwitz.

The main result of this section is as follows.

Theorem 2.3.4 (Delay-independent exponential stability). The zero equilib-
rium of (1.4) is delay-independently exponentially stable if and only if either

(i) max
φ∈[0,π]

α(A0 + eiφA1) < 0 (2.27)

or (ii) α(A0 +A1) < 0, max
φ∈(0,π]

α(A0 + eiφA1) = 0,

and ∄(φc, k) : Re sk(φc) = 0, Im sk(φc) ̸= 0,

* The author has prepublished Figure 2.3 in [S1], ©2023 IEEE.
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

where φc ∈ argmax
φ∈[0,π]

α(A0 + eiφA1) and sk(φ) := λk(A0 + eiφA1), k ∈

{1, . . . , n}. It is strongly delay-independently exponentially stable, see (2.8),
if and only if (i) holds.

Proof. According to Theorem 2.2.2, hc = ∞ occurs if and only if either

(i′) A0 +A1 is Hurwitz and ∄(φ, k) : Re sk(φ) = 0 or
(ii′) A0 +A1 is Hurwitz, ∃(φ, k) : sk(φ) = 0,

and ∄(φ, k) : sk(φ) = iω, ω ∈ R \ {0}.

In the following, it will be inferred that (i) and (ii) in Theorem 2.3.4 under
consideration are necessary and sufficient for (i′) and (ii′). Unless otherwise
stated, considerφ ∈ [0, π], k ∈ {1, . . . , n}, s ∈ C, ω ∈ R,M(φ) := A0+eiφA1.

(i) ⇒ (i′): For φ = 0, (i) yields α(M(0)) = α(A0 + A1) < 0, i.e., A0 +

A1 must be Hurwitz. Furthermore, since (i) requires maxφ∈[0,π] α(M(φ)) =

maxφ∈[0,π] maxk∈{1,...,n} Re sk(φ) < 0, it holds that ∄(φ, k) : Re sk(φ) = 0.

(i′) ⇒ (i): Continuity of φ 7→ α(M(φ)) and α(A0 + A1) = α(M(0)) < 0,
while ∄φ : α(M(φ)) = 0, implies α(M(φ)) < 0,∀φ.

(ii) ⇔ (ii′): Both, (ii) and (ii′) consist of three requirements. For the first
one (A0 +A1 Hurwitz) as well as the third one (nonexistence of non-zero purely
imaginary roots) equivalence between (ii) and (ii′) is obvious. The second
combined with the third one in (ii) implies ∃(φ, k) : sk(φ) = 0 in (ii′). It
remains to show that (ii′) impliesmaxφ∈(0,π] α(A0+eiφA1) = 0 by proving that
(ii′) implies

∄(φ, k) : sk(φ) ∈ C+, (2.28)
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2.3 Delay-Independent Stability

see the discussion above and Figure 2.3b. To this end, define s 7→ z̃k(s) with
k ∈ {1, . . . , n} as a mapping of s ∈ C to a corresponding z in (2.1), i.e.,

det(sIn −A0 − z̃k(s)A1) = 0. (2.29)

As in (2.14), and because of Lemma 2.3.3, z̃k(s) can be determined by

1

z̃k(s)
= λk

(
(sIn −A0)

−1A1

)
for s ∈ C+. (2.30)

Consider at each s the largest absolute value of (2.30)

1

min
k∈{1,...,n}

|z̃k(s)|
= ρ
(
(sIn −A0)

−1A1

)
. (2.31)

Due to Lemma 2.3.3, s 7→ Ñ(s) := (sIn−A0)
−1A1 is holomorphic onC+. For

holomorphic Ñ(s) the spectral radius s 7→ ρ(Ñ(s)) = maxk∈{1,...,n} |λk(Ñ(s))|
is a subharmonic function [24]. Since the domainC+ is unbounded, themaximum
principle for subharmonic functions only applies if the function is bounded above
[89, Thm. A.2.28], which, however, is true because lims→∞ ρ(Ñ(s)) = 0. Thus,
for s ∈ C+ the maximum of (2.31) is attained on the imaginary axis ∂C+ = iR,
and, consequently, the minimum of s 7→ mink∈{1,...,n} |z̃k(s)| as well. Hence,
unless s 7→ mink∈{1,...,n} |z̃k(s)| is constant on C+, the strict inequality

∀(s, k) with s ∈ C+ : |z̃k(s)| > min
ω∈R

min
k∈{1,...,n}

|z̃k(iω)| (2.32)

holds. Consider the right hand side of (2.32). On the one hand, because of (2.31)
with ρ(Ñ(iω)) → 0 as ω → ±∞, it holds

min
k∈{1,...,n}

|z̃k(iω)| → ∞ as ω → ±∞. (2.33)
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

On the other hand, the second requirement in (ii′) yields

∃(φ, k) : sk(φ) = 0

(2.10)⇔ ∃φ : det(−A0 − eiφA1) = 0

(2.29)⇔ ∃k : |z̃k(0)| = 1 (2.34)

for the point ω = 0. Consequently, by continuity, s 7→ mink∈{1,...,n} |z̃k(s)| is
indeed non-constant and (2.32) applies. Furthermore, the third requirement in
(ii′) gives

∄(φ, k) : sk(φ) = iω, ω ̸= 0

(2.10)⇔ ∄φ : det(iωIn −A0 − eiφA1) = 0, ω ̸= 0

(2.29)⇔ ∄k : |z̃k(iω)| = 1 for all ω ̸= 0. (2.35)

Continuity of ω 7→ z̃k(iω) combined with the results for ω = 0, ω ∈ R \ {0},
and ω → ±∞, which are obtained in (2.34), (2.35), and (2.33), leads (similar to
[81, Lemma 2.5]) to

min
ω∈R

min
k∈{1,...,n}

|z̃k(iω)| = 1

for the right hand side in (2.32). Thus, (2.32) implies

∄(s, k) : |z̃k(s)| = 1 with s ∈ C+

(2.29)⇔ ∄s ∈ C+ : det(sIn −A0 − eiφA1) = 0, φ ∈ (−π, π]
(2.10),(2.21)⇔ ∄(φ, k) : sk(φ) ∈ C+,

which completes the proof of (2.28).
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2.3 Delay-Independent Stability

α(A0 + eiϕA1)

ϕ

Figure 2.4*: In Example 2.3.5, α(A0 + eiφA1) takes only negative values on φ ∈ [0, π]. Conse-
quently, strong delay-independent exponential stability holds.

2.3.2 Examples on Delay-Independent Stability*

A main advantage of Theorem 2.3.4 (i) is its simple implementation.

Example 2.3.5 (Numerical evaluation of Theorem 2.3.4 (i)). Theorem 2.3.4 (i)
only requires an evaluation of the function φ 7→ α(A0 + eiφA1) over φ ∈ [0, π].
In Matlab, the following lines serve this purpose for an exemplary step size of φ,
provided the system matrices have been assigned to A0 and A1.

P=0:1e-3:pi;

ALPHA=arrayfun(@(x) max(real(eig(A0+exp(1i*x)*A1))), P);

plot(P,ALPHA);

Exclusively negative values indicate strong delay-independent exponential stabil-
ity. ForA0 =

[−1 2 1
−1 −2 0
−1 0 −2

]
andA1 =

[−1 1 1
0 0 −2
1 2 2

]
the result is shown in Figure 2.4.

Thus, the zero equilibrium of ẋ(t) = A0x(t)+A1x(t−h) is exponentially stable
for any delay h ≥ 0.

In the following Examples 2.3.6a and 2.3.6b, themaximumof the spectral abscissa
function φ 7→ α(A0 + eiφA1) is zero. Hence, part (ii) of Theorem 2.3.4 must
be considered and the eigenvalues sk(φc), k ∈ {1, . . . , n}, at the maximizers φc
become decisive. Examples 2.3.6a and 2.3.6b lead to identical spectral abscissa

* The author has prepublished Section 2.3.2 in [S1], ©2023 IEEE.
* The author has prepublished Figure 2.4 in [S1], ©2023 IEEE.
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2 Stability Criteria from an Insightful Perspective on the Characteristic Equation

functions φ 7→ α(A0+eiφA1), shown as a black line in Figure 2.5. Nevertheless,
in Example 2.3.6a, the zero equilibrium is delay-independently exponentially
stable, whereas in Example 2.3.6b, with values of sk(φc) explicitly listed in
Figure 2.5, it is only delay-dependently exponentially stable, i.e., the exponential
stability is lost at some critical delay hc.

Example 2.3.6 (Zero as maximum of φ 7→ α(A0 + eiφA1)). Consider (1.4)
with x(t) ∈ R2p, p ∈ N>0, where the coefficients are given by the block diagonal
matrices

A0 = blkdiag
( [

−1 −β
β −1

]
,−I2, . . . ,−I2

)
A1 = blkdiag

(
Q(ϑ1), . . . , Q(ϑp)

)
,

with Q(ϑ) :=
[

cosϑ sinϑ
− sinϑ cosϑ

]
and ϑj ∈ (−π, π] \ {0}, j ∈ {1, . . . , p}.

a) With β = 0, i.e., A0 = −I2p, delay-independent exponential stability
holds.

b) With β = 1, the zero equilibrium is exponentially stable for h < hc and
not exponentially stable for h = hc,

hc :=

{
−ϑ1 if ϑ1 < 0,

2π − ϑ1 if ϑ1 > 0.

Reasoning: The 2p eigenvalues ofM(φ) = A0 + eiφA1 are

s1,2(φ) = −1± i(−β) + ei(φ±ϑ1)

= −1 + cos(φ1 ± ϑ1) + i
(
∓ β + sin(φ± ϑ1)

)
sk(φ) = −1 + ei(φ±ϑj),
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2.3 Delay-Independent Stability

α(A0 + eiϕA1) = max
k∈{1,...,8}

Re sk(ϕ)

ϕ

λ1 = 0.00000− 1.00000i
λ2 = −0.50000 + 1.86603i
λ3 = −0.50000 − 0.86603i
λ4 = −0.50000 − 0.86603i
λ5 = −1.25882 − 0.96593i
λ6 = −1.50000 + 0.86603i
λ7 = −1.50000 + 0.86603i
λ8 = −1.96593 + 0.25882i

λ1 = 0.00000 + 0.00000i
λ2 = 0.00000 + 0.00000i
λ3 = −0.29289 − 0.70711i
λ4 = −0.50000 − 0.13397i
λ5 = −1.50000 + 1.86603i
λ6 = −1.70711 − 0.70711i
λ7 = −2.00000 + 0.00000i
λ8 = −2.00000 + 0.00000i

λ1 = 0.00000 + 0.00000i
λ2 = −0.29289 + 0.70711i
λ3 = −0.29289 + 0.70711i
λ4 = −1.00000 − 1.00000i
λ5 = −1.25882 − 0.03407i
λ6 = −1.70711 − 0.70711i
λ7 = −1.70711 − 0.70711i
λ8 = −1.96593 + 1.25882i

Figure 2.5*: Example 2.3.6b with x(t) ∈ R8 and ϑ1 = −π/6, ϑ2 = ϑ3 = π/2, ϑ4 = 3/4π.
Since a non-zero purely imaginary eigenvalue sk(φ) = iω ̸= 0 occurs (red), Theo-
rem 2.3.4 (ii) does not apply. Instead, Theorem 2.2.2 yields hc = π/6.

k := 2j − 1
2 (1± 1), j ∈ {2, . . . , p}, and their largest real part is

α(A0 + eiφA1) = −1 + max
j∈{1,...,p}

cos(φ± ϑj)

with maxφ∈[0,π] α(A0 + eiφA1) = 0. This maximum on [0, π] is attained at

φc ∈ Φ := {|ϑ1|, . . . , |ϑp|}.

a) If β = 0, then at any φc ∈ Φ no non-zero purely imaginary eigenvalues
exist since Im(sk(φc)) = sin(φc ± ϑj) = 0 when cos(φc ± ϑj) = 1.
Hence, case (ii) in Theorem 2.3.4 applies.

b) In contrast, if β = 1, there is a non-zero purely imaginary eigenvalue at
φc = |ϑ1|, namely s1(−ϑ1) = −i if ϑ1 < 0, see Figure 2.5, or s2(ϑ1) = i

ifϑ1 > 0. Hence, Theorem 2.3.4 (ii) does not hold. Instead, Theorem 2.2.2
provides the delay interval of exponential stability. Since Im s1(|ϑ1|) =

−1 < 0 for ϑ1 < 0, the modulo operation in (2.20) is without effect for
ϑ1 < 0, while for ϑ1 > 0 the numerator of hc becomes 2π−φ = 2π−|ϑ1|.

* The author has prepublished Figure 2.5 in [S1], ©2023 IEEE.
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2.3.3 Corollaries*

Considerations so far are based on the spectral abscissa. The logarithmic norm is
related to the spectral abscissa, but it exhibits advantageous properties allowing
further simplifications. Based on these, some known stability criteria can be
inferred directly from Theorem 2.3.4 without elaborate proofs.

The spectral abscissa α(M) of a matrixM ∈ Cn×n can be approached as close
as desired by a logarithmic norm ofM

µν(M)
def
= lim

h→0+

∥In + hM∥ν − 1

h
, (2.36)

provided the involved matrix norm ∥ · ∥ν is chosen in an optimal way depending
onM . To be more precise, α(M) = infν µν(M) [54]. Thus, Theorem 2.3.4(i)
can equivalently be expressed in this manner. Usually, however, a matrix norm
is chosen a priori. For common norms, (2.36) simplifies to well-known formulas
[53, p. 33], e.g., the logarithmic norm w.r.t. the spectral norm ∥ · ∥2 equals the
maximum eigenvalue of the Hermitian part ofM

µ2(M) = λmax

(
1
2 (M +MH)

)
. (2.37)

In any case, inequality (2.38a) holds.

Lemma 2.3.7 (Properties of µν(·) [53]). LetM,N ∈ Cn×n. Then

α(M) ≤ µν(M), (2.38a)
µν(M +N) ≤ µν(M) + µν(N), (2.38b)

µν(M) ≤ ∥M∥ν . (2.38c)
µν(M) = µν(M), (2.38d)
µν(M) = sup

∥x∥ν=1

Re[Mx, x]ν [133, Lem. 12], (2.38e)

* The author has prepublished Section 2.3.3 in [S1], ©2023 IEEE.
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where [·, ·]ν is a semi-inner product with [x, x]ν = ∥x∥2ν .

Consider the following expressions and relations

max
φ∈[0,π]

α(A0 + eiφA1)
(2.38a)
≤ max

φ∈[0,π]
µν(A0 + eiφA1) =: Bµ (2.39)

(2.38b)
≤ µν(A0) + max

φ∈[0,π]
µν(e

iφA1) =: B̃r

(2.38c)
≤ µν(A0) + ∥A1∥ν =: BM , (2.40)

as well as

µν(A0) + rnum,ν(A1) =: Br, (2.41)

with the numerical radius rnum,ν(A) = sup∥x∥ν=1 |[Ax, x]ν |.

Lemma 2.3.8. The equality B̃r = Br holds.

Proof.

max
φ∈[0,π]

µν(e
iφA1)

(2.38d,e)
= max

φ∈(−π,π]
sup

∥x∥ν=1

Re(eiφ[A1x, x]ν)

= sup
∥x∥ν=1

∣∣[A1x, x]ν
∣∣ def= rnum,ν(A1).

Based on the relations of BM ,Bµ, and B̃r = Br from the inequality chain (2.40),
three immediate corollaries of Theorem 2.3.4 can be summarized.
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Corollary 2.3.9. Consider the definitions in (2.39), (2.40), and (2.41). If for
some norm ∥ · ∥ν one of the following inequalities holds, which are ordered by
decreasing conservatism,

(I) BM < 0, (Mori’s criterion [143, Thm. 1]),

(II) Br < 0, (cf. [43, Thm. 2.2]),

(III) Bµ < 0, (cf. [90, Thm. 1]),

then the zero equilibrium of (1.4) is strongly delay-independently exponentially
stable.

2.4 Revisiting the Main Points of the Chapter

• A framework of three possible perspectives, (PS), (PZ), and (PSZ), on
the two-variable formulation of the characteristic equation is introduced
(Section 2.1.2).

• Based on the latter, consequent analogues to the delay-dependent (The-
orem 2.2.1) and delay-independent (Theorem 2.3.1) frequency-sweeping
criteria are developed.

• The derived criteria focus on eigenvalues of thematrixM(φ) = A0+eiφA1.
Contrary to the frequency sweeping approach, no generalized eigenvalues or
matrix inverses are needed and eigenvalues ofM(φ)must only be evaluated
on the bounded domain φ ∈ [0, π].

• Concerning delay-independent stability (Theorem 2.3.4), the spectral ab-
scissa function φ 7→ α(A0 + eiφA1) on φ ∈ [0, π] is considered.

– A plot like Figure 2.4 does not require more than three lines of code.

– Exclusively negative values of the spectral abscissa function indicate
delay-independent stability.
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– The ambiguous case of a zeromaximum is discussed inExample 2.3.6.

– If positive values of the function occur, delay-independent exponential
stability can be excluded immediately.

– The latter statement is central for the necessity of the given criterion
and relies on the proof that, if delay-independent stability holds, eigen-
values ofA0+eiφA1 cannot move between the left and right complex
half-plane only by tunneling through the origin (see Figure 2.3).

– Mori’s famous logarithmic-norm-based criterion (1.12), which is
more conservative, follows from simple inequality estimations in
(2.40).

• Concerning delay-dependent stability (Theorem 2.2.2, discussed before
delay-independent stability in this chapter), the angles φ ∈ [0, π] for which
real parts of eigenvalues of A0 + eiφA1 become zero must be determined.

– These zeros include the zeros of the spectral abscissa function from
the delay-independent consideration. Example 2.2.3 shows that the
zeros of the remaining eigenvalue real parts indeed cannot be ignored.

– The zeros constitute the constraint set in a proposed minimization
problem for the first critical delay (Figure 2.1).

– The delay-dependent stability chart for scalar systems can easily be
derived (Figure 2.2).
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3 Method: ODE-Approximation
Schemes

The present chapter is devoted to preliminaries concerning the discretization of
time-delay systems in terms of an ODE approximation. The latter is needed for
the numerical approaches proposed in Chapter 4 and Chapter 6 of this thesis.

The chapter is structured as follows. Section 3.1 outlines what the desired
ODE approximations are about. Section 3.2 shows how to describe the exact
time evolution of the overall state xt for the linear time-delay system (1.4). In
Section 3.3 et seq., these dynamics are discretized via two spectral methods:
Chebyshev collocation (Section 3.4) and Legendre tau (Section 3.5). As both
methods rely on different coordinate representations of polynomials, Section 3.6
considers how to change the basis. Finally, stability of the equilibrium in the
obtained ODE approximations is discussed in Section 3.7, before Section 3.8
revisits the most relevant aspects of the chapter.

In a very shortened form, the author has prepublished important points of this
chapter in [S2] (which is the prepublication of the contributions of Chapter 4).

3.1 Problem Statement

The state xt(θ) = x(t+θ), θ ∈ [−h, 0], at time t ≥ 0 of the RFDE (1.4) describes
the solution segment on the preceding delay interval [t − h, t]. See Figure 3.1a
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t

xt

x(t)

(a) RFDE solution, state xt as solution segment

xt

xt(0)

= x(t)

θ

t

xt(θ)

(b) Evolution of the RFDE state xt

t

k

y(t)

yN (t)

= x̂(t)

yk(t)

(c) Components yk(t) of the ODE solution (N = 16,
Ay from (3.16))

Figure 3.1*: Solution of the scalar (i.e., n = 1) RFDE ẋ(t) = −0.5x(t)−x(t− 2.2) for the initial
function x0(θ) ≡ 1.

* The author has prepublished Figure 3.1 in [S2], ©2024 IEEE.
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3.1 Problem Statement

θ
θ̃0 = −h θ̃N = 0

(a) Geometric intuition of the cosine in (3.2):
the non-equidistant (one-dimensional) grid as
a projection of equidistant circle points.

θ
θ̃0 θ̃N

(b) Relation to Chebyshev polynomials:
TheN+1 (Gauss–Lobatto) Chebyshev nodes coincide with
the extrema of theN -th Chebyshev polynomial (shifted and
scaled to the domain θ ∈ [θ̃0, θ̃N ])

Figure 3.2: Chebyshev nodes form a nonequidistant grid {θ̃k}k∈{0,...,N} (black points). The
exemplary shown resolutionN in the above plots isN = 16, i.e., the grid hasN+1 = 17
nodes.

and Figure 3.1b. In contrast, the state of an ODE approximation must be a finite-
dimensional vector. For instance, this state vector y(t) at time t can approximate
the values of the segment xt in N+1 distinct points θ̃0 = −h, . . . , θ̃N = 0,

x(t− h)

x(t+ θ̃1)
...

x(t+ θ̃N−1)

x(t)


=



xt(−h)
xt(θ̃1)

...
xt(θ̃N−1)

xt(0)


≈



y0(t)

y1(t)
...

yN−1(t)

yN (t)


︸ ︷︷ ︸
y(t)∈Rn(N+1)

=:



z0(t)

z1(t)
...

zN−1(t)

x̂(t)


,

(3.1)

where upper indices k ∈ {0, . . . , N} address vector-valued components yk(t) ∈
Rn. The decomposition y = [z⊤, x̂⊤]⊤, which is indicated in the right-hand side
of (3.1), is henceforth employed whenever the special interest in yN shall be
emphasized.

For θ̃k in (3.1), a non-equidistant (one-dimensional) grid {θ̃k}k∈{0,...,N},

θ̃k = h
2 (ϑ̃k − 1), with ϑ̃k = − cos( kN π), (3.2)
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3 Method: ODE-Approximation Schemes

constructed from shifting and scaling classical Chebyshev nodes1 ϑ̃k ∈ [−1, 1] to
θ̃k ∈ [−h, 0], is known to be advantageous [177]. See Figure 3.2. Note that the
latter is also at the core of the open-source Matlab toolbox Chebfun by Trefethen
and co-workers [59], which proves to be very helpful in some implementations.

The objective of this chapter is to find an ODE

ẏ(t) = Ay y(t), (3.3)

Ay ∈ Rn(N+1)×n(N+1), that describes the dynamics of y in (3.1). Figure 3.1c
depicts the solution of such an ODE (3.3), given the initial vector y(0), indicated
by the blue points, is a discretization of the initial function x0 ∈ C([−h, 0],Rn)
(see (3.23) with ϕ = x0). To obtain the desired ODE, this thesis employs
two alternative methods: the Chebyshev collocation method (Section 3.4) and
the Legendre tau method (Section 3.5) combined with a change of basis. The
resulting system matrices Ay are given in (3.16) and (3.63) below.

3.2 The Infinite-Dimensional Dynamics

In the following, it is clarified how the exact time evolution of t 7→ xt in Fig-
ure 3.1b looks like. These considerations build a foundation for the subsequent
sections that derive a finite-dimensional approximation thereof to describe the
time evolution of t 7→ y(t) in Figure 3.1c.

Consider the linearRFDE ẋ(t) = A0x(t)+A1x(t−h) from (1.4)with the solution
segment xt(θ) = x(t + θ), θ ∈ [−h, 0], at time t ≥ 0. The time evolution of
t 7→ xt ∈ C([−h, 0],Rn) = C obeys an abstract differential equation

d

dt
xt = Axt (3.4)

1 also called Gauss-–Lobatto Chebyshev nodes (see Table 3.1) or Chebyshev points of the second
kind (despite of referring to extrema of the “Chebyshev polynomials of the first kind”, see
Figure 3.2b) or endpoints-and-extrema Chebyshev nodes.
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3.2 The Infinite-Dimensional Dynamics

on the infinite-dimensional state space C of continuous (Rn-valued) functions on
[−h, 0]. Alternatively, by appending the important boundary value xt(0) = x(t),
emphasized by the black point in Figure 3.1b, any xt ∈ C gives rise to a tuple[ xt(·)
xt(0)

]
∈ C ×Rn ⊂ L2 ×Rn =M2 that obeys an abstract differential equation

d

dt

[ xt(·)
xt(0)

]
= A

[ xt(·)
xt(0)

]
(3.5)

on the spaceM2. Both will be made precise below.

To make sense of these abstract ODEs and, actually, even to apply the numerical
methods in the subsequent sections, it suffices to understand the dynamics of
the map (t, θ) 7→ xt(θ) ∈ Rn. If both t and θ are considered as independent
variables, then (t, θ) 7→ xt(θ) can be recognized as the surface in Figure 3.1b.
The latter is the solution of a PDE in (t, θ). First, note that xt(θ)

def
= x(t + θ)

inevitably has equal derivatives w.r.t. both t and θ. Second, note that the actual
RFDE ẋ(t) = A0x(t) +A1x(t− h) from (1.4) relates ẋ(t) = ∂

∂txt(θ)|θ=0 with
x(t)=xt(0) and x(t − h)=xt(−h). Hence, the map (t, θ) 7→ xt(θ) must obey
the dynamics

∂

∂t
xt(θ) =

∂

∂θ
xt(θ), θ ∈ [−h, 0), t > 0, (3.6a)

∂

∂t
xt(0) = A0xt(0) +A1xt(−h), t > 0. (3.6b)

The latter, in fact, is the foundation of the abstract ODE for (xt(·), xt(0)) inM2

that will be discussed in Section 3.2.2. To establish the connection to a more
standard PDE description, (3.6b) can be rewritten as a boundary condition in
terms of the spatial derivative by recognizing that ∂

∂txt(θ)|θ=0 = ∂
∂θxt(θ)|θ=0,

∂

∂θ
xt(0) = A0xt(0) +A1xt(−h), t > 0. (3.6b′)
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3 Method: ODE-Approximation Schemes

In fact, (3.6a) with the boundary condition (3.6b′) is the foundation of the abstract
ODE for xt(·) in C that will be discussed in Section 3.2.1. Clearly, in any case,
for a Cauchy problem of the RFDE with x0 = φ ∈ C, the initial condition

x0(θ) = φ(θ), θ ∈ [−h, 0] (3.7)

must also be appended.

Remark 3.2.1 (PDEdescription). Written in terms of u(t, θ) := xt(θ) the overall
PDE system from (3.6a), (3.6b′), and (3.7) becomes

∂u

∂t
(t, θ) =

∂u

∂θ
(t, θ), t > 0, θ ∈ [−h, 0),

boundary condition
at θ=0
(involving θ = −h)

∂u

∂θ
(t, 0) = A0u(t, 0) +A1u(t,−h), t > 0,

initial condition
at t=0 u(0, θ) = φ(θ), θ ∈ [−h, 0],

where the boundary condition is a nonlocal (Robin) boundary condition that
involves both the boundary θ = 0 and θ = −h.

The finite-dimensional ODE approximations that will be discussed in this chapter
are semi-discretizations of the PDE w.r.t. the spatial variable θ.

3.2.1 Abstract ODE on the Banach Space C

The abstract ODE for the state xt ∈ C([−h, 0],Rn) = C from the RFDE
ẋ(t) = A0x(t) +A1x(t− h) in (1.4) becomes

d

dt
xt = Axt, t > 0, (3.9a)

x0 = φ ∈ C (3.9b)
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3.2 The Infinite-Dimensional Dynamics

with the unbounded operator A : C ⊃ D(A) → C,

Aϕ = ϕ′, (3.9c)
D(A) = {ϕ ∈ C : ϕ′ ∈ C, ϕ′(0) = A0ϕ(0) +A1ϕ(−h)} (3.9d)

(where ϕ′(θ) = d
dθϕ(θ)). In particular, the operatorA is the infinitesimal genera-

tor of aC0-semigroup {T (t)}t≥0 built from the solution operators inxt = T (t)x0
for t ≥ 0. See, e.g., [82, 30] for details.

Note that the actual RFDE (1.4), respectively the boundary condition (3.6b′), only
affects the domain of A, whereas A itself—independently from A0 and A1—is
always only a differentiation operator that takes account of (3.6a).

3.2.2 Embedding in the Hilbert Space M2

Throughout this thesis, the considered state space is the Banach space of contin-
uous functions, i.e., xt ∈ C. However, the fact that any continuous function on
[−h, 0] is L2-integrable will be used. The Hilbert space L2 itself is no appro-
priate state space for time-delay systems since, from a given initial function x0,
the pointwise initial value x(0) = x0(0) is particularly decisive for the solution.
However, instead of xt, the pair (xt, x(t)) ∈ L2 × Rn =M2 can be used, which
treats the decisive boundary value x(t) = xt(0) separately (cf. Figure 3.1). If only
linear time-delay systems were of interest, the overall spaceM2 would indeed also
be an appropriate state space. Nevertheless, the usage ofM2 in the present thesis
only relies on the fact that, for any ϕ ∈ C,[

ϕ
ϕ(0)

]
∈ C([−h, 0],Rn)× Rn ⊂ L2([−h, 0],Rn)× Rn (3.10)

is an element ofM2. See [156, Prop. 6.12 et seq.] for details on the underlying
embedding C →M2;ϕ 7→

[
ϕ
ϕ(0)

]
.
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3 Method: ODE-Approximation Schemes

The evolution of
[ xt

xt(0)

]
∈ M2 from the linear RFDE (1.4) obeys the abstract

ODE on the Hilbert spaceM2

d
dt

[ xt

xt(0)

]
= A

[ xt

xt(0)

]
, t > 0, (3.11a)[ x0

x0(0)

]
=
[
φ(·)
φ(0)

]
(3.11b)

with the unbounded operator A : M2 ⊃ D(A ) →M2,

A

[
ϕ

r

]
=

[
ϕ′

A0r +A1ϕ(−h)

]
, (3.12)

D(A ) = {[ ϕr ] ∈M2 : r = ϕ(0), ϕ′ ∈ L2, ϕ ∈ AC}

(denoting ϕ′(θ) = d
dθϕ(θ)). This operator A is again the infinitesimal generator

of a C0-semigroup {T (t)}t≥0, see, e.g., [47, 15, 52].

In contrast to (3.9), the RFDE is no longer hidden in the domain2. Instead, due
to the incorporation of the boundary value xt(0) = x(t) in the definition of the
state (xt, x(t)), the RFDE ẋ(t) = A0x(t) +A1x(t− h), respectively (3.6b), can
explicitly be recognized in the lower part of the operator A in (3.12).

2 In this respect, a similar effect is achieved as in the so-called ⊙∗ (sun-star) calculus, where
X = C([−h, 0],Rn) is instead embedded in the space X⊙∗ = L∞([−h, 0],Rn)× Rn. The
latter offers a mature theoretical framework [57]. In particular, it resolves that the variation-
of-constants formula relies on a fundamental-matrix solution with the initial function not being
continuous at t = 0 (see Table B.1) and thus not belonging to C([−h, 0],Rn×n) although C is
the state space. The notation is as follows: Consider the shift semigroup {T0(t)}t≥0 which is
generated by (3.9c)-(3.9d) with the trivial choiceA0 = A1 = 0. Consequently, T0(t) : X → X ;
ϕ 7→ T0(t)ϕ := xt on X = C([−h, 0],Rn). On the dual space X ∗ ∼= NBV ([−h, 0],Rn),
the adjoint semigroup {T ∗

0 (t)}t≥0, T ∗
0 (t) : X ∗ → X ∗, is defined. However, the adjoint

semigroup (see [57]) is not strongly continuous, unless considering it on the restricted dual
space X⊙ ∼= L1 × Rn ⊂ X∗. The dual of that restricted dual space is the space of interest
X⊙∗ ∼= L∞([−h, 0],Rn) × Rn as it offers a perturbation theory to tackle the non-trivial
RFDE. Again {T⊙∗

0 (t)}t≥0 is not strongly continuous unless restricting the space to the smaller
space X⊙⊙, which, however, is isomorphic to the original state space X = C([−h, 0],Rn) ∼=
X⊙⊙ ⊂ X⊙∗. See [57] for details.
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3.3 Spectral Methods

3.3 Spectral Methods

Both numerical methods that are used in the sequel, Chebyshev collocation and
Legendre tau, belong to the class of spectral methods. An introduction to these
methods is, e.g., given in [88], see also [38, 68, 177, 65, 154, 73]. Like finite
difference methods, finite element methods, or finite volume methods, spectral
methods are used for the (spatial) discretization of differential equations. Such
methods might be more prominently known for the numerical solution of PDEs.
However, they are more generally applicable to general evolution equations on
infinite-dimensional Banach or Hilbert spaces like the ones given above (which,
in fact, also bear an underlying PDE description, see Remark 3.2.1).

Spectral methods are based on polynomial approximations. For instance, the
finite-dimensional vector y introduced in (3.1) is understood as a representation
of the uniquely defined interpolating polynomial through these points. The thus
described polynomial serves as an approximation of the unknown function xt.
Consequently, the resulting approximation for xt is a globally (in contrast to
piecewise) defined high-order polynomial, and as such it is a smooth function on
the whole domain θ ∈ [−h, 0]. The latter, in fact, is the difference to finite element
methods, where the ansatz for the numerical solution is a linear combination of
basis functions with compact support (linear hat functions or, more generally,
piecewise defined low-order polynomials), and which consequently only generate
piecewise defined linear or low-order polynomial functions as numerical solutions.

Table 3.1 classifies all polynomial methods employed throughout this thesis.
Alongside the spectral methods used for the discretization of the abstract ODE
(second column), the table also lists the underlying polynomial approximation
method (first column). In practice, this polynomial approximation becomes, e.g.,
relevantwhen discretizing a given initial function. The termdiscretization refers to
the projection on a finite-dimensional space, with the result being representable
by a finite number of coordinates. For instance, this might be the vector y(0)

* The author has prepublished a shortened version of Table 3.1 in [S2], ©2024 IEEE.
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3 Method: ODE-Approximation Schemes

derived from an initial function x0 as already indicated by the blue points in
Figure 3.1. However, these coordinates are no loose points, but in the present
context they always represent an underlying polynomial that is uniquely defined by
these coordinates—in the case of the interpolation coordinates y, it is the unique
interpolating polynomial through these points. Besides of the use in differential
equations giving rise to spectral methods, the polynomial approximation of a
continuous function also provides a simple but extremely effective means for the
numerical integration of that function. These quadrature rules are listed in the
right column of Table 3.1 and will become relevant in Section 4.2.

3.4 Chebyshev Collocation Method

To apply the Chebyshev collocation method (which is also called pseudospectral
discretization) in order to discretize the infinitesimal generator A of the time-
delay problem (3.9), goes back to Breda and co-workers [29, 30, 26]. The
original purpose has been the numerical approximation of characteristic roots,
which, in fact, are the eigenvalues of A, via the eigenvalues of the resulting
finite-dimensional system matrix Ay in (3.3). Due to the fast convergence of
the most important characteristic roots and the capability to tackle RFDEs with
large matrices A0, A1, this eigenvalue analysis is even encountered in stability
considerations of large practical systems with time delays like power systems
[141]. Besides of the eigenvalue calculation, applying the Chebyshev collocation
method to time-delay systems is also successfully applied in fields like bifurcation
analysis [28], Lyapunov exponents [27], or H2-norm computations [101].

The core principle of a collocation method is interpolation. As mentioned above,
the vector y(t) at time t in (3.1), cf. Figure 3.1, determines the interpolatingN -th
degree approximating polynomial for xt. This polynomial is described by

xt(θ) ≈
N∑
k=0

yk(t) ℓk
(
ϑ(θ)

)
, (3.13)
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Polynomial approximation Spectral methods Numerical integration
of functions for differential equations for integral expressions

( JP stands for Jacobi polynomials like
Chebyshev [Fig. 3.2b] or Legendre [Fig. 3.5] )

JP: Chebyshev Legendre JP: Chebyshev Legendre

Interpolation / coincidence
in the chosen nodes
[Fig. 3.4] (natural basis:
Lagrange polynomials w.r.t.
the chosen nodes [Fig. 3.3]),

equivalently, “discrete
expansion”3 with the 0-th to
N -th JP as basis, related4 to
an approximation of the
series truncation below via
quadrature

throughGauss–
Lobatto nodes
(extrema of the
N -th JP),
[Fig. 3.2b]

Collocation /
pseudospectral
method / method of
selected points / at the
nodes vanishing
residual
or—alternatively—
G-NI / “Galerkin
with numerical
integration” methods

Chebyshev
col.

Interpolatory
quadrature /
integration of an
interpolating
polynomial instead of
the original function /
integral approximated
by a weighted sum of
interpolation
coordinates

Clenshaw–
Curtis

through
Gauss nodes
(roots of the
(N + 1)-th JP)

(no boundary nodes
for boundary
conditions in

collocation methods)

Gauss
quad.

Series truncation /
orthogonal5 projection to the 0-th to N -th JP /
“continuous expansion” with the 0-th to N -th
JP as basis / generalized Fourier truncation /
least squares best approximation

Tau method /
Lanczos’ tau m. /
Galerkin with
boundary bordering
or—alternatively—
Galerkin method

Legendre
tau

(The projection
requires itself inte-
gral evaluations)

Table 3.1*: Classification of the used methods ( “/” marks synonymous terms or explanations). See, e.g., [88, 178, 177, 38, 68, 65, 23, 154, 73].

3 orthogonal projection w.r.t. the so-called discrete inner product associated to the chosen nodes [88, 38].
4 See [88, Thm. 5.3]. For Gauss–Lobatto nodes the result is not exactly the application of the quadrature rule to the integrals in the continuous

expansion formula as the N -th order coefficient must be corrected.
5 orthogonal w.r.t. the (weighted) inner product in which the chosen basis polynomials are orthogonal. In (3.47), the modified cN makes the

projection non-orthogonal, unless the discretization is interpreted in terms of (3.50).
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3 Method: ODE-Approximation Schemes

see Figure 3.3j, where the notation is as follows. The functions ℓk : [−1, 1] → R
are interpolating Lagrange basis polynomials w.r.t. (Gauss–Lobatto) Chebyshev
nodes {ϑ̃k}k∈{0,...,N} on [ϑ̃0, ϑ̃N ] = [−1, 1], and

ϑ : [−h, 0] → [−1, 1]; θ 7→ ϑ(θ) := 2
hθ + 1 (3.14)

maps the argument θ ∈ [θ̃0, θ̃N ] = [−h, 0] to this interval. Figure 3.3 exemplarily
depicts the resulting scaled and shifted Lagrange basis polynomials ℓk

(
ϑ(θ)

)
for

a grid of N + 1 = 9 Chebyshev nodes.

3.4.1 Chebyshev Collocation: System Matrix (in
Interpolation Coordinates)

The Chebyshev collocation method yields for the dynamics of the unknown
coefficients yk(t) in (3.13) the ODE

ẏ(t) = ACy y(t) (3.15)

with ACy :=


2
hℓ

′
0(ϑ̃0)In ··· ··· ··· 2

hℓ
′
N (ϑ̃0)In

...
...

2
hℓ

′
0(ϑ̃N−1)In ··· ··· ··· 2

hℓ
′
N (ϑ̃N−1)In

A1 0n×n ··· 0n×n A0

, (3.16)

cf. [28]. For the interested reader, it will be discussed below how this known
result is derived. In view of the meaning of y from (3.1), the actual RFDE
ẋ(t) = A0x(t) + A1x(t − h) from (1.4) is easily recognized in the last (block-)
row ẏN (t) = A0y

N (t) + A1y
0(t) of (3.15). The remaining rows, i.e., the upper

part 2
h (ℓ

′
k(ϑ̃j))j∈{0,...,N−1},k∈{0,...,N} ⊗ In of the system matrix (3.16), rely on

the first N rows of the (N + 1)× (N + 1) differentiation matrix

Dy,[−1,1] = (ℓ′k(ϑ̃j))j,k∈{0,...,N} (3.17)
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θθ̃0 θ̃N

0.5

1

(a) ℓ0(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(b) ℓ1(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(c) ℓ2(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(d) ℓ3(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(e) ℓ4(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(f) ℓ5(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(g) ℓ6(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(h) ℓ7(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(i) ℓ8(ϑ(θ)), k = 8 = N

θθ̃0 θ̃N

y8 = yN = ϕ(θ̃N )

y0

y1

y2

y3

y4 y5 y6
y7

(j) ϕ(θ) =
N∑

k=0

yk ℓk(ϑ(θ))

Figure 3.3: Lagrange basis polynomials {ℓk(ϑ(θ))}k∈{0,...,N} w.r.t. a grid of N + 1 Chebyshev
nodes. In the above plots, N = 8 is chosen. The k-th Lagrange basis polynomial
ℓk(ϑ(θ)) is the unique polynomial of degree N that is equal to one at the k-th Cheby-
shev node θ̃k and zero at the remaining Chebyshev nodes. As a consequence, if N + 1
given values (yk)k∈{0,...,N} shall be attained on the Chebyshev grid {θ̃k}k∈{0,...,N},
the unique interpolating polynomial of degree N through these points (red curve) is
described by the superposition y(θ) =

∑N
k=0 y

k ℓk(ϑ(θ)). Moreover, given an arbi-
trary polynomial of degree at most N , it can be written as ϕ(θ) =

∑N
k=0 y

k ℓk(ϑ(θ))
since the N + 1 Lagrange polynomials {ℓk(ϑ(θ))}k∈{0,...,N} form a basis for the
finite-dimensional space of polynomials of degree at most N . In other words, any such
polynomial ϕ is uniquely determined by its interpolation coordinates (yk)k∈{0,...,N},
which are simply given by the N + 1 pointwise evaluations yk = ϕ(θ̃k).
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3 Method: ODE-Approximation Schemes

taking account of the differentiation operator from the abstract ODEs in Sec-
tion 3.2. In fact, the scaled differentiation matrix

Dy =
(
∂
∂θ ℓk(ϑ(θ))|θ=θ̃j

)
j,k∈{0,...,N} = (ϑ′ℓ′k(ϑ̃j))j,k∈{0,...,N}

= 2
hDy,[−1,1] (3.18)

occurs in (3.16) due to the definition of xt on the scaled domain [−h, 0], cf. (3.2)
and (3.14) with ϑ′(θ) = 2

h . A further discussion on the differentiation matrix
will be given in Remark 3.6.2. Its numerical implementation is addressed in the
following remark.

Remark 3.4.1 (Implementation of ACy )*. For an implementation of the skew-
centrosymmetric differentiation matrix, see, e.g., [177, p. 54] (in terms of xk =

−ϑ̃k). A ready to use Matlab routine is given by diffmat in the Chebfun toolbox
[59]. Based on the latter, ACy = Ay in (3.16) is obtained via

Dy=diffmat(N+1,[-delay,0]); Ay=kron(Dy,eye(n));

Ay(end-n+1:end,:)=[A1,zeros(n,n*(N-1)),A0]

(if A0, A1, h, n,N is assigned to A0,A1,delay,n,N).

Interlude: How the Chebyshev-Collocation System Matrix is Derived

Acollocationmethod derives the searched approximating finite-dimensional ODE
from the infinite-dimensional problem by requiring that the residual shall vanish
pointwise on a grid of selected values of θ. If this grid is a grid of Chebyshev
nodes, the method is called Chebyshev collocation.

First, consider the interior nodes {θ̃k}k∈{0,...,N−1} without the boundary node
θ̃N = 0, which, due to the boundary condition, plays a special role. The ansatz

* The implementation hint is part of [S2].
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3.4 Chebyshev Collocation Method

for the solution is the polynomial already stated in (3.13) above. With that ansatz,
the residual from (3.6a), respectively (3.9a), becomes

∂

∂t

(
N∑
k=0

yk(t) ℓk(ϑ(θ))

)
− ∂

∂θ

(
N∑
k=0

yk(t) ℓk(ϑ(θ))

)
. (3.19)

Thus, it vanishes on the interior nodes if

∀θ ∈ {θ̃0, . . . , θ̃N−1} :

N∑
k=0

ẏk(t) ℓk(ϑ(θ))−
N∑
k=0

yk(t)ϑ′(θ)ℓ′k(ϑ(θ)) = 0. (3.20)

It is the gist of Lagrange basis polynomials that ℓk(ϑ(θ̃j)) = 0 if k ̸= j and
ℓk(ϑ(θ̃j)) = 1 if k ̸= j, see Figure 3.3—which, in fact, is the reason why
the polynomial ansatz is represented in that basis when using the Chebyshev
collocation method. As a consequence, the evaluation of (3.20) at one node after
the other yields

θ = θ̃0 : ẏ0(t)−
N∑
k=0

yk(t)ϑ′ℓ′k(ϑ(θ̃0)) = 0,

... (3.21)

θ = θ̃N−1 : ẏN−1(t)−
N∑
k=0

yk(t)ϑ′ℓ′k(ϑ(θ̃N−1)) = 0,

where, by (3.14), ϑ′ = 2
h . This already explains all but the last row in the

ODE (3.15).

The last row realizes the boundary condition from (3.6b), respectively (3.9d),
which is actually the RFDE (1.4) and, in view of (3.1), obviously becomes

θ = θ̃N : ẏN (t) = A0y
N (t) +A1y

0(t) (3.22)
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3 Method: ODE-Approximation Schemes

(clearly, the above formula is also obtained from (3.6b) using the ansatz (3.13) and
noting that the thus derived

∑N
k=0 ẏ

k(t)ℓk(ϑ(0)) = A0

∑N
k=0 y

k(t)ℓk(ϑ(0)) +

A1

∑N
k=0 y

k(t)ℓk(ϑ(−h)) simplifies to (3.22) by the construction of the Lagrange
basis polynomials, where 0 = θ̃N and −h = θ̃0).

3.4.2 Discretization: Interpolation through Chebyshev
Nodes

When considering a Cauchy problem with an initial function x0, a discretization
must be employed to obtain the initial vector y(0) for the finite-dimensional
ODE. Moreover, for the approach that will be proposed in the next chapter,
a discretization of a given function ϕ, being the argument of the Lyapunov–
Krasovskii functional, will also be needed.

In view of (3.1), such a discretization y of ϕ ∈ C is simply obtained by evaluating
the vector-valued function ϕ at the grid points (3.2) and stacking these (N + 1)

vectors in

y =


|
z

|

x̂


=



ϕ(−h)
ϕ(θ̃1)

...
ϕ(θ̃N−1)

ϕ(0)


. (3.23)

If ϕ is already a polynomial of degree at most N , the above vector y is the
unique Lagrange interpolation coordinate representation of that polynomial, see
Figure 3.3j. Otherwise, if ϕ is not yet such a polynomial, let us denote by ϕ[N ] the
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3.4 Chebyshev Collocation Method

resulting polynomial of degreeN that is represented by the Lagrange interpolation
coordinates y from (3.23), i.e.,

ϕ[N ](θ) =

N∑
k=0

ykℓk(ϑ(θ)). (3.24)

The latter is nothing else than the projection of ϕ from the space of continuous
functions to an element ϕ[N ] in the finite-dimensional space of polynomials via
interpolation, see the left column and upper row in Table 3.1.

Remark 3.4.2 (Near-best approximation). According to Weierstrass’ approxi-
mation theorem, see, e.g., [51, Thm. 6.1.1], continuous functions on a bounded
closed interval like [−h, 0] can arbitrarily well in the uniform norm be approx-
imated by polynomials as the polynomial degree N increases. However, this
convergence need not be achieved by a prescribed polynomial approximation
scheme. In particular, interpolation through equidistant nodes turns out to be a
poor choice, see Figure 3.4a and 3.4c. In contrast, interpolation through Cheby-
shev nodes (Figure 3.4b and 3.4d) is a near-best approximation [179], meaning
that the error ∥ϕ−ϕ[N ]∥C is close to the minimum achievable error ∥ϕ−ϕ∗[N ]∥C .

Still, without further regularity assumptions on ϕ, it theoretically might not mirror
the uniform convergence ∥ϕ− ϕ∗[N ]∥C → 0 asN → ∞, the Weierstrass approx-
imation theorem attests for the best approximation ϕ∗[N ] [51]. Nevertheless, the
interpolation through Chebyshev nodes turns out to be, from a practical point of
view, usually not very inferior to the best approximation [179].

• First, although the comparison with the best approximation error, given
by ∥ϕ − ϕ[N ]∥C ≤ (1 + ΛN )∥ϕ − ϕ∗[N ]∥C [179, Thm. 15.1], involves an
unbounded coefficient6 (1 + ΛN ), even for absurd large degrees N ≤ 105

it holds (1 + ΛN ) < 10. Thus, for practical discretization resolutions, no

6 ΛN is the Lebesque constant of the linear projection. For the interpolation through Chebyshev
nodes, ΛN ≤ 1 + 2

π
log(N + 1), whereas for the interpolation through equidistant nodes the

Lebesque constant grows rapidly to huge numbers withΛN > (2N−2)/(N2), [179, Thm. 15.2].
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3 Method: ODE-Approximation Schemes

θ

ϕ(θ)

θ̃0 θ̃N

(a) Unique polynomial of degree 8 throughN + 1 = 9
graph points of ϕ(θ) from an equidistant grid

θ

ϕ(θ)

θ̃0 θ̃N

(b) Unique polynomial of degree 8 throughN +1 = 9
graph points of ϕ(θ) from Chebyshev nodes

θ

ϕ(θ)

θ̃0 θ̃N

(c) Unique polynomial of degree 16 throughN + 1 =
17 graph points of ϕ(θ) from an equidistant grid

θ

ϕ(θ)

θ̃0 θ̃N

(d) Unique polynomial of degree 16 throughN + 1 =
17 graph points of ϕ(θ) from Chebyshev nodes

Figure 3.4: Reason for choosing a non-equidistant grid: The thick gray curve in the background is a
continuous but non-polynomial function ϕ. Because of the so-called Runge phenomenon
[161], interpolating polynomials of degree N (red curves in the left column) through
evaluations of ϕ from equidistant nodes (black points in the left column) might give
large local deviations. In contrast, the sequence {ϕ[N ]}N of interpolating polynomials of
degreeN (red curves) through evaluations ϕ(θ̃k) from Chebyshev nodes (black points in
the right column) is a so-called near-best approximation, cf. Remark 3.4.2. The plotted
example function is ϕ(θ) = 1

1+8(ϑ(θ))2
with the affine map ϑ : [θ̃0, θ̃N ] → [−1, 1]

from (3.14).
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3.5 Legendre Tau Method

more than one digit accuracy can be lost compared to the best approxima-
tion.

• Second, already if ϕ ∈ AC and the first derivative ϕ′ is of bounded varia-
tion, uniform convergence holds. Moreover, the smoother7 the function ϕ
the faster ∥ϕ− ϕ[N ]∥C converges to zero, see [179, Thm. 7.2].

• Third, already without further regularity assumptions, for any ϕ ∈ C the
integral of the interpolation through Chebyshev nodes converges to the
original value, i.e.,

∫ 0

−h ϕ
[N ](θ) dθ →

∫ 0

−h ϕ(θ) dθ, asN → ∞. The latter,
in fact, is the numerical integration via Clenshaw–Curtis quadrature [179,
Thm. 19.4], see the right column in Table 3.1.

Altogether, the above section can be summarized as follows. The Chebyshev
collocation method leads to the ODE (3.3) with the dense system matrix (3.16),
and its initial value y(0) is simply obtained from the given initial function x0 = ϕ

by stacking pointwise evaluations of that function as described in (3.23).

3.5 Legendre Tau Method

The second spectral method used in this thesis—which, for the applications in
the present thesis, will even turn out to be the recommended method—is the
Legendre tau method. Applying this method to time-delay systems goes back
to Ito and Teglas [98, 99, 97]. Already in their initial three-part work, the
method is considered as a numerical solution approach, as an early lumping
approach to optimal control problems, and as an approach for the approximation
of eigenvalues. Still, the method is clearly less widespread than the Chebyshev
collocation method for time-delay systems.

7 With ϕ ∈ Ck it converges algebraically withO(N−k), and for analytic functions ϕ, like the one
in Figure 3.4, it converges even geometrically with O(c−N ), c > 1.
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3 Method: ODE-Approximation Schemes

Again, a polynomial of degreeN is taken as the ansatz for the numerical solution
of xt. Instead of Lagrange interpolation coordinates, Legendre coordinates are
considered—at least in the derivations. Once the polynomial is determined, it can
of course be represented arbitrarily, and the same holds for the underlying ODE.
The associated change of basis will be discussed in Section 3.6.

Let pk : [−1, 1] → R denote the k-th Legendre polynomial. See, e.g., [88] for
formulas and further details. Since pk is defined on [−1, 1], the affine map
ϑ : [θ̃0, θ̃N ] = [−h, 0] → [−1, 1] from (3.14) again comes into play. Using
{pk(ϑ(·))}Nk=0 as basis—plotted in Figure 3.5—an approximating polynomial of
degree N for xt becomes

xt(θ) ≈
N∑
k=0

ck(t) pk(ϑ(θ)). (3.25)

The evolution of the coefficients ck(t) ∈ Rn, stacked as c := [(c0)⊤, . . . , (cN )⊤]⊤,
shall be described by the searched ODE

ċ(t) = Ac c(t). (3.26)

3.5.1 Legendre Tau: System Matrix (in Legendre
Coordinates)

The Legendre tau method leads to the ODE (3.26) with Ac = ALc having the
block entries

AL,jkc =


2
h (2j + 1)In

if j ∈ {0, . . . , N − 1},
k>j, and j+k odd,

A0 + (−1)kA1 − 2
h
k(k+1)

2 In if j = N,

0n×n otherwise, (3.27)
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θθ̃0 θ̃N

0.5

1

(a) p0(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(b) p1(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(c) p2(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(d) p3(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(e) p4(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(f) p5(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(g) p6(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(h) p7(ϑ(θ))

θθ̃0 θ̃N

0.5

1

(i) p8(ϑ(θ))

θθ̃0
θ̃N c1

c2

c0
∑N
k=0 c

k = ϕ(θ̃N )

(j) ϕ(θ) =
N∑

k=0

ck pk(ϑ(θ))

Figure 3.5: The 0-th to 8-th shifted and scaled Legendre polynomials {pk(ϑ(θ))}k∈{0,...,8}. In
contrast to Lagrange basis polynomials (Figure 3.3) w.r.t. a given grid, the k-th Legendre
polynomial pk itself is only a polynomial of degree k and remains unaltered if the overall
dimension N + 1 of the considered space of polynomials is increased. Again, any
polynomial of degree at most N can be rewritten as ϕ(θ) =

∑N
k=0 c

k pk(ϑ(θ)) since
theN +1 Legendre polynomials {pk(ϑ(θ))}k∈{0,...,N} form a basis for this (N +1)-
dimensional space. Thus, any such polynomial ϕ is uniquely determined by its Legendre
coordinates (ck)k∈{0,...,N}. Since the red curve represents a polynomial of degree two,
ck = 0 for k > 2.
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3 Method: ODE-Approximation Schemes

cf. [98]. Thus, ALc exhibits the structure (exemplarily for N even)

ALc =


0n×n 0n×n 0n×n ··· 0n×n

...
...

...
...

0n×n 0n×n 0n×n ··· 0n×n

A0+A1 A0−A1 A0+A1 ··· A0−A1



+ 2
h



0 1 0 1 0 1 ··· 0
0 0 3 0 3 0 ··· 3
0 0 0 5 0 5 ··· 0
0 0 0 0 7 0 ··· 7
0 0 0 0 0 9 ··· 0
...

. . . . . .
...

0 0 0 0 0 0 ··· (2N−1)

0 −1 −3 −6 −10 −15 ··· −
N(N+1)

2


⊗ In. (3.28)

A detailed derivation of this known result will be given below for the sake of com-
pleteness. Similarly to the result from the Chebyshev collocation in Section 3.4.1,
the upper part contains the first N of the (N + 1) rows of the triangular Legen-
dre differentiation matrix Dc (see Remark 3.6.2 for the relation to Dy), whereas
the lower (block-)row addresses the boundary condition (3.6b) which entails the
actual RFDE (1.4).

Remark 3.5.1 (Implementation ofALc )*. In standardMatlab code, the triangular
unscaled Legendre differentiation matrix (see Figure 3.6 with ϑ′ = 1) can be
obtained via

DC=zeros(N+1,N+1); for j=0:N-1; DC(j+1,j+2:2:end)=2*j+1; end

based on which the scaled differentiation matrix Dc becomes Dc=2/delay*DC.
The overall system matrix ALc = Ac shown in (3.28) is

DC(end,:)=-(0:N).*(1:N+1)/2; Ac=2/delay*kron(DC,eye(n));

Ac(end-n+1:end,:)= Ac(end-n+1:end,:)+...

kron(ones(1,N+1),A0)+kron((-1).^(0:N),A1)

(with A0,A1,delay,n,N as in Remark 3.4.1).
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3.5 Legendre Tau Method

Interlude: How the Legendre-Tau System Matrix is Derived

A tau method derives the searched approximating finite-dimensional ODE (3.26)
from the infinite-dimensional problem by requiring that the residual shall be
orthogonal to the (N + 1 − β)-dimensional space of polynomials of degree at
mostN − β, where β = 1 is the number of boundary conditions. In other words,
the inner products of the residual with basis polynomials of that space must
vanish. If the orthogonality is understood in terms of the unweighted L2 inner
product, which is the inner product with respect to which Legendre polynomials
are orthogonal, the method is called Legendre tau method. See [88] for further
background on the method.

Using the polynomial ansatz (3.25) for the approximation of xt, the residual from
(3.6a) becomes

∂

∂t

(
N∑
k=0

ck(t) pk(ϑ(θ))

)
− ∂

∂θ

(
N∑
k=0

ck(t) pk(ϑ(θ))

)
. (3.29)

Thus, to establish that this residual is L2-orthogonal to the 0-th to (N − 1)-th
Legendre polynomial (which span the space of polynomials of degree at most
N − 1) the inner products

∀j ∈ {0, . . . , N − 1} :〈
N∑
k=0

ċk(t)pk(ϑ(·))−
N∑
k=0

ck(t)ϑ′p′k(ϑ(·)), pj(ϑ(·))

〉
L2([−h,0],Rn)

= 0

(3.30)

must vanish. The occurring factor ϑ′ = 2
h denotes the derivative of (3.14). In the

above expression, compositions with the affine mapping ϑ : [−h, 0] → [−1, 1]

* The implementation hint is part of [S2].
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from (3.14) are encountered that accomplish the scaling of the domain. However,
such a scaling causes in the inner product of two functions p, q ∈ L2([−1, 1],Rn)

⟨q(ϑ(·)), p(ϑ(·))⟩L2([−h,0],Rn) =

∫ 0

−h
q⊤(ϑ(θ))p(ϑ(θ)) dθ

=

∫ 1

−1

q⊤(ϑ)p(ϑ) 1
ϑ′ dϑ = 1

ϑ′ ⟨q, p⟩L2([−1,1],Rn)

only a constant factor. Consequently, in (3.30), the functions on the unscaled and
unshifted domain can be used equally well in

∀j ∈ {0, . . . , N − 1} :〈
N∑
k=0

ċk(t)pk(·)− ϑ′
N∑
k=0

ck(t) p′k(·), pj(·)

〉
L2([−1,1],Rn)

= 0. (3.31)

The second term incorporates the Legendre polynomial derivative p′k, which, for
the sake of clarity, is explicitly stated in the following lemma (alternatively, [88,
eq. (5.8)] could directly be used in (3.31)).

Lemma 3.5.2. The derivative of the (unscaled) k-th Legendre polynomial is

d

dϑ
pk(ϑ) =

k−1∑
m=0

m+k odd

(2m+ 1)pm(ϑ). (3.32)

(See, in Remark 3.6.2, the third item and, in Figure 3.6b, the Legendre differenti-
ation matrix Dc, where ϑ′ = 1 corresponds to this unscaled result.)

Proof. According to [88, eq. (5.8)], ϕ(ϑ) =
∑∞
j=0 c

jpj(ϑ) and its derivative
ϕ′(ϑ) =

∑∞
m=0 γ

mpm(ϑ) are related via γm = (2m + 1)
∑∞
j=m+1,m+j odd c

j .
Using cj = δkj with δkj = 1 if k = j and δkj = 0 if k ̸= j yields (3.32).
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Hence, (3.31) becomes

∀j ∈ {0, . . . , N − 1} :〈
N∑
k=0

ċk(t)pk(·)− ϑ′
N∑
k=0

ck(t)

N∑
m=0

(2m+ 1)pm(·)
{
1 if m≤k−1,

m+k odd,

0 otherwise
, pj(·)

〉
L2

= 0.

(3.33)

It is the gist of Legendre polynomials that ⟨pk, pj⟩L2 = 0 if j ̸= k, which, in fact,
is the reason why the polynomial ansatz is represented in that basis when using
the Legendre tau method.

Lemma 3.5.3 ([88, Sec. B.1]). Legendre polynomials are orthogonal in L2 with

⟨pi, pj⟩L2 =

{
0 if i ̸= j,

2
2j+1 if i = j,

(3.34)

where ⟨pi, pj⟩L2
=
∫ 1

−1
pi(ϑ)pj(ϑ) dϑ.

As a consequence, only k = j must be considered in the first sum of (3.33) and
m = j in the second sum. The induced factor ⟨pj , pj⟩L2

= 2
2j+1 is irrelevant for

the equation and thus

∀j ∈ {0, . . . , N − 1} :

ċj(t)− (2j + 1)ϑ′
N∑
k=0

ck(t)

{
1 if j ≤ k − 1 and j + k odd,
0 otherwise

= 0 (3.35)

explains all but the last row in (3.28), respectively (3.27).

Similar to the collocation method, the last row shall tackle the boundary condi-
tion. That is why tau methods are also called Galerkin methods with boundary
bordering. In fact, the treatment of boundary conditions is the only difference
between tau methods and the more complicated polynomial Galerkin methods,
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3 Method: ODE-Approximation Schemes

where boundary conditions instead must be satisfied by construction of the basis
polynomials. See [88, 65, 38, 23] for examples on both approaches.

Accordingly, the last row has to ensure that the ansatz
∑N
k=0 c

k(t)pk(ϑ(θ)) from
(3.25) satisfies the boundary condition (3.6b), which is actually the RFDE (1.4),
and which becomes

N∑
k=0

ċk(t)pk(ϑ(0)) = A0

N∑
k=0

ck(t)pk(ϑ(0)) +A1

N∑
k=0

ck(t)pk(ϑ(−h)). (3.36)

Legendre polynomials attain at the right boundary the value pk(ϑ(0)) = pk(1) =

1 and at the left boundary the value pk(ϑ(−h)) = pk(−1) = (−1)k, see Fig-
ure 3.5. Thus, the above equation reads

N∑
k=0

ċk(t) = A0

N∑
k=0

ck(t) + (−1)kA1

N∑
k=0

ck(t). (3.37)

The latter combined with (3.35) already yields a suitable description of the dy-
namics (as an index-0 DAE). To obtain an ODE, note that the derivatives ċj(t) for
j ∈ {0, . . . , N − 1} are already determined by the firstN rows, derived in (3.35)
above, whereas the last row shall give an expression for the remaining unknown
ċN (t), which consequently is

ċN (t) = −
N−1∑
j=0

ċj(t) +A0

N∑
k=0

ck(t) + (−1)kA1

N∑
k=0

ck(t). (3.38)

Thus, only the first term on the right-hand side must be made explicit in terms of
c(t). The following result can easily be confirmed by calculating column sums in
(3.28).

Lemma 3.5.4. If ċj(t), for j ∈ {0, . . . , N − 1}, obeys (3.35), then

N−1∑
j=0

ċj(t) = ϑ′
N∑
k=0

k(k + 1)

2
ck(t). (3.39)
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Proof.

N−1∑
j=0

ċj(t)
(3.35)
= ϑ′

N−1∑
j=0

(2j + 1)

N∑
k=0

ck(t)

{
1 if j ≤ k − 1 and j + k odd,
0 otherwise

(3.40)

= ϑ′
N∑
k=0

ck(t)

k−1∑
j=0

(2j + 1)

{
1 if j + k odd,
0 otherwise

(3.41)

= ϑ′
N∑
k=0

ck(t)

k−1∑
j=0

j+k odd

(
j + (j + 1)

)
. (3.42)

Since for j = k−1, the condition j+k being odd is satisfied independently from
k, the last sum simplifies to

k−1∑
j=0

j+k odd

(
j + (j + 1)

)
=

k−1∑
j=0

j+k odd

j +

k∑
m=1

m+k even

m =

k∑
j=0

j, (3.43)

which is the triangular number
∑k
j=1 j =

k(k+1)
2 .

Using (3.39) in (3.38) explains the last row in (3.28), respectively the case j = N

in (3.27).

3.5.2 Discretization

It remains to clarify how to choose, in the context of the Legendre tau method,
for a given function ϕ the discretization c = (ck)k∈{0,...,N}.
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3.5.2.1 Legendre Series Truncation with Corrected Boundary Value

The searched vector c intends to be the Legendre coordinate representation of
an N -th degree polynomial ϕ[N ] that approximates the function ϕ. Still, un-
less ϕ is already a polynomial of degree at most N , the searched ϕ[N ] will not
straightforwardly be taken from the Legendre series8 truncation

ϕ(θ) =

∞∑
k=0

c̃kpk(ϑ(θ)) ≈
N∑
k=0

c̃kpk(ϑ(θ)) (3.44)

c̃k :=
1

⟨pk, pk⟩L2

⟨ϕ(ϑ−1(·)), pk⟩L2
(3.45)

=
2k + 1

2

∫ 1

−1

ϕ(ϑ−1(ϑ̃))pk(ϑ̃) dϑ̃ = ϑ′︸︷︷︸
2
h

2k + 1

2

∫ 0

−h
ϕ(θ)pk(ϑ(θ)) dθ.

The latter would be the L2-orthogonal projection to the space of polynomials
of degree at most N (establishing, similar to (3.31), that the error is orthogonal
to that space, i.e., ∀k ∈ {0, . . . , N} : ⟨ϕ(ϑ−1(·)) −

∑N
j=0 c̃

jpj , pk⟩L2 = 0).
However, an accordingly obtained polynomial would not necessarily coincide at
θ = 0 with the value ϕ(0)—which is decisive if ϕ = x0 is an initial function, and
thus ϕ(0) = x0(0) = x(0) the initial solution value for the time-delay system, cf.
Figure 3.1.

Instead, the projection to be chosen is the same as the one applied to the residual
in the Legendre tau method. This projection, in fact, only involves the L2-
orthogonal projection to the space of polynomials of degree at most N − 1,
being uniquely described by one less coefficient c̃0, . . . , c̃N−1 from (3.45). The
searched N -th degree polynomial ϕ[N ], which has an additional coefficient cN ,

8 For any ϕ ∈ L2, the series is convergent in L2 and convergent a.e. [157]. The coefficients
c̃k defined in (3.45) can numerically be obtained in Matlab via legcoeffs from the Chebfun
toolbox [59].
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uses this remaining degree of freedom for a correction in the end point such that
ϕ[N ](0) = ϕ(0), cf. [98]. Consequently,

ϕ[N ](θ) =

N−1∑
k=0

c̃kpk(ϑ(θ)) + cNpN (ϑ(θ)) =

N∑
k=0

ckpk(ϑ(θ)), (3.46)

ck :=

{
c̃k if k < N,

x̂−
∑N−1
k=0 c̃

k if k = N,
x̂ := ϕ(0), (3.47)

where ϕ[N ](0) = ϕ(0) since ϕ[N ](0) =
∑N
k=0 c

kpk(ϑ(0)) =
∑N
k=0 c

k = x̂ (based
on the fact that all Legendre polynomials have the boundary value pk(ϑ(0)) =

pk(1) = 1, see Figure 3.5).

If ϕ is already a polynomial of degreeN or less, (c̃k)k∈{0,...,N} = (ck)k∈{0,...,N}

is simply the unique Legendre coordinate representation of that polynomial ϕ =

ϕ[N ], cf. Figure 3.5j. As such it can also be derived by a change of basis from any
other coordinate representation (see Section 3.6).

3.5.2.2 Discontinuous Interpretation

Despite of considering only continuous state functions ϕ, there are situations
where a function with a jump discontinuity at θ = 0 is of interest, e.g., as
the limit of a sequence of continuous functions (in particular when considering
supϕ∈C(. . .) or infϕ∈C(. . .) of some expression incorporating the functional
V (ϕ) in the next chapter). In these cases, it is convenient to consider, instead of
ϕ[N ] from (3.46), rather a piecewise defined (N − 1)-th degree polynomial

ϕ[N ]

d (θ) :=

{
ϕ̄[N ]

d (θ) :=
∑N−1
k=0 c

kpk(ϑ(θ)) if θ ∈ [−h, 0),
x̂ if θ = 0,

(3.48)
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with a discontinuous end point

x̂ =

N∑
k=0

ck. (3.49)

This approximating function ϕ[N ]

d (θ) achieves in (3.47) the same discretization c.

3.5.2.3 Associated Projection Operators

As a consequence, if c = [(c0)⊤, . . . , (cN )⊤]⊤ ∈ Rn(N+1) is built from dis-
cretizing a given function ϕ according to (3.47), then ϕ can be approximated by
the discontinuous function ϕ[N ]

d from (3.48) or by the continuous function ϕ[N ]

from (3.46). Of course, there is an infinite number of alternative realizations or
“reconstructions” in terms of functions that also provide the same discretization c
in (3.47).

For the original function ϕ, consider the corresponding x :=
[

ϕ
ϕ(0)

]
in M2 =

L2 × Rn, cf. Section 3.2.2 (the sans-serif typeface, e.g., x, y, z, will henceforth
be used for elements inM2). What characterizes the discontinuous interpretation
ϕ[N ]

d in (3.48) is that the associated mapping9

Proj[N ]

d : M2 → PN−1([−h, 0],Rn)× Rn ⊂M2;

x =
[
ϕ(·)
ϕ(0)

]
7→ Proj[N ]

d x =
[
ϕ̄[N]

d (·)
ϕ[N]

d (0)

]
(3.50)

is anM2-orthogonal projection to the subspace ofM2 which in the first component
involves a polynomial of degree at most N − 1.

In contrast, what characterizes ϕ[N ] in (3.46) is only that this is the function
represented by c, when the entries of c are understood as the Legendre coordinates
of anN -th degree polynomial, i.e., straightforwardly as the coefficients of the 0-th

9 See in [98] the projector ΠN or in [99] the projector QN .
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3.5 Legendre Tau Method

to N -th Legendre polynomial. However, because of the correction cN ̸= c̃N in
(3.47), the continuous ϕ[N ] from (3.46) stems from a projection

Proj[N ]

cont : M2 → PN ([−h, 0],Rn)× Rn ⊂M2;

x =
[
ϕ(·)
ϕ(0)

]
7→ Proj[N ]

cont x =
[
ϕ[N](·)
ϕ[N](0)

]
(3.51)

that is no M2-orthogonal projection to the stated subspace which in the first
component involves a polynomial of degree at most N .

All that is irrelevant if ϕ is already a polynomial of degree at most N − 1 since
then cN = 0, and the functions ϕ = ϕ[N ] = ϕ[N ]

d coincide. In fact, (3.46) and
(3.48) only associate a different basis function with the last coordinate cN , see
(A.3) vs. (A.8) in Appendix A. Therefore, a significant difference between ϕ[N ]

and ϕ[N ]

d , which manifests in a jump discontinuity at the end point in (3.48), only
occurs if a non-small last coordinate cN is involved.

3.5.3 The Approximated Operators

The above discussed projection operators can be used to describe the operator
A [N ] that is actually represented by the matrixALc in (3.28) from the Legendre tau
method and that intends to approximate the operator A : M2 ⊃ D(A ) → M2

from (3.12). There are two projection steps involved.

1. The projection of the argument x ∈ D(A ) of A x: The result of that
projection must correspond to the ansatz function ϕ[N ] ≈ ϕ that is used in
the numerical approach and that is represented by the Legendre coordinates
c taken in ALc c. The ansatz (3.25) is unambiguous. Incorporating how the
involved coordinate vector c is derived from a given initial function in (3.47),
it amounts to the polynomial (3.46) of degree N . The latter results from
the projection Proj[N ]

contx defined in (3.51). Thus, once the ansatz (3.25) is
incorporated, no longer A but A Proj[N ]

cont is applied to x ∈ D(A ).
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3 Method: ODE-Approximation Schemes

2. The projection of the resulting residual, and thus the projection of the
involved A Proj[N ]

contx: The result of the latter is represented by ALc c ∈
Rn(N+1) forming the right-hand side of the ODE (where c ∈ Rn(N+1) are
the coordinates of Proj[N ]

contx). Therefore, the projection operator depends
on how to interpret that coordinate vectorALc c. The standard interpretation,
cf. [73, eq. 2.16] or [99, eq. 3.13], is to view the resulting vector ALc c again
as representing the Legendre coordinates of an N -th degree polynomial.
Then A [N ] = A [N ]

cc ,

A [N ]

cc = Proj[N ]

cont A Proj[N ]

cont. (3.52)

An alternative interpretation, however, is to view the resulting vector ALc c
as representing a discontinuous function (3.48). Then A [N ] = A [N ]

dc ,

A [N ]

dc = Proj[N ]

d A Proj[N ]

cont, (3.53)

cf. [99, eq. 3.15], which amounts to the M2-orthogonal projection of the
residual inM2. In particular, convergence results from [99] refer to A [N ]

dc .

In terms of the coordinate representations, both interpretations A [N ]
cc and A [N ]

dc are
indistinguishable. That is why, the chosen interpretation is not relevant for the
results in the next chapters, which only rely on the coordinates.

Where, however, the operator A [N ] occurs in the derivations, the interpretation
(3.53) will be meant (although even in the arising operator-valued equations of the
next chapters, the choice does not make a difference, see Appendix A.3.3). The
interpretation (3.53) has the great advantage that the outer projection Proj[N ]

d is
actually without effect: The inner projection

[ ϕ̃

ϕ̃(0)

]
:= Proj[N ]

cont

[ ϕ
ϕ(0)

]
in (3.53)

results in a function ϕ̃ that is a polynomial of degree at most N . Therefore, the
first component ϕ̃′ in A

[ ϕ̃

ϕ̃(0)

]
=
[ ϕ̃′

A0ϕ̃(0)+A1ϕ̃(−h)

]
is already a polynomial of

degree at most N − 1. Therefore,

A [N ]

dc = Proj[N ]

d A Proj[N ]

cont (3.54)
= A Proj[N ]

cont =: A [N ]. (3.55)
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3.5 Legendre Tau Method

The precise meaning of the statement that ALc is a coordinate representation of
A [N ] is discussed in Appendix A.

If ϕ is already a polynomial of degree at most N , the remaining inner projection
Proj[N ]

cont in (3.55) is also without effect, and A [N ]
[ ϕ
ϕ(0)

]
even gives the exact

result A
[ ϕ
ϕ(0)

]
=
[

ϕ′

A0ϕ(0)+A1ϕ(−h)
]
. In terms of the coordinates, note that

the rectangular upper part of the differentiation matrix Dc used in ALc from
the Legendre tau method indeed suffices to obtain the exact coordinates of ϕ′

since the omitted last row of of the differentiation matrix Dc is zero anyway,
see Remark 3.6.2. Consequently, A [N ] and A coincide on the restriction to the
polynomial subspace range(Proj[N ]

cont) ⊂ D(A ) (which, however, does not yet
imply a statement on the solutions from polynomial initial functions since that
polynomial subspace is no invariant subspace—still, at least it becomes a dense
subspace of the state space as N becomes arbitrarily large).

The following convergence statement is known for the operator sequence {A [N ]}N
with increasing discretization resolution N .

Lemma 3.5.5 (Convergence of A [N ], [99, Lem. 3.4]). LetD(A 2) be the domain
of the second power of A , i.e., D(A 2) := {x ∈ D(A ) : A x ∈ D(A )}. Then

∀x ∈ D(A 2) : ∥A [N ]x− A x∥M2
→ 0 as N → ∞. (3.56)

This convergence of A [N ] on the dense subset D(A 2) ⊂ D(A ) is used in [99]
to prove strong convergence of the resulting solution operator T [N ] : M2 → M2.
The exact solution operator maps an initial function to the exact state at time t,[ xt

x(t)

]
= T (t)

[ x0

x(0)

]
, (3.57)

and, correspondingly, the approximated solution operator T [N ](t)maps to the re-
sulting approximation of that state. This operatorT [N ](t) is represented by thema-
trix exponential exp(ALc t) from the finite-dimensional ODE approximation in the
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3 Method: ODE-Approximation Schemes

samemanner asA [N ] is represented by the systemmatrixALc . Clearly, xt is a con-
tinuous function, which is why—in alignment with the made polynomial ansatz—
the continuous interpretation of the resulting coordinates c(t) should actually be
preferred (amounting to ProjcontT [N ] generated by A [N ]

cc = ProjcontA
[N ]

dc ). Nev-
ertheless, as xt is continuous, it can be expected that the last coordinate cN (t)

of its respective approximation vanishes as N increases, and thus the difference
between both interpretations vanishes as well. The convergence statement for
T [N ] is as follows.

Lemma 3.5.6 (Convergence of T [N ], [99, Thm. 3.6]). Let {T [N ](t)}t≥0, be the
semigroup generated by A [N ]. Then

∀x ∈M2 : ∥T [N ](t)x− T (t)x∥M2
→ 0 as N → ∞ (3.58)

uniformly on bounded intervals of t ≥ 0.

Even more, the same statement of strong convergence also holds for the adjoint
T ∗(t) of the solution operator [97, Thm. 2.2]. Such a convergence result cannot
be taken for granted. For other discretization schemes only weak convergence
holds for the adjoint operator, which causes troublewhen trying to compute control
gain operators from operator-valued algebraic Riccati equations in optimal control
problems [35, 13]. These operator equations, however, are related to what will
be employed in the present thesis. That is why, the Legendre tau method is a
particularly promising choice of discretization scheme.

3.6 Change of Basis for Polynomials

Given a polynomial of degreeN , it can equivalently be represented in the Lagrange
interpolation basis w.r.t. Chebyshev nodes, where a polynomial is written as
ϕ(θ) =

∑N
k=0 y

kℓk(ϑ(θ)), see Figure 3.3j, or in the Legendre basis, where the
same polynomial is written as ϕ(θ) =

∑N
k=0 c

kpk(ϑ(θ)), see Figure 3.5j, or in
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3.6 Change of Basis for Polynomials

the monomial basis, where ϕ(θ) = a0+a1θ+a2θ
2+ . . .+aNθ

N =
∑N
k=0 akθ

k,
or in any other basis of this (N + 1)-dimensional space.

The coefficients are related by a linear transformation, e.g.,

y = Tyc c, respectively c = Tcy y where Tcy := T−1
yc , (3.59)

with a transformation matrix Tyc ∈ Rn(N+1)×n(N+1). Consequently, if the
evolution of c(t) is described by a linear autonomous ODE, then the transformed
coordinates y(t) obey an ODE from a similarity transform of the system matrix
according to

ċ = Acc ⇔ ẏ = TycAcTcy︸ ︷︷ ︸
Ay

y. (3.60)

3.6.1 Transformation to Interpolation Coordinates

Consider the equivalence of a polynomial represented in Lagrange interpola-
tion coordinates and in Legendre coordinates, ϕ(θ) =

∑N
k=0 y

kℓk(ϑ(θ)) =∑N
k=0 c

kpk(ϑ(θ)). As a consequence of that equivalence, the j-th interpola-
tion coordinate, which is the pointwise evaluation yj = ϕ(θ̃j), must be equal
to ϕ(θ̃j) =

∑N
k=0 c

kpk(ϑ(θ̃j)). Thus, since the searched transformation law
amounts to yj =

∑N
k=0 T

jk
yc ck, the (j, k)-th (block-) entry of the transformation

matrix is

T jkyc = pk(ϑ(θ̃j))In. (3.61)

The first (j = 0) and the last (j = N ) block row of Tyc are particularly simple.
By pk(−1) = (−1)k and pk(1) = 1 (see Figure 3.5), these become visible in[

y0

yN

]
=

[
In −In · · · (−1)NIn

In In · · · In

]
c. (3.62)
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The remaining rows can numerically be derived from the following implementa-
tion.

Remark 3.6.1 (Implementation of ALy )*. Efficient conversion algorithms [176]
between Lagrange interpolation coordinates y and Legendre coordinates c are,
e.g., available in the Chebfun toolbox [59]. Applying these to the identity matrix
yields Tyc, respectively its inverse Tcy . As a result, ALy = Ay can be obtained by
appending the lines

Tyc=kron(legcoeffs2chebvals(eye(N+1)),eye(n));

Tcy=kron(chebvals2legcoeffs(eye(N+1)),eye(n));

Ay=Tyc*Ac*Tcy

to the code that is given in Remark 3.5.1.

Lagrange interpolation coordinates are most descriptive, but the price to pay is
that, also for the Legendre tau approach, the resulting system matrix

ALy := TycA
L
c Tcy, (3.63)

based on ALc from (3.27), becomes dense. See Table 3.2 for further comparisons
of the coordinate choices. What will be important in the next chapter is that, in
contrast to the original Legendre coordinates, the decisive boundary value ϕ(0)
is explicitly given by the last coordinate yN . This advantage, however, is also
achieved by the following concept of mixed coordinates.

* The implementation hint is part of [S2].
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3.6 Change of Basis for Polynomials

Lagrange interpolation coor-
dinates y in Chebyshev nodes

Legendre coordinates c Mixed coordinates χ

+ Very descriptive, built from
the pointwise evaluation of
the polynomial in Chebyshev
nodes, see Figure 3.3j

+ If the polynomial is of de-
greeK < N then only the first
K coordinates are nonzero, see
Figure 3.5j

+ ϕ(0) is the coordinate yN - ϕ(0) =
∑N

k=0 c
k is not ex-

plicitly among the coordinates
+ ϕ(0) is given by the coordi-
nate χN = x̂

+ The pointwise evaluation of
a non-polynomial function in
the Chebyshev nodes

↓ immediately gives
the Lagrange coordinates of its
interpolating polynomial

+ Legendre series truncation
of a non-polynomial function

↓ immediately gives
the Legendre coordinates c̃ of
itsL2-best approximation poly-
nomial

- The projection from (3.47)
involves a correction step for
the last coordinate cN ̸= c̃N

that must be calculated addi-
tionally

+ The calculation of cN in
(3.47) is not required

+ Also appropriate for the
representation of polynomials
of degreeN − 1 with a discon-
tinuous endpoint, see (3.48)

+ In that discontinuous in-
terpretation (3.48), the coordi-
nates are associated with a basis
{hχ,k}k that is an orthogonal
basis in M2, see Appendix A

! Despite of {pk(ϑ(·))}k be-
ing an orthogonal basis in L2,
the associated basis {gc,k}k of
the coordinates c inM2, which
is described in Appendix A, is
no orthogonal basis inM2

! In the continuous inter-
pretation, the associated basis
{gχ,k}k of the coordinates χ
in M2, which is described in
Appendix A, is still no orthog-
onal basis inM2

+ Natural coordinates in the
Chebyshev collocation method

+ Natural coordinates in the
Legendre tau method

- The system matrices AC
y

and AL
y in Lagrange interpola-

tion coordinates are dense with
non-integer entries

+ All entries of AL
c from

(3.28) are integers (neglecting
the factor 1

h
) and, for large N

and n = 1, almost 3/4 of the
entries are 0

- AL
χ in mixed coordinates is

less simply structured and more
dense than AL

c

+ All entries of AL
χ are inte-

gers (neglecting the factor 1
h
)

and, for large N and n = 1,
almost half of the entries are 0

Table 3.2: Advantages and disadvantages of the discussed coordinate choices.
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3.6.2 Transformation to Mixed Coordinates

To take the special role of the boundary value x̂ = ϕ(0) into account without
completely transforming to interpolation coordinates y =

[
z
x̂

]
= Tycc, the com-

bination of the first (N − 1) of the N Legendre coordinates and the boundary
value x̂ = ϕ(0),

χ =


c0

...
cN−1

x̂

 =


In

. . .

In

In · · · In In


︸ ︷︷ ︸

Tχc

c, (3.64)

is an appropriate choice of coordinates for the result from the Legendre tau
method10. In particular, when the discontinuous interpretation fromSection 3.5.2.2
is of interest, these mixed coordinates χ are the coordinates of choice. The result-
ing system matrix is derived from

ALχ = TχcA
L
c Tcχ, with Tcχ = T−1

χc =

[
InN 0nN×n

−1⊤N ⊗ In In

]
. (3.65)

A major advantage compared to (3.63) is that the system parameters A0 and A1,
which before the similarity transform only occur in the last row of ALc , after the
similarity transform still only affect the last (block-) row of ALχ in (3.65). The
upper part of ALχ again only relies on the corresponding differentiation matrix
Dχ, the structure of which is given in Figure 3.6, see the following remark.
Thus, ALχ clearly has an advantageous structure compared to the transformation
to a Lagrange interpolation coordinate representation in (3.63), which is as dense
as ACy from the collocation method. Nevertheless, ALχ in mixed coordinates is

10 For the sake of convenience: The Matlab implementation of (3.64) is simply Txc=eye(N+1);

Txc(end,:)=1; Txc=kron(Txc,eye(n)); Tcx=inv(Txc); Ax=Txc*Ac*Tcx
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slightly more dense and less simply structured than the original result ALc in
Legendre coordinates from (3.28).

Remark 3.6.2 (Differentiation Matrices). Let ϕ : [−h, 0] → R be a polynomial
of degreeN or less, represented by theN+1 Lagrange interpolation coordinates
y ∈ RN+1, or alternatively Legendre coordinates c ∈ RN+1, mixed coordinates
χ ∈ RN+1, or the coordinates associated to any other basis of that N + 1

dimensional space. Its derivative ϕ′ is a polynomial of degree N − 1 and thus
can still be represented in the same basis in an exact manner. In terms of the
N +1 coordinates, the differentiation operator becomes a differentiation matrix.
As a result, the representation of the derivative ϕ′ in Lagrange interpolation
coordinates is derived fromDyy, in Legendre coordinates it is derived fromDcc,
and in mixed coordinates it is derived from Dχχ, in each case relying on a
differentiation matrix Dy, Dc, Dχ, . . . ∈ R(N+1)×(N+1). Figure 3.6 shows how
these matrices look like.

• Since the (N+1)-th derivative of the polynomial of degreeN is zero, the dif-
ferentiation matrices are nilpotent matrices with (Dy)

N+1 = (Dc)
N+1 =

(Dχ)
N+1 = 0(N+1)×(N+1) and therefore have only zero eigenvalues.

• The differentiation matrices are related by the above discussed change of
basis. For instance,

Dy = TycDcTcy, Tyc = T−1
cy (3.66)

describes the relation between Dy for Lagrange interpolation coordinates
in Chebyshev nodes and Dc for Legendre coordinates.

• The (k + 1)-th column Dek+1, k ∈ {0, . . . , N}, of the differentiation
matrix D ∈ {Dy, Dc, Dχ, . . .} describes the coordinates of the derivative
of the k-th (including k = 0) basis polynomial that is represented by
the coordinate vector ek+1. Since the k-th Legendre polynomial pk is
a polynomial of degree k, the Legendre differentiation matrix Dc must
be triangular. (The same holds when Chebyshev polynomials Tk—see
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Dy = ϑ′



−21.5000 26.2741 −6.8284 3.2398 −2 1.4465 −1.1716 1.0396 −0.5000

−6.5685 3.1543 4.6131 −1.8478 1.0824 −0.7654 0.6131 −0.5412 0.2599

1.7071 −4.6131 0.7071 3.0824 −1.4142 0.9176 −0.7071 0.6131 −0.2929

−0.8100 1.8478 −3.0824 0.2242 2.6131 −1.3066 0.9176 −0.7654 0.3616

0.5000 −1.0824 1.4142 −2.6131 0 2.6131 −1.4142 1.0824 −0.5000

−0.3616 0.7654 −0.9176 1.3066 −2.6131 −0.2242 3.0824 −1.8478 0.8100

0.2929 −0.6131 0.7071 −0.9176 1.4142 −3.0824 −0.7071 4.6131 −1.7071

−0.2599 0.5412 −0.6131 0.7654 −1.0824 1.8478 −4.6131 −3.1543 6.5685

0.5000 −1.0396 1.1716 −1.4465 2 −3.2398 6.8284 −26.2741 21.5000


(a)Dy for Lagrange interpolation coordinates w.r.t. Chebyshev nodes

Dc = ϑ′



0 1 0 1 0 1 0 1 0

0 0 3 0 3 0 3 0 3

0 0 0 5 0 5 0 5 0

0 0 0 0 7 0 7 0 7

0 0 0 0 0 9 0 9 0

0 0 0 0 0 0 11 0 11

0 0 0 0 0 0 0 13 0

0 0 0 0 0 0 0 0 15

0 0 0 0 0 0 0 0 0


(b)Dc for Legendre coordinates

Du = ϑ′



0 1 0 3 0 5 0 7 0

0 0 4 0 8 0 12 0 16

0 0 0 6 0 10 0 14 0

0 0 0 0 8 0 12 0 16

0 0 0 0 0 10 0 14 0

0 0 0 0 0 0 12 0 16

0 0 0 0 0 0 0 14 0

0 0 0 0 0 0 0 0 16

0 0 0 0 0 0 0 0 0


(c)Du for Chebyshev coordinates

Dχ = ϑ′



0 1 0 1 0 1 0 1 0

−3 −3 0 −3 0 −3 0 −3 3

0 0 0 5 0 5 0 5 0

−7 −7 −7 −7 0 −7 0 −7 7

0 0 0 0 0 9 0 9 0

−11 −11 −11 −11 −11 −11 0 −11 11

0 0 0 0 0 0 0 13 0

−15 −15 −15 −15 −15 −15 −15 −15 15

−36 −35 −33 −30 −26 −21 −15 −8 36


(d)Dχ for the mixed coordinates from Section 3.6.2

Figure 3.6: Differentiation matrices for different coordinate choices with N = 8. The constant
scaling factor ϑ′ = 2

h
arises due to (3.14).
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Figure 3.2b—are used as basis, with the differentiation matrix for the
associated Chebyshev coordinates11 u being denoted byDu in Figure 3.6.)

Since both in the Chebyshev collocation and in the Legendre tau method the
last row of the corresponding differentiation matrix is replaced by the boundary
condition (addressing the RFDE), the resulting system matrices ACy and ALc are,
in contrast to Dy and Dc, no similar matrices.

Remark 3.6.3 (The τ in Lanczos’ tau method). The term tau method originates
from a variable τ in Lanczos’ original paper [122, eq. 8.15]. As discussed above,
the overall differentiation matrix Dc indeed maps the coordinates c of an N -th
order polynomial to the exact coordinates Dcc of its derivative. Thus, on the
restriction to polynomials of degree at most N , with xt being represented by its
Legendre coordinates c(t), the exact coordinate representation of (3.6a) becomes

ċ(t) = (Dc ⊗ In)c(t). (3.67)

However, the boundary condition must somehow be incorporated, which is ac-
complished by replacing the last row of the above equation—see (3.28). Hence,
although rc(t) = ċ(t) − (Dc ⊗ In)c(t) still represents the correct residual of
(3.6a), the Legendre tau method only achieves that the first N of the N + 1 rows
of rc(t) vanish, and some error τ(t) ̸= 0 occurs in the last row of

rc(t) = ċ(t)− (Dc ⊗ In)c(t) =

[
0nN×1

τ(t)

]
(3.68)

(more explicitly, since the last row of Dc is zero, τ(t) = ċN (t) = (ALc )
(N,:)c(t)

from (3.38)). Note that rc(t) is a coordinate representation of the residual.

11 Chebyshev coordinates u can efficiently be computed from Lagrange interpolation coordinates y
based on the fast Fourier transform (FFT), see [179, 177, 88]. Similar to Remark 3.6.1, a ready
to use Matlab implementation is available from chebvals2chebcoeffs in [59].
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3 Method: ODE-Approximation Schemes

Therefore, in the conventional continuous interpretation (3.46), the Legendre
coordinates (3.68) represent the polynomial residual

N∑
k=0

rk(t)pk(ϑ(θ)) = τ(t)pN (ϑ(θ)). (3.69)

Thus, instead of the desired ∂xt(θ)
∂t − ∂xt(θ)

∂θ = 0 in (3.6a), the tau method solves
the modification of (3.6a)

∂xt(θ)

∂t
− ∂xt(θ)

∂θ
= τ(t)pN (ϑ(θ)) (3.70)

in an exact manner for the restriction to polynomials of degree at mostN (see also
[38, Sec. 6.6], [154, Sec. 3.4.3],[73]). This point of view was taken by Lanczos
and gave the tau method in [123] its name.

Remark 3.6.4 (The τ in the discontinuous interpretation). Noticeably, in the
discontinuous interpretation from (3.53), the above arguments do not apply.
Instead, the coordinates on the right-hand side of (3.68) yield, according to
(3.48), the residual

∂xt(θ)

∂t
− ∂xt(θ)

∂θ
=

{
0n×1 if θ ∈ [−h, 0),
τ(t) if θ = 0,

(3.71)

which vanishes in the overall domain [−h, 0). However, the vanishing original
residual on the considered polynomial subspace does not yetmean that the original
problem was solved exactly for initial functions that are polynomials of degree at
mostN (see also the discussion on A [N ]

dc in Section 3.5.3)—these polynomials do
not form an invariant subspace in the original problem, in contrast to the modified
problem from Remark 3.6.3 that amounts to A [N ]

cc from Section 3.5.3.
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3.7 Stability Properties of the Approximating
ODEs*

To conclude relevant stability statements for the RFDE from the ODE approx-
imation, the ODE-approximation scheme should be stability preserving in the
following sense.

Condition 3.7.1 (Stability Preservation Property). Provided the discretization
resolution N is chosen sufficiently large, the zero equilibrium in Rn(N+1) of the
approximating ODE is exponentially stable if and only if the zero equilibrium in
C([−h, 0],Rn) of the RFDE is exponentially stable.

Chebyshev collocation has successfully been applied in various fields [29, 28, 27,
192, 140] where Condition 3.7.1 is also desirable. It is known that eigenvalues
of ACy converge to the characteristic roots of the RFDE, i.e., to the solutions s
of det(sIn − A0 − e−shA1) = 0, or, equivalently, to the eigenvalues of the
infinitesimal generator of the C0-semigroup of solution operators, see [29]. The
red points in Figure 3.7a show typical eigenvalue chains in RFDEs, and the crosses
and circles demonstrate how this chain is approached by the eigenvalues of ACy .
There are also some additional spurious eigenvalues that do not match with RFDE
characteristic roots. These, however, are easily identifiable as they do not persist
when N changes [29, Prop. 3.7]. See, in Figure 3.7a, the crosses (N = 40) that
do not match with circles (N = 80). Moreover, from numerical observations,
they are not expected to hamper Condition 3.7.1, see also the discussions in [192,
p. 361], [140, p. 853]. Thus, despite of not being proven, Condition 3.7.1, in
practice, is a tenable assumption for the Chebyshev collocation method.

The Legendre tau method is similarly powerful in approximating eigenvalues,
which is shown in Figure 3.7b. For the underlying rational approximation of
(sI −A0 − e−hsA1)

−1, see Section 7.3 (choosing there B = C0 = In, p1 = 0).

* The author has prepublished Section 3.7 in [S2], ©2024 IEEE.
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Re

Im

(a) Chebyshev collocation:
eigenvalues ofAC

y in (3.16)

Re

Im × N = 40

◦ N = 80

· RFDE
char. roots

(b) Legendre tau: eigenvalues of
AL

c in (3.27) or, equivalently,AL
y (3.63)

Figure 3.7*: Eigenvalues of the system matrix in the ODE approximation compared to the character-
istic roots of the RFDE defined in (1.6). (The plotted example is a scalar system with
the parameters A0 = −0.5, A1 = −1, h = 2.2.)

* The author has prepublished Figure 3.7 in [S1], ©2023 IEEE.
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3.8 Revisiting the Main Points of the Chapter

Stability preservation of the Legendre tau method (Condition 3.7.1) is proven in
[97, Thm. 5.3].

3.8 Revisiting the Main Points of the Chapter

• A discretization of the abstract ODE (3.9) or (3.11), respectively a spatial
discretization of the underlying PDE from Remark 3.2.1, yields the desired
ODE approximation.

• Spectral methods like Chebyshev collocation or Legendre tau are based on
a polynomial ansatz for xt(θ). To be more precise, for any time t ≥ 0,
the state xt, which represents the solution segment from Figure 3.1, is
approximated by a polynomial on θ ∈ [−h, 0].

• The ODE approximation describes how the coordinates of that polynomial
evolve with time.

• The resulting system matrices of the ODE approximations are given in
(3.16) and (3.28). They can be implemented via few lines of code, see
Remark 3.4.1 and Remark 3.5.1.

• The Chebyshev collocation method naturally uses Lagrange interpolation
coordinates y to describe the polynomial, and the Legendre tau method
naturally derives a description in Legendre coordinates c. Figure 3.3 and
Figure 3.5 visualize the underlying polynomial bases.

• Let an initial function x0 = ϕ ∈ C be given. The corresponding initial
vector y(0) for the Chebyshev-collocation-based ODE is obtained from
pointwise evaluations of that function, see (3.23). The corresponding initial
vector c(0) for the Legendre-tau-based ODE is obtained from a Legendre
series truncation with a modification in the last coordinate cN , see (3.47).

• By a simple change of basis, results can be stated in the coordinates of any
arbitrary basis of the polynomial space. In terms of the resulting ODE,
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3 Method: ODE-Approximation Schemes

only a similarity transformation of the involved system matrix is required
(Remark 3.6.1 gives a corresponding implementation hint).

• Table 3.2 shows advantages and disadvantages of the various coordinate
choices.

• Lagrange interpolation coordinates y refer to pointwise values of the meant
polynomial—see the red points in Figure 3.1c. Conversely, given a non-
polynomial continuous function ϕ, only these pointwise evaluations (3.23)
are needed to represent a polynomial approximation, namely the interpo-
lation through these points. That these points are not equidistant, but
Chebyshev nodes, helps to avoid the so-called Runge phenomenon from
Figure 3.4.

• Concerning the coordinate choice for the result of the Legendre tau method
the following can be recommended: It should be considered in

– its original Legendre coordinates whenever a simple and relatively
sparse structure of the ODE system matrix is important,

– mixed coordinates (3.64) whenever the discontinuous reconstruction
from Section 3.5.2.2 and the accompanying orthogonality property in
M2 become relevant (see also Appendix A),

– Lagrange interpolation coordinates, whenever the simplicity of get-
ting a coordinate representation from a given polynomial and the
descriptiveness is important.

• Note the analogy in the structure of the following system matrices of the
obtained ODEs:

– the Chebyshev collocation system matrix ACy in its original Lagrange
interpolation coordinates (3.16),

– the Legendre tau system matrix ALc in its original Legendre coordi-
nates (3.28), and
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3.8 Revisiting the Main Points of the Chapter

– the Legendre tau system matrix ALχ when transformed to mixed coor-
dinates (3.65).

In each case, the lower (block-) row of the ODE systemmatrix addresses the
RFDE (in terms of the polynomial ansatz for the state in the corresponding
coordinates), whereas the upper part of the system matrix only relies on
(all but the last row of) the differentiation matrixDy ,Dc, respectivelyDχ,
given in Figure 3.6.

• Stability preservation (Section 3.7) means that, for a sufficiently large dis-
cretization resolution, the equilibrium of the ODE approximation is expo-
nentially stable if and only if the equilibrium of the RFDE is exponentially
stable. For Chebyshev collocation, this is a tenable assumption. For the
Legendre tau method, stability preservation is proven in the literature.

• Table 3.1 classifies the polynomial methods used in the present thesis.
Besides of the spectral methods for differential equations, the underlying
polynomial approximation of continuous functions also gives rise to pow-
erful numerical integration methods that will be taken up in Section 4.2.
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4 What ODE-Approximation
Schemes Reveal about
Lyapunov–Krasovskii
Functionals

The present chapter proposes a numerical approach to complete-type and re-
lated LK functionals that is based on the ODE approximations discussed above.
In contrast to existing approaches, the proposed procedure directly leads to an
approximation of the overall LK functional—not making use of the integral for-
mula (1.15)—thus not requiring the computation of the delay-Lyapunov ma-
trix function—but only being based on the defining equation (1.14) in terms of
Q0, Q1, Q2. The objective does not lie in a stability criterion, but, as outlined in
Chapter 1, rather in the functional itself and in its lower bound (1.16). Moreover,
an interpretation of the results in terms of Lyapunov–Rumyantsev partial stability
of the approximating ODE will hopefully provide an enlightening view on the
Lyapunov–Krasovskii theory.

The chapter is organized as follows. Section 4.1 introduces the numerical ap-
proach that is based on the ODE approximations discussed in the last chapter. For
the sake of validation, in Section 4.2, numerical integration schemes are applied
to the known semi-analytical result of the desired functionals. Then Section 4.3
derives the formula for the quadratic lower bound. An example is discussed in
Section 4.4. Additionally, Section 4.5 interprets the approach in terms of partial
stability of the approximating ODE. Finally, Section 4.6 addresses the question
of convergence. A summary of the chapter is provided in Section 4.7.
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The following contributions of the present thesis are prepublished in

[S2] Scholl, T. H.; Hagenmeyer, V.; Gröll, L.: What ODE-approximation
schemes of time-delay systems reveal about Lyapunov–Krasovskii func-
tionals. IEEE Transactions on Automatic Control 69 (2024) 7, 4614–4629.

4.1 A Numerical Approach to Complete-Type
and Related LK Functionals

The discussions shall initially not be confined to a specific discretization method.
Therefore, and for simplicity, mainly Lagrange interpolation coordinates are used.
Thus, the coordinates y(t) approximate the state xt in the pointwise manner (3.1),
which is depicted in Figure 3.1. Nevertheless, all results are invariant under a
change of coordinates, see Section 3.6 and Appendix A.

4.1.1 An Approximation Scheme for the LK Functional*

In the following, a Lyapunov function Vy : Rn(N+1) → R (to be more precise, a
partial Lyapunov function, see Section 4.5) will be set up for the approximating
ODE ẏ = Ay y from (3.3). In view of the fact that the LK functional V (xt) is
quadratic in terms of its argument xt ∈ C, a quadratic ansatz

Vy(y) = y⊤Py y (4.1)

* The author has prepublished Section 4.1.1 in [S2], ©2024 IEEE.

92



4.1 A Numerical Approach to Complete-Type and Related LK Functionals

in the polynomial coordinates y is made, with Py = P⊤
y ∈ Rn(N+1)×n(N+1) to

be determined. The derivative of Vy along solutions of the ODE ẏ = Ayy is set
as −y⊤Qyy with a prescribed symmetric matrix Qy

D+
(ẏ=Ayy)

Vy(y) = y⊤(PyAy +A⊤
y Py)y

!
= −y⊤Qyy, (4.2)

∀y ∈ Rn(N+1). Thus, solving the Lyapunov equation

PyAy +A⊤
y Py = −Qy (4.3)

yields the unknown matrix Py . The right-hand side of (4.2) shall be constructed
according to a discretization of the right-hand side of the defining equation of
complete-type and related LK functionals from (1.14), i.e., of D+

f V (xt) =

−x⊤(t)Q0x(t) − x⊤(t − h)Q1x(t − h) −
∫ 0

−h x
⊤(t + θ)Q2x(t + θ) dθ, with

freely chosen matrices Q0, Q1 ≻ 0n×n, Q2 ⪰ 0n×n. Hence, in view of (3.1), a
straightforward choice of Qy in (4.3) becomes visible from

D+
(ẏ=Ayy)

Vy(y)
!
= −(yN )⊤Q0y

N− (y0)⊤Q1y
0 −

N∑
k=0

(yk)⊤Q2y
kwk

= −y⊤





Q1

0n×n
. . .

0n×n

Q0


+



w0Q2

w1Q2

. . .
. . .

wNQ2




y

=: −y⊤Qyy , (4.4)

where wk ∈ R are integration weights (see Section 4.2.1). Section 4.6.1 will
present discretization-scheme-dependent modifications that aim at improved con-
vergence properties. However, if the Legendre taumethod is used, andQ2 = 0n×n
(which, in view of the next chapters, is of prevalent interest), no modification is
needed.
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Altogether, since the above described approach amounts to solving a discretization
of the original problem (1.14), Vy(y) in (4.1) is intended to be an approximation
of the LK functional V (ϕ). Convergence aspects will be addressed in Section 4.6,
with a precise convergence statement for the Legendre-tau-based approach. As a
result, given a prescribed argument ϕ ∈ C([−h, 0],Rn), which might be ϕ = xt
for some t ≥ 0, or, without loss of generality, ϕ = x0 at t = 0, a numerical
approximation for the evaluation V (ϕ) can be obtained. To this end, the argu-
ment y in Vy(y) must be chosen correspondingly. In the Chebyshev collocation
method, this discretization y of ϕ is derived from stacking pointwise evaluations
of ϕ as described in (3.23). If ϕ is a polynomial of degree at most N , (3.23) also
agrees with the coordinate transform (3.59) of the discretization in the Legendre
tau method (3.47). Otherwise, the latter might give a slightly deviating vector y
(pointwise evaluations of the approximating polynomial ϕ[N ]). Still, in practice,
the simple construction of y from (3.23) can also be combined with the Leg-
endre tau method since it represents, due to Remark 3.4.2, usually a very good
polynomial approximation of ϕ (which can be inspected beforehand).

To sum up, only the Lyapunov equation (4.3) must be solved to obtain the approx-
imation V (ϕ) ≈ Vy(y).

Lyapunov Equation in Changed Coordinates

In the case of the Legendre tau approach, the transformed systemmatrixAy = ALy
in Lagrange interpolation coordinates from (3.63) has to be used in the above
Lyapunov equation (4.3). However, despite of being analytically equivalent, other
coordinate choices such as Legendre coordinates or mixed coordinates, for which
the system matrix is less dense, might be preferable from a numerical point of
view.
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For instance, in Legendre coordinates, the above approach becomes

Vc(c) := c⊤Pcc, Pc = P⊤
c ∈ Rn(N+1)×n(N+1) (4.5)

D+
(ċ=Acc)

Vc(c) = c⊤(PcAc +A⊤
c Pc)c

!
= −c⊤ (T⊤

ycQy Tyc)︸ ︷︷ ︸
Qc

c,

∀c ∈ Rn(N+1) with Tyc from (3.59). That is,

PcAc +A⊤
c Pc = −T⊤

ycQy Tyc (4.6)

is solved for Pc. If desired, the result can finally still be expressed in terms of
Lagrange interpolation coordinates y

Vy(y) = Vc(c) = Vc(Tcyy) = y⊤
(
T⊤
cyPc Tcy︸ ︷︷ ︸
=:Py

)
y (4.7)

with Tcy = T−1
yc . In (4.6), only the first and last block rows of Tyc, see (3.62),

are required if Q2 is zero or if the Legendre-tau-adapted treatment of Q2 from
(4.39) below is used. Analogous transformations hold for mixed coordinates from
Section 3.6.2, in terms of which

Pχ = T⊤
yχPyTyχ = T⊤

cχPcTcχ, Tyχ = TycTcχ. (4.8)

In any case,

Vy(y) = y⊤Pyy = Vc(c) = c⊤Pcc = Vχ(χ) = χ⊤Pχχ (4.9)

gives the desired approximation of V (ϕ).

Remark 4.1.1 (The role of mixed coordinates in the Legendre-tau-based
result). For the Legendre tau method, the coordinates c, respectively y = Tycc or,
even more appropriate, χ = [(c̃0)⊤, . . . , (c̃(N−1))⊤, x̂]⊤, are, strictly speaking,
created from the argumentϕ inV (ϕ) via a projection that relies on taking integrals
to obtain (c̃k)k∈{0,...,N−1} and on ϕ(0) = x̂. See (3.47). Therefore, χ⊤Pχχ from
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(4.9), when written out in terms of the original function ϕ and the submatrices of
Pχ = (Pχ,jk)j,k∈{0,...,N}, actually stands for an integral formula

χ⊤Pχχ =

∫ 0

−h

∫ 0

−h
ϕ⊤(ξ)PLzz(ξ, θ)ϕ(θ) dθ dξ + 2

∫ 0

−h
ϕ⊤(0)PLxz(θ)ϕ(θ) dθ

+ ϕ⊤(0)PLxxϕ(0),

PLzz(ξ, θ) =

N−1∑
j=0

N−1∑
k=0

Pχ,jk
2j + 1

h

2k + 1

h
pj(ϑ(ξ))pk(ϑ(θ)),

PLxz(θ) =

N−1∑
k=0

Pχ,Nk
2k + 1

h
pk(ϑ(θ)), PLxx = Pχ,NN .

However, a term of the form
∫ 0

−h ϕ
⊤(θ)PLzz,diag(θ)ϕ(θ) dθ as encountered in the

LK functional formula (1.15) is missing. Therefore, convergence of the involved
kernel function PLzz(ξ, θ), as N increases, cannot be expected—which, however,
is not necessary for the convergence of the overall result χ⊤Pχχ anyway. A split-
ting approach in Section 4.6.1 will resolve that issue and establish a separation
between the double integral term and the missing simple integral term, yielding
the same χ⊤Pχχ. Still, there is no need to compute such explicit kernel functions
since the finite-dimensional quadratic form χ⊤Pχχ = c⊤Pcc = y⊤Pyy in terms
of polynomial coordinates is much easier to handle than an integral formula.

4.1.2 Existence, Uniqueness, and Nonnegativity*

Note that Qy in (4.4) is a positive semidefinite, but not necessarily positive
definite matrix. Let us revisit some properties of the Lyapunov equation (4.3)
in this rather uncommon semidefinite case, without further assumptions on the
involved matrices. See [89, p. 284], and [39, Thm. 1] for Lemma 4.1.2c.

* The author has prepublished Section 4.1.2 in [S2], ©2024 IEEE.
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Lemma 4.1.2. For any matrixM , denote by i−(M) (respectively i0(M), i+(M))
the number of eigenvalues with negative real part (zero real part, positive real
part). Consider the Lyapunov equation PA + A⊤P = −Q with given matrices
A,Q ∈ Rν×ν .

(a) If σ(A)∩(−σ(A)) = ∅, then a unique solution P of the Lyapunov equation
exists.

(b) If Q = Q⊤ and P is a solution, then P⊤ is also a solution.
If, additionally, (a) holds, then P = P⊤.

(c) If Q ⪰ 0ν×ν , P = P⊤, and i0(A) = 0,
then i+(P ) ≤ i−(A) and i−(P ) ≤ i+(A).

Remark 4.1.3. Existence of the LK functional V in (1.14) is analogously ensured
by the time-delay counterpart of Lemma 4.1.2a, the so-called Lyapunov condition,
see Proposition B.1.1 in the appendix.

Proposition 4.1.4. Let Qy ⪰ 0n(N+1)×n(N+1) be given. If Ay is Hurwitz, then
there exists a unique solution Py in (4.3). Moreover, Py = P⊤

y is positive
semidefinite.

Proof. Lemma 4.1.2a with σ(A) ⊂ C−, Lemma 4.1.2b, and Lemma 4.1.2c with
i0(A) = i+(A) = 0.

Consequently, if the zero equilibrium of the ODE approximation (3.3) is asymp-
totically stable, and D+

(ẏ=Ayy)
Vy(y) is chosen according to (4.4) and thus non-

positive, then existence, uniqueness, and nonnegativity of Vy(y) in Section 4.1.1
are ensured.
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P jk
y =

PNN
y =: Py,xx

k

0

N

j
N

0

Figure 4.1*: Entries of the matrix Py in Example 4.1.5 (N = 40).

4.1.3 Structure of the Result*

To get an impression of how the Lyapunov equation solution Py from (4.3) looks
like, an example with n = 1 is considered. As will be demonstrated, only little
implementation effort is required.

Example 4.1.5. Let ẋ(t) = −0.5x(t) − x(t − 2.2) and Q0 = Q1 = 1, Q2 = 0

in (4.4). The solution Py of (4.3) can be obtained via

Q=blkdiag(Q1,zeros(n*(N-1)),Q0); P=lyap(A',Q);

in Matlab1, providedAy is assigned to A (see Remark 3.4.1 or Remark 3.6.1). The
structure of Py for N = 40 is depicted in Figure 4.1. It stems from the Legendre
tau method, i.e.,Ay = ALy from (3.63) is used in the Lyapunov equation (4.3) (or,
equivalently, Ac = ALc from (3.27) in (4.6)). However, Chebyshev collocation
with Ay = ACy from (3.16) gives almost the same picture of Py .

In Figure 4.1, the combs on the last column, the last row, and the diagonal as well
as the striking right lower element of the matrix Py are also existent with a refined
grid. Thus, Vy(y) = y⊤Py y =

∑N
j=0

∑N
k=0(y

j)⊤P jky yk is not the discretized

* The author has prepublished Section 4.1.3 in [S2], ©2024 IEEE.
1 If Q2 ̸= 0n×n and Ay = AL

y , then Tcy'*Qc2*Tcy from (4.39) is added to Q, with
Qc2=kron(delay*diag([1./(2*(0:N-1)+1),1]),Q2).

* The author has prepublished Figure 4.1 in [S2], ©2024 IEEE.
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version of a Lebesque integral
∫ 0

−h
∫ 0

−h ϕ
⊤(ξ)P (ξ, θ)ϕ(θ) dθdξ. Instead, the

combs suggest that

Vy(y) = y⊤Pyy =


z

x̂


⊤ 

Py,zz P⊤
y,xz

Py,xz Py,xx




z

x̂

 (4.10)

= x̂⊤Py,xxx̂+ 2

N−1∑
k=0

x̂⊤P ky,xzz
k +

N−1∑
j=0

N−1∑
k=0
k ̸=j

(zj)⊤P jky,zzz
k +

N−1∑
k=0

(zk)⊤P kky,zzz
k

describes, through the (discrete ↪→ continuous) correspondences indicated by
(3.23) and by k vs. θ in Figure 3.1

zk = ϕ(θ̃k), k∈{0, . . . , N−1} ↪→ ϕ(θ), θ ∈ [−h, 0),
zj = ϕ(θ̃j), j ∈{0, . . . , N−1} ↪→ ϕ(ξ), ξ ∈ [−h, 0),
x̂ = ϕ(0) ↪→ ϕ(0),

the discrete version of some

V (ϕ) = ϕ⊤(0)Pxxϕ(0) + 2

∫ 0

−h
ϕ⊤(0)Pxz(θ)ϕ(θ) dθ

+

∫ 0

−h

∫ 0

−h
ϕ⊤(ξ)Pzz(ξ, θ)ϕ(θ) dθ dξ

+

∫ 0

−h
ϕ⊤(θ)Pzz,diag(θ)ϕ(θ) dθ. (4.11a)

Note that the latter exactly reflects the known structure of complete-type and
related LK functionals given in (1.15).
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4.2 Numerical Integration for Validation
Purposes

In fact, complete-type and related LK functionals have the structure (4.11a), and
the kernel functions can be identified in (1.15) as

Pzz(ξ, θ) = A⊤
1 Ψ(ξ − θ; Q̃)A1, Pxz(θ) = Ψ(−h− θ; Q̃)A1,

Pzz,diag(θ) = Q1 + (h+ θ)Q2, Pxx = Ψ(0; Q̃). (4.11b)

For the sake of validation (e.g., of the quadratic lower bound from the next section),
the following considerations go the other way around and derive a discretization
of the known formula of V (ϕ) by interpolatory quadrature rules. See Table 3.1.
That is, the integrals in (4.11a) are replaced by weighted sums from evaluations
at the grid points. These sums can again be rewritten as a quadratic form

V (ϕ) ≈ y⊤P quad
y y (4.12)

like (4.10). Note that the involved kernel functions (4.11b) rely on the delay
Lyapunov function Ψ, which is described in Appendix B.1.1. Two alterna-
tive quadrature rules are applied in the following: Clenshaw–Curtis and Gauss
quadrature.

4.2.1 Clenshaw–Curtis Quadrature*

TheClenshaw–Curtis quadrature rule amounts to replacing the integral
∫ 0

−h u(θ) dθ

of a given function u ∈ C([−h, 0],R) by a weighted sum
∑N
k=0 u(θ̃k)wk from

values at the (Gauss–Lobatto) Chebyshev nodes {θ̃k}k∈{0,...,N}. In fact, an inter-
polatory quadrature is nothingmore than computing the integral of an interpolating
polynomial instead of the original function u. In the case of Clenshaw–Curtis
quadrature, the considered nodes for the interpolation are exactly the ones already

* The author has prepublished Section 4.2.1 in [S2], ©2024 IEEE.
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encountered in (3.2), see Table 3.1 and Section 3.4.2. Thus, the approximation of
the integral of some u ∈ L1([−h, 0],Rn) becomes

∫ 0

−h
u(θ) dθ ≈

∫ 0

−h

N∑
k=0

u(θ̃k)ℓk(ϑ(θ)) dθ =

N∑
k=0

u(θ̃k)wk, (4.13)

where the required weights

wk =

∫ 0

−h
ℓk(ϑ(θ)) dθ̃

(3.14)
=

h

2

∫ 1

−1

ℓk(ϑ̃) dϑ̃ (4.14)

are the integrals of the Lagrange basis polynomials, cf. Figure 3.3. The weights
wk defined by (4.14) are explicitly known, see [68, Sec. 3.7]. Ready to use
implementations of the latter are, e.g., available2 from the Chebfun toolbox [59].

Applying (4.13) to the integral terms in (4.11a) gives

V (ϕ) ≈ ϕ⊤(0)Pxx ϕ(0) + 2

N∑
k=0

wkϕ
⊤(0)Pxz(θ̃k)ϕ(θ̃k)

+
N∑
j=0

wj

N∑
k=0

wkϕ
⊤(θ̃j)Pzz(θ̃j , θ̃k)ϕ(θ̃k)

+

N∑
k=0

wkϕ
⊤(θ̃k)Pzz,diag(θ̃k)ϕ(θ̃k). (4.15)

2 implemented via [theta,w]=chebpts(N+1,[-delay,0])
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As in (4.10), the result (4.15) can be written as a quadratic form. Let yk = ϕ(θ̃k),
k ∈ {0 . . . , N}, where yN = ϕ(θ̃N ) = ϕ(0). Then (with p = dim(z) :=

dim([y0
⊤
, . . . , yN−1⊤]⊤) = nN )

V (ϕ) ≈ y⊤P quad
y y = y⊤

( [
0p×p 0p×n

0n×p Pxx

]

+

 0p×(p+n)

(Pxz(θ̃k)wk)k

+

 0(p+n)×p (wjP
⊤
xz(θ̃j))j


+
(
wjPzz(θ̃j , θ̃k)wk

)
jk
+ blkdiag

(
(wkPzz,diag(θ̃k))k

) )
y. (4.16)

See Appendix B.1.2 for a factorization taking (4.11b) into account. Note that
the right lower component of P quad

y approximately becomes Pxx since the other
contributions are weighted by wN , which is quite small in the non-equidistant
grid.

Since Clenshaw–Curtis quadrature relies on Chebyshev nodes (cf. Table 3.1), the
involved vector y coincides with the one used above in the ODE-based approach.
Indeed, the picture of the resulting P quad

y turns out to be hardly distinguishable
from Figure 4.1 when applied to Example 4.1.5. See Section 4.4 for further
numerical comparisons.

4.2.2 Gauss Quadrature*

As an alternative, (Legendre) Gauss quadrature can be applied. In that case, the
integral of a function is approximated by weighted sums from the function values
at (Gauss) Legendre nodes. Being Gauss nodes, cf. Table 3.1, they do not contain
the boundary points of the domain [−h, 0]. That is why, in the following, a grid

* The author has prepublished Section 4.2.2 in [S2], ©2024 IEEE.
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of only N (Gauss) Legendre nodes3 θ̃Lk , is considered, to which the zero end
point with zero weight is added. Thus, theN + 1 nodes [(θ̃L)⊤, 0]⊤ and weights
[(wL)⊤, 0]⊤ are obtained. Therefore, contrary to the Gauss–Lobatto-node-based
Clenshaw–Curtis quadrature, the contributions in (4.16) do not overlap, yielding
for yG = [ϕ⊤(θ̃L0 ), . . . , ϕ

⊤(θ̃LN−1), ϕ
⊤(0)]⊤

V (ϕ) ≈ y⊤G


(
wLj Pzz(θ̃

L
j , θ̃

L
k )w

L
k

)
jk
+D (wLj P

⊤
xz(θ̃

L
j ))j

(Pxz(θ̃
L
k )w

L
k )k Pxx

 yG
with D = blkdiag

(
(wLk Pzz,diag(θ̃

L
k ))k

)
. (4.17)

To sum up, a finite-dimensional quadratic form that approximates V (ϕ) can also
be obtained from a numerical integration of the known formula of complete-type
and related LK functionals, e.g., relying on Clenshaw–Curtis or Gauss quadrature,
which are proposed in the present section. However, in this numerical-integration-
based approach, knowledge of the delay Lyapunov matrix function Ψ is needed,
which is not the case in the ODE-based approach from Section 4.1. See Ap-
pendix B.1.3 for further remarks.

4.3 The Quadratic Lower Bound*

As a result of the preceding sections, we have an approximation of the LK
functional. However, in applications, the quadratic lower bound (1.16) is needed

3 via [thetaL,wL]=legpts(N,[-delay,0]) using the toolbox [59]
* The author has prepublished Section 4.3 in [S2], ©2024 IEEE.
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as well. If Q0, Q1 ≻ 0n×n, Q2 ⪰ 0n×n, existence of a nonzero4 coefficient
k1 > 0 is proven in [110, Lem. 2.10], given the RFDE equilibrium is exponentially
stable. In a discrete version for the approximation Vy , the bound (1.16) becomes
∀y = [z⊤, x̂⊤]⊤, z ∈ RnN , x̂ ∈ Rn :

k1∥x̂∥22 ≤ Vy(y). (4.18)

Since solely x̂ = yN is considered, (4.18) does not refer to the common
λmin(Py)∥y∥22 ≤ Vy(y) encountered in the template ii from Section 1.2. Why
this discrete version of (1.16) still also makes sense in a Lyapunov analysis of the
approximating ODE, will be explained in Section 4.5.

The main contribution of the present section, Lemma 4.3.1, immediately leads
to the searched bound (4.18) in Theorem 4.3.2. For the sake of readability, the
lemma is expressed in terms of a general positive semidefinite matrix P with
a left upper submatrix Z, instead of Py and Py,zz introduced in (4.10). The
result is based on the generalized Schur complement (4.20), cf. [91], where Z−

is a generalized matrix inverse of Z, e.g., the Moore-Penrose inverse. If Z is
nonsingular, then Z− = Z−1.

Lemma 4.3.1. Let P = [ Z B
B⊤ X

] with Z = Z⊤ ∈ Rp×p, B ∈ Rp×n, X = X⊤ ∈
Rn×n. If P is positive semidefinite, then

min
z∈Rp

x∈Rn\{0n}

1

∥x∥22

[
z

x

]⊤[
Z B

B⊤ X

][
z

x

]
= λmin(P/Z), (4.19)

where P/Z = X −B⊤Z−B. (4.20)

4 In contrast to quadratic forms from finite-dimensional matrices, in infinite dimensions coercivity
of the associated bilinear form (existence of a quadratic lower bound) is a stronger concept than
positive definiteness (positivity for any nonzero element). The same holds for the partial concepts.
Consequently, despite of Vy being partially positive definite w.r.t. x̂ (Definition 4.5.8), the largest
possible coefficient in (4.18) asN → ∞ could become k1 → 0, see Remark 4.4.3.
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The minimum is attained by [ zx ] = [−Z
−Bv
v

], with v being an arbitrary eigen-
vector in (P/Z) v = v λmin(P/Z) and Z− is an arbitrary generalized inverse of
Z.

Proof. Let us replace z by w := z + Z−B x, which amounts to the coordinate
transformation [

z

x

]
=

[
Ip −Z−B

0n×p In

][
w

x

]
=: Tyq

[
w

x

]
. (4.21)

As a result, the so-called generalizedAitken block-diagonalization ofP is obtained
in[

z

x

]⊤ [
Z B

B⊤ X

][
z

x

]
=

[
w

x

]⊤
T⊤
yq

[
Z B

B⊤ X

]
Tyq

[
w

x

]

=

[
w

x

]⊤[
Z (Ip − ZZ−)B

B⊤(Ip − Z−Z) X −B⊤Z−B

][
w

x

]
= w⊤Zw + x⊤(P/Z)x, (4.22)

with the last step being based on (Ip − ZZ−)B = 0p×n, which holds if P
is positive semidefinite [91, Thm. 1.19]. The submatrix Z of P is also positive
semidefinite due toCauchy’s interlacing theorem, and thus (4.22) is lower bounded
by

w⊤Z w + x⊤(P/Z)x ≥ x⊤(P/Z)x ≥ λmin(P/Z)∥x∥22.

The bound is attained for w = 0p and x = v.

The following theorem is not only useful for the ODE-based approach from
Section 4.1.1. It is as well applicable to the numerical-integration-based results
from Section 4.2.
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Theorem 4.3.2. If Py in Vy(y) = y⊤Pyy is positive semidefinite, then the largest
possible coefficient in (4.18) is

k1 = λmin(Py/Py,zz), (4.23)

where Py,zz denotes the left upper nN × nN submatrix of Py and (·/·) is the
generalized Schur complement (4.20).

Proof. Lemma 4.3.1 applied to P = Py with Z = Py,zz as in (4.10).

Testing whether Py is positive semidefinite is not even required if Vy originates
from the ODE-based approach in Section 4.1.1. If Ay is Hurwitz, only (4.23)
must be evaluated.

Corollary 4.3.3. Let Vy(y) = y⊤Pyy, where Py is a solution of (4.3) for a given
positive semidefinite matrix Qy . If Ay is Hurwitz, then (4.18) holds with k1 from
(4.23).

Proof. By Proposition 4.1.4, Py is positive semidefinite. Consequently, Theo-
rem 4.3.2 applies.

Finally, it should be noted that Lemma 4.3.1 can also be applied to Pχ from (4.8),
thus obtaining the quadratic lower bound as in Corollary 4.3.3, but without the
need of the dense transformation matrix Tcy .
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4.4 Example and Comparison*

In the following example, the thus obtained bound will be compared with known
quadratic lower bounds (1.16) on the LK functional (4.11). These known formulas
for the coefficient in k1∥x(t)∥22 ≤ V (xt) are

k1 = maxα [110, Lem. 2.10]

s.t.
[

Q0 0n×n

0n×n Q1

]
+ α

[
A⊤

0 +A0 A1

A⊤
1 0n×n

]
⪰ 02n×2n,

k1 = min
{

λmin(Q0)
2∥A0∥2+∥A1∥2

, λmin(Q1)
∥A1∥2

}
, [137, Prop. 1]

provided the equilibrium is exponentially5 stable and Q0, Q1 ≻ 0n×n, Q2 ⪰
0n×n. Two issues should be noted.

First, the LK functional satisfies the monotonicity condition of the common LK
theorem by construction, cf. (4.29). Thus, the existence of a quadratic lower bound
with k1 > 0 (or actually even k1 ≥ 0, cf. Theorem 4.5.13) is also the crucial
missing step that proves asymptotic stability via the LK functional. However, the
above formulas are only valid if exponential (equivalently, asymptotic) stability
has been proven beforehand. Hence, the stability analysis must already be done
by other means in a separate step. For instance, this can be achieved via the
eigenvalues of Ay . Having thus Ay already at hand, the proposed approach
becomes even more convenient.

Remark 4.4.1. As a consequence of the above issue, how at all to conclude
stability from the LK functional (4.11) or the involved delay Lyapunov matrix
function Ψ has long been an open question. It has only recently been resolved

* The author has prepublished Section 4.4 in [S2], ©2024 IEEE.
5 equivalently, asymptotically since (1.4) is a linear autonomous RFDE. In linear RFDEs with

bounded delays, uniform asymptotic stability and uniform exponential stability are equivalent
[82, Thm. 5.3 in Ch. 6]. Moreover, in autonomous or periodic RFDEs (in contrast to neutral
FDEs), asymptotic stability is always uniform [82, Lemma 1.1 in Ch. 5].
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by Egorov et al. [60] and Gomez et al. [72]. Their criterion is equivalent to
requiring that, for some Q̃ ≻ 0n×n,

P̃zz(ξ, θ) := Ψ(ξ − θ; Q̃) (4.24)

is a positive definite kernel, in the sense that the block matrix (P̃zz(θj , θk))jk must
be positive semidefinite, with an a priori bound on the discretization resolution of
the grid (ξ, θ) ∈ {(θj , θk)}jk ⊂ [−h, 0]× [−h, 0]. Note that (4.24) is related to
Pzz(ξ, θ) from (4.11b), and (Pzz(θj , θk))jk is a central part of P quad

y in (4.16).
In the end, despite of a completely different framework, the result can be brought
in relation to the numerical integration from Section 4.2, see Appendix B.1.2.

Second, of course the LK functional changes as the delay changes. Note that,
however, the above stated formulas for k1 do not depend on the value of the delay.

Example 4.4.2. For all delay values h that are smaller than the critical delay
hc := arccos(−0.9)/

√
1− 0.92 ≈ 6.17, the equilibrium of

ẋ(t) =

[
−2 0

0 −0.9

]
x(t) +

[
−1 0

−1 −1

]
x(t− h) (4.25)

is asymptotically stable (see Example 2.2.5). Let Q0 = Q1 = I2, Q2 = 02×2.
For any given h > 0 (affecting Ay), the Lyapunov equation for Py can be
implemented as in Example 4.1.5. The resulting k1 from (4.23) is obtained via
the additional lines

p=mat2cell(P,n*[N,1],n*[N,1]);

k1=min(eig(p{2,2}-p{2,1}*(p{1,1}\p{1,2})))

in Matlab (as Py,zz is nonsingular). For the sake of comparison, the numerical-
integration-based matricesP quad

y from the Clenshaw–Curtis quadrature in (4.16)

* The author has prepublished Figure 4.2 in [S2], ©2024 IEEE.
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N

k1 Legendre tau
Chebyshev col.

( with
splitting

)
Clenshaw–Curtis quad.
Gauss quadrature

(a) Convergence of k1 (for h = 2)
N

|k1 − k1,lim|

(b) Error in Figure 4.2a

h

λmin

Py
Py,zz

Py/Py,zz

(c) Delay dependence of minimum eigenvalues in the
decomposition (4.22), P = Py , Z = Py,zz

N

|h
c
,A

y
−

h
c
|

(d) Error of the
critical delay value

k1

h

Thm. 4.3.2

[110, Lem. 2.10]

[137, Prop. 1]

(e) Delay dependence of the bound

h = 2

ϕ(θ) ≡ [1, 1]⊤
|V

y
(y
)
−

V
li
m
|

N
(f) V (ϕ) error

Figure 4.2*: Example 4.4.2. In particular, Figure 4.2e shows the improved quadratic lower bound.
(Figures a,b,d,f share the same legend).

and Gauss quadrature in (4.17) are considered as well. Figure 4.2a shows the
convergence of the lower-bound coefficient k1 for all considered approaches.

Figure 4.2 also gives some further insights. Figure 4.2b certificates a surpris-
ingly fast convergence for the Legendre tau method. This is also confirmed by
other examples (if Q2 ̸= 0n×n, the Lyapunov equation right-hand side from
Section 4.6.1 below should be used). For the Chebyshev collocation method, a
splitting approach is introduced in Section 4.6.1 which gives an improved rate of
convergence, shown by a dashed line in Figure 4.2b.
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Figure 4.2c (Legendre tau, N = 1000) shows the interplay of the matrices in
(4.22), once the asymptotic stability is lost for delays larger than h ≈ 6.17.
Theorem 4.5.13 will prove that positive semidefiniteness ofPy is indeed necessary
and sufficient for Ay being Hurwitz.

Let us consider the boundary hc,Ay between the white and gray delay region
in Figure 4.2c. It marks the smallest delay at which the matrix Ay is no longer
Hurwitz (equivalently, where no longer a positive semidefinite solution Py exists),
which can, e.g., be fine estimated by a bisection method. Already with a rough
discretization resolution N , this boundary reflects the analytically known critical
delayhc of (4.25) quite precisely, and its rapid convergence is shown in Figure 4.2d
for both the Legendre tau and the Chebyshev collocation method.

Most importantly, Figure 4.2e reveals that the largest possible quadratic lower
bound depends on the value of the delay. Theorem 4.3.2 clearly gives a less
conservative value of k1 than the known formulas (green lines). For non-small
delays, the bound is even improved by a multiple.

Moreover, Figure 4.2f shows the rapid convergence of the numerical result for
V (ϕ) with an exemplary argument ϕ.

A remark on non-complete-type functionals is in order.

Remark 4.4.3. If Q1 = Q2 = 0n×n, only a local cubic lower bound on V is
known to exist, and non-existence of a positive quadratic one (see the comments
on (4.18)) is proven for [110, Example 2.1]. Indeed, for this example, k1 from
(4.23) converges to zero as N increases.

Finally, the reduced conservatism of k1, already indicated by Figure 4.2e, is
confirmed by other examples in Table 4.1.

* The author has prepublished Table 4.1 in [S2], ©2024 IEEE.
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k1 [137, Prop. 1] [110, Lem. 2.10] Thm. 4.3.2
[137], Example 5.1 0.7500 0.8229 1.4596
[137], Example 5.2 0.6000 2.3238 3.8660
[137], Example 5.4 0.1464 0.1978 0.5229

Table 4.1*: Improvements of the quadratic lower bound for three physical examples from the literature.

4.5 Interpretation in Terms of Partial Stability

Section 4.1.1 provides a function Vy that is derived similarly to the standard con-
struction of Lyapunov functions discussed in the ODE template ii from Section 1.2
in the introduction of this thesis. However, there is a major difference: the matrix
Qy in the derivative (4.4) is not chosen positive definite if Q2 = 0n×n, which is
a choice of interest in this thesis (moreover, note that, even if Q2 ≻ 0n×n, the
involved Qy is theoretically positive definite for any finite N , but the smallest
eigenvalue of Qy converges to zero as N increases since the integration weights
diminish). As a result, Vy obtained in Section 4.1.1 does not necessarily qualify
as a Lyapunov function for the ODE (3.3). Remarkably, the lower bound (4.18)
of interest on Vy also does not fit with the classical Lyapunov theory for ODEs.

The objective of the present section is to explain why Vy is still meaningful for a
stability analysis of the approximating ODE. In particular, within the presented
approach, the lower bound (4.18) is exactly what is required. First, the section
clarifies what we are actually looking for when we target stability in an RFDE.
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4.5.1 Stability in RFDEs*

Having in mind the classical Lyapunov theorem for ODEs, one might wonder why
the lower bound in (1.16) relies on ∥x(t)∥ and not on the norm of the RFDE state
xt. The latter addresses the norm in C([−h, 0],Rn) defined by

∥xt∥C = max
θ∈[−h,0]

∥xt(θ)∥. (4.26)

ForLyapunov functions inODEs, both the positive-definiteness bound (κ1(∥x∥) ≤
V (x), κ1 ∈ K) and the monotonicity requirement (D+

(ẋ=f(x))V (x) ≤ −κ3(∥x∥),
κ3 ∈ K) refer to the norm of the ODE state. Thus, one would expect (4.26)
at these places when transferring Lyapunov’s results from x(t) ∈ Rn to xt =

ϕ ∈ C([−h, 0],Rn). However, this is not the case in the following common
LK theorem—neither in the left inequality of (4.28) nor in (4.29). Instead of
∥ϕ∥C = ∥xt∥C , only ∥ϕ(0)∥ = ∥xt(0)∥ = ∥x(t)∥ occurs. As usual, the theorem
refers to general autonomous RFDEs

ẋ(t) = f(xt), (4.27)

with f(0n[−h,0]
) = 0n and f locally Lipschitz.

Theorem 4.5.1 (Lyapunov–Krasovskii theorem [82, Thm. 5-2.1]). If there is
a continuous V : C([−h, 0],Rn) → R≥0 such that, for all ϕ in a domain G ⊆
C([−h, 0],Rn), 0n[−h,0]

∈ G, it holds

κ1(∥ϕ(0)∥) ≤ V (ϕ) ≤ κ2(∥ϕ∥C) (4.28)
D+

(4.27)V (ϕ) ≤ −κ3(∥ϕ(0)∥), (4.29)

with some class-K functions κ1,2,3 ∈ K, then the zero equilibrium of (4.27) is
asymptotically stable.

* The author has prepublished Section 4.5.1 in [S2], ©2024 IEEE.
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The key to the above question is that there are two, obviously equivalent, definitions
of asymptotic stability in the RFDE. Starting from the same norm ball for the
initial function x0, they differ in the condition on the implication side: Either
the state xt with the norm (4.26) is taken into account (Definition 4.5.2a), or the
pointwise solution x(t) ∈ Rn is considered (Definition 4.5.2b).

Definition 4.5.2 (Lyapunov stability in RFDEs). The zero equilibrium of (4.27)
is asymptotically stable if

a)
∀ε > 0,∃δ > 0 : ∥x0∥C < δ =⇒ ∀t ≥ 0 : ∥xt∥C < ε

and ∃r > 0 : ∥x0∥C < r =⇒ ∥xt∥C → 0 as t→ ∞
or, equivalently,

b)
∀ε > 0,∃δ > 0 : ∥x0∥C < δ =⇒ ∀t ≥ 0 : ∥x(t)∥ < ε

and ∃r > 0 : ∥x0∥C < r =⇒ ∥x(t)∥ → 0 as t→ ∞.

In terms of the whole state xt, the pointwise consideration in Definition 4.5.2b
refers only to the boundary value x(t) = xt(0) in Figure 3.1b. The classical LK
theorem, Theorem 4.5.1, addresses Definition 4.5.2b since, ∀t ≥ 0,

κ1(∥x(t)∥)
(4.28)

≤ V (xt)
(4.29)

≤ V (x0)
(4.28)

≤ κ2(∥x0∥C) (4.30)

gives a pointwise estimation ∥x(t)∥ ≤ κ−1
1 (κ2(∥x0∥C)) to indicate stability.

A theorem that addresses Definition 4.5.2a would instead rely on κ1(∥ϕ∥C) in
(4.28) and κ3(∥ϕ∥C) in (4.29), as has been expected above. Such a theorem is
also valid [116, Thm. 30.1], but these bounds are quite restrictive and not satisfied
by common LK functionals.

4.5.2 Partial Stability in ODEs*

In the approximating ODE, see Figure 3.1c, the state y(t) ∈ Rn(N+1) repre-
sents the RFDE state xt ∈ C([−h, 0],Rn), and its last vector-valued component

* The author has prepublished Section 4.5.2 in [S2], ©2024 IEEE.
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yN (t) = x̂(t) ∈ Rn represents the pointwise solution value x(t) ∈ Rn. While
Definition 4.5.2a translates to the usual6 definition of asymptotic stability in the
ODE, Definition 4.5.2b amounts to the concept of partial asymptotic stability
with respect to (w.r.t.) x̂. Again, the definition will be given for a general class of
systems. These are ODEs where y(t) is partitioned into two parts, z(t) ∈ Rp and
x̂(t) ∈ Rn, with dim(y(t)) = p+n, and the latter part x̂(t) is of special interest.
That is, autonomous ODEs

d

dt

[
z(t)

x̂(t)

]
=

[
fz(z(t), x̂(t))

fx(z(t), x̂(t))

]
(4.31)

with
[
fz(0p,0n)
fx(0p,0n)

]
= 0p+n and fz,x locally Lipschitz are considered.

Definition 4.5.3 (Lyapunov–Rumyantsev partial stability).
The zero equilibrium of (4.31) is partially stable w.r.t. x̂ if

∀ε > 0,∃δ > 0 :
∥∥∥[ z(0)x̂(0)

]∥∥∥ < δ =⇒ ∀t ≥ 0 : ∥x̂(t)∥ < ε.

It is partially asymptotically stable w.r.t. x̂ if, additionally,

∃r > 0 :
∥∥∥[ z(0)x̂(0)

]∥∥∥ < r =⇒ ∥x̂(t)∥ → 0 as t→ ∞.

For an in-depth discussion of this stability concept, see [184]. As in Defini-
tion 4.5.2b for stability in RFDEs, the initial value deviations consider the whole
state, but the implications address only the part x̂ that is of special interest.

The following partial stability theorem fits well with Theorem 4.5.1 (note that an
upper bound Vy([ zx̂ ]) ≤ κ2(∥ [ zx̂ ] ∥) always exists).

6 The choice of the norm ∥y∥∞ = maxk∈{0,...,N} ∥yk∥ is irrelevant due to the equivalence of
norms in finite-dimensional spaces.
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Theorem 4.5.4 (Peiffer and Rouche 1969 [152, Thm. II]). If there is a con-
tinuous Vy : Rp+n → R≥0, Vy(0p+n) = 0, such that, for all [ zx̂ ] in a domain
G ⊆ Rp+n, 0p+n ∈ G, it holds

κ1(∥x̂∥) ≤ Vy([
z
x̂ ]), (4.32)

with κ1 ∈ K, and D+
(4.31)Vy([

z
x̂ ]) ≤ 0, then the zero equilibrium of (4.31) is

partially stable w.r.t. x̂. If, additionally, ∀ [ zx̂ ] ∈ G :

D+
(4.31)Vy([

z
x̂ ]) ≤ −κ3(∥x̂∥) (4.33)

with κ3 ∈ K, and there exists r > 0 such that
∥∥∥[ z(0)x̂(0)

]∥∥∥ < r implies that
∥fx(z(t), x̂(t))∥ is bounded for all t ≥ 0, then it is partially asymptotically
stable w.r.t. x̂.

As in the classical LK theorem for RFDEs (Theorem 4.5.1), both the (partial)
positive-definiteness condition (4.32) and the monotonicity requirement7 (4.33)
consider only the part of special interest x̂(t) = yN (t) ≈ x(t) = xt(0). Hence-
forth, V in Theorem 4.5.4 will be called a partial Lyapunov function.

To sum up, the discretization of Definition 4.5.2b for RFDE stability is exactly
the definition of Lyapunov–Rumyantsev partial stability w.r.t. x̂ (Definition 4.5.3).
Moreover, the Lyapunov–Krasovskii theorem for stability in the RFDE (Theo-
rem 4.5.1) becomes Peiffer and Rouche’s theorem for partial stability (Theo-
rem 4.5.4).

7 Criteria that come without the boundedness condition below (4.33) require a full monotonicity
condition D+

(4.31)
Vy(y) ≤ −κ3(∥y∥), κ3 ∈ K, cf. [119].
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4.5.3 Equivalence of Stability and Partial Stability in the
Approximating ODE*

In general ODEs, the concept of partial stability is a weaker concept than stability.
We can still focus without doubt on partial stability if the equivalence between
Definition 4.5.2a and 4.5.2b is reflected by theODE approximation, so that proving
partial stability w.r.t. x̂ is already sufficient for proving stability.

Condition 4.5.5. The zero equilibrium of the ODE approximation (3.3) is (asymp-
totically) stable if and only if it is partially (asymptotically) stable w.r.t. x̂.

To verify this condition for the discretization schemes at hand, the following result
from the realm of total stability is expedient.

Lemma 4.5.6 ([118, Thm. 3.11.3]). If the zero equilibrium of the auxiliary system

ż = fz(z, 0n) (4.34)

is asymptotically stable, then, in (4.31), partial (asymptotic) stability w.r.t. x̂ of
the zero equilibrium implies (asymptotic) stability of the zero equilibrium.

Loosely speaking, for reasonable approximations the latter seems to be a matter of
course since, if x(t) for t ≥ 0 could be forced to remain zero, then, for t ≥ h, the
solution segment xt is zero, which should at least asymptotically be reflected by
z(t) → 0p as t→ ∞. In terms of the linear ODE (3.3), Lemma 4.5.6 only refers
to the submatrix Ay,zz := (Ay

jk)j,k∈{0,...,N−1}. For collocation schemes like
Ay = ACy in Section 3.4, stability of this submatrix is clearly neither affected by
the RFDE coefficient matricesA0, A1 (occurrence only in the last block-row), nor
the delay h (scalar factor), nor the dimension n (Kronecker product with In). For
taumethods, an analogous independence can be achieved byfirst applying a change
of basis w.r.t. the z-coordinates. Using the more natural mixed coordinates (3.64)

* The author has prepublished Section 4.5.3 in [S2], ©2024 IEEE.
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rather than interpolation coordinates still incorporates x̂ as the last component
of the coordinate vector but the upper part of the system matrix does not rely
on A0, A1. Consequently, in these coordinates, setting, e.g., A0 = A1 = 0n×n
does not alter the submatrix eigenvalues. The next lemma formulates the thus
motivated coordinate invariant form of Lemma 4.5.6 for the linear ODE. Whether
it applies is, consequently, no question of A0, A1, h, but it is rather a question of
the discretization scheme.

Corollary 4.5.7. Consider the linear ODE (3.3). If there exists a change of
coordinates w.r.t. z, where [z⊤, x̂⊤]⊤ = T [v⊤, x̂⊤]⊤, such that the left upper
nN × nN submatrix of T−1AyT is Hurwitz, then Condition 4.5.5 holds.

Proof. Lemma 4.5.6 with (4.31) given by d
dt [

v
x̂ ] = T−1AyT [ vx̂ ].

ForAy = ACy from the Chebyshev collocation method (3.4), the submatrixAy,zz
can indeed proven to be Hurwitz for any discretization resolutionN [56, Prop. 2],
[170]. Thus, by Corollary 4.5.7 (with v = z), Condition 4.5.5 holds. For other
discretization schemes, see [38, Sec. 4.3.2]. For the Legendre tau system matrix
in mixed coordinates8 (3.64), Lemma 4.5.6 can numerically shown to be true for
relevant values of N .

Consequently, Condition 4.5.5 is not only a reasonable assumption for an ODE
that approximates an RFDE, but, regarding the discretization of an RFDE, it can
even be confirmed as a property of the underlying discretization schemes.

4.5.4 Proving Stability in the ODE via the Result from
the Numerical Approach*

The main result of this section, Theorem 4.5.12, will show that Vy from Sec-
tion 4.1.1 indeed always qualifies as a partial Lyapunov function for (3.3) if the

8 In terms of Corollary 4.5.7, v = [(c0)⊤, . . . , (cN−1)⊤]⊤.
* The author has prepublished Section 4.5.4 in [S2], ©2024 IEEE.

117



4 What ODE-Approximation Schemes Reveal about Lyapunov–Krasovskii Functionals

equilibrium is asymptotically stable. As a side effect, Theorem 4.5.13 will give a
necessary and sufficient stability criterion in terms of Py . The following wording
is used.

Definition 4.5.8. Let x̂-pd be the abbreviation for “partially positive definite w.r.t.
the components x̂”.

(a) A function U : Rp+n → R; y = [ zx̂ ] 7→ U(y) is called x̂-pd on Ω ⊆ Rp+n

if it is positive semidefinite, i.e., ∀y ∈ Ω : U(y) ≥ 0, U(0p+n) = 0,
and ∀y = [ zx̂ ] ∈ Ω with ∥x̂∥ ≠ 0 : U(y) > 0.

(b) A symmetric matrixM = M⊤ ∈ R(p+n)×(p+n) is called x̂-pd if U(y) =

y⊤My is x̂-pd on Rp+n.

Analogously to local, or in terms of U(y) = y⊤My even global, positive defi-
niteness, cf. [108, Lemma 4.3], partial positive definiteness can be expressed via
a class-K function.

Lemma 4.5.9.M = M⊤ ∈ R(p+n)×(p+n) is x̂-pd if and only if ∃κ ∈ K such
that ∀[ zx̂ ] ∈ Rp+n : κ(∥x̂∥) ≤ [ zx̂ ]

⊤M [ zx̂ ].

Regarding y⊤Qyy = −D+
(4.31)Vy(y), Lemma 4.5.9 refers to the class-K function

in (4.33). For Qy in (4.4) or (4.39),

κ3(∥x̂∥2) := λmin(Q0) ∥x̂∥22 ≤ y⊤Qyy. (4.35)

can be chosen. Rather decisive is whether the Lyapunov equation solution Py is
also x̂-pd, as it is required in (4.32) with Vy(y) = y⊤Py y.

Lemma 4.5.10. Let Py = P⊤
y be a solution of (4.3) for a x̂-pd Qy . If Py is

positive semidefinite, then it is even x̂-pd.

Proof. The result is shown by contradiction. Assume there exists a yc = [
zc
x̂c
]with

∥x̂c∥ ≠ 0 such that y⊤c Pyyc = 0. Then Pyyc = 0n(N+1) (cf. a decomposition
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Py = C⊤C in y⊤c Pyyc = ∥Cyc∥22 = 0, C⊤Cyc = 0n(N+1)), which leads by
(4.3) to y⊤c Qyyc = 0, contradicting that Qy is x̂-pd.

Lemma 4.5.11. Let Py = P⊤
y be a solution of (4.3) for a x̂-pd Qy . Consider

Theorem 4.5.4 in terms of partial asymptotic stability w.r.t. yN = x̂ for the
zero equilibrium in (3.3). If Py is positive semidefinite, then, assuming Condi-
tion 4.5.5, Vy(y) = y⊤Py y satisfies the conditions on a partial Lyapunov function
in Theorem 4.5.4.

Proof. InTheorem4.5.4, (4.32) and (4.33) hold byLemma4.5.10 andLemma4.5.9.
The boundedness condition on ∥fx(z(t), x̂(t))∥ in Theorem 4.5.4 is also ensured:
due to Condition 4.5.5, the already provable partial stability implies stability,
which is accompanied by compactness of the trajectories, and the image under
the continuous mapping fx remains compact.

As the above lemma is applicablewhenever theODE equilibrium is asymptotically
stable, the desired interpretation of the function Vy is obtained.

Theorem 4.5.12. If Ay is Hurwitz and Condition 4.5.5 applies, then Vy from
Section 4.1.1 is a partial Lyapunov function for (3.3).

Proof. If Ay is Hurwitz, Py is positive semidefinite by Proposition 4.1.4. As Qy
in Section 4.1.1 is x̂-pd, Lemma 4.5.11 applies.

The focus of this chapter is not preliminary on a stability criterion in terms of Py
because stability of the linear ODE can simply be concluded from the eigenvalues
of Ay . Nevertheless, the following result might still be of interest since it shows
that Vy must only be tested for positive semidefiniteness. Proving existence of κ1
in (4.32) is not required due to Lemma 4.5.10.

Theorem 4.5.13. Assume Condition 4.5.5 holds. Let Py = P⊤
y be a solution of

(4.3) for a x̂-pd matrix Qy (e.g., (4.4) or (4.39)). The zero equilibrium of the
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approximating ODE (3.3) is asymptotically stable if and only if Py is positive
semidefinite.

Proof. If Py ⪰ 0n(N+1)×n(N+1), then Lemma 4.5.11 applies. Thus, partial
asymptotic stability w.r.t. x̂ can be proven by Theorem 4.5.4. The latter implies
asymptotic stability by Condition 4.5.5. Conversely, if Ay is Hurwitz, then
Py ⪰ 0n(N+1)×n(N+1) because of Proposition 4.1.4.

4.5.5 Meaning for the RFDE*

As a consequence, if the chosen discretization scheme is stability preserving
as discussed in Section 3.7, then the stability-dependent characterization of Py
derived above in Section 4.5.4 is also meaningful for the RFDE.

Corollary 4.5.14. Assume the discretization scheme satisfies Condition 3.7.1 and
4.5.5. Provided N is sufficiently large, then Py from Section 4.1.1 is positive
semidefinite if and only if the zero equilibrium of the RFDE is asymptotically
stable.

Proof. Theorem 4.5.13 combined with Condition 3.7.1.

The overall Section 4.5 can be concluded as follows. The function Vy obtained
in Section 4.1.1 does not necessarily qualify as a classical Lyapunov function.
Instead, it is a partial Lyapunov function for a system in which proving partial
stability is already sufficient for proving stability.

* The author has prepublished Section 4.5.5 in [S2], ©2024 IEEE.
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4.6 Convergence

Finally, it remains to discuss convergence aspects of the proposed approach for
complete-type LK functionals in terms of an increasing discretization resolution
N of the underlying ODE approximation. In any case, refined results with various
enlarged values of N should be considered to get an impression of the possible
reliability of obtained results.

4.6.1 Scheme-Dependent Improvements

A splitting of the LK functional is introduced below in order to provide improved
results for the Lyapunov equation from the Chebyshev collocation system matrix.
Although such a splitting approach is not required in the practical implementation
of the Legendre-tau-based approach, the proposed splitting will still be helpful
when it comes to the proof of convergence. Moreover, for the Legendre-tau-based
approach an improved treatment ofQ2 from (1.14) is introduced in Section 4.6.1.2.

4.6.1.1 Chebyshev collocation*

Consider the ODE-based approach with the Chebyshev collocation method. To
improve the convergence properties (indicated in Figure 4.2), the present section
proposes to transform the problem of approximating V (ϕ) to a problem of ap-
proximating a modified V0(ϕ) with Q1 and Q2 being zero. To this end, the shift
matrices in the following splitting lemma are chosen as

Q̃1 = Q1 and Q̃2 = Q2. (4.36)

The idea is closely related to the derivation of complete-type functionals in [110,
Thm. 2.11].

* The author has prepublished Section 4.6.1.1 in [S2], ©2024 IEEE.
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Lemma4.6.1 (Splitting). ForQ0, Q1, Q2 ∈ Rn×n, letV (ϕ) = V (ϕ; Q0, Q1, Q2)

denote a solution of (1.14). Then

V (ϕ; Q0, Q1, Q2 ) = V0(ϕ) + V1(ϕ) + V2(ϕ) (4.37)
with V0(ϕ) = V

(
ϕ; (Q0 + Q̃1 + hQ̃2), (Q1 − Q̃1), (Q2 − Q̃2)

)
V1(ϕ) = V (ϕ;−Q̃1, Q̃1, 0n×n)

=

∫ 0

−h
ϕ⊤(η)Q̃1ϕ(η) dη

V2(ϕ) = V (ϕ;−hQ̃2, 0n×n, Q̃2)

=

∫ 0

−h
ϕ⊤(η)(h+ η)Q̃2ϕ(η)dη

for arbitrarily chosen shift matrices Q̃1, Q̃2 ∈ Rn×n.

Proof. Using ϕ(η) = xt(η) = x(t+ η), the derivatives of V1 and V2 are

D+
f V1(xt) =

d

dt

∫ t

t−h
x⊤(ξ)Q̃1x(ξ) dξ

= x⊤(t)Q̃1x(t)− x⊤(t− h)Q̃1x(t− h),

D+
f V2(xt) =

d

dt

∫ t

t−h
x⊤(ξ)

(
(h+ ξ − t)Q̃2

)
x(ξ) dξ

= hx⊤(t)Q̃2x(t)−
∫ t

t−h
x⊤(ξ)Q̃2x(ξ) dξ.

They compensate in (4.37) the difference between D+
f V0(xt) and the desired

D+
f V (xt) from (1.14).

The first term V0(ϕ) in (4.37) with Q̃1 = Q1, Q̃2 = Q2 can be approximated by
y⊤Py,0 y from a Lyapunov equation withQ0 in (4.4) being replaced byQ0+Q1+

hQ2, andQ1 andQ2 being replaced by zero. Since V1(ϕ) and V2(ϕ) in (4.37) are
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analytically known, these terms can be treated by a numerical integration. Their
contributions are added on the (block-)diagonal of Py,0, i.e. V (ϕ) ≈ y⊤Py y,

Py = Py,0 + diag((wk)k)⊗Q1 + diag((wk(h+ θ̃k))k)⊗Q2, (4.38)

where wk are integration weights, see Section 4.2.1.

4.6.1.2 Legendre tau*

A separate numerical treatment of V1 and V2 in (4.37) is not required if the
Legendre-tau-based approach is used. However, if Q2 is nonzero, the following
modification of Qy in (4.4) should be used in (4.6) or (4.3)

Qy = blkdiag(Q1, 0n(N−1)×n(N−1), Q0) + T⊤
cyQc,2Tcy

with Qc,2 := diag([ (h2
2

2k+1 )k∈{0,...,N−1}, h ])⊗Q2 (4.39)

(the right lower component hQ2 in Qc,2 is motivated by Lemma 4.6.3 below).

Despite of not being treated separately in the numerical approach, the arising
contributions for V1(ϕ) and V2(ϕ) within the approximation of V (ϕ) are still of
interest for the proofs in the next sections. They can be obtained by solving Lya-
punov equations withQ0,1,2 being replaced by the matrices behind the semicolon
in V1(ϕ) = V (ϕ; . . .) and V2(ϕ) = V (ϕ; . . .) from Lemma 4.6.1. In the follow-
ing two lemmas, the corresponding solutions are explicitly derived by solving the
Lyapunov equation (4.6) in Legendre coordinates analytically. The results show
that the Legendre-tau-based approximations of V1(ϕ) and V2(ϕ) give even the
exact value for any ϕ that is a polynomial of degree N − 1 or less.

Lemma 4.6.2. The Legendre-tau-based approximation of V1(ϕ) in Lemma 4.6.1
becomes V1(ϕ̃(N−1)), where ϕ̃(N−1)(θ) =

∑N−1
k=0 c̃

kpk(ϑ(θ)) is the (N − 1)-th
order Legendre series truncation of ϕ(θ), see (3.44).

* The author has prepublished Section 4.6.1.2 in [S2], ©2024 IEEE.
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Proof. For Qy = diag([1, 01×n(N−1),−1]) ⊗ Q̃1, and thus Qjkc = (−1 +

(−1)j+k)Q̃1, it can be verified that

Pc = diag([(h2
2

2k+1 )k∈{0,...,N−1}, 0])⊗ Q̃1 (4.40)

is a solution of (4.6). Hence, Vc(c) = c⊤Pcc =
∑N−1
k=0

h
2

2
2k+1c

⊤
k Q̃1ck. Equiva-

lence with V1(ϕ̃(N+1)) =
∫ 0

−h(
∑N−1
j=0 c̃jpj(ϑ(θ)))

⊤Q̃1(
∑N−1
k=0 c̃

kpk(ϑ(θ))) dθ

follows from (3.47) and
∫ 1

−1
pj(ϑ)pk(ϑ) dϑ = 2

2k+1δjk, see Lemma 3.5.3.

Lemma 4.6.3. Provided (4.39) is used, the Legendre-tau-based approximation of
V2(ϕ) in Lemma 4.6.1 becomes V2(ϕ̃(N−1)) with ϕ̃(N−1) as in Lemma 4.6.2.

Proof. In view of the definition of V2(ϕ), let Q0 := −hQ̃2 and Q2 := Q̃2.
Consider Qc = Qc,0 + Qc,2 with Qc,0 = T⊤

yc(diag([01×nN , 1]) ⊗ Q0)Tyc =

1(N+1)×(N+1) ⊗ Q0 and Qc,2 = diag([( 1
2k+1 )k∈{0,...,N−1}, 1]) ⊗ hQ2 from

(4.39). It can be verified that Pc with

P jkc =


(h2 )

2 2
2j+1

k
2k+1 Q̃2 if j = k − 1 < N − 1,

(h2 )
2 2
2j+1 Q̃2 if j = k < N,

(h2 )
2 2
2j+1

k+1
2k+1 Q̃2 if j = k + 1 < N,

0n×n otherwise,

(4.41)

solves (4.6). The equality c⊤Pcc = V2(
∑N−1
k=0 c

kpk(ϑ(θ))) is shown by us-
ing the three-term recurrence relation [88, (4.17)] ϑpk(ϑ) = k

2k+1pk−1(ϑ) +
k+1
2k+1pk+1(ϑ) in V2.

4.6.2 Convergence Towards the Functional

For the numerical approach that is presented Section 4.1, the following conver-
gence statement is desirable.
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Condition 4.6.4. For any given ϕ ∈ C([−h, 0],Rn), the scalar value Vy(y)
converges to V (ϕ) as N increases.

Henceforth, the notation y = πy(ϕ) intends to emphasize that the discretization
y ∈ Rn(N+1) is uniquely determined fromϕ ∈ C (depending on the discretization
scheme). Moreover, to keep track of the discretization resolutionN , a superscript
[N ] is added, e.g., in V [N ]

y (·) = Vy(·) and π[N ]
y (·) = πy(·). Consequently, the

desired convergence statement from Condition 4.6.4 can be rewritten as

∀ϕ ∈ C : V [N ]

y (π[N ]

y (ϕ)) → V (ϕ), (N → ∞). (4.42)

To prove this statement is the objective of the present section. Motivated by the
numerical results in Section 4.4, it focuses on the Legendre tau method. Moreover
this choice benefits from existing convergence proofs for the approximation of
algebraic Riccati equations from the context of optimal control [70, 99, 97].

4.6.2.1 Operator-based description*

The following considerations rely on the fact that any argument ϕ ∈ C for V (ϕ)

gives rise to an element[ ϕ
ϕ(0)

]
∈ C × Rn ⊂ L2 × Rn =M2 (4.43)

in the product space M2 = L2([−h, 0],Rn) × Rn already encountered in Sec-
tion 3.2.2. Note that (M2, ⟨·, ·⟩M2

) is a Hilbert space with the natural inner
product

〈[
ϕ1
r1

]
,
[
ϕ2
r2

]〉
M2

=

∫ 0

−h
ϕ⊤1(θ)ϕ2(θ) dθ + r⊤1 r2, (4.44)

* The author has prepublished Section 4.6.2.1 in [S2], ©2024 IEEE.
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ϕ1,2 ∈ L2, r1,2 ∈ Rn. Similarly to the well-known VRn(x) = ⟨x, Px⟩Rn =

x⊤Px in the finite-dimensional ODE setting for x ∈ Rn, a complete-type LK
functional can be written as

V (ϕ) = VM2
(
[ ϕ
ϕ(0)

]
) =

〈[ ϕ
ϕ(0)

]
,P
[ ϕ
ϕ(0)

]〉
M2

(4.45)

with a self-adjoint operator P : M2 →M2. Consider the splitting V = V0+V12
with V12 = V1 + V2 from Lemma 4.6.1 (Q̃1 = Q1, Q̃2 = Q2). For the first part,
which becomes

V0(ϕ) = ⟨
[ ϕ
ϕ(0)

]
,P0

[ ϕ
ϕ(0)

]
⟩M2

, (4.46)

the self-adjoint operator P0 : M2 →M2 is described by suboperators on L2 and
Rn according to

P0

[
ϕ

r

]
=

[
Pzzϕ+ Pzxr

Pxzϕ+ Pxxr

]
=

[
v

w

]
, with (4.47)

[
v(θ)

w

]
=

[∫ 0

−h Pzz(θ, η)ϕ(η) dη + Pzx(θ) r∫ 0

−h Pxz(η)ϕ(η) dη + Pxx r

]
. (4.48)

Thus, (4.11a) is regained by (4.46), using (4.47) with r = ϕ(0),

V0(ϕ)
(4.44)
=

∫ 0

−h
ϕ⊤(θ) v(θ) dθ + ϕ⊤(0)w (4.49)

(4.48)
=

∫ 0

−h
ϕ⊤(θ)

(∫ 0

−h
Pzz(θ, η)ϕ(η) dη + Pzx(θ)ϕ(0)

)
dθ

+ ϕ⊤(0)
(∫ 0

−h
Pxz(η)ϕ(η) dη + Pxx ϕ(0)

)
(4.50)
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(to be more precise, (4.11a) with Pzz,diag(θ) ≡ 0n×n). The missing part V12 =

V1 + V2 in (4.37) can also be written as

V12(ϕ) =

∫ 0

−h
ϕ⊤(θ)

(
Q1 + (h+ θ)Q2

)
ϕ(θ) dθ (4.51)

= ⟨
[ ϕ
ϕ(0)

]
,P12

[ ϕ
ϕ(0)

]
⟩M2

(4.52)

based on the multiplication operator

P12

[
ϕ

r

]
=

[
Pzz,diagϕ

0n

]
=

[
v

0n

]
, with (4.53)

v(θ) = Pzz,diag(θ)ϕ(θ) = (Q1 + (h+ θ)Q2)ϕ(θ).

Nevertheless, V12 will be treated separately9.

4.6.2.2 Convergence of the First Part*

In this section, convergence towards V0 shall be shown. The underlying operator
P0 in (4.46) satisfies an operator-valued Lyapunov equation, cf. [47, 156]. The
right-hand side of that Lyapunov-equation is based on the right-hand side of (1.14).
Because of the splitting approach, the latter is D+

(1.4)V0(xt) = x⊤(t)Q̃x(t) with
Q̃ = Q0 +Q1 + hQ2, or, for xt = ϕ,

D+
(1.4)V0(ϕ) = −ϕ⊤(0) Q̃ ϕ(0) = −⟨

[ ϕ
ϕ(0)

]
,Q
[ ϕ
ϕ(0)

]
⟩M2 , (4.54)

9 The term ϕ⊤(−h)Q1ϕ(−h) would require an unbounded operator Q in the Lyapunov equation
(4.55). Moreover, P12 is not compact.

* The author has prepublished Section 4.6.2.2 in [S2], ©2024 IEEE.
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Q
[ ϕ
ϕ(0)

]
=
[ 0n[−h,0]

Q̃ ϕ(0)

]
. Therefore, the operator-valued Lyapunov equation for the

self-adjoint operator P0 = P∗
0 reads

⟨x,P0A x⟩M2
+ ⟨x,A ∗P0x⟩M2︸ ︷︷ ︸

=2⟨x,P0A x⟩M2

= −⟨x,Qx⟩M2
, (4.55)

∀x ∈ D(A ) ⊂ M2, cf. [47, 156], where A is given by (3.12) and and A ∗ is its
adjoint10,11.

The ODE-based approach in Section 4.1.1 yields an approximation V0(ϕ) ≈
Vy,0(y) = y⊤Py,0 y, or, in the notation of (4.42), V [N ]

y,0(π
[N ]
y (ϕ)). Similarly to the

exact V0(ϕ) in (4.46), this approximation can be described via

V [N ]

y,0(π
[N ]

y (ϕ)) = ⟨
[ ϕ
ϕ(0)

]
,P [N ]

0

[ ϕ
ϕ(0)

]
⟩M2 (4.56)

with an approximated operator P [N ]

0 , for which the matrix P0,y , respectively P0,c

or P0,χ, is a coordinate representation, see Appendix A. Moreover, similarly to
the exact operator P0 from (4.55), this approximated operator P [N ]

0 also satisfies
an operator-valued Lyapunov equation,

2⟨x, P [N ]

0 A [N ]x⟩M2 = −⟨x, Qx⟩M2 . (4.57)

The latter, however, only relies on the approximation A [N ] from the Legendre tau
method, see Section 3.5.3, instead of the original operator A . See Appendix A
for the relation between the operator-valued and the matrix-valued Lyapunov
equation.

10 See (A.92) for an explicit description of the adjoint of A .
11 For (4.55) to make sense, (v, w) in (4.47) should be an element ofD(A ∗) from (A.92). Indeed,

in (4.11b), Pzz(−h, η) = A⊤
1 Pxz(η) and Pzx(−h) = A⊤

1 Pxx.
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4.6 Convergence

It has to be shown that, ∀ϕ ∈ C, the scalar value V0(ϕ) in (4.46) is indeed the
limit of its approximations in (4.56) asN → ∞. In terms of the operators, weak12

operator convergence P [N ]

0

weakly→ P0 suffices for that objective.

Lemma 4.6.5. Let (4.56) describe a Legendre-tau-based result forV0(ϕ). Assume
{∥P [N ]

0 ∥}N is bounded13, and the existence and uniqueness conditions from
Lemma 4.1.2 and Remark 4.1.3 hold. Then P [N ]

0 converges weakly to P0 as
N → ∞.

Proof. See [99, Thm. 5.1 (i)] with zero input operator and the uniqueness condi-
tions from Section 4.1.2. For the sake of plausibility, the proof is briefly sketched:
As outlined above, the operatorP0 is a self-adjoint solution of the operator-valued
Lyapunov equation (4.55), whereas the approximation P [N ]

0 only satisfies (4.57)
from the approximated system dynamics. According to [70, Thm. 6.5], due to
the boundedness of {∥P [N ]

0 ∥}N , there exists a subsequence {P [Nk]

0 }k that has a
weak limit P [Nk]

0

weakly→ P [∞]

0 , as k → ∞. Moreover, according to Lemma 3.5.5,
A [N ]

strongly→ A on the restriction to D(A 2). The product of a weakly conver-
gent operator and a strongly convergent operator converges weakly and thus the
left-hand side in (4.57) converges according to

∀x ∈ D(A 2) :
〈
x,P [Nk]

0 A [Nk]x
〉
M2

→
〈
x,P [∞]

0 A x
〉
M2

, as k → ∞,

12 The operator sequence {P [N ]}N converges weakly to P if
∀z, x ∈ M2: lim

N→∞
⟨z,P [N ]x⟩M2

= ⟨z,Px⟩M2
(i.e., ∀x ∈ M2 : P [N ]x

weakly→ Px).

It converges strongly if ∀x ∈ M2 : lim
N→∞

∥P [N ]x− Px∥M2
= 0.

The implications ‘operator norm conv.’ ⇒ ‘strong conv.’ ⇒ ‘weak conv.’ hold.
13 The operator norm of P [N ]

0 can be computed from its coordinate matrix (considering, e.g., mixed
coordinates) P0,χ via ∥P [N ]

0 ∥ = ∥(H−1/2
χ ⊗ In)P0,χ(H

−1/2
χ ⊗ In)∥2, with Hχ given by

(A.21). See (A.112) (where n = 1).
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if it is restricted to D(A 2). However, D(A 2) is a core for A (i.e., dense in
D(A ) for the graph norm, see [63, Def. 1.6]). Therefore, analogously to [99,
Thm. 5.1 (i)], it can be concluded that the limit of (4.57)

2⟨x,P [∞]

0 A x⟩M2 = −⟨x,Qx⟩M2 (4.58)

does not only hold for x ∈ D(A 2) but for all x ∈ D(A ). Hence, the weak limit
P [∞]

0 indeed satisfies the original Lyapunov equation (4.55), and thusP [∞]

0 = P0.
Since all weakly convergent subsequences {P [Nk]

0 }k ⊆ {P [N ]

0 }N have the same
weak limit P [∞]

0 = P0, and since for any subsequence of {P [N ]

0 }N again a
convergent subsequence exists, it is argued in [70, Thm. 6.7] that the whole
sequence {P [N ]

0 }N must converge weakly to P [∞]

0 = P0.

In fact, this result is not at all special to the Legendre tau method. An alternative
proof from [70, Thm. 6.7] applies to any discretization scheme that satisfies
standard conditions proving convergence of numerical solutions for (xt, x(t)) in
M2. Lemma 4.6.5 relies on uniform boundedness and existence assumptions. In
the following, it is shown that these can be ignored in the case of an exponentially
stable RFDE equilibrium. Nevertheless, while simplifying the considerations,
stability of the equilibrium is no necessary condition in the above derivations.

Lemma 4.6.6. If the RFDE equilibrium is exponentially stable, then the assump-
tions in Lemma 4.6.5 hold.

Proof. Let T (t) : M2 →M2;
[ x0

x0(0)

]
7→
[ xt

x(t)

]
= T (t)

[ x0

x0(0)

]
be the solution

operator, and T [N ](t) its approximation (represented by eA
[N]

y t). Due to the
stability preservation property from [97, Thm. 5.3], ∃M ≥ 1, β > 0, N̄ ∈ N,
such that ∀N ≥ N̄ : ∥T [N ](t)∥ ≤ Me−βt. Therefore, the improper integral
formula

P [N ]x =

∫ ∞

0

(T [N ])∗(s)Q T [N ](s) xds (4.59)
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is applicable, see, e.g., [70]. Thus, with ∥Q∥ = ∥Q̃∥2, the operatorsP [N ] are uni-
formly bounded by ∥P [N ]∥ ≤

∫∞
0

∥Q̃∥2∥T [N ](s)∥2 ds ≤ ∥Q̃∥2M
2

2β . Moreover,
the existence and uniqueness assumptions hold by Proposition 4.1.4.

The convergence towards V0(ϕ) does not require more than the thus established
weak convergence P [N ]

0

weakly→ P0. However, the following stronger result will
become helpful in Section 4.6.3.

Lemma 4.6.7. Let (4.56) describe a Legendre-tau-based result for V0(ϕ). If the
RFDE equilibrium is exponentially stable, then P [N ]

0 converges in operator norm
to P0, i.e., it holds ∥P [N ]

0 − P0∥ → 0 as N → ∞.

Proof. See [70, Thm. 6.9], where even convergence in the trace norm [70, p. 111]
is proven. The result requires that not only the approximations of the solution
operator T (t) converge strongly12, but also those of its adjoint T ∗(t), which for
the Legendre tau method is proven in [97, Thm. 2.2].

4.6.2.3 Convergence of the Overall Result*

To prove Condition 4.6.4 on convergence towards V = V0 + V12, it only remains
to include V12.

Theorem 4.6.8. If the RFDE equilibrium is exponentially stable or, more gener-
ally, if the assumptions of Lemma 4.6.5 hold, then Condition 4.6.4 applies for the
Legendre-tau-based approach (provided the Lyapunov equation right-hand side
from (4.39) is used).

Proof. Since Py depends linearly on Qy in the Lyapunov equation (4.3), the ap-
proximation of V is the superposition of the approximations of V0 and V12 =

V1 + V2 from Lemma 4.6.1. For the first one, the convergence, ∀ϕ ∈ C :

* The author has prepublished Section 4.6.2.3 in [S2], ©2024 IEEE.
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V [N ]

y,0(π
[N ]
y (ϕ)) → V0(ϕ) as N → ∞, is a consequence of the weak convergence

of P [N ]

0 proven in Lemma 4.6.5. Concerning the second one, the lemmas in Sec-
tion 4.6.1.2 show that V12(ϕ) is approximated by V [N ]

y,12(π
[N ]
y (ϕ)) = V12(ϕ̃

(N−1)),
where ϕ̃(N−1) is a Legendre series truncation of ϕ. The convergence, ∀ϕ ∈
C : V12(ϕ̃

(N−1)) → V12(ϕ) as N → ∞, follows from the L2-convergence of
the involved Legendre series truncation, ∥ϕ − ϕ̃(N−1)∥L2 → 0 as N → ∞ [68,
Thm. 6.2.3], combined with the continuity14 of V12 in L2.

4.6.3 Quadratic Lower Bound on the Functional*

In the following, it will be proven that, for N → ∞, the quadratic lower bound
on the approximation gives also a valid quadratic lower bound on the functional.
This holds for any discretization scheme satisfying Condition 4.6.4. Moreover,
for the Legendre tau method, the thus obtained bound will be shown to be tight,
meaning that the largest possible coefficient k1 in (1.16) is obtained.

For any discretization resolution N , the largest possible coefficient k[N ]

1 for the
bound (4.18) on the approximation V [N ]

y is given by (4.23). Note that k[N ]

1 and,
similarly, the largest possible coefficient k1 = kopt1 for the bound (1.16) on the
functional V are defined by

k[N ]

1 = min
z∈RnN

x̂∈Rn\{0n}

1
∥x̂∥2

2
V [N ]

y (
[
z
x̂

]
), kopt1 = inf

ϕ∈C
ϕ(0) ̸=0n

1
∥ϕ(0)∥2

2
V (ϕ).

(4.60)

14 A quadratic form V (x) = ⟨x,Px⟩X , P = P∗, in a Hilbert space X is continuous if
∃k > 0 : ⟨x,Px⟩X ≤ k∥x∥2X , which by inf k = ∥P∥ holds if P is bounded. Note that
V12(ϕ) = ⟨ϕ,Pzz,diagϕ⟩L2

≤ (∥Q1∥2 + h∥Q2∥2)∥ϕ∥2L2
. For VM2

(x) = ⟨x,Px⟩M2
≤

k∥x∥2M2
see [110, p. 65].

* The author has prepublished Section 4.6.3 in [S2], ©2024 IEEE.
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However, since both the functional and its approximation are quadratic, with
V (cϕ) = c2V (ϕ) for any c ∈ R in (4.11a) and V [N ]

y (cy) = c2V [N ]
y (y) in (4.1),

definition (4.60) simplifies to

k[N ]

1 = min
z∈RnN

x̂∈Rn\{0n}

V [N ]

y

(
1

∥x̂∥2

[
z
x̂

])
, kopt1 = inf

ϕ∈C
ϕ(0) ̸=0n

V
(

1
∥ϕ(0)∥2

ϕ
)
.

(4.61)

Theorem 4.6.9. If Condition 4.6.4 holds, then k1 = lim sup
N→∞

k[N ]

1 is a valid

quadratic-lower-bound coefficient in (1.16).

Proof. Let ϕδ give a V (ϕδ) that is arbitrarily close to the infimum in (4.61)
according to

∀δ > 0,∃ϕδ ∈ C, ∥ϕδ(0)∥2 = 1 : V (ϕδ) < kopt1 + δ. (4.62)

The assumed convergence (4.42), i.e., ∀ϕ ∈ C, ∀ε > 0, ∃N̄(ε, ϕ) ∈ N, ∀N ≥
N̄(ε, ϕ) : |V [N ]

y (π[N ]
y (ϕ))− V (ϕ)| < ε, shows that

∀N ≥ N̄( ε2 , ϕδ) : |V [N ]

y (π[N ]

y (ϕδ))− V (ϕδ)︸ ︷︷ ︸
(4.62)
< kopt1 +δ

| < ε
2 , (4.63)

and thus, ∀N ≥ N̄( ε2 , ϕδ) :

k[N ]

1

(4.61)
= min

z∈RnN ,
x̂∈Rn\{0n}

V [N ]

y ( 1
∥x̂∥2

[
z
x̂

]
) ≤ V [N ]

y (π[N ]

y (ϕδ)) (4.64)
(4.63)
< V (ϕδ) +

ε
2

(4.62)
< kopt1 + δ + ε

2 .

Choosing δ = ε
2 , (4.64) becomes k[N ]

1 < kopt1 + ε. Hence, lim sup
N→∞

k[N ]

1 ≤ kopt1 .

Any k1 ≤ kopt1 is admissible in (1.16).

For the Legendre tau method, it will be proven below that k[N ]

1 converges to the
largest admissible coefficient kopt1 . The proof involves the following assumption
on the arguments of the minimum in (4.61): For any N , consider a vector
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y[N ] =
[
z[N]

x̂[N]

]
, with ∥x̂[N ]∥2 = 1, such that V [N ]

y (y[N ]) = k[N ]

1 . By (3.48), any y[N ],
respectively c = Tcyy

[N ], represents a function ϕ[N ]

d (not expected to be continuous
at θ = 0). The assumption below is that ϕ[N ]

d remains uniformly bounded in L2,
which, however, could numerically15 be confirmed for all tested examples that
give a nonzero k1.

Theorem 4.6.10. Consider the Legendre tau method with (4.39). As described
above, for ϕ[N ]

d being related to k[N ]

1 , assume that ∃β > 0, ∀N : ∥ϕ[N ]

d ∥L2 < β.
Then the quadratic-lower-bound coefficient k[N ]

1 fromCorollary 4.3.3 converges to
the largest possible quadratic-lower-bound coefficient on the functional in (1.16).

Proof. Henceforth, Cd denotes the set of functions ϕ : [−h, 0] → Rn that are
continuous on [−h, 0) and possibly have a jump discontinuity at the end point
ϕ(0−) ̸= ϕ(0). Note that ϕ[N ]

d ∈ Cd. The functional V : C → R can straight-
forwardly be extended to arguments in Cd since V (ϕ) = VM2

((ϕ, ϕ(0))) holds
by (4.45), which, in fact, is defined for all (ϕ, ϕ(0)) ∈ L2 × Rn. Also on this
extended set of arguments, the value of interest from (4.61) is still the infimum
kopt1 = inf ϕ∈Cd

ϕ(0) ̸=0n

V
(

1
∥ϕ(0)∥2

ϕ
)
(even onL2×Rn it would be since VM2

is continu-

ous14 inM2 = L2×Rn andC is dense inL2). With a slight abuse of notation the
name V is not altered for the extension on Cd. By construction, the discretization
π[N ]
y (ϕ[N ]

d ) =
[
z[N]

x̂[N]

]
yields an argument of the minimum in (4.61). First, it will be

shown that ∀ε > 0,∃N̄1(ε) ∈ N, such that

∀N ≥ N̄1(ε) : |V [N ]

y (π[N ]

y (ϕ[N ]

d ))︸ ︷︷ ︸
k[N]

1

−V (ϕ[N ]

d )| < ε.

(4.65)

According to the splitting approach (Lemma 4.6.1 with Q̃1 = Q1, Q̃2 = Q2),
V is decomposed into three parts V (ϕ[N ]

d ) = V0(ϕ
[N ]

d ) + V1(ϕ
[N ]

d ) + V2(ϕ
[N ]

d )

15 TheL2 norm of (3.48) can be computed from ∥ϕ[N ]

d ∥2L2
=

∑N−1
k=0

h
2

2
2k+1

∥ck∥22 using the first
N − 1 of the N subvectors in c. These are either derived via c = Tcy

[ z
x̂

]
, cf. Remark 3.6.1,

where z = −P−1
y,zzP

⊤
y,xz x̂ and x̂ = v/∥v∥2, see Lemma 4.3.1, or are directly available if

Lemma 4.3.1 is applied to the mixed coordinates from (3.64).
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and its approximation correspondingly. The second and third term, V1(ϕ[N ]

d ) and
V2(ϕ

[N ]

d ), do not contribute to the error in (4.65) since ϕ[N ]

d (θ) is on θ ∈ [−h, 0) a
polynomial of degree N − 1 for which the approximation is exact, according to
the lemmas of Section 4.6.1.2. Therefore, it suffices to show uniform convergence
on ∪N{ϕ[N ]

d } for the approximations of V0. Let x[N ] = (ϕ[N ]

d , ϕ[N ]

d (0)) ∈ M2. By
assumption, ∥x[N ]∥2M2

= ∥ϕ[N ]

d ∥2L2
+ ∥ϕ[N ]

d (0)∥22 ≤ β2 + 1. Thus, using (4.46)
and (4.56), the error in (4.65) becomes |⟨x[N ],P [N ]

0 x[N ]⟩M2
−⟨x[N ],P0x

[N ]⟩M2
| ≤

∥P [N ]

0 − P0∥ (β2 + 1). By Lemma 4.6.7, the latter converges to zero, and thus
(4.65) holds. Consequently, ∀N ≥ N̄1(ε):

k[N ]

1

(4.65)
> V (ϕ[N ]

d )− ε ≥ inf
ϕ∈Cd

ϕ(0) ̸=0n

V
(

1
∥ϕ(0)∥2

ϕ
)
− ε

(4.61)
= kopt1 − ε.

(4.66)

With N̄0(ε) := N̄( ε2 , ϕδ=ε/2) from Theorem 4.6.9, it can be concluded that

∀N≥ max{N̄0(ε), N̄1(ε)} : kopt1 − ε
(4.66)
< k[N ]

1

(4.64)
< kopt1 + ε,

completing the proof of |k[N ]

1 − kopt1 | → 0 (N → ∞).

4.7 Revisiting the Main Points of the Chapter

• The proposed numerical approach to complete-type and related LK func-
tionals is based on the ODE approximation of time-delay systems discussed
in Chapter 3.

– The approach neither requires knowledge of the delay-Lyapunov ma-
trix function, nor does it involve linear matrix inequalities.

– Simply the Lyapunov equation (4.3) relying on the system matrix Ay
of the ODE approximation is solved for the matrix Py . (Equivalently
to the indicated formulation in Lagrange interpolation coordinates,
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other coordinates can be used, e.g., mixed coordinates or Legendre
coordinates, see (4.6).)

– The result Vy(y) = y⊤Pyy approximates the LK functional value
V (ϕ), given y represents the discretization of ϕ.

– For the Legendre-tau-based result with an increasing discretization
resolution N , convergence towards V (ϕ) is proven in Section 4.6.2.

• The combs in Figure 4.1, which shows the entries of Py , indicate the struc-
ture (4.11) of complete-type LK functionals without any prior knowledge.

• In the Lyapunov–Krasovskii theorem (Theorem 4.5.1) for time-delay sys-
tems, the pointwise norm of the solution value ∥x(t)∥ occurs, where, in
view of the classical Lyapunov theorem for ODEs, actually the norm of the
state ∥xt∥C should be expected. Due to that special role of ∥x(t)∥ (see the
black point in Figure 3.1), the counterpart to the concept of LK functionals
for RFDEs is not the concept of classical Lyapunov functions for ODEs.

– Instead, the Lyapunov–Krasovskii theorem is recognized to parallel
Theorem 4.5.4, which only proves partial asymptotic stability in the
ODE (Section 4.5.2).

– Partial asymptotic stability in the approximating ODE already implies
asymptotic stability (Section 4.5.3). The latter reflects that, in the
RFDE, convergence of x(t) as t → ∞ implies convergence of the
adhering solution segment xt.

• For an appropriate ODE approximation with a sufficiently large discretiza-
tion resolution N , the involved matrix Py is positive semidefinite if and
only if the RFDE equilibrium is asymptotically stable (Corollary 4.5.14).

• A formula for a partial positive-definiteness bound on the functional ap-
proximation is derived (Section 4.3).
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– With the Legendre-tau ODE-based result, a rapid convergence of the
obtained quadratic-lower-bound coefficient is observed asN increases
(Figure 4.2b).

– The resulting limit is proven to be the best possible quadratic-lower-
bound coefficient k1 on the LK functional (Section 4.6.3), cf. (1.16)
in the introduction.

– Examples demonstrate that the latter significantly improves known
results (Table 4.1). In particular, the obtained k1 depends on the
delay, which is not the case in existing formulas (Figure 4.2e).

• For the sake of validation, a numerical integration of the LK functional
formula by Clenshaw–Curtis and Gauss quadrature rules is also proposed.
The result can as well be written as a quadratic form y⊤P quad

y y.

– In contrast to the ODE-based approach, the numerical-integration-
based approach requires knowledge of the delay Lyapunov matrix
function Ψ.

– In Appendix B.1.2, the relation between P quad
y and a known stability

criterion in terms of Ψ is shown (Remark 4.4.1).

• The ODE-based approach is expected to provide approximations of LK
functionals even inmore general caseswhere theLK functional is not known
analytically and thus the numerical-integration-based approach cannot be
applied. In fact, the ODE-based approach paves the way to a more adapted
construction of the functional in the next chapter.
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5 Introduction of
Lyapunov–Krasovskii
Functionals of Robust Type

Inspired by the widespread theory of complete-type LK functionals, this chap-
ter introduces an alternative class of LK functionals that intends to achieve less
conservative robustness statements. As outlined in Section 1.4, the robustness
analysis is an important application of complete-type and related LK functionals.
Still, the achievable robustness bounds by complete-type and related LK func-
tionals turn out to be rather conservative. The proposed LK functionals in the
present chapter share the same structure as the LK functionals of complete type,
and also they share to be defined via their derivative along solutions of the nominal
system. The defining equation for the derivative, however, is chosen differently:
the Lyapunov equation, which forms the template for the defining equation of
complete-type LK functionals, is replaced by the template of an algebraic Riccati
equation.

The chapter is organized as follows. Section 5.1 states some leading questions,
motivated by which Section 5.2 introduces the concept of LK functionals of ro-
bust type. Afterwards, important properties of these LK functionals are discussed:
Section 5.3 is devoted to the monotonicity properties along solutions of the per-
turbed equation, and Section 5.4 tackles the partial positive-definiteness property.
In Section 5.5, existence conditions are derived from the infinite-dimensional
Kalman–Yakubovich–Popov lemma combined with a splitting approach. These
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considerations finally lead to the desired robustness bounds. An example is dis-
cussed in Section 5.6, before Section 5.7 summarizes the most important points
of the overall chapter.

The chapter is part of

[S3] Scholl, T. H.: Lyapunov–Krasovskii functionals of robust type for the
stability analysis in time-delay systems. Submitted for publication, arXiv
preprint available (2023). arXiv:2312.16738.

5.1 Leading Questions*

The robustness approach via complete-typeLK functionals outlined in Section 1.4
relies on the rather arbitrary choice of three positive definite matricesQ0, Q1, Q2

in (1.14), i.e., inD+
f V (xt) = −x⊤(t)Q0x(t)−x⊤(t−h)Q1x(t−h)−

∫ 0

−h x
⊤(t+

θ)Q2x(t + θ) dθ. The following questions motivate a different construction of
the LK functional.

1. Why should the desirable LK-functional derivative be restricted to the
structure in (1.14). Why not choosing for instance

D+
f V (xt) = −x⊤(t)Qxxx(t)− x⊤(t− h)Qx̄x̄x(t− h)

− 2x⊤(t− h)Qx̄xx(t)− 2

∫ 0

−h
x⊤(t)Qxz(η)x(t+ η) dη

− 2

∫ 0

−h
x⊤(t− h)Qx̄z(η)x(t+ η) dη

−
∫ 0

−h

∫ 0

−h
x⊤(t+ ξ)Qzz(ξ, η)x(t+ η) dηdξ (5.1)

in the place of (1.14)? For that choice, according to [115, Thm. 5.1] (re-
garding all terms but Qx̄x̄) and [111] (regarding Qx̄x̄), as well a unique

* Chapter 5 is part of [S3].
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functional V exists, which has the same form as complete-type LK func-
tionals (see (5.5) below). Unfortunately, it is already an open question
how to chooseQ0, Q1, Q2 in (1.14) in an optimal manner—with the above
more general structure (5.1), we are even more spoiled for choice on how
to specify the kernel functions.

2. Can the construction ofD+
f V (xt) be aligned to the outcome of the deriva-

tive D+
(f+g)V (xt) along solutions of the perturbed equation? In (1.14),

the derivative D+
f V (xt) of complete-type LK functionals along solutions

of the unperturbed system is, by construction, chosen partially negative
definite (in the sense required for the LK theorem, see (4.29)). However,
that unperturbed linear system ẋ(t) = A0x(t)+A1x(t−h) = f(xt) from
(1.4) is actually not what shall be analyzed, see Chapter 1. Rather, the
perturbed system (1.2) and thusD+

(f+g)V (xt) is of interest. The restrictive
linear norm bound (1.17) from complete-type LK functionals ensures that
the perturbation cannot turn the partially negative definite chosenD+

f V (xt)

into a D+
(f+g)V (xt) that is no longer partially negative definite. Thus, it

ensures that the LK theorem still applies despite of the perturbation g. In
the end, various inequality estimations of D+

(f+g)V (xt) are employed to
obtain that linear norm bound γmax on g, which is why (1.17) is very re-
strictive. This might be improved by focusing on the outcome ofD+

(f+g)V

when constructing D+
f V .

3. Can some information on the structure of the perturbation g(xt) in (1.2) be
incorporated in the construction of V ? It might be highly relevant for the
achievable linear norm bound γ in (1.17) whether the perturbation affects
only certain components of ẋ(t), or whether it depends only on certain
parts of x(t) and x(t− h).

141



5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

Example 5.1.1 (Delay-free motivation, structure). Consider the delay-
free example

ẋ =

[
−0.1 0

0 −10

]
x+ g(x). (5.2)

Compared to g(x) =
[
g1(x1)

0

]
, a perturbation g(x) =

[
0

g2(x2)

]
is far less

critical. Therefore, if this structure information is included, less restrictive
bounds on the perturbation should become possible. The decisive structure
information can be made visible by a Lur’e description in terms of a
fictive feedback law g(x) = −B a(Cx) = − [ 01 ] a([ 0 1 ]x) with a(ζ) =

−g2(ζ). The latter is a well-known means, see, e.g., concepts from the
realm of absolute stability [108], the structured stability radius [89], or
other robustness results. Once the structure describing matrices B = [ 01 ]

and C = [ 0 1 ] are fixed, only the specific restriction on a(ζ) is of interest.

4. Why striving exclusively for a linear norm bound?

Example 5.1.2 (Delay-freemotivation, asymmetric bound). Consider the
delay-free scalar ODE

ẋ = −x+ g(x) with g(x) = −x3. (5.3)

Actually, g(x) = −x3 is even a helpful perturbation of ẋ = −x, not at all
hampering the global asymptotic stability of the origin. However, a linear
norm bound |g(x)| ≤ γ|x| cannot distinguish between g(x) = −x3 and
the globally harmful g(x) = x3. Hence, the approach from Section 1.2 iii,
which relies on a set G where the linear norm bound is satisfied, can only
provide a small estimation of the domain of attraction. However, from the
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one-dimensional phase portrait, it is obvious that stability is preserved for
any

g(x) = −a(x) where

{
a(x) ≥ 0, x > 0,

a(x) ≤ 0, x < 0,
(5.4)

which, in fact, is satisfied globally by a(x) = x3.

5.2 LK Functionals of Robust Type*

Before being able to introduce the proposed LK functionals of robust type in
Definition 5.2.4, some ingredients of the defining equation have to be discussed.
Similarly to complete-type LK functionals in (1.14), LK functionals of robust
type will be defined in terms of their derivative D+

f V . The resulting functionals
V : C([−h, 0],Rn) → R;ϕ 7→ V (ϕ) will be quadratic, time-invariant, and have
the form

V (ϕ) = ϕ⊤(0)Pxx ϕ(0) + 2

∫ 0

−h
ϕ⊤(0)Pxz(η)ϕ(η) dη

+

∫ 0

−h

∫ 0

−h
ϕ⊤(ξ)Pzz(ξ, η)ϕ(η) dη dξ

+

∫ 0

−h
ϕ⊤(η)Pzz,diag(η)ϕ(η) dη, (5.5)

Pxx ∈ Rn×n, Pxz ∈ L2([−h, 0],Rn×n), Pzz ∈ L2([−h, 0] × [−h, 0],Rn×n)
and Pzz,diag(η) ≡ P zz,diag ∈ Rn×n. Thus, they have the same form as the LK
functionals of complete type, cf. (4.11)—respectively even a simpler one since
Pzz,diag(η) is constant, which in (1.15) is only the case if Q2 = 0n×n.

* Chapter 5 is part of [S3].
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The defining equation for the functional, which will be given in (5.17) below, takes
the leading questions from Section 5.1 into account in the following respects.

1. More general structure of the nominal derivative: The proposed LK-
functional derivative D+

f V , in fact, will have the general structure (5.1).
However, thematrices and kernel functions need not explicitly be chosen. In
particular, they are not arbitrarily chosen. Instead, the overall construction
of the desired derivative D+

f V relies on a characterization of the class
of perturbations g for which a robustness statement shall be achieved.
Additionally, however, the defining equation forD+

f V , also depends on the
solution V itself. To be more precise, based on the first two terms in the
LK functional (5.5), the expression

v(ϕ) := Pxx ϕ(0) +

∫ 0

−h
Pxz(η)ϕ(η) dη (5.6)

will be encountered in the defining equation (5.17). Due to that implicit
definition of D+

f V , the problem might seem rather involved. However, in
terms of the numerical approach from Chapter 4, the Lyapunov equation re-
quired for complete-type LK functionals is simply replaced by an algebraic
Riccati equation, which will be discussed in Section 6.1.

2. Aligning the Construction of D+
f V to the outcome of D+

(f+g)V : The
defining equation (5.17) proposed below is only constructed having the
outcome of D+

(f+g)V in mind. Therefore, the sense of the chosen D+
f V

will become clear from the result of D+
(f+g)V in Section 5.3.

3. Perturbation structure: To take the structure of the perturbation g into
account, the perturbation is decomposed into three mappings, namely

g(xt) = −B a(Cxt). (5.7)
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That is, first, a linear operator C : C([−h, 0],Rn) → Rp, to confine what
the perturbation is based upon,

Cϕ =

[
C1ϕ(−h)
C0 ϕ(0)

]
, i.e., Cxt =

[
C1 x(t− h)

C0 x(t)

]
(5.8)

with C1 ∈ Rp1×n, C0 ∈ Rp0×n, p0 + p1 = p (where C0 or C1 vanish if
p0 = 0 or p1 = 0); second, a possibly nonlinear continuous map

a : Rp → Rm (5.9)

with a(0p) = 0m; and, third, a matrix

B ∈ Rn×m (5.10)

that indicates which components of ẋ(t) in (1.2) are affected by the pertur-
bation. The negative sign in (5.7) intends to resemble a negative feedback.

Example 5.2.1. Let g(xt) in the time-delay system (1.2) be given by

g(xt) =

[
0

−x31(t− h)

]
.

The latter can be expressed via B =
[
0
1

]
, C1 =

[
1 0

]
, and p0 = 0,

with the core nonlinearity a(ζ) = ζ3 in (5.7). An alternative choice
is B =

[
0
1

]
, full-rank matrices C1 =

[
1 0
0 ε

]
, C0 = εI2, ε ∈ R, and

a([ζ1, ζ2, ζ3, ζ4]
⊤) = ζ31 . Such full-rank matrices for C0 and/or C1 might

be helpful to establish some desired properties in the resulting LK functional
(e.g., certain lower bounds on V (ϕ) or upper bounds on D+

(f+g)V (ϕ)).

145



5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

As a consequence, the perturbation restriction must only refer to the map-
ping a in (5.7). Thus, ∥g̃(x(t), x(t− h))∥2 ≤ γ

∥∥∥[ x(t)
x(t−h)

]∥∥∥
2
from (1.17)

is replaced by

∥a(Cxt)∥2 ≤ γ∥Cxt∥2. (5.11)

If, however, identity matrices

B = C0 = C1 = In (5.12)

are chosen, which is always possible, then, by

g̃(x(t), x(t− h))
(5.7)
= −Ba

([
C1x(t−h)
C0x(t)

])
(5.12)
= −a

([
x(t−h)
x(t)

])
,

a statement as in (1.17) is recovered, which does not incorporate structural
information.

4. Perturbation restriction: There might be more appropriate types of re-
strictions than (5.11) on the possibly nonlinear map ζ 7→ a(ζ) in (5.7).
Note that the linear norm bound (5.11) can equivalently be written as
a⊤(Cxt) a(Cxt) ≤ γ2 (Cxt)⊤(Cxt) or

w
(
Cxt, a(Cxt)

)
≥ 0 with (5.13a)

w(ζ, α) = γ2ζ⊤ζ − α⊤α. (5.13b)

To establish other types of perturbation restrictions, indefinite quadratic
forms in [ζ⊤, α⊤]⊤ that are more general than (5.13b) are taken into ac-
count. That is,

w
(
Cxt, a(Cxt)

)
≥ 0 with (5.14a)

w(ζ, α) = ζ⊤Πζζζ + 2ζ⊤Πζaα+ α⊤Πaaα, (5.14b)

where the matrices Πζζ = Π⊤
ζζ ∈ Rp×p, Πζa ∈ Rp×m, Πaa = Π⊤

aa ∈
Rm×m should depend on a parameter, in terms of which the robustness
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statement can be expressed: for instance, the linear norm bound γ parame-
terizes Πζζ = γ2Ip in (5.13b). The third matrix is henceforth assumed to
be negative definite,

Πaa ≺ 0m×m. (5.15)

As is customary with a linear norm bound, the perturbation restriction

w(ζ, a(ζ)) ≥ 0 (5.16)

from (5.14) should either locally, i.e., for sufficiently small ζ ∈ Rp, or
even globally be satisfied by the function ζ 7→ a(ζ) from the perturbation
g(xt) = −Ba(Cxt). Table 5.1 provides an overview of possible choices
for (Πζζ ,Πζa,Πaa) in (5.14) and the associated permitted sector for a(ζ).

Example 5.2.2. For simplicity, consider p = m = 1, i.e. ζ 7→ α = a(ζ)

is a scalar map. Then w(ζ, α) ≥ 0 defined in (5.13b) describes a sector in
the (ζ, α) plane. That is, w(ζ, α) ≥ 0 holds for the (ζ, α)-combinations in
the non-gray-region of the (ζ, α)-plots from the last column of Table 5.1.
A possible type of perturbation restriction w(ζ, a(ζ)) ≥ 0 is a linear norm
bound, see Table 5.1, row (I|a). It is represented by Πζζ = γ2,Πζa =

0,Πaa = −1 since w(ζ, α) = γ2ζ2 − α2 ≥ 0 is equivalent to the desired
|α| ≤ γ|ζ|. The robustness statement then provides the maximum slope
γ similarly to the statement known from complete-type LK functionals in
(1.17). However, for a nonlinearity like a(ζ) = ζ3, the sector in Table 5.1,
row (II|a), fits much better. The robustness statement then describes the
admissible upper slope 1

ρ which might be considerably larger than γ. As
a result, the range of ζ, for which a(ζ) = ζ3 resides within the sector, is
also accordingly larger. For a saturation nonlinearity, rather Table 5.1,
row (III), with a fixed upper slope K2 should be chosen, and the smallest
admissible lower slopeK1 be determined.

Remark 5.2.3 (Negative definiteness ofΠaa). Assumption (5.15) forbids to
use ρ = 0 in row (II|a) of Table 5.1, which would amount to a pure passivity
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restriction w(ζ, a(ζ)) = ζa(ζ) ≥ 0 (cf. Example 5.1.2). Nevertheless, as
ρ > 0 can be chosen arbitrarily small, still an arbitrarily large domain of ζ
can be obtained on which the perturbation a(ζ) = ζ3 resides in the sector
that is sketched in the right column of row (II|a).

Definition 5.2.4 (LK functional of robust type).
A functional V : C([−h, 0],Rn) → R≥0 that has the structure (5.5) is called a
Lyapunov–Krasovskii functional of robust type w.r.t.

• the nominal linear system ẋ(t) = f(xt),

• the perturbation structure (B, C), and

• the perturbation restriction matrices (Πζζ ,Πζa,Πaa)

if for all ϕ ∈ C([−h, 0],Rn) it holds

D+
f V (ϕ) = −(Cϕ)⊤Πζζ(Cϕ)

−
[
v⊤(ϕ)B − (Cϕ)⊤Πζa

]
(−Πaa)

−1
[
B⊤v(ϕ)−Π⊤

ζa Cϕ
]
− e(ϕ),

(5.17)

with v : C([−h, 0],Rn) → Rn given by (5.6) and e(ϕ) ≡ 0. Moreover, if e(ϕ) ≥ 0

is some arbitrary nonnegative discrepancy between the left- and the remaining
right-hand side in (5.17), V is called an inequality-based Lyapunov–Krasovskii
functional of robust type.

In the case of a linear norm bound, i.e.,Πζζ = γ2Ip, Πζa = 0p×m, Πaa = −Im
(see row (I|a) of Table 5.1), the defining equation (5.17) simplifies to

D+
f V (ϕ) = −γ2(Cϕ)⊤Cϕ− v⊤(ϕ)BB⊤v(ϕ). (5.18)

Because of (5.8), −(Cϕ)⊤Cϕ = −ϕ⊤(0)C⊤
0 C0ϕ(0) − ϕ⊤(−h)C⊤

1 C1ϕ(−h).
Note that these terms resemble the first two terms in D+

f V (ϕ) from the defin-
ing equation (1.14) for complete-type LK functionals, which are given by
−ϕ⊤(0)Q0ϕ(0)− ϕ⊤(−h)Q1ϕ(−h).
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Perturbation restriction w(ζ, a(ζ)) ≥ 0,
w(ζ, α) = ζ⊤Πζζζ + 2ζ⊤Πζaα+ α⊤Πaaα

Sector
notation

Πζζ 2Πζa Πaa Restriction to the
graph of a
if p = m = 1

(I|a) ∥a(ζ)∥2 ≤ γ∥ζ∥2
(⇔ γ2ζ⊤ζ − a⊤(ζ) a(ζ) ≥ 0 )
linear norm bound on a(ζ),
restriction of the small-gain theorem

[−γ, γ] γ2Ip 0p×m −Im γ

−γ

a(ζ)

ζ

(I|b) ∥Wa(ζ)∥2 ≤ γ∥Lζ∥2, (I|a) in elliptic norms γ2L⊤L 0p×m −W⊤W

(II|a) a⊤(ζ) ζ ≥ ρ∥a(ζ)∥22,
(⇔ a⊤(ζ)

[
ζ − ρa(ζ)

]
≥ 0 ),

strict output passivity of ζ 7→ a(ζ),
passivity-theorem-like restriction

[0, 1
ρ
] 0m×m Im −ρIm 1

ρ

a(ζ)

ζ

(II|b) −a⊤(ζ) ζ ≥ ρ̂∥a(ζ)∥22,
(⇔ −a⊤(ζ)

[
ζ + ρ̂a(ζ)

]
≥ 0 ),

strict output passivity of ζ 7→ −a(ζ),

[− 1
ρ̂
, 0] 0m×m −Im −ρ̂Im

alternatively, use (II|a) with â(ζ) = −a(ζ) in g(xt) = B̂â(Cxt), B̂ = −B

(III|a) −[a(ζ)−K1ζ]⊤[a(ζ)−K2ζ] ≥ 0
general sector bound,
restriction of the circle criterion

[K1,K2] −sym(K⊤
1 K2) K⊤

1 +K⊤
2 −Im K2

K1

a(ζ)

ζ(III|b) [a(ζ)−K1ζ]⊤[ζ −K−1
2 a(ζ)] ≥ 0, K2 ≻ 0

passivity â⊤ζ̂ ≥ 0 after loop transformations
ζ̂ = ζ −K−1

2 a(ζ); â = a(ζ)−K1ζ

−K⊤
1 Im +K⊤

1 K
−1
2 −K−1

2

(III|c) ∓[K−1
1 a(ζ)− ζ]⊤[ζ −K−1

2 a(ζ)] ≥ 0

assuming sym(∓K−⊤
1 K−1

2 ) ≻ 0

±Im ∓K−1
1 ∓K−1

2 −sym(

∓K−⊤
1 K−1

2 )

Table 5.1: Since the perturbation structure (B, C) in g(xt) = −Ba(Cxt) from (5.7) is fixed, the perturbation restriction only refers to the
(usually nonlinear) map a(·). This perturbation restriction is fully described via the matrices (Πζζ ,Πζa,Πaa) given in the third
column. In row (II) and (III), it is assumed that p = m. As indicated in the last column, in the scalar case, the perturbation
restriction is simply representable via a sector, the graph of a(·) is allowed to reside within. The turquoise shading amounts to a
tightening from Theorem 5.3.2 (choosing a non-quadratic offset function ℓ results in a deviation from the sector form). The sector
slopes up to which an LK functional of robust type exists, only depend on the robustness of the nominal system under the given
perturbation structure. The corresponding bounds on γ, 1

ρ
, and k1 (if K1 = k1Im) are listed in Table 5.2.
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The nominal linear system ẋ(t) = f(xt) determines the left-hand side of (5.17),
respectively (5.18). The existence of a Lyapunov–Krasovskii functional of robust
type (or of its generalization with e ≥ 0) is only ensured if the chosen perturbation
restriction (Πζζ ,Πζa,Πaa) fits with the robustness of this nominal system under
the chosen perturbation structure. If a parameter is incorporated inΠζζ ,Πζa,Πaa
that controls the size of the sector, like the slope γ of the linear norm bound,
then the existence condition of V can be expressed in terms of that parameter.
Consequently, permissible values of the involved parameter are characterized by
the fact that a solution V of (5.17) exists. Corresponding solvability conditions
will be derived from the Kalman–Yakubovich–Popov lemma in Section 5.5.3.
This leads, e.g., to an explicit bound γmax on γ in (5.18) that will be derived in
Section 5.5.5. If γ < γmax a solution of (5.18) exists, whereas if γ > γmax no
solution exists.

First, however, properties of the functional that are decisive for its usability will
be discussed: monotonicity along solutions (Section 5.3) and partial positive
definiteness (Section 5.4). The results will show that, if C0 and C1 in (5.8) are
chosen as full-rank matrices, then (provided a fundamental requirement described
in Section 5.4 holds) the conditions imposed by the classical LK theorem (Theo-
rem 4.5.1) hold in any case. Although not further detailed in this thesis, weaker
properties than those in the classical LK theorem can also be expedient to prove
stability, e.g., relying on LaSalle’s invariance principle [124] or on other methods
[136]. Once it is ensured that the resulting functional indeed satisfies suitable
properties that prove stability of the zero equilibrium in the overall system, the
searched robustness statement boils down to the found existence condition of the
functional.

Remark 5.2.5 (Existing results from the realm of absolute stability). In terms
of the class of perturbations that satisfy the perturbation restriction not only
locally but globally, the proposed approach addresses the problem of absolute
stability [5], which means to tackle a whole family of sector-bounded nonlineari-
ties at once. Modern robustness theory might be dominated by frequency-domain
methods. However, its foundation can be found in the theory of absolute stability,
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which relied on a parallel development of frequency-domain (Lyapunov-function-
free) and Lyapunov-function-based approaches, as well as the proof of their
equivalence by the Kalman–Yakubovich–Popov lemma. See the extensive litera-
ture reviews in [78, 127]. The frequency-domain (Lyapunov-function-free) ap-
proaches have already in the very beginning been extended to time-delay systems
[158, 80, 107, 186, 17, 20]. Still, in view of possibly non-global stability results
for nonlinear perturbations, an LK-functional-based approach can be seen to be
preferable—provided the functional is explicitly computable. However, concern-
ing Lyapunov-function-based considerations, there is no satisfactory counterpart
for time-delay systems in terms of a computable LK functional without adding
conservatism. The required computability is not satisfied by generalizations to
abstract differential equations on Hilbert spaces [129, 131, 130, 7] that merely
provide existence statements. Computable LK functionals so far are only en-
countered in semidefinite-programming-based approaches for absolute stability
in time-delay systems [19, 22, 162, 83, 84, 125, 174], where, however, the in-
herent limited number of degrees of freedom comes along with an additional
conservatism—see the discussion on LMI-based stability criteria in Section 1.3.

To sum up, the construction of the LK functional of robust type incorporates a
characterization of the perturbation in two respects: First, the concept allows to
incorporate the perturbation structure. If, however,B = C0 = C1 = In is chosen,
then an unstructured robustness consideration as the one known from complete-
type LK functionals is recovered. Second, the concept allows to incorporate the
type of perturbation restriction that fits best with the nonlinearity. If, however,
Πζζ = γ2Ip, Πζa = 0p×m, Πaa = −Im is chosen, then a linear norm bound
as known from complete-type LK functionals is recovered. In the latter case, the
defining equation simplifies to (5.18). The defining equation only has a solution
if the perturbation restriction is compatible with the given nominal system under
the given perturbation structure. For instance, (5.18) is solvable if γ < γmax,
with γmax to be discussed in Section 5.5.5.
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5.3 The LK-Functional Derivative Along
Solutions of the Perturbed RFDE*

Along solutions of the unperturbedRFDE, theLK-functional derivativeD+
f V (xt)

is given by the right-hand side of the defining equation (5.17). Hence, D+
f V (xt)

is exactly known once V and thus v have been determined. However, rather of
interest isD+

(f+g)V (xt). The following lemma is valid for any functional having
the structure (5.5), independently from the defining equation. When applied to
the special case of complete-type functionals, it leads to a result known from
[110, Lem. 2.14].

Lemma 5.3.1 (Perturbation effect on the derivative). For a functional given by
(5.5), it holds

D+
(f+g)V (ϕ) = D+

f V (ϕ) + 2 v⊤(ϕ) g(ϕ) (5.19)

with v being defined in (5.6).

Proof. For ϕ = xt, the LK functional (5.5) becomes

V (xt) = x⊤(t)Pxx x(t) + 2x⊤(t)

∫ t

t−h
Pxz(η − t)x(η) dη

+

∫ t

t−h

∫ t

t−h
x⊤(ξ)Pzz(ξ − t, η − t)x(η) dη dξ

+

∫ t

t−h
x⊤(η)Pzz,diag(η − t)x(η) dη. (5.20)

* Chapter 5 is part of [S3].
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Compare D+
f V (xt) with D+

(f+g)V (xt), i.e., the derivative along trajectories of
ẋ(t) = f(xt) with the derivative along trajectories of ẋ(t) = f(xt) + g(xt). A
difference can only occur in terms that involve ẋ(t) in

D+
(f+g)V (xt) = 2 ẋ⊤(t)︸ ︷︷ ︸

(f(xt)+g(xt))⊤

Pxx x(t)

+ 2
(
ẋ⊤(t)︸ ︷︷ ︸

(f(xt)+g(xt))⊤

∫ t

t−h
Pxz(η − t)x(η) dη + x⊤(t)

d

dt

∫ t

t−h
(. . .) dη

)

+
d

dt

∫ t

t−h

∫ t

t−h
(. . .) dη dξ +

d

dt

∫ t

t−h
(. . .) dη (5.21)

(the Leibniz integral rule applied to the abbreviated terms cannot give rise to ẋ(t)).
Thus, the scalar difference is 2g⊤(xt)

(
Pxx x(t) +

∫ t
t−h Pxz(η − t)x(η) dη

)
=

2g⊤(xt)v(xt).

The proposed defining equation (5.17) is tailored to the objective that the above
derivative (5.19) shall easily be proven to be nonpositive. In fact, a desired result
D+

(f+g)V (ϕ) ≤ −ℓ(Cϕ) with a chosen offset function ℓ can be prescribed. To
this end, the perturbation restriction w(ζ, a(ζ)) ≥ 0 introduced in (5.14), is
strengthened to w(ζ, a(ζ)) ≥ ℓ(ζ) in (5.22) below. Being chosen as some (not
necessarily quadratic) nonnegative function with ℓ(0) = 0, a small offset ℓ comes
along with a slight reduction of the permissible region for the graph of a. The
latter is indicated by the turquoise shading in the last column of Table 5.1. Of
course, a vanishing offset ℓ(ζ) ≡ 0 suffices if only D+

(f+g)V (ϕ) ≤ 0 is desired,
in which case (5.22) is merely the original perturbation restriction from (5.14).

Theorem 5.3.2 (Main result of Section 5.3). Let V be an LK functional of robust
type described by Def. 5.2.4. Then for any ϕ ∈ C for which the perturbation
restriction (5.14) is exceeded by a given offset function ℓ : Rp → R in the sense
of

w(Cϕ, a(Cϕ)) ≥ ℓ(Cϕ), (5.22)
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

the LK-functional derivative along solutions of the perturbed equation satisfies

D+
(f+g)V (ϕ) ≤ −ℓ(Cϕ). (5.23)

If e(ϕ) ̸≡ 0 in (5.17), then D+
(f+g)V (ϕ) ≤ −ℓ(Cϕ)− e(ϕ).

Proof. Consider (5.19) with g(ϕ) from (5.7),

D+
(f+g)V (ϕ) = D+

f V (ϕ)− 2v⊤(ϕ)Ba(Cϕ). (5.24)

The defining equation (5.17) forD+
f V (ϕ) involves the term b̂⊤b̂when abbreviating

b̂⊤ :=
[
v⊤(ϕ)B − (Cϕ)⊤Πζa

]
(−Πaa)

−1/2. (5.25)

Thus, (5.24) (assuming e(ϕ) ≡ 0) can be written as

D+
(f+g)V (ϕ) = −(Cϕ)⊤Πζζ(Cϕ)− b̂⊤b̂− 2v⊤(ϕ)Ba(Cϕ). (5.26)

Adding 0 = −∥b̂+ â∥22 + b̂⊤b̂+ 2b̂⊤â+ â⊤â with

â := (−Πaa)
1/2a(Cϕ), (5.27)

and noting that a part of the mixed term

2b̂⊤â = 2
[
v⊤(ϕ)B − (Cϕ)⊤Πζa

]
a(Cϕ) (5.28)

eliminates the perturbation term from (5.26), leads to

D+
(f+g)V (ϕ) = −(Cϕ)⊤Πζζ(Cϕ)− ∥b̂+ â∥22 − 2(Cϕ)⊤Πζaa(Cϕ) + â⊤â.

Due to â⊤â = a⊤(Cxt)(−Πaa)a(Cϕ), the resulting

D+
(f+g)V (ϕ) = −(Cϕ)⊤Πζζ(Cϕ)− ∥b̂+ â∥22

− 2(Cϕ)⊤Πζaa(Cϕ)− a⊤(Cϕ)Πaaa(Cϕ)
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explicitly involves the perturbation restriction (5.14b) in

D+
(f+g)V (ϕ) = −w(Cϕ, a(Cϕ))− ∥b̂+ â∥22. (5.29)

Hence, (5.22) immediately leads to the estimation (5.23). If−e(ϕ) ̸= 0 in (5.17),
this term also occurs in (5.29).

Remark 5.3.3 (Time-varying perturbation). The results can straightforwardly
be extended to a time-varying a(ζ, t). Requiring w(Cϕ, a(Cϕ, t)) ≥ ℓ(Cϕ) leads
as well to D+

(f+g)V (ϕ) ≤ −ℓ(Cϕ).

The following corollary focuses on a perturbation restriction in form of a linear
norm bound, comparable to (1.17) known from complete-type LK functionals.

Corollary 5.3.4 (Functional for a linear norm bound). Assume γ > 0 is chosen
such that an LK functional V (ϕ) having the form (5.5) exists that solves

D+
f V (ϕ) = −γ2(Cϕ)⊤Cϕ− v⊤(ϕ)BB⊤v(ϕ), (5.30)

where v is given by (5.6) (see Cor. 5.5.13 in Section 5.5.5 for a respective range
of γ). If

∥a(Cϕ)∥2 ≤
√
γ2 − k3∥Cϕ∥2, (5.31)

with some k3 ∈ [0, γ2), then the derivative of V (ϕ) along solutions of the per-
turbed RFDE (1.2) is nonpositive with

D+
(f+g)V (ϕ) ≤ −k3∥Cϕ∥22. (5.32)

Proof. Consider (Πζζ ,Πζa,Πaa) from Table 5.1, row (I|a). The defining equa-
tion (5.17) becomes (5.30). Choosing ℓ(Cxt) = k3∥Cxt∥22, the strengthened
perturbation restriction (5.22) becomes (5.31), and (5.23) is (5.32).
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

A quadratic offset ℓ, as it has been chosen in the above corollary for simplicity,
results in tightened sector slopes like (5.31). However, in the example sketched
in row (II|a) of Table 5.1, a(ζ) at ζ = 0 is already tangent to the original sector
bound with ℓ(ζ) ≡ 0. Thus, tightened sector slopes are inappropriate in this case.
Choosing rather

ℓ(ζ) = κ(∥ζ∥) (5.33)

with a not specified class-K function κ ∈ K is less demanding in terms of the
perturbation restriction, and simultaneously amounts to what is usually the desired
estimation forD+

(f+g)V (ϕ) in (5.23). Provided ζ is considered on a bounded set,
a tightening via (5.33) only results in an open rather than a closed sector condition.

Lemma 5.3.5. Let Ω ⊂ Rp be a bounded set. Then the existence of a class-K
function κ ∈ K such that ∀ζ ∈ Ω : w(ζ, a(ζ)) ≥ κ(∥ζ∥) is equivalent to the open
sector restriction w(ζ, a(ζ)) > 0 for all ζ ∈ Ω \ {0p}.

Proof. Note that ζ 7→ β(ζ) = w(ζ, a(ζ)) is a continuous function β : Rp → R
with β(0p) = 0.

Finally, in terms of the classical LK theorem, the following can be concluded:
Choosing ℓ according to (5.33), the functional satisfies

D+
(f+g)V (ϕ)

(5.23)

≤ −ℓ(Cϕ) = −κ
(∥∥∥[C1ϕ(−h)

C0ϕ(0)

]∥∥∥) . (5.34)

Thus, it meets the well-known monotonicity condition ∃κ3 ∈ K, ∀ϕ ∈ C :

D+
(f+g)V (ϕ) ≤ −κ3(∥ϕ(0)∥) fromTheorem 4.5.1wheneverC0 in (5.8) is chosen

as a full-rank matrix.

To sum up, in complete-type LK functionals the restrictive linear norm bound
on the perturbation is required to ensure that the perturbation cannot turn the,
by construction, nonpositive D+

f V (xt) into to a positive D+
(f+g)V (xt). In

contrast, LK functionals of robust type are designed in such a way that any

156



5.4 Positive-Definiteness Properties

a(·) residing within the sector from the prescribed perturbation restriction gives
rise to a nonpositive derivative D+

(f+g)V (xt) ≤ 0. Moreover, a strengthened
D+

(f+g)V (xt) ≤ −ℓ(Cxt) with some offset function ℓ is simply accomplished by
a respective tightening of the perturbation restriction.

5.4 Positive-Definiteness Properties*

Besides of the partial negative definiteness ofD(f+g)V (ϕ) discussed above, also
the partial positive definiteness of V (ϕ) is of interest for the usability of the LK
functional (see (4.28)).

Complete-type and related LK functionals are known to satisfy the partial positive
definiteness condition demanded in the classical LK theorem if and only if the
equilibrium of the nominal system is exponentially stable [110]. (In fact, the
situation is analogous to the delay-free template from Section 1.2, where positive
definiteness of P from a Lyapunov equation with Q ≻ 0n×n holds if and only if
A is Hurwitz.)

Similar applies for LK functionals of robust type. The nominal exponential
stability is again already sufficient for the nonnegativity of V (ϕ), at least in those
cases in which the perturbation sector described by (Πζζ ,Πζa,Πaa) contains the
zero perturbation a(ζ) ≡ 0m in its inner. The latter applies for the linear norm
bound, and, in fact, for any perturbation restriction with Πζζ ≻ 0 (choosing
K = 0m×p in (5.35) below).

However, the subsequent theorem can also be applied in more general cases (the
equilibrium of the nominal system might even be unstable if a(ζ) ≡ 0m does
not belong to the sector). The only condition to be imposed is that a stabilizing
linear control law a(ζ) = Kζ, K ∈ Rm×p (see, e.g., Remark 5.5.10), can be
found in the inner of the sector of allowed perturbations. Note that the latter is a
necessary condition for the simultaneous exponential stability under all considered

* Chapter 5 is part of [S3].
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

perturbations anyway since the linear control law is itself part of that perturbation
family.

Theorem 5.4.1 (Partial positive definiteness). If there exists aK ∈ Rm×p such
that the linear control law a(Cxt) = KCxt

(a) belongs to the interior of the considered perturbation family (5.14), i.e.,K
satisfies

Πζζ +ΠζaK +K⊤Π⊤
ζa +K⊤ΠaaK ≻ 0p×p, (5.35)

and

(b) renders the zero equilibrium of

ẋ(t) = f(xt)−BKCxt (5.36)

exponentially stable,

then ∃k1,0 > 0,∃k1,1 > 0, ∀ϕ ∈ C :

k1,0
∥C0ϕ(0)∥3

∥ϕ∥C
+ k1,1

∥C1ϕ(0)∥3

∥ϕ∥C
≤ V (ϕ). (5.37)

Proof. The argument in V (ϕ) is an arbitrary function ϕ ∈ C([−h, 0],Rn). The
latter is taken as an initial condition x0 = ϕ for the stabilized problem (5.36).
Knowing that the resulting state xt decays with increasing time t exponentially to
0n[−h,0]

, where V (0n[−h,0]
) = 0, and knowing that V is quadratic, V (ϕ) becomes

V (x0) = −
(

lim
t1→∞

V (xt1)︸ ︷︷ ︸
→0, exp.

−V (x0)
)

= −
∫ ∞

0

D+
(f−BKC)V (xt) dt

(5.23)

≥
∫ ∞

0

ℓ(Cxt) dt, (5.38)
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given ℓ is chosen such that (5.22) holds for the involved a(Cxt) = KCxt. Using
α = Kζ in (5.14) shows that a possible function ℓ in (5.22) is

ℓ(ζ) = k∥ζ∥22 with (5.39)

k = λmin(Πζζ +ΠζaK +K⊤Π⊤
ζa +K⊤ΠaaK)

(5.35)
> 0.

Hence, (5.38), where C is defined in (5.8), becomes

V (x0) ≥
∫ ∞

0

k∥Cxt∥22 dt (5.40)

=

∫ ∞

0

k∥C0x(t)∥22 dt+
∫ ∞

−h
k∥C1x(t)∥22 dt. (5.41)

To make the dependency on x(0) visible (similar to [93]), for each term the
integration is restricted to a small time interval where ∥Cjx(t)∥2, j ∈ {1, 2},
deviates less than half from its value at t = 0, and thus ∥Cjx(t)∥ ≥ 1

2∥Cjx(0)∥.
Lemma B.2.1 expresses a time bound δ(α) that guarantees for t ∈ [0, δ(α)] an
arbitrarily small deviation ∥x(t)−x(0)∥ ≤ α∥x0∥C relative to the initial function.
Thus, ∥Cjx(t)− Cjx(0)∥ ≤ α∥Cj∥∥x0∥C . By the reverse triangle inequality1

∥Cjx(t)∥ ≥ ∥Cjx(0)∥ − α∥Cj∥∥x0∥C if t ∈ [0, δ(α)].

Hence, by considering only t ∈ [0, δ(αj)] with

αj =
1
2∥Cjx(0)∥
∥Cj∥∥x0∥C

, (5.42)

it is achieved that ∥Cjx(t)∥ ≥ 1
2∥Cjx(0)∥, and (5.41) becomes

V (x0) ≥
∫ δ(α0)

0

k
4∥C0x(0)∥22 dt+

∫ δ(α1)

0

k
4∥C1x(0)∥22 dt

= δ(α0)
k
4∥C0x(0)∥22 + δ(α1)

k
4∥C1x(0)∥22.

1 respectively, ∥Cjx(0)∥ = ∥Cjx(t)−
(
Cjx(t)−Cjx(0)

)
∥ ≤ ∥Cjx(t)∥+∥Cjx(t)−Cjx(0)∥
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

According to Lemma B.2.1, δ can be chosen as a linear function, δ(α) = mα,
m > 0, yielding

V (x0)≥
m
2 ∥C0x(0)∥
∥C0∥∥x0∥C

k
4∥C0x(0)∥22 +

m
2 ∥C1x(0)∥
∥C1∥∥x0∥C

k
4∥C1x(0)∥22,

where x(0) = x0(0) = ϕ(0) since the initial function x0 represents the used
argument ϕ in V .

Two special cases should be emphasized.

First, as a consequence of the above theorem, ifC0 is chosen as a full-rank matrix
or, more generally, if the combination

[
C1

C0

]
∈ R(p0+p1)×n has rank n, then V (ϕ)

shares the same partial positive definiteness properties as the (not complete-type
but related) LK functionals described in [93, 136].

Corollary 5.4.2. Let rk(
[
C0

C1

]
) = n. If the conditions in Theorem 5.4.1 hold, then

(a) (Local cubic bound) for any r > 0, there exists a k1 > 0 such that for all
ϕ ∈ C with ∥ϕ∥C < r it holds k1∥ϕ(0)∥3 ≤ V (ϕ);

(b) (Global quadratic bound on a Razumikhin-like set) there exists a k1 > 0

such that for all ϕ ∈ C with ∥ϕ∥C = ∥ϕ(0)∥ it holds k1∥ϕ(0)∥2 ≤ V (ϕ).

Proof. Theorem5.4.1, using that (5.37) simplifies to∃k1 > 0 :k1
∥ϕ(0)∥3

∥ϕ∥C
≤ V (ϕ)

if
[
C0

C1

]
has full rank.

Second, if C1 has full rank (even if p0 = 0 in (5.8)), V (ϕ) even shares the same
partial positive definiteness properties as the ones described in [111, Thm. 5] for
LK functionals of complete type.

Theorem 5.4.3 (Global quadratic bound). Let rk(C1) = n. If the conditions in
Theorem 5.4.1 hold, then ∃k1 > 0,∀ϕ ∈ C : k1∥ϕ(0)∥2 ≤ V (ϕ).
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Proof. The starting point is (5.40). If not only rk(C1) = n but also rk(C0) = n

is satisfied, then the proof proceeds analogously to [110, Lem. 2.10]. That is,

V (x0)
(5.40)

≥
∫ ∞

0

k∥Cxt∥22 dt (5.43)

(5.8)
=

∫ ∞

0

[
x(t)

x(t−h)

]⊤ [
C⊤

0 C0 0

0 C⊤
1 C1

] [
x(t)

x(t−h)

]
dt (5.44)

is set in relation to

k1∥x0(0)∥22 = k1∥x(0)∥22 = − lim
t1→∞

k1 x
⊤(t1)x(t1)︸ ︷︷ ︸
→0 if ES

+k1x
⊤(0)x(0)

= − lim
t1→∞

∫ t1

0

d

dt

(
k1x

⊤(t)x(t)
)

︸ ︷︷ ︸
2k1x⊤(t)

(
A0x(t)+A1x(t−h)

) dt (5.45)

by considering

V (x0)− k1∥x0(0)∥22 (5.46)

≥
∫ ∞

0

[
x(t)

x(t−h)

]⊤ ([
C⊤

0 C0 0

0 C⊤
1 C1

]
+ k1

[
2 sym(A0) A1

A⊤
1 0

])
︸ ︷︷ ︸

=:M

[
x(t)

x(t−h)

]
dt.

If C⊤
0 C0 ≻ 0n×n and C⊤

1 C1 ≻ 0n×n, then M is positive semidefinite for any
sufficiently small k1. Thus, it can be concluded that V (x0) − k1∥x0(0)∥22 ≥ 0

for some k1 > 0 if rk(C0) = n. Otherwise, if rk(C0) < n, note that∫ ∞

−h
k∥C1x(t)∥22 dt≥

∫ ∞

0

k∥C1x(t)∥22 dt (5.47)

is a lower bound on (5.41). Hence, a convex combination of both (5.40) and
this lower bound on (5.40) can be used as starting point, and the same arguments
apply.
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Concerning the classical LK theorem (Theorem 4.5.1), the following can be
summarized: With a full-rank choice forC1, anLK functional of robust typemeets
the partial positive definiteness requirement ∃κ1 ∈ K : κ1(∥ϕ(0)∥) ≤ V (ϕ)

globally (Theorem 5.4.3). With a full-rank choice for C0, or more generally, if[
C1

C0

]
has full column rank, it still meets this requirement on any arbitrarily large

bounded set (Corollary 5.4.2).

Remark 5.4.4 (Observability). Note that, in (5.40) and (5.41), observability
Gramians [47, Def. 6.2.12] can be recognized. Therefore, if C0, C1 do not have
full rank but, by chance, they render (5.36) observable in a certain sense (see
[47, Cor. 6.2.15]), then the above discussed lower bound in terms of ∥ϕ(0)∥ still
exists.

5.5 Solvability of the Defining Equation

The objective of the present section is to characterize admissible perturbation
restrictions for which the existence of a solution V of the defining equation
(5.17) can be guaranteed. That is, the admissible range of the involved parameter
that controls the resulting sector size, e.g., γ, ρ, or K1 in Table 5.1, shall be
determined. The objective will be achieved by resorting to a version of the
Kalman–Yakubovich–Popov (KYP) lemma forC0-semigroups on Hilbert spaces.
To this end, the problem under consideration must first be brought in relation to an
operator-valued algebraic Riccati equation which can be tackled by that lemma.

5.5.1 A Splitting Approach*

If C1 is nonzero, then (Cϕ)⊤Πζζ(Cϕ) on the right-hand side of the defining
equation (5.17) explicitly depends on ϕ(−h), respectively xt(−h) = x(t − h).
However, for the operator-theoretic treatment in the next two sections, as well as

* Chapter 5 is part of [S3].

162



5.5 Solvability of the Defining Equation

the analysis of the numerical approach, a problem without such a dependency is
more convenient. That is why the LK functional V (ϕ) will be split into, firstly, a
part V0(ϕ) that results from a defining equation without a quadratic delayed term,
and, secondly, a remaining part V1(ϕ). Due to the following transformation, the
derivations do not have to cope with mixed term matricesΠζa, even if the original
perturbation restriction belongs to row (II) or (III) in Table 5.1.

Lemma 5.5.1 (Transformation I). V (ϕ) is an LK functional of robust type w.r.t.
ẋ(t) = f(xt) = A0x(t) +A1x(t− h), (B, C), and Π = (Πζζ ,Πζa,Πaa) if and
only if V (ϕ) = V I(ϕ) is an LK functional of robust type w.r.t. the transformed
system

ẋ(t) = AI
0x(t) +AI

1x(t− h) =: f I(xt), (5.48)

with AI
0 = A0 −B(−Πaa)

−1Π⊤
ζa

[
0p1×n

C0

]
, (5.49)

AI
1 = A1 −B(−Πaa)

−1Π⊤
ζa

[
C1

0p0×n

]
,

the original perturbation structure (B, C), and the transformed perturbation
restriction ΠI = (ΠI

ζζ ,Π
I
ζa,Π

I
aa)

ΠI
ζζ = Π/Πaa = Πζζ +Πζa(−Πaa)

−1Π⊤
ζa, (5.50a)

ΠI
ζa = 0, and ΠI

aa = Πaa. (5.50b)

Proof. Consider g(xt) = −B(−Πaa)
−1Π⊤

ζaCxt. The defining equation (5.17)
is not altered ifD+

f V (ϕ) and (Πζζ ,Πζa,Πζζ) are replaced byD+
(f+g)V (ϕ) from

Lemma 5.3.1 and (ΠI
ζζ ,Π

I
ζa,Π

I
ζζ).

Henceforth, it is assumed that (5.50a) has the structure

ΠI
ζζ =

[
ΠI,11
ζζ 0p1×p0

0p0×p1 ΠI,00
ζζ

]
. (5.51)
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With that block diagonal structure (5.51), the first term in the defining equation
(5.17) for V I(ϕ) = V (ϕ) becomes

(Cϕ)⊤ΠI
ζζ(Cϕ) = ϕ⊤(−h)C⊤

1 ΠI,11
ζζ C1︸ ︷︷ ︸
Q1

ϕ(−h) + ϕ⊤(0)C⊤
0 ΠI,00

ζζ C0︸ ︷︷ ︸
Q0

ϕ(0).

(5.52)

For notational compactness, consider e(ϕ) ≡ 0 in (5.17) (an extension to e(ϕ) ̸≡ 0

is straightforward). The following splitting of the functional is along the lines
of what has been pursued in Lemma 4.6.1 for complete-type LK functionals.
However, for complete-type LK functionals, the defining equation is only a linear
equation, for which the involved superposition from splitting the equation is
obviously unproblematic. In contrast, LK functionals of robust type have a
quadratic defining equation—but the required splitting still turns out to be possible.

Lemma 5.5.2 (Splitting). AssumeΠI
ζζ in (5.50a) has the block diagonal structure

(5.51) giving rise to Q0, Q1 from (5.52). Then any solution V of (5.17) can be
split into

V (ϕ) = V0(ϕ) + V1(ϕ), (5.53)

V1(ϕ) =

∫ 0

−h
ϕ⊤(η)Q1ϕ(η) dη, (5.54)

where V0 satisfies the modified defining equation

D+
f IV0(ϕ) = −ϕ⊤(0)(Q0 +Q1)ϕ(0)− v⊤0 (ϕ)B (−Πaa)

−1B⊤v0(ϕ) (5.55)

without a term ϕ⊤(−h)Q1ϕ(−h), Q1 ∈ Rn×n.
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Proof. According to Lemma 5.5.1, and with (5.52), the defining equation (5.17)
for the overall functional V at ϕ = xt is

D+
f IV (xt) = −x⊤(t)Q0x(t)− v⊤(xt)B(−Πaa)

−1B⊤v(xt)

− x⊤(t− h)Q1x(t− h). (5.56)

The latter shall be split into a sum D+
f IV (xt) = D+

f IV0(xt) +D+
f IV1(xt). Note

that (5.54) in terms of ϕ = xt reads V1(xt) =
∫ t
t−h x

⊤(η)Q1x(η) dη with

D+
f IV1(xt) = x⊤(t)Q1x(t)− x⊤(t− h)Q1x(t− h). (5.57)

Thus, the remaining unknown V0 must satisfy

D+
f IV0(xt) = −x⊤(t)Q0x(t)− x⊤(t)Q1x(t)−

(
v0(xt)

+ v1(xt)
)⊤
B(−Πaa)

−1B⊤(v0(xt) + v1(xt)
)

(5.58)

where v(xt) = v0(xt) + v1(xt) are the corresponding subfunctionals according
to (5.6). In V1 from (5.54), the kernel functions in terms of (5.5) are Pxx = 0,
Pxz(η) ≡ 0, Pzz(ξ, η) ≡ 0, Pzz,diag(η) ≡ Q1, and thus (5.6) yields

v1(xt) ≡ 0. (5.59)

Consequently, (5.58) becomes (5.55).

5.5.2 Operator-Based Description*

As discussed in Section 4.6.2, LK functionals of complete type can be written as
a quadratic form in L2 ×Rn with an operator from an operator-valued Lyapunov

* Chapter 5 is part of [S3].
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

equation. Having the same structure, LK functionals of robust type can analo-
gously be described. As will be shown below, only the Lyapunov equation that
determines the involved operator is replaced by an algebraic Riccati equation.

All operators in this and the next section are still real, but, in the next section,
complex arguments will occur. That is why, in contrast to Section 4.6.2, the
Hilbert space M2 = L2([−h, 0],Cn) × Cn over the field of complex numbers
with the inner product2

〈[
ϕ1
r1

]
,
[
ϕ2
r2

]〉
M2

=

∫ 0

−h
(ϕ2(θ))

Hϕ1(θ) dθ + rH2 r1, (5.60)

ϕ1, ϕ2 ∈ L2, r1, r2 ∈ Cn, is henceforth considered in[
ϕ
ϕ(0)

]
∈ C([−h, 0],Rn)× Rn ⊂ L2([−h, 0],Cn)× Cn. (5.61)

Note that, in the case of complex arguments, ⟨z, x⟩M2 with z, x ∈M2 is no longer
equivalent to ⟨x, z⟩M2

= ⟨z, x⟩M2
. The focus of this section is on the functional

V0 that has been defined in Lemma 5.5.2. Compared to the overall functional
(5.5), it does not show the term Pzz,diag, which is only due to V1(ϕ), cf. [115].
Based on (5.60), V0 can be written as a quadratic form inM2

V0(ϕ) =
〈
P0

[
ϕ
ϕ(0)

]
,
[

ϕ
ϕ(0)

]〉
M2

(5.62)

2 The convention to define inner products linear in the first argument—and thus, by the conjugate
symmetry, conjugate linear in the second argument—is adhered to, e.g., ⟨r1, r2⟩Cn = r⊤1 r2 =
rH2 r1.
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5.5 Solvability of the Defining Equation

with a real self-adjoint operator P0 : M2 → M2 relying on suboperators
Pzz : L2 → L2, and Pzx : Cn → L2,

P0

[
ϕ

r

]
=

[
Pzzϕ+ Pzxr

P∗
zxϕ+ Pxxr

]
=

[
ϕ̃

r̃

]
, (5.63)

with ϕ̃(θ) =
∫ 0

−h
Pzz(θ, η)ϕ(η) dη + (Pxz(θ))

Hr,

r̃ =

∫ 0

−h
Pxz(η)ϕ(η) dη + Pxxr

that incorporate the kernel functions from (5.5). The quadratic form (5.62) shall
be used in the defining equation (5.55). Consider ẋ(t) = AI

0x(t)+A
I
1x(t−h) =

f I(xt) from (5.48). According to (3.12), the evolution of
[ xt

xt(0)

]
∈ M2 obeys

the abstract ODE d
dt

[ xt

xt(0)

]
= A I

[ xt

xt(0)

]
, with A I : D(A I) →M2,

A I

[
ϕ

r

]
=

[
ϕ′

AI
0r +AI

1ϕ(−h)

]
, (5.64)

D(A I) = {[ ϕr ] ∈M2 : r = ϕ(0), ϕ′ ∈ L2, ϕ ∈ AC} .

Using that abstract ODE, see [47], the left-hand side of (5.55) is

D+
f IV0(ϕ) =

〈
P0A

I
[

ϕ
ϕ(0)

]
,
[

ϕ
ϕ(0)

]〉
M2

+
〈
(A I)∗P0

[
ϕ
ϕ(0)

]
,
[

ϕ
ϕ(0)

]〉
M2

.

The right-hand side of the defining equation (5.55) can also be expressed in terms
of x =

[
ϕ
ϕ(0)

]
∈ M2. Altogether, if V0(ϕ) solves (5.55), then P0 = P∗

0 from
(5.62) solves the operator-valued algebraic Riccati equation

⟨P0A
Ix, x⟩M2

+ ⟨(A I)∗P0x, x⟩M2
(5.65)

= −⟨Qx, x⟩M2
− ⟨(−Πaa)

−1B∗P0x,B
∗P0x⟩Cm
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

∀x ∈ D(A I), where the involved operatorsQ : M2 →M2 relying onQ0, Q1 and
B : Cm → M2 relying on B ∈ Rn×m, respectively its adjoint B∗ : M2 → Cm,
are given by

Q

[
ϕ

r

]
=

[
0L2

(Q0 +Q1)r

]
, Bu =

[
0L2

Bu

]
, B∗

[
ϕ

r

]
= B⊤r (5.66)

(only due to the splitting fromSection 5.5.1,Q is a bounded operator). Conversely,
the following lemma ensures that a solution P0 of (5.65) has the form given in
(5.63). The result is well known for the stabilizing solution of algebraic Riccati
equations from standard3 LQR problems [70] and is analogously provable in the
present case. As a consequence, V (ϕ) = V0(ϕ)+V1(ϕ) has the desired structure
(5.5).

Lemma 5.5.3. Let a bounded self-adjoint operator P0 be a solution of (5.65)
and assume A I generates an exponentially stable4 C0-semigroup. Then P0 is
described by (5.63), with Pzz : L2 → L2 being an integral operator.

Proof. The right-hand side of (5.65) can be written as −⟨Qlyapx, x⟩M2
:=

−⟨Γ1x,Γ1x⟩Cn − ⟨Γ2P0x,Γ2P0x⟩Cm where both Γ1 : M2 → Cn; Γ1 [ ϕr ] =

(Q0 +Q1)
1
2 r and Γ2 : M2 → Cm; Γ2 [ ϕr ] = (−Πaa)

− 1
2B⊤r are finite rank op-

erators. Therefore, the arguments from [70, Thm. 5.2 and p. 102/103] apply.

Altogether, the following is thus shown.

Theorem 5.5.4. Assume ẋ(t) = f I(xt) defined in (5.48) has an exponentially
stable equilibrium. An LK functional of robust type (Definition 5.2.4) exists if

3 In contrast to standard LQR problems with nonnegative costs, the present algebraic Riccati
equation is associated to an indefinite LQR problem. See Section 7.1.

4 If not A but only A s := A − BK with K = (−Πaa)−1B∗(−P0), cf. Remark 5.5.12,
generates an exponentially stable C0-semigroup, the statement still holds. In the proof, (5.65)
is first rewritten with A s on the left-hand side, yielding the right-hand side −⟨Γ1x,Γ1x⟩Cn +
⟨Γ2P0x,Γ2P0x⟩Cm .
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5.5 Solvability of the Defining Equation

and only if a self-adjoint solution P0 of the operator-valued algebraic Riccati
equation (5.65) exists.

Proof. In (5.53), the LK functional is split into V = V0 + V1, where V0 from
(5.55) is given by (5.62) according to the above derivations. Moreover, V1 from
(5.54) always exists.

Finally, it should be noted that the boundedness condition on V (ϕ) in C that is
imposed by the classical LK theorem in (4.28) is also ensured.

Lemma 5.5.5 (Upper bound in C). If V0 is described by (5.62) with a bounded
operator P0 then V = V0 + V1 with V1 from (5.54) satisfies ∃k2 > 0,∀ϕ ∈ C :

V (ϕ) ≤ k2∥ϕ∥2C .

Proof. By (5.62), V0(ϕ) ≤ ∥P0∥
∥∥∥[ ϕ

ϕ(0)

]∥∥∥2
M2

= ∥P0∥
( ∫ 0

−h ∥ϕ(θ)∥
2
2 dθ +

∥ϕ(0)∥22
)
≤ ∥P0∥(h+ 1)∥ϕ∥2C,2, where ∥ϕ∥C,2 = max

θ∈[−h,0]
∥ϕ(θ)∥2. Moreover,

in (5.54), V1(ϕ) ≤ h∥Q1∥∥ϕ∥2C,2.

To sum up, the question of existence of an LK functional of robust type boils down
to the question of solvability of the operator-valued algebraic Riccati equation
(5.65).

5.5.3 Infinite-Dimensional Kalman–Yakubovich–Popov
Lemma*

This section analyzes the solvability of the operator-valued algebraic Riccati
equation (5.65) and thus the existence of an LK functional of robust type. To
this end, consider the following Kalman–Yakubovich–Popov (KYP) lemma for
C0-semigroups on infinite-dimensional Hilbert spaces.

* Chapter 5 is part of [S3].

169



5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

Lemma 5.5.6 (Infinite-dimensional KYP lemma [131, Thm. 3]). Let X,U be
complex Hilbert spaces, let A I : D(A I) → X be the infinitesimal generator of a
C0-semigroup on X , let B : U → X be a bounded linear operator, and let

F (x, u) = ⟨Fxxx, x⟩X + 2Re⟨Fuxx, u⟩U + ⟨Fuuu, u⟩U (5.67)

be a continuous quadratic form on X × U . Assuming that A I does not have a
spectrum in the neighborhood of the imaginary axis, define

α3 = inf
ω∈R

inf
u∈U

1

∥u∥2U
F
(
(iωIX − A I)−1Bu, u

)
. (5.68)

Let (A I,B) be stabilizable, i.e., there exists a bounded linear operatorKs : X →
U such that A I − BKs generates an exponentially stable C0-semigroup. If
α3 > 0, then there exist bounded linear operators X0 = X ∗

0 : X → X and
K : X → U such that ∀x ∈ D(A I), u ∈ U :

2Re⟨A Ix+ Bu,X0x⟩X + F (x, u) = ∥F 1/2
uu (K x+ u)∥2U . (5.69)

Moreover, if A I,B,Ks are real, then real operators X0,K exist. If α3 < 0,
then no such operators exist.

The existence of an LK functional of robust type can be deduced from the given
statement due to the following equivalence.

Lemma 5.5.7. Let x ∈ X =M2, u ∈ U = Cm, and

F (x, u) = −⟨Qx, x⟩M2 + ⟨(−Πaa)u, u⟩Cm . (5.70)

Then the Lur’e equation (5.69), with X0 = −P0, is equivalent to the algebraic
Riccati equation (5.65) and K = −(−Πaa)

−1B∗P0.

170



5.5 Solvability of the Defining Equation

Proof. With X0 = −P0 and with F from (5.70), where Fuu = FHuu = −Πaa,
the Lur’e equation (5.69) becomes

− 2
(
Re⟨P0A

Ix, x⟩M2
+Re⟨u,B∗P0x⟩Cm

)
− ⟨Qx, x⟩M2

+⟨(−Πaa)u, u⟩Cm

= ⟨K x, (−Πaa)K x⟩Cm + 2Re⟨u, (−Πaa)K x⟩Cm + ⟨(−Πaa)u, u⟩Cm .

Comparing the mixed terms in u and x gives (−Πaa)K = −B∗P0. The terms
quadratic in x result in (5.65).

The decisive element in Lemma 5.5.6 is α3 in (5.68). Since A I refers to (5.64),
the first argument of F in (5.68) refers to

(sIM2
− A I)−1B =

[
Φ

Φ(0)

]
, (5.71)

with Φ(θ) = esθHI(s) (5.72)
and HI(s) = (sI −AI

0 − e−shAI
1)

−1B, (5.73)

see [47, Lem. 7.2.14]. Thus, combined with (5.70) and (5.66), the decisive α3

from (5.68) in the KYP lemma relies on

F
(
(iωIM2

−A I)−1Bu, u
)
= −uH(HI(iω))H(Q0 +Q1)H

I(iω)u− uHΠaau.

(5.74)

5.5.4 A Result in Terms of the Original Transfer
Function*

Rather than expressing the resulting existence condition α3 > 0 with α3 from
(5.68) in terms of HI(s) from (5.73), the present section intends to state the
existence criterion in terms of a transfer function G(s) from the untransformed
RFDE.

* Chapter 5 is part of [S3].
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The first step is to incorporate howQ0, Q1 from (5.52) depend onC0, C1 to make

GI(s) =

[
C1e

−sh

C0

]
(sI −AI0 − e−shAI1)

−1B (5.75)

in (5.74) visible.

Lemma 5.5.8. The following equivalence holds

(HI(iω))H(Q0 +Q1)H
I(iω) = (GI(iω))HΠI

ζζG
I(iω). (5.76)

Proof. Based on ΠI
ζζ from (5.51) and HI from (5.73), it holds

(GI(iω))HΠI
ζζG

I(iω)

= (HI(iω))H
[
CH1 eiωh CH0

] [ΠI,11ζζ 0

0 ΠI,00ζζ

][
C1e

−iωh

C0

]
HI(iω)

= (HI(iω))H(CH1 ΠI,11
ζζ C1 + CH0 ΠI,00

ζζ C0)H
I(iω),

involving Q0 and Q1 from (5.52).

The second step consists in undoing the transformation from Lemma 5.5.1, to
express (5.74) in terms of the original transfer function

G(s) =

[
C1e

−sh

C0

]
︸ ︷︷ ︸

=:C(s)

(sI −A0 − e−shA1)
−1︸ ︷︷ ︸

=:∆−1(s)

B. (5.77)

Note that, due to Lemma 5.5.8, the negative of the overall right-hand side in (5.74)
is described by the right-hand side in Lemma 5.5.9 below, whereΠI =

[
ΠI

ζζ 0

0 Πaa

]
,

see (5.50). In contrast, Π =
[
Πζζ Πζa

Π⊤
ζa Πaa

]
.
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5.5 Solvability of the Defining Equation

Lemma 5.5.9. Let Z = (−Πaa)
−1Π⊤

ζa and assume det(Im + ZG(iω)) ̸= 0 for
all ω ∈ R. Then, ∀v ∈ Cm,

vH

[
G(iω)

−I

]H
Π

[
G(iω)

−I

]
v = uH

[
GI(iω)

−I

]H
ΠI

[
GI(iω)

−I

]
u,

where u = (I + ZG(iω))v.

Proof. Consider the Aitken block diagonalization

vH

[
G(iω)

−I

]H [
Πζζ Πζa

Π⊤
ζa Πaa

][
G(iω)

−I

]
v (5.78)

= vH

[
G(iω)

−I

]H
TH

[
Π/Πaa 0

0 Πaa

]
︸ ︷︷ ︸

ΠI

T

[
G(iω)

−I

]
v,

where Π/Πaa is the Schur complement (5.50a), relying on T =
[
I 0

−Z I

]
with

Z = (−Πaa)
−1Π⊤

ζa. Consider

T

[
G(iω)

−I

]
v =

[
G(iω)(I + ZG(iω))−1

−I

]
(I + ZG(iω))v︸ ︷︷ ︸

u

.

Its upper term (cf. a closed loop transfer function with Z in the feedback path)
simplifies to

G(iω)
(
I + Z G(iω)

)−1 (5.77)
= C(iω)∆−1(iω)B

(
I + Z C(iω)∆−1(iω)B

)−1

= C(iω)∆−1(iω)
(
I +B Z C(iω)∆−1(iω)

)−1
B

= C(iω)
(
∆(iω) +B Z C(iω)

)−1
B

(5.75),(5.48)
= GI(iω) (5.79)
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(using the push-through identity B(I +QB)−1 = (I + BQ)−1B in the second
line), which completes the proof.

Remark 5.5.10 (Stability assumption). In the following theorem, it is assumed
that the equilibrium of the transformed system ẋ(t) = f I(xt) from (5.48) is
exponentially stable. (Note that, in the case of a linear norm bound, the latter
coincides with the nominal system, f I = f .) In view of Lemma 5.5.6, weaker
conditions (stabilizability, hyperbolicity) suffice, but, in view of Section 5.4, the
simpler assumption is desirable anyway: Since f I(xt) = f(xt) − BKCxt in
(5.48), it implies that K = (−Πaa)

−1Π⊤
ζa stabilizes the nominal system. With

K fulfilling (5.35), this ensures that V satisfies the partial definiteness properties
from Section 5.4, which would otherwise not have to be the case.

Altogether, the following existence criterion for an LK functional of robust type
w.r.t. the nominal system ẋ(t) = f(xt) = A0x(t)+A1x(t−h), the perturbation
structure (B, C), and the perturbation restriction (Πζζ ,Πζa,Πaa) is obtained.

Theorem 5.5.11 (Existence condition). Assume that ẋ(t) = f I(xt) defined in
(5.48) has an exponentially stable equilibrium, and ẋ(t) = f(xt) does not have
characteristic roots on the imaginary axis. Moreover, let ΠI

ζζ from (5.50a) have
the block diagonal structure (5.51). Based on the transfer function (5.77), consider

WG(iω) = −

[
G(iω)

−Im

]H [
Πζζ Πζa

Π⊤
ζa Πaa

][
G(iω)

−Im

]
. (5.80)

If WG(iω) ≻ 0m×m, for all ω ∈ R, then an LK functional of robust type exists.
IfWG(iω) ̸⪰ 0m×m for some ω ∈ R, then no LK functional of robust type exists.

Proof. Because of Theorem 5.5.4, solvability of (5.65) must be shown. Thus,
due to the equivalence from Lemma 5.5.7, the existence question is tackled by
the KYP lemma 5.5.6. Concerning the characteristic roots {λk}k, it need not
be distinguished between ∀k : |Re(λk)| ̸= 0 required above and ∃ϵ > 0,∀k :

|Re(λk)| > ε required in Lemma 5.5.6 since eigenvalue chains in RFDEs satisfy
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5.5 Solvability of the Defining Equation

Re(λk) → −∞ if |λk| → ∞, see [82, Lem. 1-4.1] and [14, Thm. 12.12]. By
Lemma 5.5.8 and Lemma 5.5.9, (5.74) depends on (5.80) according to

F ((iωIM2
− A I)−1Bu, u) = uH(I + ZG(iω))−HWG(iω)(I + ZG(iω))−1u.

(5.81)

Thus, the existence statement of Lemma 5.5.6 relies on

α3 = inf
ω
λmin

(
(I + ZG(iω))−HWG(iω)(I + ZG(iω))−1

)
.

By (5.79) and the assumptions, det((I+ZG(iω))−1) ̸= 0 holds for allω ∈ R, and
thus, Sylvester’s law of inertia applies. SinceG is strictly proper, and due to (5.15),
lim|ω|→∞ λmin(WG(iω)) = λmin(−Πaa) > 0. Hence, positive definiteness of
WG(iω) is equivalent to α3 > 0.

Remark 5.5.12 (Uniqueness). If uniqueness of V is desired, the considerations
can be restricted to the unique so-called stabilizing solution P0 of the algebraic
Riccati equation (5.65), see Section 7.2.1.

5.5.5 Admissible Perturbation Restrictions*

The limiting factor on the admissible bounds in Table 5.1 becomes Theo-
rem 5.5.11, which is decisive for the existence of an LK functional of robust
type. Theorem 5.5.11 is expressed in terms of Πζζ ,Πζa,Πaa. The present sec-
tion states the resulting explicit bounds on the involved parameters, e.g., γ, ρ,K1,
from Table 5.1. Subsequently derived bounds are summarized in Table 5.2. The
first one addresses the linear norm bound γ from Table 5.1, row (I|a).

* Chapter 5 is part of [S3].
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Row in
Table 5.1

Bound on the respective parameter in (Πζζ ,Πζa,Πaa),
based on the transfer functionG(s) of the nominal system
from (5.77)

If p = m = 1:
restriction on G(iω) ∈ C
in the Nyquist plot

(I|a)

γmax =
1

maxω ∥G(iω)∥2
=

1

∥G∥∞

Reciprocal of the L2-gain of the nominal system

1/γ

(II|a)
ρmin = max

ω
µ2(−G(iω)) = −ν(G)

Negative of the input passivity index
of the nominal system

ρ

(III) Assuming K2 = k2Im is fixed
and K1 = k1Im variable:

k1,min = k2 +
1

ν(−GII)

(see Corollary 5.5.17 for GII),
from a transformation to row (II)

1/(−K1)

- 1
K2

1/K1

ifK1 > 0
- 1
K2

Table 5.2: Bounds on the admissible sectors in Table 5.1 according to Corollary 5.5.13, 5.5.14,
5.5.17, and Remark 5.5.15. If p = m = 1, then ∥G∥∞ = maxω |G(iω)| and ν(G) =
minω Re(G(iω)), which corresponds to the gray-shaded Nyquist plot restrictions in the
right column (depicted is the complex plane with the black lines being the real and
imaginary axis). A less restricted Nyquist curve amounts to a less robust system, thus
requiring a more restrictive perturbation sector. See Remark 5.5.10 for the role of a
stability assumption on ẋ(t) = f I(xt) that is additionally imposed.
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Corollary 5.5.13 (Maximum linear norm bound). Assume the nominal system
ẋ(t) = A0x(t) + A1x(t − h) =: f(xt) has an exponentially stable zero equi-
librium. Let G(s) be its transfer function (5.77) incorporating the perturbation
structure (B, C). If γ < γmax

γmax :=
1

maxω ∥G(iω)∥2
=

1

∥G∥∞
, (5.82)

then a solution V of (5.30) exists.

Proof. Due to f I(xt) = f(xt), the assumptions in Theorem 5.5.11 are satisfied.
With (Πζζ ,Πζa,Πaa) from row (I|a) in Table 5.1, (5.80) becomes

WG(iω) = −
(
γ2(G(iω))HG(iω)− Im

)
, (5.83)

λmin

(
WG(iω)

)
= −γ2λmax

(
(G(iω))HG(iω)

)
+ 1 > 0. (5.84)

Moreover, the peak gain maxω

√
λmax

(
(G(iω))HG(iω)

)
= maxω ∥G(iω)∥2

coincides with theH∞-norm sinceG ∈ H∞ by the assumed exponential stability.

Note that (5.82) coincides with the complex stability radius, cf. [159, exam-
ple. 2.5]. Another way to read the above corollary is that the product of L2-gains
γ∥G∥∞ shall be smaller than one, mirroring the small-gain theorem cf. [53,
Sec. III.2]. Similarly5, for row (II|a) in Table 5.1, the following corollary mirrors
a passivity theorem: the excess ρ of output passivity in the perturbation shall be
larger than the shortage of input passivity in the nominal system. The latter is
measured by the input passivity index ν(G) ≤ 0, cf. [203, eq. (7)].

5 Both refer to interconnected dissipative elements [191] withΠζζ ,Πζa,Πaa describing the QSR-
dissipativity of ζ 7→ a(ζ). See also Section 6.3.2.
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Corollary 5.5.14 (Minimumoutput passivity). LetG(s) be the transfer function
(5.77) of the nominal system ẋ(t) = A0x(t)+A1x(t−h) with (B, C). Consider
(Πζζ ,Πζa,Πaa) from row (II|a) in Table 5.1 with ρ > ρmin,

ρmin := max
ω

µ2(−G(iω)) = −ν(G), (5.85)

where µ2(M) = λmax(
1
2 (M

H +M)) describes the logarithmic norm of a given
matrix M ∈ Cp×p. Moreover, assume that ẋ(t) = A0x(t) + A1x(t − h) −
1
2ρB

[
C1x(t−h)
C0x(t)

]
=: f I(xt) has an exponentially stable zero equilibrium and the

nominal system has no characteristic roots on the imaginary axis. Then a solution
V of (5.17) exists.

Proof. Consider (5.80) with Table 5.1, row (II|a),

WG(iω) = −
(
− 1

2

(
(G(iω))H +G(iω)

)
− ρI

)
, (5.86)

λmin

(
WG(iω)

)
= −λmax

(
He(−G(iω))

)
+ ρ > 0. (5.87)

Remark 5.5.15 (Circle criterion). If p = m = 1, a Nyquist plot of G(iω) can
be considered. In terms of the thus relevant real and imaginary parts of G(iω),
(5.80) becomes

WG(iω) = −
[
Re(G(iω))

−Im
Im(G(iω))

]⊤[ Πζζ Πζa 0p×m

Π⊤
ζa Πaa 0m×m

0m×p 0p×m Πζζ

] [
Re(G(iω))

−Im
Im(G(iω))

]
. (5.88)

The general sector perturbation restriction from row (III) in Table 5.1 results
in the Nyquist plot restriction that is known from the circle criterion, cf. [108,
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5.5 Solvability of the Defining Equation

Sec. 7.1.1]. To see the circle in (5.88), note that given some radius r > 0 and
some shift xδ ∈ R,

∓
(
(x− xδ)

2 + y2 − r2
)
= ∓

[ x
−1
y

]⊤ [ 1 xδ 0

xδ x
2
δ−r

2 0
0 0 1

] [ x
−1
y

]
≥ 0 (5.89)

describes a disc (−) or the complement of a disc (+) in the (x, y) plane. Anal-
ogously, if p = m = 1, an open disc or the interior of its complement in the
(Re(G(iω)), Im(G(iω))) plane is described by WG(iω) > 0 from (5.88) with
Table 5.1, row (III|c). See the plots in Table 5.2.

Rather than plotting the Nyquist curve, transformations that eliminate either Πζa
(transformation I, Lemma 5.5.1) orΠζζ (e.g., transformation II below) are prefer-
able as these yield numerically traceable results in the manner of Corollary 5.5.13
or Corollary 5.5.14, not restricted to p = m = 1.

Lemma 5.5.16 (Transformation II). V (ϕ) is an LK functional of robust type
w.r.t. ẋ(t) = A0x(t) + A1x(t), (B, C), and (Πζζ ,Πζa,Πaa) from row (III) in
Table 5.1 withK1 = k1Im andK2 = k2Im, k2 > k1 ∈ R, i.e.,

Πζζ = −k1k2Im, 2Πζa = (k1 + k2)Im, Πaa = −Im,

if and only if V (ϕ) = V II(ϕ) is an LK functional of robust type w.r.t. ẋ(t) =

AII
0 x(t) +AII

1 x(t) =: f II(xt),

AII
0 = A0 − k2B

[
0p1×n

C0

]
, AII

1 = A1 − k2B
[

C1
0p0×n

]
,

the original (B, C), and the transformed

ΠII
ζζ = 0m×m, 2ΠII

ζa = −(k2 − k1)Im, ΠII
aa = −Im.
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

Proof. The defining equation (5.17) is not altered if instead of D+
f V (ϕ) and

(Πζζ ,Πζa,Πaa), the result for D+
(f+g)V (ϕ) from Lemma 5.3.1 with g(xt) =

−k2BCxt and (ΠII
ζζ ,Π

II
ζa,Π

II
aa) are used.

The final corollary is expedient for saturation nonlinearities, where the upper
sector bound is usually fixed, and the best possible lower sector bound is of
interest.

Corollary 5.5.17 (Minimum lower sector bound). Consider Table 5.1 (III) with
K2 = k2Im. LetK1 = k1Im and k1 > k1,min,

k1,min := k2 −
1

maxω µ2(GII(iω))
= k2 +

1

ν(−GII)
,

where GII(s) =
[
C1e

−sh

C0

]
(sI − AII

0 − e−shAII
1 )

−1B and where AII
0 and

AII
1 are defined in Lemma 5.5.16. Assume ẋ(t) = A0x(t) + A1x(t − h) −

k1+k2
2 B

[
C1x(t−h)
C0x(t)

]
=: f I(xt) has an exponentially stable zero equilibrium and

ẋ(t) = AII
0 x(t)+A

II
1 x(t) =: f II(xt) has no characteristic roots on the imaginary

axis. Then a solution V of (5.17) exists.

Proof. With (ΠII
ζζ ,Π

II
ζa,Π

II
aa) from Lemma 5.5.16, (5.80) is

WGII(iω) = −
(

1
2 (k2 − k1)

(
(GII(iω))H +GII(iω)

)
− Im

)
, (5.90)

λmin

(
WGII(iω)

)
= −(k2 − k1)λmax(He(GII(iω))) + 1 > 0. (5.91)

To sum up, the admissible perturbation restrictions for which an LK functional
of robust type exists can be derived from the frequency response of the nomi-
nal system incorporating the input matrix and output operator that describe the
perturbation structure. As these results rely on the Kalman–Yakubovich–Popov
lemma, the resulting bounds, in fact, are familiar bounds from frequency domain
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5.6 Example

considerations (see also Section 6.3). For the special case of p = m = 1, the
Nyquist curve could be considered, where, roughly speaking, a more restricted
Nyquist curve amounts to a more robust system thus calling for a less restrictive
sector bound on perturbations (as known from the circle criterion). However, the
given formulas are not restricted to p = m = 1, which would be presumed in a
graphical evaluation. For instance, for the linear norm bound γ, it is concluded
that an LK functional of robust type exists whenever γ is smaller than the recip-
rocal of the H∞-norm of the nominal system (which is the bound known from
the complex stability radius or the small-gain theorem, see also Section 6.3).

5.6 Example*

The following example system (5.92) supplements in [111] the introduction of
complete-type LK functionals.

Example 5.6.1. With a vanishing perturbation g(xt) ≡ 0n, the system

ẋ(t) =

[
0 1

−1 −2

]
x(t) +

[
0 0

−1 1

]
x(t− h) + g(xt) (5.92)

can be shown to have an exponentially stable equilibrium for anyh > 0 (seeChap-
ter 2). Henceforth, let h = 1.

(i) Table 5.3 gives a linear norm bound on unstructured perturbations

g(xt) = −a

([
x(t− h)

x(t)

])
(5.93)

* Chapter 5 is part of [S3].
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

(i) Admissible linear norm bound on the perturbation
∥g(xt)∥2 ≤ γ̃

∥∥∥[ x(t)
x(t−h)

]∥∥∥
2
with γ̃ < γmax

LK functional of complete type, (1.17) γmax = 0.0227

LK functional of robust type, (5.82)

(a) unstructured, B = C0 = C1 = I γmax = 0.1059

(b) if g(xt) =
[

0
g2(xt)

]
: structured,

B =
[
0
1

]
, C0 = C1 = I γmax

g1≡0
= 0.2462

(ii) Special case of bounds on uncertainties ∆0,1 ∈ Rn×n

in ẋ(t) = (A0 +∆0)x(t) + (A1 +∆1)x(t− h)

eq. (5.82), LK functional of robust type

[135, example. 15], approach from [136]
eq. (1.17), LK functional of complete type

[111, example. 1], LK functional of complete type

c1 = 1

c0 = 0.5

c1 = c0 = 1

c1 = 0.1

c0 = 1

0 0.05 0.1 0.15
∥∆0∥20

0.1

∥∆1∥2

Table 5.3: Example 5.6.1. The bounds on admissible perturbations are significantly less restrictive
than those from complete-type (choosing (1.14) as in [111, Example 1]) and related LK
functionals.

and on perturbations

g(xt) =

[
0

g2(xt)

]
= −

[
0

1

]
a

([
x(t− h)

x(t)

])
(5.94)

that only affect the second component, cf. (5.7). The latter are quite
plausible if (5.92) represents the state space description of a second order
system for x1. According to (5.82), γmax = 1

∥G∥∞
. See, e.g., [8],[138] for

a numerical implementation of

∥G∥∞ = max
ω∈R

∥∥∥∥∥
[
C1e

−iωh

C0

]
(iωIn −A0 −A1e

−iωh)−1B

∥∥∥∥∥
2

, (5.95)
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5.7 Revisiting the Main Points of the Chapter

and see also Section 7.3. Corollary 5.5.13 ensures that a solution V (ϕ)

of (5.30) exists if γ < γmax. Due to the full-rank choice C0 = C1 = I ,
such an LK functional of robust type V (ϕ) satisfies the conditions of the
classical LK theorem (Theorem 4.5.1):

• monotonicity by Corollary 5.3.4 (k2 = γ2 − γ̃2 from Table 5.3 with
γ̃ < γ < γmax, where γ̃, γ are arbitrarily close to γmax),

• partial positive definiteness by Theorem 5.4.3 (with K = 0n×n in
(5.35), (5.36)), and boundedness by Lemma 5.5.5.

Thus, for the family of accordingly perturbed systems, V (ϕ) is a commonLK
functional that proves global asymptotic stability of the zero equilibrium.

(ii) Uncertainties∆0,∆1 ∈ Rn×n in the coefficient matrices of (5.92) amount
to g(xt) = ∆0x(t) + ∆1x(t− h) or

g(xt) =
[

1
c1
∆1

1
c0
∆0

] [c1x(t− h)

c0x(t)

]
=: −a

([
c1x(t− h)

c0x(t)

])
,

(5.96)

for any c0, c1 > 0. Since

∥a(ζ)∥2 ≤ r(∆0,∆1)∥ζ∥2, r(∆0,∆1) :=
√

1
c21
∥∆1∥22 + 1

c20
∥∆0∥22,

the linear norm bound is satisfied if r(∆0,∆1) < γmax with γmax from
(5.82), choosing6 B = I, C0 = c0I, C1 = c1I . See Table 5.3.

5.7 Revisiting the Main Points of the Chapter

• The chapter introduces the concept of LK functionals of robust type.

6 equivalent to B = C0 = C1 = In combined with Table 5.1, row (I|b), L = [ c1In 0
0 c0In

],
W = In.
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

• Like LK functionals of complete type, LK functionals of robust type are also
defined via their derivative along solutions of the linear nominal system.
However, in contrast to complete-type and related LK functionals defined
by (1.14), the prescribed derivative does not rely on three arbitrarily chosen
matrices Q0, Q1, Q2. Instead, the defining equation (5.17) relies on the
following.

1. The perturbation structure (B, C): It gives rise to the Lur’e description
g(xt) = −Ba(Cxt) of the perturbation in (1.2), where

– the input matrix B encodes which components of the RFDE are
affected by the perturbation, and

– the output operator Cxt =
[C1 x(t−h)

C0 x(t)

]
encodes what g relies

upon (but C0, C1 can always be chosen as full-rank matrices by
adding some εI if that is required for further properties), see
Example 5.2.1.

2. The perturbation restriction matrices (Πζζ ,Πζa,Πaa) that character-
ize the type of robustness bound that shall be obtained for the function
ζ 7→ α = a(ζ) in g(xt) = −Ba(Cxt):

– The three matrices (Πζζ ,Πζa,Πaa) define a sector in terms of
the pairs (ζ, α) for which w(ζ, α) =

[
ζ
α

]⊤[ Πζζ Πζa

Π⊤
ζa Πaa

][
ζ
α

]
≥ 0

is satisfied. Possible choices of (Πζζ ,Πζa,Πaa) and the corre-
sponding sectors are summarized in Table 5.1.

– The choice of (Πζζ ,Πζa,Πaa) can be tailored to the given non-
linear function ζ 7→ α = a(ζ), see Example 5.2.2. If, in further
steps, only local stability results shall be obtained, the graph
(ζ, a(ζ)) need not even belong globally to the described sector.
It suffices if the function resides locally (on a preferably large
domain of ζ) within the sector.
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5.7 Revisiting the Main Points of the Chapter

– Usually a parameter like γ (respectively ρ or k1) is involved in
(Πζζ ,Πζa,Πaa) that controls the size of the sector.

– How large (respectively small) that parameter can be chosen in
order not to hamper the existence of the LK functional of robust
type only depends on the robustness of the nominal system for
the given perturbation structure.

– The corresponding admissible parameter bounds are summarized
in Table 5.2. See Corollary 5.5.13 et seq. for the precise state-
ments. Their derivations are based on a version of the Kalman–
Yakubovich–Popov lemma for C0-semigroups combined with a
splitting approach.

3. The expression v defined in (5.6): It depends on terms of the functional
itself, making the overall defining equation implicit. However, in the
ODE-based numerical approach, which will be discussed in the next
chapter, only the Lyapunov equation that has been encountered in
Chapter 4 is replaced by an algebraic Riccati equation.

• The sense behind the proposed construction of the defining equation (5.17)
is as follows.

– It is achieved that the derivative of the LK functional V (ϕ) along
solutions of the perturbed RFDE (1.2) is nonpositive wherever the
argument ϕ is such that ζ = Cϕ with α = a(Cϕ) is compatible
with the perturbation restriction. In other words, w(Cϕ, a(Cϕ)) ≥ 0

implies D+
(f+g)V (ϕ) ≤ 0.

– Even more, any strengthening to D+
(f+g)V (ϕ) ≤ −ℓ(Cϕ) with some

desired offset function ℓ(ζ) can be established by a corresponding
strengthening w(Cϕ, a(Cϕ)) ≥ ℓ(Cϕ), indicated by the turquoise
shaded reduction of the sectors in the plots of Table 5.1 (Theo-
rem 5.3.2).
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5 Introduction of Lyapunov–Krasovskii Functionals of Robust Type

– In the special case of a linear-norm-bound perturbation restriction
(where γ < γmax = 1

∥G∥∞
ensures that a corresponding LK func-

tional of robust type exists), it can be concluded that a more restrictive
linear norm bound ∥a(Cϕ)∥2 ≤

√
γ2 − k3∥Cϕ∥2 with some k3 ≥ 0

already implies D+
(f+g)V (ϕ) ≤ −k3∥Cϕ∥22 (Corollary 5.3.4).

• Comparability with the known robustness statement from complete-type
LK functionals, see (1.17) in the introduction, is established by choosing

1. the perturbation structure B = C0 = C1 = In, in which case the
nonlinearity a(·) covers the overall unstructured perturbation g(xt) =
−Ba

([C1 x(t−h)
C0 x(t)

])
= −a

([ x(t−h)
x(t)

])
and

2. the perturbation restriction given by row (I|a) in Table 5.1, addressing
a linear norm bound ∥a(Cxt)∥2 ≤ γ∥Cxt∥2. Note that, the defining
equation (5.17) then simplifies to (5.18).

For this choice of perturbation structure and perturbation restriction, a
robustness bound having the same form as (1.17) is derived, and, even
more, the following holds.

– The concept shares what is commonly considered as the main advan-
tage of complete-typeLK functionals: A correspondingLK functional
of robust type (which is guaranteed to exist whenever γ < γmax =

1
∥G∥∞

is chosen) satisfies the conditions imposed by the classical
LK theorem if and only if the equilibrium of the nominal system is
exponentially stable. To be more precise, it then satisfies

* the positive definiteness condition (4.28) by Theorem 5.4.3 and

* the monotonicity condition (4.29) by Corollary 5.3.4.

Thus, the approach is expedient even if the delay is arbitrarily close
to a critical delay value at which the exponential stability is lost.
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– At the same time, the resulting linear norm bound γ on admissible
perturbations, which according to Corollary 5.5.13 can be chosen as
γ < γmax = 1

∥G∥∞
, is significantly less conservative compared to

(1.18) from complete-type LK functionals, see Example 5.6.1.

• By offering additional freedom in both incorporating the structure of the
perturbation and imposing a perturbation restriction in form of an arbitrary
sector, the concept is more adaptable to the problem at hand, which is
usually rewarded by an additional reduction of conservatism.
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6 LK Functionals of Robust Type:
Numerical Approach and
ODE-Based Explanation

The numerical approach from Chapter 4 can also be applied to the proposed defin-
ing equation (5.17), thus providing a numerical approximation of LK functionals
of robust type. Besides of the practical relevance, e.g., for the evaluation of the
functional with a given argument or for bounds on the functional, the ODE-based
approach also establishes a link to the simpler finite-dimensional setting.

The chapter is organized as follows. In Section 6.1, the defining equation of
LK functionals of robust type is discretized based on the ODE approximation
from the Legendre tau method. As a result, a finite-dimensional algebraic Riccati
equation (ARE) takes the place of the finite-dimensional Lyapunov equation
encountered in Chapter 4. Section 6.2 explains the role of the ARE for the
approximating ODE. Conditions on the solvability of the finite-dimensional ARE
are provided in Section 6.3 by means of the Kalman–Yakubovich–Popov (KYP)
lemma. The connections to some related frequency-domain concepts are also
explained. Section 6.4 revisits the most important aspects of the chapter.

To shortly present the numerical approach that is proposed in Section 6.1 is a
subject of [S4].
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

6.1 Numerical Approach via a
Finite-Dimensional Algebraic Riccati
Equation*

Let us briefly review the essence of the numerical approach that has already been
applied to complete-type and related LK functionals in Section 4.1. The state
function xt = ϕ ∈ C([−h, 0],Rn) is mapped by the LK functional V to a scalar
value V (xt) ∈ R. In the numerical approach, instead, a polynomial approxi-
mation of the state function shall be mapped to the approximately same scalar
value. The polynomial is uniquely represented by its coefficients x̃ (e.g. Legendre
coordinates x̃ = c, mixed coordinates x̃ = χ, or interpolation coordinates x̃ = y).
As a consequence, the described approximation of the quadratic LK functional
can be established by a quadratic form

V (ϕ) ≈ Ṽ (x̃) = x̃⊤P̃ x̃ (6.1)

in the polynomial coordinates x̃. The present chapter uses the placeholder

x̃ ∈ {c, χ, y, . . .}. (6.2)

to emphasize the independence of the chosen coordinates (in contrast to Chapter 4,
the decomposition y = [z⊤, x̂⊤]⊤ will not further be employed). Moreover, the
introduced tilde for the corresponding matrices, e.g., P̃ = Pc, P̃ = Pχ, or
P̃ = Py , intends to contribute to a less cluttered notation in the matrix equations.

In the above described ansatz, only the matrix P̃ in (6.1) must be determined.
Consider the defining equation of the LK functional (5.17). It relies on the
derivative ofV (xt) along the solution of the nominal linear time-delay system, i.e.,
the directional derivative in the direction in which the state xt evolves. Therefore,
in view of the approximation (6.1), it must be clarified how the coordinates x̃(t)
evolve with time t. Due to the convincing results from Chapter 4, the Legendre

* The contributions from Section 6.1 are considered in [S4].

190



6.1 Numerical Approach via a Finite-Dimensional Algebraic Riccati Equation

tau method is used for this task. The result is an ODE ˙̃x = Ãx̃, see Chapter 3.
Employing the latter, the left-hand side of the defining equation (5.17) becomes
handleable in terms of matrices

D+
f V (ϕ) ≈ D+

( ˙̃x=Ãx̃)
x̃⊤P̃ x̃ = x̃⊤P̃ Ãx̃+ x̃⊤Ã⊤P̃ x̃.

In contrast to the defining equation of complete-type and related LK functionals
from (1.14), which is tackled in Section 4.1, the right-hand side of the defining
equation (5.17) involves a term that quadratically depends on the unknown func-
tional. That is why, instead of the Lyapunov equation encountered in Section 4.1,
an algebraic Riccati equation will arise in (6.18) for P̃ .

6.1.1 Legendre-Tau-Based Approximation of a System
with In- and Output

Relevant for the derivative D+
f V on the left-hand side of the defining equation

(5.17) is only the linear nominal system, which is still the autonomous RFDE
ẋ(t) = f(xt) = A0x(t) + A1x(t − h). However, to cover the perturbation
structure (B, C) introduced in Section 5.2, it is of interest how appended in- and
output terms in

ẋ(t) = A0x(t) +A1x(t− h) +Bu(t) (6.3a)

ζ(t) = Cxt =
[
C1x(t−h)
C0x(t)

]
(6.3b)

are tackled by the Legendre tau method. Note that a combination with u(t) =

−a(ζ(t)) realizes the perturbed system

ẋ(t) = A0x(t) +A1x(t− h)−Ba(
[C1x(t−h)

C0x(t)

]
) (6.4)

from (1.2) and (5.7).
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The result of the Legendre tau method (cf. Chapter 3) for the approximated
dynamics of the state xt from (6.3a) becomes in terms of Legendre coordinates
x̃ = c

ċ(t) = Acc(t) +Bcu(t) (6.5a)
ζ(t) = Ccc(t), (6.5b)

where the matrices Ac ∈ Rn(N+1)×n(N+1), Bc ∈ Rn(N+1)×m, and Cc ∈
R(p1+p0)×n(N+1) are as follows.

Ac: Recap from (3.27) that

Ac = Dc ⊗ In +

 0n×n 0n×n 0n×n ··· 0n×n...
...

...
...

0n×n 0n×n 0n×n ··· 0n×n

A0+A1 A0−A1 A0+A1 ··· A0+(−1)NA1



+ 2
h


0 ··· 0...

...
0 0 0 0 0 ··· 0

0 −1 −3 −6 −10 ··· −
N(N+1)

2

⊗ In (6.6)

with Dc =
2

h


0 1 0 1 0 1 0 1 ... 0
0 0 3 0 3 0 3 0 ... 3
0 0 0 5 0 5 0 5 ... 0
0 0 0 0 7 0 7 0 ... 7
0 0 0 0 0 9 0 9 ... 0
0 0 0 0 0 0 11 0 ... 11
0 0 0 0 0 0 0 13 ... 0
0 0 0 0 0 0 0 0 ... 15. . .0 0 0 0 0 0 0 0 ... 0

 (6.7)

(exemplarily, the differentiation matrixDc is shown for N even, otherwise
a last column [1, 0, 5, 0, 9, . . . , 0, (2N − 1), 0]⊤ has to be appended).

Bc: The RFDE right-hand side only affects the last block row in (6.5a) when
it is built via the Legendre tau method, cf. (3.38). Accordingly, only the
lower row of Bc is nonzero

Bc =

[
0nN×m

B

]
. (6.8)
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Cc: Along the lines of Section 3.5.3, let Cϕ ≈ Cϕ[N ] =: Ccc, where ϕ[N ]

is defined in (3.46). Then, by ϕ[N ](0) =
∑N
k=0 c

k and ϕ[N ](−h) =∑N
k=0(−1)kck,

Cc =

[
C1 −C1 C1 · · · (−1)NC1

C0 C0 C0 · · · C0

]
. (6.9)

6.1.2 Change of Basis

As mentioned above, (6.5) is henceforth replaced by

˙̃x(t) = Ãx̃(t) + B̃u(t) (6.10a)
ζ(t) = C̃x̃(t), (6.10b)

where x̃ ∈ Rñ stands for the chosen coordinates, and ñ := n(N + 1). All
coordinate choices are related by a simple change of basis, see Section 3.6.
Changing (Ac, Bc, Cc), which describes the dynamics of Legendre coordinates,
to (Ã, B̃, C̃), which describes the dynamics of possibly different coordinates x̃,
with c = Tcx̃x̃ and Tx̃c = T−1

cx̃ , amounts to

Ã = Tx̃cAcTcx̃, B̃ = Tx̃cBc, C̃ = CcTcx̃. (6.11)

A change of coordinates for the matrix P̃ ∈ Rn(N+1)×n(N+1) in (6.1) is accord-
ingly mirrored by the matrix congruence

P̃ = T⊤
cx̃PcTcx̃, (6.12)

see (4.7).

The following aspects are not yet needed for the discretization of the defining
equation, but will become relevant in later parts of the chapter.
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First, it should be noted that the transfer function

G̃(s) = Cc(sIñ −Ac)
−1Bc = C̃(sIñ − Ã)−1B̃ (6.13)

remains unaltered no matter which coordinates are used (a change of basis only
alters the state space realization (6.10) of G̃(s)). The tilde in the notation is still
required to distinguish between the rational transfer function G̃(s) ∈ (R(s))p×m

in (6.13) based on theODE approximation and the original RFDE transfer function
G(s) from (5.77).

Second, it should be noted that the nonlinear or uncertain function a : Rp → Rm

from (5.9) is already a mapping between the finite-dimensional output space Rp

and the finite-dimensional input space Rm, which remain unaltered. Combining
u(t) = −a(ζ(t)) with (6.10) amounts again to the approximation of the state
dynamics from the perturbed system (6.4)

˙̃x(t) = Ãx̃(t)− B̃a(C̃x̃(t)). (6.14)

6.1.3 The Finite-Dimensional Approximation of the
Defining Equation*

Altogether, with

D+
f V (ϕ) ≈ D+

( ˙̃x=Ãx̃)
Ṽ (x̃) = x̃⊤(P̃ Ã+ Ã⊤P̃ )x̃, (6.15)

v⊤(ϕ)B ≈ x̃⊤P̃ B̃, (6.16)
Cϕ ≈ C̃x̃, (6.17)

* The presented approach from Section 6.1.3 and the involved example are part of [S4].
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6.1 Numerical Approach via a Finite-Dimensional Algebraic Riccati Equation

N

er
ro
r

Figure 6.1: Convergence of the numerical approach in Example 6.1.1: The upper lines show the
error between Ṽ (x̃) = x̃⊤P̃ x̃ and its converged value Vlim(ϕ) as N increases. Some
exemplary polynomial and nonpolynomial arguments ϕ are considered. The lower line
shows the convergence of the quadratic-lower-bound coefficient from (4.23).

the discretization of the defining equation (5.17) reads

P̃ Ã+ Ã⊤P̃ = −C̃⊤ΠζζC̃ −
[
P̃ B̃ − C̃⊤Πζa

]
(−Πaa)

−1
[
B̃⊤P̃ −Π⊤

ζaC̃
]
−Ẽ,

(6.18)

which is an algebraic Riccati equation for P̃ if Ẽ = 0ñ×ñ, or an algebraic
Riccati inequality if the not further specified Ẽ ⪰ 0ñ×ñ allows for some arbitrary
semidefinite discrepancy between the left- and right-hand side. In which sense
(6.18) is the coordinate representation of an operator-valued equation is discussed
in Appendix A.

The proposed numerical approach to LK functionals of robust type only requires
to solve the matrix-valued algebraic Riccati equation (6.18) with Ẽ = 0ñ×ñ. To
be more precise, Ṽ (x̃) = x̃⊤P̃ x̃ is built from the unique so-called stabilizing
(cf. Section 7.2.1) real symmetric matrix P̃ that solves (6.18) with Ẽ = 0ñ×ñ.
This matrix P̃ is, e.g., numerically derivable via the standard routine icare

for algebraic Riccati equations in Matlab. Note that, for a given ϕ ∈ C, the
vector x̃ = Tx̃cc is determined according to the discretization (3.47) on which
the Legendre tau method relies. The resulting Ṽ (x̃) = x̃⊤P̃ x̃ ≈ V (ϕ) is the
searched approximation of the corresponding LK functional of robust type. A
convergence statement for any ϕ ∈ C will be proven in Chapter 7.
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

Example 6.1.1. Figure 6.1 shows for Example 5.6.1 the convergence of the above
described approach with some exemplary arguments ϕ. To be more precise,
Example 5.6.1 with the perturbation structure from Table 5.3 (i-b), i.e., B =

[0, 1]⊤, C0 = C1 = I2, is considered. For the transfer function (6.13) from the
Legendre tau method, γ̃max = 1

∥G̃∥∞
converges rapidly to γmax := γg1≡0

max from
Table 5.3 as N increases, with |γ̃max − γmax| < 10−8 for all tested N ≥ 4. The
chosen value is γ = (1− 10−5)γmax. With the linear-norm-bound perturbation
restriction from Table 5.1, the algebraic Riccati equation (6.18) simplifies to

P̃ Ã+ Ã⊤P̃ = −γ2C̃⊤C̃ − P̃ B̃B̃⊤P̃ , (6.19)

which, using mixed coordinates, is solved via icare in Matlab. Note that the
results in Figure 6.1 also account for the error in the underlying polynomial
approximation of the argument ϕ, which would as well be relevant in a numerical
integration of some known integral formula for V (ϕ).

6.2 Explanation in Terms of the ODE

Besides of being the discretization of the defining equation (5.17), the alge-
braic Riccati equation (6.18), respectively the resulting Ṽ (x̃) = x̃⊤P̃ x̃, is also
an appropriate means for the analysis of the finite-dimensional system ˙̃x(t) =

Ãx̃(t)− B̃a(C̃x̃(t)) from (6.14). In particular, the algebraic Riccati equation can
directly be derived from considering this finite-dimensional approximation of the
perturbed system dynamics. As a result, the link to various known concepts from
finite-dimensional systems theory is established without abstractly elevating these
concepts to the Hilbert-space setting. That is why, this and the next section focus
on the role of the algebraic Riccati equation (6.18) in terms of the ODE (6.14).

The considerations proceed from a linear matrix inequality over the algebraic
Riccati inequality to the desired algebraic Riccati equation. All these types of
matrix equations respectively inequalities are widely discussed in the literature,
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6.2 Explanation in Terms of the ODE

see, e.g., Willems’ famous work [190]. In fact, they are related to Lyapunov-
function-based approaches to the circle criterion addressing absolute stability, see
Remark 5.2.5. However, the resulting Ṽ (x̃) from the above considered algebraic
Riccati equation does not need to become a Lyapunov function in the classical
sense. In view of Section 4.5, it is only expected to be a partial Lyapunov
function. That is why, the present and the next section differ from such approaches
in the following respects. First, the introduction of the offset function ℓ from
Theorem 5.3.2 allows to impose tailored (partial) negative definiteness conditions
on the derivative of Ṽ . It thus enables a uniform treatment of various stability
concepts. Second, conditions that ensure the desired existence of P̃ = P̃⊤ will not
be mixed up with conditions that would be required to ensure that the resulting
matrix P̃ is positive definite. The instead relevant partial positive definiteness
could be characterized similarly to Remark 5.4.4, but, as it can simply be tested
by means of Section 4.3, partial positive definiteness will not further be discussed.

6.2.1 The Linear Matrix Inequality (LMI)

Since the function a(ζ) is as in Section 5.2, the perturbation restriction in terms
of w(ζ, a(ζ)) from Section 5.2 also remains unaltered. Consider the perturbation
restriction with an offset ℓ (see Section 5.3, possibly ℓ(ζ) ≡ 0)

w(C̃x̃, a(C̃x̃)) =
[

C̃x̃
a(C̃x̃)

]⊤ [ Πζζ Πζa

Π⊤
ζa Πaa

] [
C̃x̃

a(C̃x̃)

]
≥ ℓ(C̃x̃) (6.20)

Πζζ = Π⊤
ζζ ,Πaa = Π⊤

aa. The inequality shall hold locally or globally (in terms
of ζ = C̃x̃, and thus also in terms of x̃) for the perturbation a(ζ) in (6.14). The
fact that w(ζ, a(ζ)) ≥ 0 is not satisfied by all arbitrary α = a(ζ) is reflected by
the involved matrix being indefinite, see Figure 6.2. Recap from Table 5.1 that
relevant choices for the matrix in (6.20) are, e.g.,

Π(I|a) =
[
γ2I 0
0 −I

]
, Π(II|a) =

[
0

1
2 I

1
2 I −ρI

]
, Π(III|a) =

[
−sym(K⊤

1 K2)
1
2 (K

⊤
1 +K⊤

2 )
1
2 (K1+K2) −I

]
.
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

Figure 6.2: Let p = m = 1. The function w(ζ, α) =
[
ζ
α

]⊤ [
Πζζ Πζa

Π⊤
ζa Πaa

] [
ζ
α

]
must be a quadratic

form from an indefinite matrix: If the matrix was positive semidefinite, the inequality
w(ζ, α) ≥ 0 would hold for all points—thus not yielding a perturbation restriction. If
the matrix was negative semidefinite but nonzero, the inequality would hold only for a
meagre set of points—amounting to a linear, exactly determined α = a(ζ) = Kζ that
is no perturbation of interest. In contrast, if the matrix is indefinite, the zero-superlevel
set {(ζ, α) : w(ζ, α) ≥ 0} gives a sector. This sector describes the admissible range for
the graph of ζ 7→ α = a(ζ), see Table 5.1 in Chapter 5. As a consequence,M in (6.24)
is the sum of two indefinite matrices, and that sum might become negative semidefinite.

In view of the result on the derivative D+
(ẋ(t)=f(xt)−Ba(Cxt))

V (xt) that is estab-
lished for LK functionals of robust type in (5.23), the objective shall be to find a
function Ṽ (x̃) such that

D+

( ˙̃x=Ãx̃−B̃a(C̃x̃))Ṽ (x̃) ≤ −ℓ(C̃x̃), (6.21)

∀x̃ ∈ G on some domain G ⊆ Rñ, 0ñ ∈ G. If a function Ṽ (x̃) can be found for
which

D+

( ˙̃x=Ãx̃−B̃a(C̃x̃))Ṽ (x̃) ≤ −w(C̃x̃, a(C̃x̃)), (6.22)

∀x̃ ∈ Rn, then this objective (6.21) is clearly achieved wherever

−w(C̃x̃, a(C̃x̃)) ≤ −ℓ(C̃x̃),

i.e., wherever the perturbation restriction (6.20) holds.
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6.2 Explanation in Terms of the ODE

Thus, is suffices to focus on (6.22). Being interested in a quadratic form Ṽ (x̃) =

x̃⊤P̃ x̃, the left-hand side of (6.22) can be made explicit,

2x̃⊤P̃
(
Ãx̃− B̃a(C̃x̃)

)
≤ −w(C̃x̃, a(C̃x̃)), (6.23)

or in matrix notation1, using (6.20),

2x̃⊤P̃
(
Ãx̃− B̃a(C̃x̃)

)
+ w(C̃x̃, a(C̃x))

=
[

x̃
−a(C̃x̃)

]⊤([
2P̃Ã 2P̃B̃

0 0

]
+

[
C̃⊤ΠζζC̃ −C̃⊤Πζa

−Π⊤
ζaC̃ Πaa

])
︸ ︷︷ ︸

N

[
x̃

−a(C̃x̃)

]

=
[

x̃
−a(C̃x̃)

]⊤([
P̃Ã+Ã

⊤
P̃ P̃B̃

B̃
⊤
P̃ 0

]
+

[
C̃⊤ΠζζC̃ −C̃⊤Πζa

−Π⊤
ζaC̃ Πaa

])
︸ ︷︷ ︸

M=sym(N)

[
x̃

−a(C̃x̃)

]
≤ 0.

(6.24)

Hence, negative semidefiniteness of the involved real symmetric matrixM ,

∃P̃ = P̃⊤ ∈ Rñ×ñ : M ⪯ 0, (6.25)

ensures that (6.22) holds for all x̃ ∈ Rñ.

As a result, only the linear matrix inequality (6.25) must be solved for some
symmetric matrix P̃ . Provided a corresponding matrix P̃ is chosen in Ṽ (x̃) =

x̃⊤P̃ x̃, that function Ṽ (x̃) achieves that the objective (6.21) is accomplished for
all x̃ for which the perturbation restriction (6.20) holds.

Remark 6.2.1 (Offset function vs. strict S-procedure). The above introduced
offset function ℓ enables a unified treatment of stability, asymptotic stability, par-
tial asymptotic stability from Theorem 4.5.4, or other concepts which amount
to a special choice of the right-hand side in (6.21). The associated strength-
ening only affects the perturbation restriction (6.20), whereas the requirement
M ⪯ 0 in (6.25), (and, in the end, the frequency domain condition from the KYP

1 ForN ∈ Rν×ν and z ∈ Rν : z⊤skw(N)z = 0. Thus, z⊤Nz = z⊤sym(N)z.
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

lemma) remains unaltered. Although the underlying idea is the same, the usual
S-procedure2 approach chosen by Yakubovich for Lyapunov-function-based con-
siderations of absolute stability [78, 200, 5, 197, 196], differs in this respect from
the above result: The sector condition is commonly treated as remaining intact
even if asymptotic stability is of interest, and, instead, negative definiteness of the
Lyapunov function derivative is resolved by a “strict S-procedure”3 resulting in a
strict inequalityM ≺ 0. For the latter, the question of solvability then has to be
tackled separately (amounting to a strict, also called regular or nondegenerate,
variant of the KYP lemma [78, Thm. 2], in contrast to Lemma 6.3.1 below that
addressesM ⪯ 0).

In the following section, the known equivalence between the LMI (6.25) and the
algebraic Riccati inequality, given by (6.18) with some arbitrary Ẽ ⪰ 0, will
be discussed. Moreover, it will be explained why nothing is lost by solving the
algebraic Riccati equation (6.18) with Ẽ = 0 instead.

In fact, solving the algebraic Riccati equation is the way to go. First, solving an
algebraic Riccati equation via standard routines is computationally less expensive
than starting up a semidefinite programming solver that seeks for a matrix P̃ in
the LMI (6.25). Second, to establish convergence to the searched LK functional
of robust type, a unique solution must be agreed upon, which is why an inequality
is inappropriate.

2 Let D = D⊤,W = W⊤ ∈ Rnz×nz . The relevant simplified form of the S-procedure is(
∀z ∈ {z ∈ Rnz : z⊤Wz ≥ 0} : z⊤(−D)z ≥ 0

)
⇐⇒ −M := −D −W ⪰ 0,

cf. [25, Sec. 2.6.3]. See Lemma 6.2.3 (c3) for its application.
3 (

∀z ∈ {z ∈ Rnz : z⊤Wz ≥ 0} \ {0} : z⊤(−D)z > 0
)

⇐⇒ −M := −D −W ≻ 0
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6.2 Explanation in Terms of the ODE

6.2.2 The Algebraic Riccati Inequality (ARI) and
Comments on the LMI

Consider the LMI (6.25). The negative semidefiniteness of the involved block
matrix from (6.24)

M =

[
P̃ Ã+ Ã⊤P̃ P̃ B̃

B̃⊤P̃ 0m×m

]
+

[
C̃⊤ΠζζC̃ −C̃⊤Πζa
−Π⊤

ζaC̃ Πaa

]
, (6.26)

whereM22 = Πaa ≺ 0m×m according to (5.15), respectively positive semidefi-
niteness of −M , can be reformulated in terms of its Schur complement.

Lemma 6.2.2 (Semidefiniteness and Schur complement [91, Thm. 1.12]). A
matrixM =MH =

[
M11 M12

M21 M22

]
with a positive definite submatrixM22 is positive

semidefinite if and only if its Schur complementM/M22 =M11−M12M
−1
22 M21

is positive semidefinite.

Therefore, −M ⪰ 0 from (6.25) is equivalent to Lemma 6.2.3a below, which is
the desired algebraic Riccati inequality. This equivalence is well known [190].
The following lemma also describes some further straightforward equivalences,
respectively interpretations, that will become relevant in the sequel.

Lemma 6.2.3. LetM be given by (6.26). The following statements are equivalent.

(a) (Algebraic Riccati inequality (ARI), Lemma 6.2.2 applied to (b))
M/M22 ⪯ 0ñ×ñ, based on the Schur complement

M/M22

= P̃ Ã+ Ã⊤P̃ + C̃⊤ΠζζC̃︸ ︷︷ ︸
M11

−
[
P̃ B̃ − C̃⊤Πζa

]
︸ ︷︷ ︸

M12

Π−1
aa

[
B̃⊤P̃ −Π⊤

ζaC̃
]

︸ ︷︷ ︸
M21

(under the assumptionM22 = Πaa ≺ 0m×m from (5.15)).

(b) (Linear matrix inequality (LMI))
M ⪯ 0(ñ+m)×(ñ+m), whereM is given by (6.26).
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

(c1) (Negative semidefiniteness in R)
∀x̃ ∈ Rñ,∀u ∈ Rm : [ x̃u ]

⊤
M [ x̃u ] ≤ 0.

(c2) (Using u from (c1) instead of −a(C̃x̃) in (6.24) )
∀x̃ ∈ Rñ,∀u ∈ Rm :

2x̃⊤P̃
(
Ãx̃+ B̃u

)
≤ −w(C̃x̃,−u),

with w(C̃x̃,−u) =
[
C̃x̃
−u
]⊤ [ Πζζ Πζa

Π⊤
ζa Πaa

] [
C̃x̃
−u
]
.

(c3) (Interpreting (c2) as S-Procedure)
2x̃⊤P̃

(
Ãx̃+B̃u

)
≤ 0 for all x̃ ∈ Rñ, u ∈ Rm that satisfyw(C̃x̃,−u) ≥ 0

(see, e.g., [25, Sec. 2.6.3] for the S-procedure; cf. Remark 6.2.1 above).

(c4) (Interpreting (c2) as dissipativity inequality)
For V (x̃) = x̃⊤P̃ x̃ it holds

D+

( ˙̃x=Ax̃+Bu)
V (x̃, u) ≤ wsys(u, C̃x̃),

with

wsys(u, C̃x̃) := −w(C̃x̃,−u)
= u⊤(−Πaa)u+ 2x̃⊤C̃⊤Πζau+ x̃⊤C̃⊤(−Πζζ)C̃x̃.

Consequently, if additionally V (x̃) ≥ 0 is satisfied, then, following [191],
V (x̃) qualifies as a storage function and the linear nominal system (6.10)
is dissipative w.r.t. the supply rate wsys.

(d1) (Negative semidefiniteness in C)
∀x̃ ∈ Cñ,∀u ∈ Cm : [ x̃u ]

H
M [ x̃u ] ≤ 0.

(d2) (Using x̃, u from (d1) in (6.24) where4M=M⊤)
∀x̃ ∈ Cñ,∀u ∈ Cm :

2Re
(
x̃H P̃ (Ãx̃+ B̃u)

)
≤ −wC(C̃x̃,−u),

with wC(C̃x̃,−u) =
[
C̃x̃
−u
]H [ Πζζ Πζa

Π⊤
ζa Πaa

] [
C̃x̃
−u
]
.

4 ForN ∈ Rν×ν and z ∈ Cν : zHskw(N)z ∈ iR and zHsym(N)z ∈ R. Thus,Re(zHNz) =
zHsym(N)z.
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6.2 Explanation in Terms of the ODE

Remark 6.2.4 (Absolute stability). The designation absolute stability empha-
sizes that the whole family of ODEs ẋ(t) = Ãx̃(t) + B̃u exhibiting a term u =

−a(C̃x̃) that is globally compatible with the sector condition w(C̃x̃,−u) ≥ 0

is simultaneously considered. Therefore, the term absolute stability refers to the
global asymptotic stability of the zero equilibrium under all such perturbations
[5]. Nevertheless, the underlying methods are also known to be useful for local
considerations [108].

Remark 6.2.5 (Necessary condition for a quadratic Ṽ , S-procedure). Clearly,
for any system in the above described family, the obtained Ṽ (x̃) = x̃⊤P̃ x̃ has
a nonpositive derivative D+

Ãx̃+B̃(−a(C̃x̃))Ṽ (x̃) by (6.22). The significance of the
S-Procedure in Lemma 6.2.3 (c3) rather lies in a converse statement. Due to
the losslessness [25, 199] of the S-Procedure, the feasibility of the LMI or ARI
in Lemma 6.2.3 is not only sufficient but even necessary for the existence of a
common quadratic Ṽ (x̃) with a nonpositive derivative D+

Ãx̃+B̃(−a(C̃x̃))Ṽ (x̃) for
the entire family of ODEs. As a consequence, unless non-quadratic Lyapunov
functions are taken into account or a non-sector-type perturbation family is used,
the robustness bounds (the admissible parameter range describing the sector
size, e.g., the maximum linear norm bound γ in Table 5.1 (I|a) ) cannot further
be improved.

Remark 6.2.6 (Interconnection of dissipative elements). On the one hand, con-
cerning the nominal system, the LMI can be interpreted as a dissipativity re-
quirement according to Lemma 6.2.3 (c4), provided additionally P̃ ⪰ 0 holds.
On the other hand, concerning the perturbation, if ℓ ≡ 0, then Πaa,Π

⊤
ζa,Πζζ

from the perturbation restriction can also be interpreted as Q,S,R matrices in
a QSR-dissipativity requirement on the static perturbation map. See Figure 6.3.
Therefore, provided ℓ ≡ 0, and P̃ ⪰ 0, the overall system can be understood as
a neutral interconnection of dissipative elements in the sense of Willems [191].

The positive semidefiniteness of P̃ , respectively Ṽ (x̃) ≥ 0, that is required in
Remark 6.2.6, is easily established. The conditions in the following lemma might
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

already be satisfied by a vanishing a(ζ) = KCζ with KC = 0m×p (similarly to
the discussions in Section 5.4 and Remark 5.5.10).

Lemma 6.2.7 (Positive semidefiniteness of the solution P̃ ). Assume there exists
some KC ∈ Rm×p such that a(ζ) = KCζ belongs to the sector w(ζ, a(ζ)) ≥ 0,
i.e.,

[ Ip
KC

]⊤
[
Πζζ Πζa

Π⊤
ζa Πaa

][ Ip
KC

]
⪰ 0p×p, and such that u = −a(C̃x̃) is a stabilizing

input, i.e., Ã − B̃KCC̃ is Hurwitz. If Ṽ (x̃) = x̃⊤P̃ x̃ achieves (6.22), i.e.,
D+

Ãx̃−B̃a(C̃x̃)Ṽ (x̃) ≤ −w(C̃x̃, a(C̃x̃)) (which, by construction, is the case for

any P̃ = P̃⊤ solving the ARI, ARE, LMI, etc. considered in this section), then P̃
is positive semidefinite.

Proof. Any x̃0 ∈ Rñ can be used as an initial value x̃0 in the stabilized problem
˙̃x = (Ã− B̃KCC̃)x̃. Then, analogously to the proof of Theorem 5.4.1,

Ṽ (x̃0) = −
∫ ∞

0

D+

( ˙̃x=Ãx̃−B̃KCC̃x̃)
Ṽ (x̃(t)) dt ≥

∫ ∞

0

w(C̃x̃(t),KCC̃x̃(t)) dt

≥ 0.

Remark 6.2.8 (Complexification, KYP lemma). Lemma 6.2.3 (d2) is a first step
towards the KYP lemma, that provides conditions under which not all x̃ ∈ Cñ

must be tested in the inequality of Lemma 6.2.3 (d2), but only

x̃f = (iωIñ − Ã)−1B̃u, (6.27)

∀ω ∈ R. Note that, for x̃ = x̃f from (6.27), the left-hand side of the inequality
2Re

(
x̃H P̃ (Ãx̃+ B̃u)

)
≤ −wC(C̃x̃,−u) in Lemma 6.2.3 (d2) vanishes by

Re
(
x̃Hf P̃ (Ãx̃f + B̃u︸︷︷︸

(iωIñ−Ã)x̃f by (6.27)

)
)
= Re(iω x̃Hf P̃ x̃f︸ ︷︷ ︸

∈R if P̃=P̃H

) = 0 (6.28)

(and with it the explicit occurrence of P̃ ). Section 6.3 will be devoted to the KYP
lemma, which thus only relies on 0 ≤ −wC(C̃x̃f ,−u).
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6.2 Explanation in Terms of the ODE

6.2.3 The Algebraic Riccati Equation (ARE)

Statement (a) in Lemma 6.2.3 is the algebraic Riccati inequality encountered
in (6.18) with Ẽ ⪰ 0ñ×ñ. The present section considers the strengthening to
an algebraic Riccati equation, thus arriving at (6.18) with Ẽ = 0ñ×ñ. Due to
the equivalences in Lemma 6.2.3, the latter can not only be recognized as a
strengthening of the ARI (a) but equivalently as a strengthening of the LMI from
statement (b) in Lemma 6.2.3. This strengthening can be made explicit based on
the following Gram-matrix-related statement on semidefiniteness.

Lemma 6.2.9 (Semidefiniteness and decomposability, cf. [121, Ch. 5.5,
Cor. 2]). A matrix M = MH ∈ Cn×n is positive semidefinite with rk(M) = r

if and only if there exists a matrix Γ ∈ Cr×n with full row rank rk(Γ) = r such
thatM can be decomposed intoM = ΓHΓ.

In fact, replacing the ARI (a) from Lemma 6.2.3 by the ARE, which is the last
point (A) in the following lemma, amounts to imposing an additional rank re-
striction to the LMI from (b), given by (B) below. Such a relation between the
LMI and the ARE is already mentioned in [190, Rem. 10]. The following lemma
describes this known equivalence between (B) and (A) through some straight-
forward intermediate steps (E1)-(E3), which are themselves relevant equivalent
known statements, see Remark 6.2.12 and Remark 6.2.13 below.

Lemma 6.2.10. LetM be given by (6.26). The following statements are equiva-
lent.

(B) (LMI with rank restriction)
M =

[
M11 M12

M21 M22

]
⪯ 0(ñ+m)×(ñ+m) and rk(M) = dim(M22)︸ ︷︷ ︸

m

.

(E1) (Matrix equation (also Lur’e eq.), decomposition from Lemma 6.2.9)
∃Γx ∈ Rq×ñ, Γa ∈ Rq×m, q ∈ N :[
M11 M12

M21 M22

]
= −

[
Γ⊤
x

Γ⊤
a

]
[ Γx Γa ], rk([ Γx Γa ]) = m.
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

(E2) (Lur’e equation, derived from using −Γ⊤
a Γa =M22 = Πaa in (E1))

∃K̃ ∈ Rm×ñ :[
M11 M12

M21 M22

]
= −

[
K̃⊤
Im

]
(−Πaa) [ K̃ Im ] .

(E3) (Entrywise (E2))
∃K̃ ∈ Rm×ñ : M11 = −K̃⊤(−Πaa)K̃ and M21 = −(−Πaa)K̃.

(A) (Algebraic Riccati equation (ARE), solving for K̃ in (E3))
P̃ Ã+ Ã⊤P̃ + C̃⊤ΠζζC̃︸ ︷︷ ︸

M11

=
[
P̃ B̃ − C̃⊤Πζa

]
︸ ︷︷ ︸

−K̃⊤(−Πaa)

Π−1
aa

[
B̃⊤P̃ −Π⊤

ζaC̃
]

︸ ︷︷ ︸
K̃=−(−Πaa)−1M21

.

The supposed strengthening in replacing (a) by (A) turns out to be uncritical.
The solvability in terms of the mere existence of a P̃ = P̃⊤ ∈ Rñ×ñ that not
only solves the algebraic Riccati inequality (a) but that solves even the algebraic
Riccati equation (A) remains unaltered if a stabilizability condition on (Ã, B̃) can
be presumed. See [163] and references therein for the following result and more
general ones5.

Lemma 6.2.11 (ARI versus ARE). Assuming stabilizability of (Ã, B̃), there
exists a P̃ = P̃⊤ ∈ Rñ×ñ rendering the statements of Lemma 6.2.3 valid if and
only if there exists a P̃ = P̃⊤ ∈ Rñ×ñ rendering the statements of Lemma 6.2.10
valid.

Clearly, if Ã is Hurwitz, the stabilizability is trivially satisfied. But even in
more general cases, the assumed stabilizability is weaker than the conditions in
Lemma 6.2.7 and therefore not at all restrictive. Some remarks on the various
statements in Lemma 6.2.10 are in order.

Remark 6.2.12 (Matrix equation). Lemma 6.2.10 (E1) gives a matrix equation
(which can also be called Lur’e equation like the subsequent equation (E2)) in
terms of two additional unknown matrices, see the last column of Table 6.1. In the

5 without loss of generality, concluding solvability of the transformed ARE in (7.24)
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6.2 Explanation in Terms of the ODE

literature, such representations are frequently used for the positive-real lemma
(cf. Remark 6.3.6) or related results, see, e.g., [108, Lem. 6.2].

Remark 6.2.13 (Relation to optimal control, Lur’e equation). That algebraic
Riccati equations are related to LQR problems is a standard result in control
theory. The formulation as the Lur’e equation given in Lemma 6.2.10 (E2), which
is, e.g, used in [198], is a rather convenient starting point for these considerations.
See Section 7.1.2.

Remark 6.2.14 (Hamiltonian matrix, ARE). Solutions of the ARE in
Lemma 6.2.10 (A) can be derived from ñ-dimensional invariant subspaces of the
2ñ× 2ñ Hamiltonian matrix

H :=

[
ÃI B̃(−Πaa)

−1B̃⊤

−C̃⊤ΠI
ζζC̃ −(ÃI)⊤

]
, (6.29)

see, e.g., [168, 16, 66], where ÃI = Ã − B̃(−Πaa)
−1Π⊤

ζaC̃ and ΠI
ζζ =

Πζζ + Πζa(−Πaa)
−1Π⊤

ζa (cf. Lemma 7.1.2). Being a Hamiltonian matrix, the
eigenvalues are symmetric in the sense of σ(H) = {λ1, . . . , λñ,−λ1, . . . ,−λñ}.
Assume there are no eigenvalues on the imaginary axis6, and let the stable invari-
ant subspace ofH be described as the column space of somematrix

[
U
L

]
∈ C2ñ×ñ.

For instance (although there are more appropriate approaches for numerical im-
plementations, see, e.g., [9]),

[
U

L

]
=


| |
u1 uñ

| |
···

| |
l1 lñ
| |

 (6.30)

6 Eigenvalues withRe(λk) = 0 occur in the limit case of a nonstrict inequality in the KYP lemma,
which can give rise to an almost stabilizing ARE solution.
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

can be built from eigenvectors
[ uk

lk

]
∈ C2ñ, k ∈ {1, . . . , ñ}, (respectively gen-

eralized eigenvectors in the case of non-semisimple eigenvalues) of H corre-
sponding to the eigenvalues {λ1, . . . , λñ} with negative real part. Assume U is
nonsingular7. Then

P̃ = LU−1 (6.31)

solves the ARE and the eigenvalues of Ã−BK̃ with K̃ defined in (7.11) coincide
with {λ1, . . . , λñ}. Thus, if P̃ is real symmetric, then it is the searched stabilizing
solution of the ARE. See [207] for the role of a Hamiltonian operator for operator-
valued AREs like (5.65).

To sum up, the numerical approach proposed in this chapter relies on the
(unique stabilizing real symmetric) solution of the ARE that is encountered
in Lemma 6.2.10 (A). The resulting V (x̃) = x̃⊤P̃ x̃ achieves that the condition
D+

( ˙̃x=Ãx̃−B̃a(C̃x̃))Ṽ (x̃) ≤ −ℓ(C̃x̃) holds, see (6.21). This condition parallels
what is achieved by LK functionals of robust type in (5.23). As such, it could
have been proven similarly starting from the ARE. However, there is also a
straightforward construction of an LMI to achieve that condition. This construc-
tive derivation has been chosen in the present section with the intention to clarify
the interrelations between various concepts that are known from the realm of
robustness or absolute stability theory in ODEs. The LMI is equivalent to an
ARI, and, under a stabilizability assumption, it is not restrictive to require that not
only the ARI but the corresponding ARE (which is the ARE from the proposed
numerical approach to LK functionals of robust type) shall be solved by some
P̃ = P̃⊤. The introduced offset function ℓ achieves that the LMI, ARI, or ARE
are not affected bywhether stability, asymptotic stability, or partial asymptotic sta-
bility are of interest (see Remark 6.2.1). Instead, only the perturbation restriction
(6.20) is adapted.

7 A singular U might occur if (Ã, B̃) is not stabilizable: Consider Ã = a, B̃ = 0, Πζa = 0, and
C̃⊤ΠζζC̃ = q, i.e., H =

[
a 0
−q −a

]
, which amounts to a scalar Lyapunov equation 2Pa = −q

as a special case of the ARE in Lemma 6.2.10 (A). Then λ1 = a,
[ u1
l1

]
=

[−2a
q

]
and λ2 = −a,[ u2

l2

]
=

[
0
1

]
. Hence, if a < 0, then P = LU−1 = q/(−2a), whereas for a > 0, U = 0.
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6.3 Solvability of the Finite-Dimensional LMI, ARI, or ARE

6.3 Solvability of the Finite-Dimensional LMI,
ARI, or ARE

The KYP lemma provides a frequency domain criterion by which the existence
of a solution P̃ = P̃⊤ ∈ Rñ×ñ can be checked before trying to calculate such an
explicit solution that satisfies the LMI or ARI in Lemma 6.2.3, respectively the
matrix equation or ARE in Lemma 6.2.10.

6.3.1 The Kalman–Yakubovich–Popov Lemma

As already announced in Remark 6.2.8, the KYP lemma is based on wC from
statement (d2) in Lemma 6.2.3, which is the extension ofw to complex arguments
(in particular, with ·H instead of ·⊤). The following variant without a controlla-
bility assumption is proven in [45], incorporating [45, Rem. 1 and 2]. See, e.g.,
[78, Sec. 3.1] for alternative conditions.

Lemma6.3.1 (Kalman–Yakubovich–Popov (KYP)). Consider the statements of
Lemma6.2.3with P̃ being unknownandwC(C̃x̃,−u) =

[
C̃x̃
−u
]H [ Πζζ Πζa

Π⊤
ζa Πaa

] [
C̃x̃
−u
]
.

Assume Ã has no eigenvalues on the imaginary axis andΠaa ≺ 0m×m. If, based
on x̃f = (iωIñ − Ã)−1B̃u,

0 ≤ −wC(C̃x̃f ,−u), (6.32)

for all ω ∈ R and all u ∈ Cm, then there exists a P̃ = P̃⊤ ∈ Rñ×ñ rendering
the statements of Lemma 6.2.3 valid.

In terms of the transfer function (6.13), note that
[
C̃x̃f
−u

]
=
[
G̃(iω)u
−u

]
. Conse-

quently, (6.32) can be rewritten as −wC(C̃x̃f ,−u) = uHW
G̃
u ≥ 0, ∀u ∈ Cm,

with the so-called Popov function or spectral density

W
G̃
(iω) = −

[
G̃(iω)
−Im

]H [ Πζζ Πζa

Π⊤
ζa Πaa

] [
G̃(iω)
−Im

]
. (6.33)
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

ẋ = Ax+Bu

y = Cx

a(ζ)
ζ = y

−

u = −a(ζ)

Dissipative with supply rate wsys(u, y) = −w(y,−u)

D+
(ẋ=Ax+Bu)V (x, u) ≤ −w(Cx,−u)

[ xu ]
⊤
[
PA+A⊤P PB

B⊤P 0

]
[ xu ] ≤ − [ xu ]

⊤
[
C⊤ΠζζC −C⊤Πζa

−Π⊤
ζaC Πaa

]
[ xu ]

i.e., [Q = −Πζζ , S = Πζa, R = −Πaa ]-dissipative

Dissipative with supply rate w(ζ, α)
Static map ζ 7→ α = a(ζ) =⇒ storage function V static ≡ 0

0 ≤ w(ζ, a(ζ))

0 ≤
[

ζ
a(ζ)

]⊤[ Πζζ Πζa

Π⊤
ζa Πaa

] [
ζ

a(ζ)

]
i.e., [Q = Πaa, S = Π⊤

ζa, R = Πζζ ]-dissipative

Frequency-domain condition
∀u ∈ Rm,∀ω ∈ R :

0 ≤ −wC(Cxf ,−u),

where xf = (iωI −A)−1Bu

0 ≤ uHWG(iω)u︷ ︸︸ ︷
−
[
G(iω)
I

]H[ Πζζ −Πζa

−Π⊤
ζa Πaa

][
G(iω)
I

]

KYP
lemma

D+
(ẋ=Ax−Ba(Cx))V (x) ≤ −w(Cx, a(Cx)) ≤ 0

Figure 6.3: Interpretation as an interconnection of dissipative elements if ℓ ≡ 0 in (6.20). The
dissipativity interpretation additionally requires thatV (x) ≥ 0, see Lemma 6.2.7. For the
sake of readability, a general LTI system (A,B,C)with state x ∈ Rn is depicted, instead
of (Ã, B̃, C̃) and x̃ ∈ Rñ from (6.10), to which the results are applied in the present
chapter. QSR-dissipativity amounts to a supply rate wsys(u, y) = [ yu ]⊤

[
Q S

S⊤ R

]
[ yu ],

given y describes the output and u the input of the respective element. The left upper
box gives rise to the LMI in the first row of Table 6.1.
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6.3 Solvability of the Finite-Dimensional LMI, ARI, or ARE

LMI in Lemma 6.2.3 (b) ARE in Lemma 6.2.10 (A)(
ARI in Lemma 6.2.3 (a)

) Matrix eq. in Lemma 6.2.10 (E1)
Γx = L ∈ Rq×n, Γa = W∈ Rq×m

KYP lemma
feasible if the parameters in Πζζ,ζa,aa are such that λmin

(
WG(iω)

)
=

−λmax

(
(G(iω))HΠζζG(iω)− (G(iω))HΠζa −Π⊤

ζaG(iω) + Πaa

)
≥ 0

[
PA+A⊤P PB

B⊤P 0

]
+

[
C⊤ΠζζC −C⊤Πζa

−Π⊤
ζaC Πaa

]
⪯ 0

PA+A⊤P + C⊤ΠζζC

+
[
PB − C⊤Πζa

]
(−Πaa)

−1

×
[
B⊤P −Π⊤

ζaC
]
=(⪯) 0

PA+A⊤P + C⊤ΠζζC = −L⊤L

PB − C⊤Πζa = −L⊤W

Πaa = −W⊤W

Cor. 6.3.2 (a)
feasible if γ ≤ γmax := 1

supω ∥G(iω)∥2Result for
[
Πζζ Πζa

Π⊤
ζa Πaa

]
=

[
γ2I 0
0 −I

]
[
PA+A⊤P PB

B⊤P 0

]
+

[
γ2C⊤C 0

0 −I

]
⪯ 0

PA+A⊤P + γ2C⊤C

+PBB⊤P =(⪯) 0

PA+A⊤P + γ2C⊤C = −L⊤L

PB = −L⊤W

−I = −W⊤W

Generalized bounded-real lemma
feasible if γsys ≥ γsys

min := supω ∥G(iω)∥2

[
PA+A⊤P PB

B⊤P 0

]
+

[
C⊤C 0
0 −(γsys)2I

]
⪯ 0

PA+A⊤P + C⊤C

+(γsys)2PBB⊤P =(⪯) 0

PA+A⊤P + C⊤C = −L⊤L

PB = −L⊤W

−(γsys)2I = −W⊤W

Cor. 6.3.2 (b)
feasible if ρ ≥ ρmin := supω µ2(−G(iω))

Result for
[
Πζζ Πζa

Π⊤
ζa Πaa

]
=

[
0 1

2
I

1
2
I −ρI

]
[
PA+A⊤P PB

B⊤P 0

]
+

[
0 − 1

2
C⊤

− 1
2
C −ρI

]
⪯ 0

PA+A⊤P

+ 1
ρ
[PB − 1

2
C⊤][B⊤P − 1

2
C]

=(⪯) 0

PA+A⊤P = −L⊤L

PB − 1
2
C⊤ = −L⊤W

−ρI = −W⊤W

Generalized positive-real lemma
feasible if νsys ≤ νsysmax := − supω µ2(−G(iω))

[
PA+A⊤P PB

B⊤P 0

]
+

[
0 − 1

2
C⊤

− 1
2
C νsysI

]
⪯ 0

PA+A⊤P

− 1
νsys [PB − 1

2
C⊤][B⊤P − 1

2
C]

=(⪯) 0

PA+A⊤P = −L⊤L

PB − 1
2
C⊤ = −L⊤W

νsysI = −W⊤W
if νsys < 0

Table 6.1: Explicit conditions (as in Figure 6.3, written without tildes for readability) and comparison
with common forms of the (generalized—since not being restricted to γsys = 1) bounded-
real lemma and a generalization (not restricted to νsys = 0) of the positive-real lemma,
see Remark 6.3.3 et seq.. Feasibility amounts to the existence of a matrix P = P⊤

that renders the equalities, respectively inequalities, valid. It is assumed that A has no
eigenvalues on the imaginary axis (Lemma 6.3.1), and, concerning the ARE and the matrix
equation, also that (A,B) is stabilizable (Lemma 6.2.11).
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

Thus, (6.32) requires

W
G̃
(iω) ⪰ 0m×m (6.34)

for all ω ∈ R. In contrast to the infinite-dimensional version in Lemma 5.5.6,
which does notmake any statement in the limit caseα3 = 0 (associated to semidef-
initeness without definiteness), the above finite-dimensional KYP lemma states
that positive semidefiniteness ofW

G̃
(iω) is already sufficient for the existence of a

symmetric P̃ . Hence, the following corollaries, which are derived analogously to
Corollary 5.5.13, 5.5.14, and 5.5.17, encounter nonstrict inequalities. The chosen
terminology “complementary generalized bounded- (respectively, positive-) real
lemma” will be explained below in Section 6.3.2, but might also already become
clear from the juxtaposition in Table 6.1.

Corollary 6.3.2. Assume Ã has no eigenvalues on the imaginary axis, and let
Π =

[
Πζζ Πζa

Π⊤
ζa Πaa

]
be chosen according to one of the following three cases in

Table 5.1: (a) row (I|a); (b) row (II|a); (c) row (III) withK2 = k2Im.
It is achieved that

• the LMI (6.25) is feasible, and, equivalently,

• there exists a real symmetricmatrix P̃ that satisfies theARI fromLemma6.2.3
(a), respectively (6.18) with some Ẽ ⪰ 0ñ×n, and

• provided (Ã, B̃) is stabilizable, there exists a real symmetric solution P̃ of
the ARE given by (6.18) with Ẽ = 0ñ×n

if, relying on G̃(iω) from (6.13), the following holds for the respective case:

(a) Complementary generalized bounded-real lemma

γ ≤ γmax :=
1

sup
ω∈R

∥G̃(iω)∥2
(6.35)
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6.3 Solvability of the Finite-Dimensional LMI, ARI, or ARE

in Π(I|a) =
[
γ2I 0
0 −I

]
from Table 5.1, row (I|a).

(b) Complementary generalized positive-real lemma

ρ ≥ ρmin := sup
ω∈R

µ2(−G̃(iω)) (6.36)

in Π(II|a) =

[
0

1
2 I

1
2 I −ρI

]
from Table 5.1, row (II|a).

(c) Lower sector bound
Based on ÃII = Ã− k2B̃C̃ and G̃II = C̃(iωIñ − ÃII)−1B̃,

K1 = k1Im with k1 ≥ k1,min := k2 −
1

maxω µ2(G̃II(iω))
(6.37)

in Π(III|a) =
[
−sym(K⊤

1 K2)
1
2 (K

⊤
1 +K⊤

2 )
1
2 (K1+K2) −I

]
from Table 5.1, row (III), with

K2 = k2Im.

Proof. Lemma 6.3.1 and Lemma 6.2.11. See Corollary 5.5.13, 5.5.14, and 5.5.17
on how to derive γmax, ρmin, and k1,min from (6.34).

The corresponding Nyquist plot restrictions in the SISO case m = p = 1 are
already provided in Table 5.2 (the only difference is the nonstrict inequality in the
above results).

6.3.2 Relation to Some Frequency-Domain and
Dissipativity-Based Results for the ODE

See Remark 5.5.15 for the relation between (6.34) and the circle criterion. The
above statements are not yet equivalent to the circle criterion since the KYP
lemma only ensures the existence of a real symmetric solution P̃ . In order to
conclude (partial) stability of the ODE equilibrium via the (partial) Lyapunov
function Ṽ (x̃) = x̃⊤P̃ x̃, (partial) definiteness properties of P̃ are additionally
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

required. Such properties could be guaranteed a priori (similarly to Theorem 5.4.1
or Remark 5.4.4 involving observability properties), but once P̃ is computed
from the ARE, (partial) positive definiteness can also simply be tested for that
individual result. The same holds for the relation to the small-gain theorem or
passivity theorems.

Remark 6.3.3 (Relation to the small-gain theorem). As already noted below
Corollary 5.5.13, the result for the maximum admissible linear norm bound γmax

in Corollary 6.3.2a mirrors the small-gain theorem, stating that the product of
the perturbation gain γ and the L2-gain of the nominal system (which is well
known to be addressed by ∥G∥∞) shall be smaller than one. However, this
reciprocal relation between both gains does not even rely on the KYP lemma but
can already be deduced from dissipativity considerations without involving the
frequency domain. Compare the following:

1) Concerning the perturbation gain: The parameter γ from the perturbation
restriction ∥a(ζ)∥2 ≤ γ∥ζ∥2 in row (I|a) from Table 5.1 is an upper bound
on the gain of the static map

ζ 7→ α = a(ζ). (6.38)

Moreover, with the storage function V static ≡ 0 (see the lower box in Fig-
ure 6.3), this perturbation restriction, when written out as in Table 5.1 (I|a)

0 ≤ γ2ζ⊤ζ − a⊤(ζ)a(ζ) = w(ζ, a(ζ)), (6.39)

can be interpreted as a dissipativity inequality D+V static ≤ w(ζ, α) with
supply rate w(ζ, α) in terms of the perturbation input ζ and perturbation
output α.

214



6.3 Solvability of the Finite-Dimensional LMI, ARI, or ARE

2a) Concerning the L2-gain of the nominal system: An analogous supply rate
(but in terms of the respective input u and output C̃x̃ of this system) would
become relevant for an upper bound on the L2-gain of

u 7→ C̃x̃, (6.40)

u ∈ L2,loc([0,∞),Rm), x̃ ∈ L2,loc([0,∞),Rñ), from the dynamical sys-
tem (Ã, B̃, C̃). To be more precise, in that case, the dissipativity inequality

D+

( ˙̃x=Ãx̃+B̃u)
Ṽs(x̃, u) ≤ (γsys)2u⊤u− (C̃x̃)⊤(C̃x̃) (6.41)

would be feasible with a nonnegative storage function Ṽs [108, eq. (5.29)].
In fact, the smallest possible value γsys = γsysmin in (6.41) is exactly the L2-
gain (provided A is Hurwitz, which ensures that Ṽs ≥ 0, cf. Lemma 6.2.7
withKC = 0 ).

2b) Concerning the derived admissible perturbation gain compatible with the
nominal system: In contrast to (6.41), Lemma 6.2.3 (c4) with Table 5.1
(I|a) requires

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) ≤ −w(C̃x̃,−u) = −γ2(C̃x̃)⊤(C̃x̃) + u⊤u

(6.42)

(see the left upper box in Figure 6.3).

Comparing (6.41) and (6.42) shows that if 2a) is feasible for some given γsys,
then 2b) is feasible for

γ =
1

γsys
(6.43)

(with Ṽ = 1
(γsys)2 Ṽs). Consequently, the best possible value in 2b) becomes

γmax = 1
γsys
min

, the reciprocal of the L2-gain.
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6 LK Functionals of Robust Type: Numerical Approach and ODE-Based Explanation

Remark 6.3.4 (Bounded-real lemma). The KYP lemma establishes the link to
the frequency domain for both 2a) and 2b) in Remark 6.3.3. For simplicity assume
that Ã is Hurwitz, and thus maxω ∥G̃(iω)∥2 = ∥G̃∥∞ is the H∞-norm.

2a) The corollary of the KYP lemma for the supply rate from 2a) (addressing
the L2-gain of the nominal system) states that γsys ≥ γsysmin = ∥G̃∥∞
renders (6.42), and thus the corresponding LMI, ARI, etc. feasible. See
Table 6.1. This result (or this result with γsys = 1) is commonly referred
to as bounded-real lemma [25, 120, 33]. Strictly speaking, the bounded-
real property of G̃ only refers to ∥G̃∥∞ ≤ 1, i.e., γsys = 1 is fixed,
see [25]. In order to emphasize that γsys above is some parameter, the
term “generalized bounded-real lemma” is used in this thesis. Note that
the bounded-real lemma usually requires that G̃ ∈ H∞ since bounded
realness is defined by (G̃(s))∗G̃(s) ⪯ I for Re(s) > 0, see [25], which
is equivalent to sups∈C+ ∥G̃(s)∥2 ≤ 1. Moreover, (Ã, B̃, C̃) is usually
assumed to be a minimal realization. In view of the mere KYP lemma, both
is not necessary for the existence of P̃ = P̃⊤. Nevertheless, under these
additional conditions, the system matrix Ã is necessarily Hurwitz, which
by Lemma 6.2.7 withKC = 0 (similarly to Remark 5.5.10) ensures positive
semidefiniteness of P̃ . The latter, in turn, is required anyway for γsys

representing a bound on the L2-norm, see [108, Thm. 5.5], respectively to
allow for a storage function interpretation of Ṽ and thus the dissipativity-
based characterization of the L2-gain in (6.41).

2b) Corollary 6.3.2a independently concludes that γ ≤ γmax = 1
∥G̃∥∞

renders
(6.42), and thus the corresponding LMI, ARI, etc. in Table 6.1, feasible.
That is why the term “complementary generalized bounded-real lemma” is
used in Corollary 6.3.2a.

Remark 6.3.5 (Relation to a passivity theorem). Analogously, Corollary 6.3.2b
mirrors a passivity theorem if Ã is assumed to be Hurwitz: The shortage of input
passivity in the nominal dynamical system yields the minimum required excess of
output passivity ρmin in the perturbation; see, e.g., [203, 108, 165] for discussions
on passivity properties. Again, to recognize this relation, the KYP lemma is not
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needed. The statement already becomes visible from comparing the respective
dissipativity-based characterizations of the involved properties.

1) The parameter ρ from the perturbation restriction a⊤(ζ) ζ ≥ ρ∥a(ζ)∥22
from row (II|a) in Table 5.1 is a lower bound on the output passivity index
of the static map ζ 7→ a(ζ) (defined as being the largest possible coefficient
ρ in that inequality), and

0 ≤ a⊤(ζ)ζ − ρa⊤(ζ)a(ζ) = w(ζ, a(ζ)) (6.44)

can be interpreted as a dissipativity inequality with supply rate w(ζ, α).

2a) If an analogous supply rate in terms of u 7→ C̃x̃,

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) ≤ (C̃x̃)⊤u− ρsys(C̃x̃)⊤(C̃x̃), (6.45)

is feasible, and if Ṽ (x̃) ≥ 0, then ρsys is a lower bound on the output
passivity index of the dynamical system, whereas, in

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) ≤ (C̃x̃)⊤u− νsysu⊤u, (6.46)

νsys refers to a lower bound on its input passivity index. In both cases,
Ṽ (x̃) ≥ 0 must be presupposed in order to allow for the storage function
interpretation, which, however, holds if Ã is Hurwitz (cf. Lemma 6.2.7 with
KC = 0).

2b) In contrast, (see the left upper box in Figure 6.3)

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) ≤ −w(C̃x̃,−u) = u⊤(C̃x̃) + ρu⊤u (6.47)

is required in Lemma 6.2.3 (c4) with Table 5.1 (II|a).

Since (6.47) is equivalent to (6.46) with ρ = −νsys, it can be concluded that the
minimum required ρmin = −νsysmax is the negative of the input passivity index of
the nominal dynamical system.
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Remark 6.3.6 (Positive-real lemma). See Table 6.1 for the frequency domain
conditions from the KYP lemma for the supply rates from both 2a) and 2b) in
Remark 6.3.5. In the limit case νsys → 0 in 2a), the condition simplifies to
the well-known positive-real8 lemma [108, 25, 120, 33]. That is why, Corol-
lary 6.3.2 (b), which addresses the above case 2b) is termed “complementary
generalized positive-real lemma” in the present thesis. Finally, note that the
input passivity index νsysmax is always nonpositive since (Ã, B̃, C̃) is necessarily
strictly proper, i.e., ∥G̃(s)∥ → 0, as |s| → ∞. If the input passivity index νsysmax is
negative, it describes a shortage of passivity. In the case of p = m = 1, the latter
is obtained by measuring how far the Nyquist plot extends into the left complex
half-plane, see Table 5.2 for a respective plot.

To sum up, the solvability of the LMI, ARI, ARE ormatrix equation for the matrix
P̃ can be checked beforehand by theKYP lemma. The resulting frequency-domain
conditions for this solvability coincide with those known from the circle criterion
(though the conditions areweaker since only the existence of P̃ = P̃⊤ is addressed
but no positive-definiteness requirements are imposed on P̃ ). These solvability
conditions are closely related to famous corollaries of the KYP lemma like the
bounded-real lemma and the positive-real lemma. In fact, they tackle closely
related LMIs, respectivelyARIs, AREs, ormatrix equations, see Table 6.1. Whilst
the outcome of these corollaries are system properties like theL2-gain or the input
passivity index, the outcome of interest in the present context is the admissible
sector bound on a perturbation of the nominal system. The latter is instead
given by the reciprocal of the L2-gain or the negative of the input passivity index

8 Similarly to the discussion on bounded-realness property in Remark 6.3.4, the positive-realness
property does not only amount to − supω∈R µ2(−G(iω)) ≥ νsys := 0 stated in Ta-
ble 6.1. Being defined by (G(s))∗ + G(s) ⪰ 0 for all Re(s) > 0, cf. [25], it ac-
tually amounts to the property − sups∈C+ µ2(−G(s)) ≥ 0 referring to the whole half
plane, derived from infs∈C+ λmin((G(s))∗ +G(s)) = − sups∈C+ λmax(2He(−G(s))) =
−2 sups∈C+ µ2(−G(s)). For the latter to hold, G(s) cannot have any poles sk with
Re(sk) > 0, see [77, Prop. 3.3]. Nonexistence of such unstable poles is actually not re-
quired for the mere solvability from the KYP lemma, but, similarly to Remark 6.3.4, desirable
anyway.
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6.4 Revisiting the Main Points of the Chapter

of the nominal system (yielding the admissible gain of the static perturbation,
respectively the admissible output passivity index of the static perturbation).

6.4 Revisiting the Main Points of the Chapter

• The Legendre-tau based approach is applied to the defining equation of LK
functionals of robust type.

– Instead of the finite-dimensional Lyapunov equation that occurs in the
numerical approach for complete-type and related LK functionals in
Section 4.1, a finite-dimensional algebraic Riccati equation (ARE),
given by (6.18), has to be solved.

– To be more precise, the considered matrix P̃ ∈ Rn(N+1)×n(N+1) is
the so-called stabilizing solution of the ARE, which can be obtained
via standard routines like icare in Matlab.

• Section 6.2 intends to clarify the role of the finite-dimensional ARE for the
finite-dimensional ODE from Chapter 3.

– Assume the objective is to construct a Lyapunov function Ṽ (x̃) =

x̃⊤P̃ x̃ that has a negative semidefinite Lyapunov-function derivative
along solutions of the perturbedODE (6.14)wherever the perturbation
resides in the given sector (see also Example 5.2.2 for the choice of that
perturbation restriction). This objective is straightforwardly achieved
by solving the linear matrix inequality (LMI) (6.25) for a suitable
matrix P̃ .

– As already proposed in Section 5.3 of the last chapter, an offset func-
tion ℓ is introduced in the description of the perturbation restriction.
As a result, a strengthening of the negative semidefiniteness of the
Lyapunov function derivative to a partial negative definiteness does
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not amount to a strengthening of the LMI but is covered by this
strengthening of the perturbation restriction (Remark 6.2.1).

– The LMI is known to be equivalent to an algebraic Riccati inequality
(ARI) in P̃ (Lemma 6.2.3). The corresponding ARE (Section 6.2.3),
in turn, is the one that has to be solved in the proposed numerical
approach for LK functionals of robust type.

– Although solvability of an equation seems to be a stronger requirement
than solvability of an inequality, it is a known result (Lemma 6.2.11)
that, under a stabilizability assumption, solvability of the ARI is
equivalent to solvability of the corresponding ARE.

• The Kalman–Yakubovich–Popov (KYP) lemma (Section 6.3.1) provides a
frequency-domain condition for the solvability of the LMI, ARI and (as
stabilizability is assumed) also of the ARE of interest.

– Corollary 6.3.2 summarizes the most important corollaries, which, in
fact, are the sector bounds already encountered in Table 5.2 from the
infinite-dimensional problem.

• Relations to dissipativity (Figure 6.3), the small-gain theorem (Remark 6.3.3),
passivity theorems (Remark 6.3.5), and the relation to common corollaries
of theKYP lemma inTable 6.1, like the bounded-real lemma (Remark 6.3.4)
or the positive-real lemma (Remark 6.3.6) are discussed.
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7 LK Functionals of Robust Type:
Relation to LQR Problems and
Convergence of the Numerical
Approach

It remains to derive a convergence statement for the thus obtained numerical
approach to LK functionals of robust type. As the literature already provides
an in-depth convergence analysis for the Legendre-tau-based solution of optimal
control problems in time-delay systems, a comparison between the operator-valued
algebraic Riccati equations in the present context and those from standard optimal
control problems is pursued as a first step in this chapter.

The chapter is organized as follows. The closer look on standard optimal control
problems in Section 7.1 shows the differences to the problem of interest, which
thus are taken into account in the convergence analysis that is tackled in Sec-
tion 7.2. One of these issues is the transition from the solvability condition of the
finite-dimensional ARE to the solvability condition of the operator-valued ARE,
which is resolved in Section 7.3 by considering the Legendre-tau-based transfer
function. Based on the latter, the convergence proof for the numerical approach
is finally completed. Section 7.4 concludes the chapter by revisiting the main
points.
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7 LK Functionals of Robust Type: Relation to LQR Problems and Convergence of the Numerical
Approach

7.1 Relation to LQR Problems

Algebraic Riccati equations (AREs) are well known for their role in optimal
control. In fact, the chosen numerical approach, i.e., to consider the Legendre-
tau-based finite-dimensional ARE (6.18) when actually being interested in an
operator-valued ARE, is along the lines of the Legendre-tau-based early lumping
approach proposed by Ito and Teglas in [99] for time-delay linear-quadratic reg-
ulator (LQR) problems. For the latter, in-depth convergence considerations are
available [99], see also [70]. These existing results motivate a closer look at the
similarities and differences between the problem under consideration and such
LQR problems.

7.1.1 Standard LQR Problems

For time-delay systems, standard LQR problems have the form1

−V LQR(ϕ) = min
u∈L2

∫ ∞

0

(x⊤(t)QLQRx(t) + u⊤(t)RLQRu(t)) dt (7.1)

subject to
{
ẋ(t)=A0x(t)+A1x(t−h)+Bu(t),
x0=ϕ,

with QLQR ⪰ 0n×n, RLQR ≻ 0m×m (assuming the system is stabilizable).

1 Clearly, the minimum is nonnegative. Still, V LQR(ϕ) ≤ 0 is henceforth defined as the negative
of the value function in (7.1) to be closer to the algebraic Riccati equations in the present chapter,
where QLQR will be replaced by a negative semidefinite matrix.
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7.1 Relation to LQR Problems

Instead of considering only ϕ ∈ C([−h, 0],Rn), it is a common practice to use
the larger state spaceM2 from Section 3.2.2, cf. [70], i.e.,

−
〈
PLQR

[ ϕ
ϕ(0)

]
,
[ ϕ
ϕ(0)

]〉
M2

= min
u∈L2

∫ ∞

0

(〈
QLQR

[ xt

x(t)

]
,
[ xt

x(t)

]〉
M2

+
〈
RLQRu(t), u(t)

〉
Rm

)
dt

(7.2)

subject to

{
d
dt

[ xt

x(t)

]
=A
[ xt

x(t)

]
+Bu(t),[ x0

x(0)

]
=
[

ϕ
ϕ(0)

]
∈M2,

where A is defined in (3.12) and QLQR
[ ϕ
ϕ(0)

]
=
[ 0n[−h,0]

Q̃LQR ϕ(0)

]
. Note that, com-

pared with (7.1), the optimization space L2([0,∞),Rm) ∋ u is not altered. The
extension only refers to the domain of admissible arguments ϕ in the functional
V LQR(ϕ) from (7.1), amounting tomore general initial functionsϕ in the dynamic
constraint. Therefore, on the restriction to ϕ ∈ C, both results coincide.

7.1.1.1 The Operator-Valued ARE from Standard LQR Problems

Since the minimum (7.2) is nonnegative, considering

X LQR := −PLQR (7.3)

is more convenient from an optimal control point of view, whereas the above
introduced operator PLQR is motivated by the context of the present thesis. The
minimum (7.2) is attained by the control law

u(t) = −K LQR
[ xt

x(t)

]
, with K LQR = (RLQR)−1B∗X LQR (7.4)

= −(RLQR)−1B∗PLQR, (7.5)
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where PLQR is the unique stabilizing (i.e., such that the given control law
renders the equilibrium in the closed loop system exponentially stable) self-adjoint
solution of the associated operator-valued ARE2

⟨PLQRA x, x⟩M2 + ⟨A ∗PLQRx, x⟩M2

− ⟨QLQRx, x⟩M2
+ ⟨(RLQR)−1B∗PLQRx,B∗PLQRx⟩Rm = 0 (7.6)

∀x ∈ D(A ), see [70].

7.1.1.2 The Finite-Dimensional ARE in an Early-Lumping Approach

To discretize the problem, and thus to address instead a finite-dimensional LQR
problem, see, e.g., [70],

−Ṽ LQR(x̃0) = min
u∈L2

∫ ∞

0

(x̃⊤(t)Q̃LQRx̃(t) + u⊤(t)RLQRu(t)) dt (7.7)

subject to
{

˙̃x(t)=Ãx̃(t)+B̃u(t),

x̃(0)=x̃0∈Rñ,

with Ṽ LQR(x̃) = x̃⊤P̃LQRx̃, by solving the finite-dimensional ARE3

P̃LQRÃ+ Ã⊤P̃LQR − Q̃LQR + P̃LQRB̃(RLQR)−1B̃⊤P̃LQR = 0ñ×ñ, (7.8)

is tantamount to the (computational tempting but not risk-free) paradigm"discretize-
then-optimize" in contrast to “optimize-then-discretize”. In the terminology of
the control synthesis for PDEs [144, 55], such an approach follows an “early lump-
ing” strategy—in contrast to “late lumping”, where the discretization is postponed
to the realization of the distributed control law (if it was known analytically).

2 usually expressed in terms of X LQR = −PLQR

3 usually expressed in terms of X̃LQR = −P̃LQR
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7.1 Relation to LQR Problems

7.1.2 An LQR Problem Associated with the ARE

The following section considers the finite-dimensional ARE from (6.18) (with
Ẽ = 0), which, in fact, is the core of the numerical approach from Section 6.1.
In view of the role of AREs in optimal control problems, it is not surprising that
under certain conditions, the ARE solution P̃ is also related to the optimal value
function of a certain optimal control problem. This observation is, e.g., employed
by Yakubovich in his works on the KYP lemma [197, 198, 131], or by Willems
studying dissipativity [190].

7.1.2.1 The Finite-Dimensional Indefinite LQR Problem Associated
with the ARE in the Numerical Approach

Recap the origin of the matrix M on which the LMI discussed in Section 6.2.1
relies. It stems from (6.24) and (6.22), which, when substituting u = −a(C̃x̃),
requires

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) + w(C̃x̃,−u)︸ ︷︷ ︸
[ x̃u ]

⊤
M[ x̃u ]

≤ 0. (7.9)

Thus, the strengthening from the LMI M ⪯ 0 in Lemma 6.2.3 to the Lur’e
equationM = −

[
K̃⊤
Im

]
(−Πaa) [ K̃ Im ] in Lemma 6.2.10 (E2) corresponds to

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) + w(C̃x̃,−u)︸ ︷︷ ︸
[ x̃u ]

⊤
M[ x̃u ]

= −(K̃x̃+ u)⊤(−Πaa)(K̃x̃+ u)︸ ︷︷ ︸
[ x̃u ]

⊤(−[
K̃⊤
Im

]
(−Πaa)[ K̃ Im ]

)
[ x̃u ]

(7.10)

(equivalently, (7.15) below). The additionally introduced matrix K̃ becomes, as
described in item (E3) of Lemma 6.2.10,

K̃ = −(−Πaa)
−1M21 = −(−Πaa)

−1
(
B̃⊤P̃ −Π⊤

ζaC̃
)
. (7.11)
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The significance of the Lur’e equation, compared to the equivalent ARE in
Lemma 6.2.10 (A), lies in the simplicity of recognizing from (7.10) the rela-
tion to the following optimal control problem, cf. [198, eq. (1.18)].

Lemma7.1.1 (TheLQRproblemassociatedwith theARE). Let P̃ be a solution
of (6.18) with Ẽ = 0, i.e., of the ARE

P̃ Ã+Ã⊤P̃ + C̃⊤ΠζζC̃ +
[
P̃ B̃ − C̃⊤Πζa

]
(−Πaa)

−1
[
B̃⊤P̃ −Π⊤

ζaC̃
]
= 0ñ×ñ.

(7.12)

If P̃ is positive semidefinite and if K̃ from (7.11) is stabilizing, i.e., u = −K̃x̃
renders the zero equilibrium of ˙̃x = Ãx̃+ B̃u exponentially4 stable, then

Ṽ (x̃0) = x̃⊤0 P̃ x̃0, (7.13)

for any x̃0 ∈ Rñ, satisfies

−Ṽ (x̃0) = inf
u∈L2

∫ ∞

0

−w(C̃x̃(t),−u(t)) dt

subject to
{

˙̃x(t)=Ãx̃(t)+B̃u(t),

x̃(0)=x̃0∈Rñ,

(7.14)

in terms ofw(ζ, α) = ζ⊤Πζζζ+2ζ⊤Πζaα+α
⊤Πaaα. Theminimum is attained5

by choosing u(t) = −K̃x̃(t), with K̃ defined in (7.11).

4 See, e.g., [32, Thm. 25-2 ] for a theorem that includes the almost stabilizing limit case.
5 If K̃ is only almost stabilizing, then the infimum is not attained by u = −K̃x̃. Consider the

scalar example infu J(u) with J(u) =
∫∞
0 (−γ2x2(t) + u2(t)) dt, s.t. ẋ = −x + u. The

ARE is −2P = −γ2 − P 2, i.e., P = 1 ±
√

1− γ2. If γ < γmax = 1/∥G∥∞ = 1, then
a stabilizing K = −B⊤P = −P exists, whereas if γ = 1, both solutions are only almost
stabilizing with ẋ = −x+ u = −x−Kx = 0, i.e., x(t) ≡ x0. However, choosing (instead of
K = −B⊤P = −1) someKε = −1+ε, then ẋ = −x−Kεx = −εx gives an exponentially
decaying solution for any ε > 0. As a result, with γ = γmax, J(Kx) =

∫∞
0 (−γ2x2(t) +

(Kx(t))2) dt = 0 but, considering (7.16), J(Kεx) = limt→∞ x⊤(t)Px(t) − x⊤
0 Px0 +∫∞

0 ∥(Kx(t)−Kεx(t))∥22 dt → −x⊤
0 Px0 = −x2

0, as ε → 0+.
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Proof. From (7.10), i.e., from

D+

( ˙̃x=Ãx̃+B̃u)
Ṽ (x̃, u) + ∥(−Πaa)

1
2 (K̃x̃+ u)∥22 = −w(C̃x̃,−u), (7.15)

it follows that

inf
u∈L2

∫ ∞

0

−w(C̃x̃(t),−u(t)) dt (7.16)

= inf
u∈L2

(
lim
t→∞

Ṽ (x̃(t))︸ ︷︷ ︸
≥0 if P̃ ⪰ 0

−Ṽ (x̃(0)) +

∫ ∞

0

∥(−Πaa)
1
2 (K̃x̃(t) + u(t))∥22 dt︸ ︷︷ ︸

=0 if u = −K̃x̃

)
,

where limt→∞ Ṽ (x̃(t)) = 0 if a stabilizing input u is chosen. Thus, the infimum
is −Ṽ (x̃(0)), which is attained by the (by assumption) stabilizing input u(t) =
−K̃x̃(t). Moreover, it is known that the quadratic ansatz x̃⊤P̃ x̃ is not restrictive
in view of a quadratic cost functional [198].

Note that the integrand in (7.14) is the dissipativity supply rate fromLemma6.2.3 (c4),
which is

−w(C̃x̃,−u) = −
[
C̃x̃
−u
]⊤ [ Πζζ Πζa

Π⊤
ζa Πaa

] [
C̃x̃
−u
]

= −x̃⊤C̃⊤ΠζζC̃x̃+ 2x̃⊤C̃⊤Πζau+ u⊤(−Πaa)u, (7.17)

cf. Figure 6.3. In contrast to the costs in standard LQR problems (7.7), which
are always nonnegative, (7.17) is an indefinite quadratic form, see Figure 6.2.
Therefore, (7.14) is henceforth referred to as an indefinite LQR problem.

In fact, the most important difference to the ARE (7.8) from standard LQR
problems is that the ARE (7.12) that occurs in the numerical approach to LK
functionals of robust type is associated to an indefinite LQR problem.

227



7 LK Functionals of Robust Type: Relation to LQR Problems and Convergence of the Numerical
Approach

7.1.2.2 The Infinite-Dimensional Counterpart

The RFDE-based counterpart of (7.14) would be

−V (ϕ) = inf
u∈L2

∫ ∞

0

−w(Cxt,−u(t)) dt (7.18)

subject to
{
ẋ(t)=A0x(t)+A1x(t−h)+Bu(t),
x0=ϕ.

However, the integrand

−w(Cxt,−u(t)) = −
[
C1x(t−h)
C0x(t)

]⊤
Πζζ

[
C1x(t−h)
C0x(t)

]
+ 2

[
C1x(t−h)
C0x(t)

]⊤
Πζau(t)

+ u⊤(t)(−Πaa)u(t) (7.19)

involves the point evaluation x(t− h) = xt(−h) of xt. As a consequence, when
the first term of (7.19) is expressed as a quadratic form in

[ xt

x(t)

]
∈ M2, an

unbounded operator arises. In contrast, in the standard LQR problem from (7.2),
only a bounded operatorQLQR occurs since the costs from (7.1) only rely on x(t)
but not on x(t− h).

In fact, an operator-valued ARE that is associated with (7.18) is not considered in
the present thesis. Note that the operator-valued ARE introduced in Section 5.5.2
is an equation forP0, not addressing the LK functional V (ϕ) but only V0(ϕ) from
the splitting approach. This splitting approach has been applied as an intermediate
step in Section 5.5.1 exactly to prevent the occurrence of a point evaluation in the
operator-valued ARE.

To sum up, a second major difference to standard LQR problems is that the
numerical approach actually addresses an LQR problem where x(t−h) occurs in
the costs. This issue, however, is already resolved by the splitting approach from
Section 5.5.1, the effect of which will be discussed in the sequel.
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7.1.3 Effect of the Splitting Approach

Recap that the resulting operator-valued ARE (5.65) from the splitting approach
reads

⟨P0A x, x⟩M2
+ ⟨A ∗P0x, x⟩M2

+ ⟨Qx, x⟩M2
+ ⟨(−Πaa)

−1B∗P0x,B
∗P0x⟩Cm = 0, (7.20)

∀x ∈ D(A ), where Q [ ϕr ] =
[

0L2

(Q0+Q1)r

]
with Q0 and Q1 from (5.52) and

B∗ [ ϕr ] = B⊤r. Based on a solution P0 of (7.20), the first part of the split
functional V = V0 + V1

V0(ϕ) =
〈
P0

[
ϕ
ϕ(0)

]
,
[

ϕ
ϕ(0)

]〉
M2

(7.21)

is defined in (5.62).

7.1.3.1 The Infinite-Dimensional Indefinite LQR Problem from the
Splitting Approach

The operator-valuedARE (7.20), respectively theLur’e equation fromLemma5.5.7,
cf. [131], is associated with the LQR problem

−V0(ϕ) = inf
u∈L2

∫ ∞

0

(
− x⊤(t)(Q0 +Q1)x(t) + u⊤(t)(−Πaa)u(t)

)
dt

subject to
{
ẋ(t)=AI

0x(t)+A
I
1x(t−h)+Bu(t),

x0=ϕ,
(7.22a)

V (ϕ) = V0(ϕ) + V1(ϕ), with V1(ϕ) =
∫ 0

−h
ϕ⊤(θ)Q1ϕ(θ) dθ. (7.22b)

The latter is closer to the standard LQR problem from (7.1) than (7.18) since, in
fact, only

QLQR = −(Q0 +Q1) ⪯ 0n×n, and RLQR = −Πaa ≻ 0m×m (7.23)
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is substituted in (7.1). However, in contrast to the standard LQR problem (7.1),
for which in-depth considerations are available, (7.22a) is still a non-standard
LQR problem with indefinite costs as QLQR ⪯ 0n×n.

The next section has to show that applying the numerical approach without a
splitting (which will be done in practice) and after that splitting approach (which
will consequently be analyzed theoretically) does not make any difference in the
result.

7.1.3.2 Splitting Equivalence in the Discretization

Applying the Legendre-tau-based approach only to the transformed and split
problem (7.22a) would require to calculate in a second step Ṽ (x̃) = Ṽ0(x̃)+Ṽ1(x̃)

by adding the Legendre-tau approximation for Ṽ1 from (7.22b) that has been
described in Section 4.6.1.2. In the following, it is shown that such a result
coincides with Ṽ (x̃) = x̃⊤P̃ x̃ with P̃ directly obtained from the untransformed
ARE (7.12), which is rather the numerical approach that has been proposed in
Section 6.1. In other words, the spitting and the discretization commute.

Consider the splitting approach from Section 5.5.1. Before the actual splitting, a
transformation that eliminates the state-and-input cross termΠζa has been applied
in Lemma 5.5.1. First, the following lemma confirms that the equality between
the LK functionals V and V I before and after that transformation is mirrored by
their numerical approximations.

Lemma 7.1.2 (Transformation I for the finite-dimensional ARE). P̃ is a solu-
tion of the ARE (7.12) if and only if P̃ = P̃ I solves the transformed ARE

P̃ ÃI + (ÃI)⊤P̃ + C̃⊤ΠI
ζζC̃ + P̃ B̃(−Πaa)

−1B̃⊤P̃ = 0ñ×ñ (7.24)
with ÃI = Ã− B̃(−Πaa)

−1Π⊤
ζaC̃,

ΠI
ζζ = Πζζ +Πζa(−Πaa)

−1Π⊤
ζa

Proof. Rewriting (7.12) as (7.24).
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Second, the next lemma shows that the equality between V and V0 + V1 before
and after the splitting also holds for the respective numerical approximations Ṽ
and Ṽ0 + Ṽ1. Recap that the block diagonal structure assumed in (5.51) led to the
introduction of Q0, Q1 in (5.52). Based on the latter, the P̃ -independent term in
(7.24) can be rewritten as

C̃⊤ΠI
ζζC̃ = Ñ⊤

[
C⊤

1 ΠI,11
ζζ C1 0p1×p0

0p0×p1
C⊤

0 ΠI,11
ζζ C0

]
Ñ = Ñ⊤

[
Q1 0p1×p0

0p0×p1 Q0

]
Ñ (7.25)

with Ñ = C̃|{C0=In,C1=In}, (7.26)

where, along the lines of (6.9), Ñ x̃(t) ≈
[
x(t−h)
x(t)

]
addresses (5.8) under the

substitution C0 = C1 = In.

Lemma 7.1.3 (Splitting and discretization commute). Assume ÃI is Hurwitz,
or more generally, σ(ÃI)∩σ(−ÃI) = ∅. Then P̃ is a solution of the transformed
ARE (7.24), i.e., the Legendre-tau-based discretization of (5.56), if and only if

P̃ = P̃0 + P̃1, (7.27)

where P̃0 solves the Legendre-tau-based discretization of the modified defining
equation (5.55) given by

P̃0Ã
I + (ÃI)⊤P̃0 + Ñ⊤ [ 0 0

0 Q0+Q1

]
Ñ + P̃0B̃(−Πaa)

−1B̃⊤P̃0 = 0ñ×ñ
(7.28)

and P̃1 is the solution of the Lyapunov equation representing the Legendre-tau
discretization of (5.57) given by

P̃1Ã
I + (̃AI)⊤P̃1 + Ñ⊤

[
Q1 0
0 −Q1

]
Ñ = 0ñ×ñ. (7.29)

231



7 LK Functionals of Robust Type: Relation to LQR Problems and Convergence of the Numerical
Approach

Proof. The assumption on the eigenvalues of ÃI ensures uniqueness of the Lya-
punov equation solution P̃1 by Lemma 4.1.2. To recognize that the sum of (7.29)
and (7.28)

(P̃0 + P̃1)Ã
I + (ÃI)⊤(P̃0 + P̃1) + Ñ⊤

[
Q1 0
0 Q0

]
Ñ + P̃0B̃(−Πaa)

−1B̃⊤P̃0

= 0ñ×ñ (7.30)

coincides with (7.24) in terms of P̃ = P̃0+P̃1, it must be shown that the quadratic
last term in (7.30) and (P̃1 + P̃0)B̃(−Πaa)

−1B̃⊤(P̃1 + P̃0) coincide. According
to (4.40), P̃1 has a zero last block column in Legendre coordinates. The latter is
multiplied with B̃, which according to (6.8), in Legendre coordinates is nonzero
only in the last block row. Hence, P̃1B̃ vanishes (analogously to (5.59)) and thus
(P̃1 + P̃0)B̃(−Πaa)

−1B̃⊤(P̃1 + P̃0) = P̃0B̃(−Πaa)
−1B̃⊤P̃0.

Note that Ṽ1(x̃) = x̃⊤P̃1x̃ has no counterpart in the cited analysis of LQR
problems. However, it already turned out to provide a suitable approximation of
V1(ϕ) in Section 4.6.1.2. As a consequence, knowing that the result Ṽ (x̃) =

x̃⊤P̃ x̃ from the numerical approach proposed in (6.1) equals Ṽ (x̃) = Ṽ0(x̃) +

Ṽ1(x̃), and that the searched overall LK functional of robust type is V (ϕ) =

V0(ϕ) + V1(ϕ), it suffices to focus on V0. It only needs to be confirmed that
Ṽ0(x̃) = x̃⊤P̃0x̃, based on a positive semidefinite stabilizing solution P̃0 of the
ARE (7.28), converges to V0(ϕ) from the indefinite LQR problem (7.22a), with
convergence being meant in the same sense as in Section 4.6.2.

To sum up, for the standard LQR problem (7.1), the literature offers in-depth con-
vergence results for a Legendre-tau-based early lumping approach. The splitting
approach for LK functionals of robust type, which has already been introduced
in Section 5.5.1, achieves that the resulting operator-valued ARE is associated
with an LQR problem (7.22a) that has a very similar structure as these standard
problems. Still, the involved indefinite costs are a significant difference to these
standard problems and call for caution in the convergence analysis.
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7.2 Convergence

The following convergence statement in Lemma 7.2.1 is borrowed from the
Legendre-tau-based treatment of standard LQR problems in [99]. Whether the
ARE stems from a standard LQR problem or an indefinite one does not make
any difference in its proof (however, it will make a difference in the proofs of the
involved conditions).

Analogously to (4.56), the lemma is expressed in terms of P [N ]

0 . The latter is an
operator onM2 that is represented by the n(N + 1)× n(N + 1) matrix P̃0 from
the ARE (7.28) such that

V0(ϕ) =
〈
P0

[
ϕ
ϕ(0)

]
,
[

ϕ
ϕ(0)

]〉
M2

≈
〈
P [N ]

0

[
ϕ
ϕ(0)

]
,
[

ϕ
ϕ(0)

]〉
M2

= x̃⊤P̃0x̃.

(7.31)

In particular, P [N ]

0 solves an operator-valued ARE that relies on the Legendre-tau
based approximation A [N ] instead of A . See Appendix A on the precise meaning
of the statement that the matrices Ã and P̃0 are coordinate representations of the
operators A [N ] and P [N ]

0 and how the associated operator-valued ARE gives rise
to the matrix-valued ARE. Whenever the discretization resolution has to be made
explicit, a superscript [N ] will also be added at the matrices, e.g., Ã = Ã[N ] or
P̃0 = P̃ [N ]

0 .

Lemma 7.2.1. Assume existence and uniqueness hold for both the stabilizing
ARE solution P0 from (5.65) and its Legendre-tau-based approximations P [N ]

0

from any sufficiently large (∃Nmin > 1) discretization resolution N ≥ Nmin.
Moreover, assume that {∥P [N ]

0 ∥}N≥Nmin
is bounded. Then P [N ]

0 converges
weakly to P0 as N → ∞.

Proof. See [99, Thm. 5.1 (i)]. For the sake of plausibility, the main points of this
known proof have already been outlined belowLemma 4.6.5 on the convergence of
Lyapunov-equation solutions. The only discarded aspect was the quadratic term
⟨(−Πaa)

−1B∗P0x,B∗P0x⟩Cm that, in fact, makes the difference between a
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Lyapunov equation (4.55) and the ARE (7.20). This quadratic term, however, is
unproblematic, since, due to the input dimension m being finite, B∗P [N ]

0

strongly→
B∗P0 [99]. An alternative proof of the lemma is provided in [70, Thm. 6.7] (to be
combined with the convergence results on the Legendre-tau-based approximation
of the solution operator from [99, Thm. 3.6]).

In the present section, the thus required properties of uniqueness, existence, and
uniform boundedness will be discussed. If all these properties are ensured, a
convergence statement on the derived approximations of the LK functionals of
robust type can be concluded based on the above lemma. Thus, the procedure
is similar to Section 4.6.2, where an adaption of the above lemma to Lyapunov
equations has been used to derive a convergence statement for the numerical
approximation of LK functionals of complete type.

7.2.1 Uniqueness

In an LQR problem, the optimum value function is unique. However, the cor-
responding ARE does not only have one unique solution, unless being restricted
to the solution that gives rise to a stabilizing controller—which is the only solu-
tion of interest in LQR problems. Such a stabilization property is actually not
required for the construction of Lyapunov functions, respectively LK functionals.
However, uniqueness is required for convergence considerations from a specified
sequence of finite-dimensional approximations towards a specified corresponding
LK functional. Moreover, only for the unique stabilizing solution P0 of the
operator-valued ARE, existence is guaranteed by the infinite-dimensional KYP
lemma.

7.2.1.1 A Unique Solution of the Infinite-Dimensional ARE

The following uniqueness statement, which is also a part of [131, Thm. 3], was
omitted in Lemma 5.5.6.
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Lemma 7.2.2 (Uniqueness in the infinite-dimensional KYP lemma). If, in
Lemma 5.5.6, the requirement that A − BK generates an exponentially stable
semigroup is additionally imposed, then solutions X0 and K exist if and only if
α3 > 0, and these solutions are unique.

Recap from Lemma 5.5.7 that P0 = −X0 and K = −(−Πaa)
−1B∗P0.

Consequently, under the additionally imposed stabilization condition on K de-
scribed in Lemma 7.2.2 above, the self-adjoint ARE solution P0 is uniquely
defined. Thus, also V0(ϕ) from (7.21) and the resulting LK functional of robust
type V (ϕ) = V0(ϕ) + V1(ϕ) from (7.22b) are uniquely defined. In accordance
with the common wording of a stabilizing ARE solution, the attribute stabilizing
will henceforth be used to mark that unique LK functional of robust type.

Definition 7.2.3 (Stabilizing LK functional of robust type). For any given LK
functional V having the structure (5.5), define6 Kv : C → Rm;

Kvϕ = −(−Πaa)
−1[B⊤v(ϕ)−Π⊤

ζa(Cϕ)] (7.32)

based on v(ϕ) from (5.6). A functional V (ϕ) is called a stabilizing LK functional
of robust type if V (ϕ) is an LK functional of robust type, and if the thus defined
Kv renders the zero equilibrium of

ẋ(t) = A0x(t) +A1x(t− h)−BKvxt (7.33)

exponentially stable.

6 Lemma 7.2.2 rather addresses K
[ ϕ
ϕ(0)

]
= KI

vϕ = −(−Πaa)−1B⊤v(ϕ) in the trans-
formed system ẋ(t) = AI

0x(t) + AI
1x(t − h) − BKI

vxt = A0x(t) + A1x(t − h) −
(−Πaa)−1Π⊤

ζa

[
C1x(t−h)
C0x(t)

]
− BKI

vxt from Section 5.5.1. These closed loop dynamics,
however, coincide with the untransformed ẋ(t) = A0x(t)+A1x(t−h)−BKvxt. Moreover,
V1(ϕ) in V (ϕ) = V0(ϕ) + V1(ϕ) does not affect v(ϕ).
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7.2.1.2 A Unique Solution of the Finite-Dimensional ARE

Consider the finite-dimensional ARE. The stabilizing ARE solution is the unique7

smallest8 symmetric matrix P̃ in terms of the Loewner partial order [120,
Thm. 8.5.1]. In contrast to the infinite-dimensional KYP lemma, the limit case
W
G̃

⪰ 0 with W
G̃

̸≻ 0 is included in Lemma 6.3.1. In that limit case, the as-
sociated controller matrix K̃ can lead to a closed loop matrix Ã − B̃K̃ that has
eigenvalues on the imaginary axis. For the first part of the following statement,
see [120, Thm. 7.9.3 and Thm. 8.5.1] (applied to (7.24)). For the second part, see
[78, Sec. 3.6] and Lemma 7.2.2 applied to the special case of a finite-dimensional
state space (cf. (7.15)).

Lemma 7.2.4 (Uniqueness in the finite-dimensional KYP lemma). Assume
(Ã, B̃) is stabilizable. For any P̃ , consider the corresponding control matrix

K̃ = −(−Πaa)
−1(B̃⊤P̃ −Π⊤

ζaC̃)

from (7.11), and denote by σcl the set of eigenvalues of the closed loop matrix

σcl := σ(Ã− B̃K̃). (7.34)

1. If at least one solution P̃ = P̃⊤ ∈ Rñ×ñ of (7.12) exists, then among these
solutions there is a unique one with

σcl ⊂ C−. (7.35)

7 A stabilizing solution is always unique [120, Prop. 7.9.2]. If the stabilizability assumption
on (Ã, B̃) is not imposed, then an almost stabilizing solution might be non-unique, see [120,
Example 3.9.1].

8 In contrast to the minimum P̃ = P̃⊤, a maximum P̃ = P̃⊤ need not exist (i.e., the supremum
w.r.t theLoewner partial order is not necessarily finite) if only a stabilizability but no controllability
assumption is imposed, cf. [120, Example 7.9.1]. Note that, in (7.24), the linear term P̃ Ã+Ã⊤P̃
and the quadratic term P̃ΘP̃ with Θ = B̃(−Πaa)−1B̃⊤ ⪰ 0 occur with equal signs (written
on the same side of the equation), whereas in the literature, frequently X̃ = −P̃ is considered,
and therefore the stabilizing solution is the maximum X̃ .
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2. If the conditions of the KYP lemma stated in Lemma 6.3.1 hold with (6.32)
being strengthened to a strict inequality, i.e.,

0 < −wC(C̃x̃f ,−u), (7.36)

then a unique stabilizing solution P̃ = P̃⊤ of (7.12) exists, i.e., a unique
solution with

σcl ⊂ C−. (7.37)

7.2.2 Existence

A main difference between the AREs in the present context and AREs from stan-
dard LQR problems lies in the question of existence. For the former, the existence
of solutions P̃ = P̃⊤ ∈ Rñ×ñ is a matter of the KYP lemma (Lemma 6.3.1). The
KYP lemma relies on −w(C̃x̃,−u), which coincides with the integrand of the
costs in (7.14). As −wC(C̃x̃,−u) = − [ x̃u ]

H
[
C̃⊤ 0
0 −I

] [
Πζζ Πζa

Π⊤
ζa Πaa

] [
C̃ 0
0 −I

]
[ x̃u ]

is an indefinite quadratic form, the KYP criterion 0 ≤ −wC(C̃x̃f ,−u) with
x̃f = (iωIñ − Ã)−1B̃u might or might not be satisfied. In contrast, costs in stan-
dard LQR problems are nonnegative with the integrand [ x̃u ]

H [Q 0
0 R

]
[ x̃u ] being a

positive semidefinite quadratic form. Thus, the KYP lemma is trivially satisfied,
and a real symmetric ARE solution always exists in standard LQR problems under
the usual stabilizability assumption.

Therefore, the considered AREs differ from those of standard LQR problems
in having a solvability bound in terms of the involved parameterization of
(Πζζ ,Πζa,Πaa), which in fact amounts to the robustness bound of interest (cf. Ta-
ble 5.2)—respectively, due to Lemma 5.5.1 and 7.1.2, to a transformation thereof.
The following condition addresses the convergence of that solvability bound in
the finite-dimensional ARE towards the solvability bound in the operator-valued
ARE, as N increases. Condition 7.2.5 thus establishes that the Legendre-tau-
based approximations exist for sufficiently large discretization resolutions N ,
whenever the functional that shall be approximated exists. Moreover, the proof
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of the uniform boundedness assumption given Section 7.2.3 will also rely on this
condition. The proof that the Condition 7.2.5 is indeed valid is postponed to
Section 7.3, where the Legendre-tau-based transfer function is discussed.

Condition 7.2.5 (Convergence of the solvability bound). It holds

γ [N ]

max,Q → γmax,Q as N → ∞, (7.38)

where γ [N ]

max,Q and γmax,Q <∞ are defined as follows: Introduce a scalar factor9

γQ > 0 in the operator-valued ARE (7.20)

⟨P0A x, x⟩M2
+ ⟨A ∗P0x, x⟩M2

(7.39)
+ γ2Q⟨Qx, x⟩M2 + ⟨(−Πaa)

−1B∗P0x,B
∗P0x⟩Cm = 0

such that γQ = 1 gives the original equation (7.20). Then the value γQ,max is
chosen such that a self-adjoint solution P0 exists if γQ < γQ,max, whereas no
such solution exists if γQ > γQ,max. Analogously, introducing γ [N ]

Q > 0 in the
finite-dimensional ARE (7.28)

P̃ [N ]

0 ÃI[N ] + (ÃI[N ])⊤P̃ [N ]

0 (7.40)
+ (γ [N ]

Q )2 (Ñ [N ])⊤
[
0 0
0 Q0+Q1

]
Ñ [N ]︸ ︷︷ ︸

=:(C̃ [N]

Q )⊤C̃ [N]

Q

+P̃ [N ]

0 B̃[N ](−Πaa)
−1(B̃[N ])⊤︸ ︷︷ ︸

=:B̃[N]

Q (B̃[N]

Q )⊤

P̃ [N ]

0 = 0ñ[N]×ñ[N]

(where (7.28) is restored by γ [N ]

Q = 1), a real symmetric solution exists if and only
if γ [N ]

Q ≤ γ [N ]

Q,max.

The condition, i.e., the convergence (7.38) of the solvability bound, will be proven
in Theorem 7.3.6. Until then it is considered as a standing assumption.

9 By the definition of Q0, Q1 in (5.52), a scaling of Q in (5.66) amounts to γ2
Q(Q0 + Q1) =

γ2
Q(C⊤

0 ΠI,00
ζζ C0+C⊤

1 ΠI,11
ζζ C1)withΠI

ζζ = Πζζ+Πζa(−Πaa)−1Π⊤
ζa from (5.50a). Thus,

in the case of the linear norm bound from row (I|a) in Table 5.1, whereΠζζ = ΠI
ζζ = γ2Ip, the

factor γQ simply amounts to a scaling of the linear norm bound γ, and the maximum admissible
scaling becomes γQ,max = γmax/γ.
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7.2.3 Uniform Boundedness

As a next step, the uniform boundedness assumption from Lemma 7.2.1 has to
be proven. Proofs of that property for AREs from standard LQR problems in
[70, 99] do not apply in the present situation: In standard LQR problems (7.7),
the ARE solution X̃LQR = −P̃LQR ⪰ 0 gives the infimum costs x⊤0 X̃LQRx0
and thus can be upper bounded by some non-optimal costs. In contrast, in (7.14),
the ARE solution is P̃ ⪰ 0 and the infimum costs are −x̃⊤0 P̃ x̃0, for which an
upper bound only gives an upper bound on −P̃ . The following lemma will be
expedient instead. For the sake of readability, it is stated in terms of a general
LTI system (A,B,C) instead of (ÃI[N ], B̃[N ]

Q , C̃ [N ]

Q ) from (7.40) to which it will be
applied.

Lemma 7.2.6 (Upper bound on ARE solutions). Let A ∈ Rn×n be Hurwitz,
and B ∈ Rn×m, C ∈ Rp×n. Assume that the ARE

PA+A⊤P + γ2C⊤C + PBB⊤P = 0n×n (7.41)

has a solution P = P⊤ ∈ Rn×n if and only if γ ≤ γmax. Let γ = 1 be the
parameter choice of interest (w.l.o.g., always achievable by rescaling C), and
denote by Pγ=1 a corresponding positive semidefinite stabilizing solution of the
ARE (7.41), assuming γmax > γ. Let Plyap = P⊤

lyap solve the Lyapunov equation

PlyapA+A⊤Plyap + γ2maxC
⊤C = 0n×n. (7.42)

Then the ARE solution Pγ=1 is upper bounded by

Pγ=1 ⪯ b(γmax)Plyap, (7.43)

with b : (1,∞) → R>0 being a continuous function on the domain γmax > γ = 1.
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Proof. The proof proceeds along the lines of [32, Thm. 25-1]10. If there exists a
stabilizing positive semidefinite solution P of (7.41), then this solution satisfies

−x⊤0 Px0 = inf
u∈L2

∫ ∞

0

(
− γ2x⊤(t)C⊤Cx(t) + u⊤(t)u(t)

)
dt

subject to
{
ẋ(t)=Ax(t)+Bu(t),
x(0)=x0∈Rn

(7.44)

according to Lemma 7.1.1. Moreover, the minimum is attained by uopt(t) =

−Kxopt(t) with K = −B⊤P , and the closed loop dynamics ẋ = (A − BK)x

shows that xopt(t) = e(A−BK)tx. Consider again the open loop system ẋ(t) =

Ax(t) + Bu(t), for which the solution x(t) = eAtx0 +
∫ t
0
eA(t−η)Bu(η) dη =

eAtx̃0 + xu(t) is the superposition from the autonomous system response and
xu, which denotes the response to the given input u if the initial value was zero.
Thus,

−x⊤0 Px0 =

∫ ∞

0

(
− γ2

(
eAtx0 + xuopt(t)

)⊤
C⊤C

(
eAtx0 + xuopt(t)

)
+ u⊤opt(t)uopt(t)

)
dt. (7.45)

As A is assumed to be Hurwitz, the solution Plyap of the Lyapunov equation
(7.42) can be expressed via an improper integral. Based on the latter, introduce

Vlyap := x⊤0 Plyap x0 = γ2max

∫ ∞

0

x⊤0 (e
At)⊤C⊤CeAtx0 dt. (7.46)

10 The ARE in [32, Thm. 25-1] is a standard-LQR-type ARE, and thus a solution always exists
no matter how large the involved parameter is. Instead, the frequency-domain inequality Im −
(G(iω))HG(iω) ⪰ 0m×m amounts to the L2-gain of the system being less than or equal to
one.
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Expanding the product in (7.45) and using Vlyap for the autonomous part, gives

x⊤0 Px0 =
γ2

γ2max

Vlyap + 2γ2
∫ ∞

0

x⊤0 (e
At)⊤C⊤Cxuopt(t) dt (7.47)

+ γ2
∫ ∞

0

x⊤uopt
(t)C⊤Cxuopt(t) dt−

∫ ∞

0

u⊤opt(t)uopt(t) dt.

Concerning the second term in (7.47), the Cauchy–Schwarz inequality yields

|⟨C(eA·)x0, Cxuopt
⟩L2

| ≤ ∥C(eA·)x0∥L2
∥Cxuopt

∥L2

=
1

γ2max

√
Vlyap ∥Cxuopt∥L2 . (7.48)

From the dissipativity considerations in Remark 6.3.3, it is known that

∥Cxuopt
∥L2

≤ γsysmin∥uopt∥L2
=

1

γmax
∥uopt∥L2

. (7.49)

Abbreviating β = γ2

γ2
max

, (7.47) becomes

x⊤0 Px0 ≤ βVlyap + 2β
√
Vlyap

1

γmax
∥uopt∥L2

+ (β − 1)∥uopt∥2L2

≤ sup
z≥0

(
βVlyap + 2

β
√
Vlyap

γmax
z + (β − 1)z2

)
. (7.50)

If β < 1, the maximum is attained at z = β
√
Vlyap

(1−β)γmax
. As a result,

x⊤0 Px0 ≤
(
β +

β2

(1− β)γ2max

)
Vlyap, (7.51)

or, if γ = 1 and thus β = 1/γ2max,

x⊤0 Px0 ≤ γ4max − γ2max + 1

γ4max(γ
2
max − 1)

Vlyap =: b(γmax)Vlyap (7.52)

for all x0 ∈ Rn.
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Lemma 7.2.7 (Uniformboundedness). Assume the zero equilibrium of the trans-
formed nominal RFDE (5.48) is exponentially stable, and the operator-valued
ARE (5.65) has a self-adjoint stabilizing solution P0. Let P [N ]

0 be the oper-
ator that is represented by the stabilizing matrix solution P̃ [N ]

0 from the finite-
dimensional ARE (7.28) with the discretization resolution N . If Condition 7.2.5
holds, then {∥P [N ]

0 ∥}N≥Nmin is bounded (assuming Nmin is some sufficiently
large discretization resolution).

Proof. According to Condition 7.2.5, γ [N ]

Q,max → γmax,Q, where γmax,Q > 1 due
to the assumed existence of P0. Thus, ∃Nmin > 0,∀N ≥ Nmin : γ [N ]

Q,max > 1,
which ensures the existence of the unique stabilizing ARE solutions P̃ [N ]

0 =

(P̃ [N ]

0 )⊤. Due to the stability preservation from Condition 3.7.1 (which is proven
in [97, Thm. 5.3]), ÃI[N ] is Hurwitz if N is sufficiently large. Therefore, it
follows from Lemma 6.2.7 (with KC = 0m×p) that P̃ [N ]

0 is positive semidefinite.
According11 to (A.112), the operator norm of P [N ]

0 is related to P̃ [N ]

0 by

∥P [N ]

0 ∥ = ∥((H [N ])−1/2 ⊗ In)P̃
[N ]

0 ((H [N ])−1/2 ⊗ In)∥2 (7.53)
= sup

∥x̃∥≤1

|x̃⊤((H [N ])−1/2 ⊗ In)P̃
[N ]

0 ((H [N ])−1/2 ⊗ In)x̃| =: |x̃⊤o P̃
[N ]

0 x̃o|,

withH [N ] = (H [N ])⊤ being the (N + 1)× (N + 1) matrix of metric coefficients
depending on the basis, see, e.g., (A.21). In the following, Lemma 7.2.6 is applied
to (7.40). The solution of the Lyapunov equation

P̃ [N ]

0,lyapÃ
I[N ] + (ÃI[N ])⊤P̃ [N ]

0,lyap = −C̃ [N ]

Q C̃ [N ]

Q (7.54)

11 In (A.112), only n = 1 is considered. The extension to n ≥ 1 gives rise to the Kronecker product
of the metric coefficient matrix with an identity matrix in (7.53).
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is positive semidefinite by Proposition 4.1.4. In particular, P̃ [N ]

0,lyap depends
linearily on the right-hand side term of (7.54), which, in (7.42), is scaled by
(γ [N ]

Q,max)
2. Thus, by (7.43), and due to the positive semidefiniteness,

∀x̃ ∈ Rñ
[N]

: |x̃⊤P̃ [N ]

0 x̃| ≤ b(γ [N ]

Q,max)
∣∣∣x̃⊤((γ [N ]

Q,max)
2P̃ [N ]

0,lyap

)
x̃
∣∣∣ . (7.55)

Moreover, since γ [N ]

Q,max converges by Condition 7.2.5, and since b in (7.43) is a
continuous function, (γ [N ]

Q,max)
2 b(γ [N ]

Q,max) ≤ b̄ is bounded by some b̄ > 0, which
leads to the conclusion

∀x̃ ∈ Rñ
[N]

: |x̃⊤P̃ [N ]

0 x̃| ≤ b̄ |x̃⊤P̃ [N ]

0,lyapx̃|. (7.56)

The represented self-adjoint operators accordingly satisfy

∥P [N ]

0 ∥ ≤ b̄ ∥P [N ]

0,lyap∥, (7.57)

for which boundedness follows from Lemma 4.6.6.

7.2.4 Convergence Statement

Based on these results, a convergence statement for the numerical approach pro-
posed in Section 6.1 can be derived, provided Condition 7.2.5 is valid. The
statement is analogous to what has been proven for the Legendre-tau-based ap-
proximation of LK functionals of complete type in Section 4.6.2.

Theorem 7.2.8. Let the conditions in Theorem 5.5.11 hold and denote by V (ϕ)

the thus existing unique stabilizing (see Definition 7.2.3) LK functional of robust
type. For any given ϕ ∈ C and any discretization resolution N , let

x̃[N ] = π̃[N ](ϕ) ∈ Rñ
[N]

= Rn(N+1) (7.58)
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denote the discretization of ϕ according to (3.47) (respectively a coordinate trans-
formation thereof). Moreover, let

Ṽ [N ](x̃[N ]) = (x̃[N ])⊤P̃ [N ]x̃[N ] (7.59)

be built from the stabilizing solution P̃ [N ] of the ARE (6.18) with Ẽ = 0. Assume
Condition 7.2.5 holds (which, in fact, will be proven in Theorem 7.3.6 below),
then

∀ϕ ∈ C : Ṽ [N ](π̃[N ](ϕ)) → V (ϕ), (N → ∞). (7.60)

Proof. According to Lemma 7.1.3 and Lemma 7.1.2 from Section 7.1.3.2, the
splitting V = V0 + V1 can be considered. Convergence towards V0 follows from
the weak operator convergence P [N ]

0

weakly→ P0 stated in Lemma 7.2.1. The latter
applies due to the uniqueness statements from Lemma 7.2.2 and Lemma 7.2.4,
the existence statements from the presupposed conditions in Theorem 5.5.11
and Condition 7.2.5, and the uniform boundedness statement from Lemma 7.2.7.
Convergence towards V1 in (7.22b) has already been proven in Theorem 4.6.8.

Due to the KYP lemma, the not yet proven Condition 7.2.5 on the maximum
admissible additional gain γQ translates to a frequency-domain condition. Let, in
accordance with C̃ [N ]

Q and B̃[N ]

Q , which are already introduced in the matrix-valued
ARE (7.40) for P̃ [N ]

0 , the underlying terms in Q and B of the operator-valued
ARE (7.39) be decomposed as

Q0 +Q1 =: C⊤
0,Q C0,Q (7.61)

(which occurs in Q [ ϕr ] =
[

0L2

(Q0+Q1)r

]
) and

B(−Πaa)
−1B⊤ =: BQB

⊤
Q . (7.62)

244



7.3 The Legendre-Tau-Based Transfer Function

Then Corollary 5.5.13 gives for the maximum admissible gain in Condition 7.2.5

γQ,max =
1

∥GQ∥∞
, (7.63)

relying on the time-delay-system transfer function

GQ(s) := C0,Q (sIn −AI
0 −AI

1e
−sh)−1BQ. (7.64)

Analogously, Corollary 6.3.2 givesγ [N ]

Q,max = 1/∥G̃[N ]

Q ∥∞ relying on theLegendre-
tau-based approximation

G̃[N ]

Q (s) := C̃ [N ]

Q (sIñ[N] − ÃI[N ])−1B̃[N ]

Q . (7.65)

As a result, Condition 7.2.5 only requires that the H∞-norm converges,

∥G̃[N ]

Q ∥∞ → ∥GQ∥∞ as N → ∞, (7.66)

which motivates a closer look on the transfer function generated from the
Legendre-tau-based ODE approximation of a time-delay system. The consid-
erations will directly address general transfer functions (5.77), which include the
splitting-related transfer function (7.64) as a special case.

7.3 The Legendre-Tau-Based Transfer
Function

Let G(s) be an RFDE transfer function (5.77). In this section, the equivalence
between the transfer function G̃(s) from the Legendre-tau-based approximation
(6.13) on the one hand and the common rational approximation of G(s) that
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results from replacing e−sh by an all-pass Padé approximation12 on the other
hand is proven. It is known that an analogous equivalence also holds for the
characteristic equation, see [97, Thm. 3.1]. Compared to the proof of the latter, a
useful relation between the Padé approximation of e−sh and Bessel polynomials
will simplify the considerations in this section. Note that the considered time-
delay system (6.3), withG(s) given by (5.77), involves, besides of the state delay,
also delayed output terms C1x(t− h), alongside undelayed output terms C0x(t).

7.3.1 The Padé Approximation of Order [N/N ] for e−hs

Let padé[N/N ](e
z) denote the Padé approximant of order [N/N ] for the exponen-

tial function, i.e., its Padé approximant with equal numerator and denominator
polynomial degree, which is also known as diagonal or all-pass Padé approximant.
The common formula, see [153, §75 / p. 431],

padé[N/N ](e
z) =

υN (z)

υN (−z)
(7.67)

is based on the polynomials

υN (z) :=

N∑
k=0

(2N − k)!

(2N)!

(
N

k

)
zk, with

(
N

k

)
=

N !

k!(N − k)!
(7.68)

= 1 + 1
2N

N
1 z +

1
(2N)(2N−1)

N(N−1)
2·1 z2 + 1

(2N)(2N−1)(2N−2)
N(N−1)(N−2)

3·2·1 z3

+ . . .+ 1
(2N)(2N−1)···(N+1)

N !
N ! z

N .

However, it can also be expressed via Bessel polynomials, cf. [34, eq. (2.8)].

12 If the description “Padé approximation of a model with time delay” (e.g., in Matlab) is used, it is
just this substitution that is meant, although, strictly spoken, substituting in G(s) the individual
exponential terms by their Padé approximation does not coincide with the Padé approximation of
the overall transfer function G(s).
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Lemma 7.3.1. Let θN (z) denote the N -th reverse Bessel polynomial and bN (z)

theN -th Bessel polynomial, related by θN (z) = zNbN ( 1z ), see (7.69) and (7.70)
below. The numerator polynomial of padé[N/N ](e

z) can be written as

υN (z), according to (7.68) given by υN (z)
def
=

N∑
k=0

1
k!

N !
(N−k)!
(2N)!

(N+(N−k))!

zk

=
N !

(2N)!
2N θN ( 12z), θN (z)

def
=

N∑
j=0

1
j!

(N+j)!
(N−j)!

zN−j

2j
(7.69)

=
N !

(2N)!
2N ( 12z)

NbN (( 12z)
−1), bN (z)

def
=

N∑
j=0

1
j!

(N+j)!
(N−j)!

(
z
2

)j
. (7.70)

Proof. By inspection.

Consequently, with the exponent z = −hs, which is relevant in the transfer
function of time-delay systems, the following alternative descriptions evolve.

Lemma 7.3.2. The Padé approximant of e−hs can equivalently13 be described via

padé[N/N ](e
−hs) =

υN (−hs)
υN (hs)

=
θN (−h

2 s)

θN (h2 s)
= (−1)N

bN (−(h2 s)
−1)

bN ((h2 s)
−1)

. (7.71)

13 ignoring the removable singularity at s = 0 that is induced by the reciprocal arguments in bN
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Example 7.3.3. To get a better impression of the relations, consider N = 4,
where N !

(2N)!2
N = 1

105 in (7.69) and ( 12z)
N = (−h

2 s)
N = (h2 s)

4 in (7.70). The
numerators in (7.71) become

υ4(−hs) = 1− 1
2hs+

3
28 (hs)

2 − 1
84 (hs)

3 + 1
1680 (hs)

4 (7.72)
θ4(−h

2 s) = (h2 s)
4 − 10(h2 s)

3 + 45(h2 s)
2 − 105h2 s+ 105 (7.73)

b4(−(h2 s)
−1) = 105(h2 s)

−4 − 105(h2 s)
−3 + 45(h2 s)

−2 − 10(h2 s)
−1 + 1

= 1680 1
h4s4 − 840 1

h3s3 + 180 1
h2s2 − 20 1

hs + 1 (7.74)

and the resulting Padé approximation is

padé[4/4](e−hs) =
h4s4 − 20h3s3 + 180h2s2 − 840hs+ 1680

h4s4 + 20h3s3 + 180h2s2 + 840hs+ 1680
. (7.75)

7.3.2 Legendre-Tau ODE as a State Space Realization
of a Padé Approximation

The following proof relies on a relation between Bessel polynomials and a certain
three-banded system of linear equations that is derived in Lemma B.3.2 in the
appendix.

Theorem 7.3.4. The transfer function from the Legendre-tau-based discretization

G̃(s) = C̃(sIñ − Ã)−1B̃

described in (6.13) is equal to the RFDE transfer function with e−hs being
replaced by its Padé approximant of order [N/N ]

G̃(s) =

[
C1 padé[N/N ](e

−hs)

C0

] [
sIn −A0 − padé[N/N ](e

−hs)A1

]−1

B.

(7.76)
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7.3 The Legendre-Tau-Based Transfer Function

Proof. Introducing Rc ∈ (R(s))ñ×m, the transfer function (6.13) results from

(sIñ −Ac)Rc(s) = Bc (7.77a)
G̃(s) = CcRc(s). (7.77b)

Based on

βj(z) := (2j + 1)z, and γk(z) := −k(k+1)
2 z, (7.78)

j ∈ {0, . . . , N − 1}, k ∈ {0, . . . , N}, the system matrix (3.28) can be written as

Ac =

 0 0 ··· 0 0
...

...
...

...
0 0 0 0

A0+A1 A0−A1 ··· A0+A1 A0−A1

 (7.79)

+



0 β0(
2
h ) 0 β0(

2
h ) 0 ··· β0(

2
h ) 0

0 β1(
2
h ) 0 β1(

2
h ) ··· 0 β1(

2
h )

0
. . . . . .

. . . . . .
. . .

0 βN−2(
2
h ) 0

0 βN−1(
2
h )

γ0(
2
h ) γ1(

2
h ) γ2(

2
h ) ··· ··· γN−1(

2
h ) γN (

2
h )


⊗ In

(exemplary shown for N even14). Introduce Rb ∈ (R(s))ñ×m such that

Rc(s) = TcbRb(s), Tcb =


1 0 −1

1 0 −1

1
. . .. . . −1

0

1

⊗ In. (7.80)

14 The shown structure in the right upper part corresponds toN even, otherwise the last right-upper
side-diagonals are nonzero, zero, and nonzero.

249



7 LK Functionals of Robust Type: Relation to LQR Problems and Convergence of the Numerical
Approach

As a consequence, (7.77) transforms to

(sIñ −Ac)TcbRb(s) = Bc (7.81a)
G̃(s) = CcTcbRb(s). (7.81b)

Concerning the last row of AcTcb, note that, for k ≥ 2,

γk(
2
h )− γk−2(

2
h ) = (−k(k+1)

2 + (k−2)(k−1)
2 ) 2h

= −βk−1(
2
h ). (7.82)

As a result, (7.81a) becomess


1 −β0(
1
s
2
h ) −1

1 −β1(
1
s
2
h ) −1

1
. . . . . .

−1

1 −βN−1(
1
s
2
h )

0 β0(
1
s
2
h ) β1(

1
s
2
h ) (1+βN−1(

1
s
2
h ))

 ⊗ In

−

 0 0 0 0 ··· 0 0
...

...
...
...

...
...

0 0 0 0 0 0
A0+A1 A0−A1 0 0 ··· 0 0

Rb(s) =

 0
...
0
B

 , (7.83)

and (7.81b) becomes

G̃(s) =
[
C1 −C1 0p1×n ··· 0p1×n

C0 C0 0p0×n ··· 0p0×n

]
Rb(s) =

[
C1

(
R0
b(s)−R1

b(s)
)

C0

(
R0
b(s) +R1

b(s)
)] . (7.84)

Ignoring the last row in (7.83), Lemma B.3.2 shows that

R0
b(s) +R1

b(s) = bN ( 1s
2
h )R

N
b (s) (7.85)

R0
b(s)−R1

b(s) = (−1)NbN (− 1
s
2
h )R

N
b (s). (7.86)
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To obtain RNb , all rows of (7.83) are added

s(R0
b +R1

b)−A0(R
0
b +R1

b)−A1(R
0
b −R1

b) = B, (7.87)

yielding with (7.85) and (7.86)

RNb (s) =
[
bN ( 1s

2
h )sIn − bN ( 1s

2
h )A0 − (−1)NbN (− 1

s
2
h )A1

]−1

B. (7.88)

Consequently, (7.84) with (7.85) and (7.86) gives

G̃(s) = (7.89)[
(−1)NC1bN (− 1

s
2
h )

C0bN ( 1s
2
h )

] [
bN ( 1s

2
h )sIñ − bN ( 1s

2
h )A0 − (−1)NbN (− 1

s
2
h )A1

]−1

B,

which by (7.71) completes the proof.

7.3.3 Completing the Proof of Convergence for the
Numerical Approach to the LK Functional

As a consequence, existing results on the convergence of these common rational
approximations for time-delay transfer functions apply, see, e.g., [71]. It is well
known that, as the orderN increases, the error bound15 for the Padé approximation
of e−iωh goes towards zero on an increasing range |ω| < νN of frequencies (with
ν ≈ 1.4426 1

h ), whereas, beyond this linearly growing frequency window, the
error bound16 does not improve until being reached by the window. Nevertheless,
for the strictly proper overall transfer function G(s), the asymptotic behavior
∥G(iω)∥∞ → 0, as ω → ∞, is retained when substituting the exponential terms
by their Padé approximations. In the end, the derived rational approximation of

15 if |ω| < νN : |e−iωh − padé(e−iωh)| ≤ 2|ω|2N+1(νN)−(2N+1) with ν = 2(
√
2
e
)
1
2 1

h
, see

[71, Prop. 3.3]
16 if |ω| ≥ νN : |e−iωh − padé(e−iωh)| ≤ 2, see [71, Prop. 3.3].
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G(iω) converges uniformly on the whole unbounded domain ω ∈ (−∞,∞) to
the original G(iω) as the order N increases (presuming there are no poles on the
imaginary axis).

Lemma 7.3.5 (Convergence of the approximated transfer function, [71,
Prop. 4.2]). ConsiderG(s) from (5.77), assuming that ẋ(t) = A0x(t)+A1x(t−
h) has no characteristic roots on the imaginary axis, and let G̃[N ](s) denote
its rational approximation (7.76). Then17supω∈R ∥G̃[N ](iω) − G(iω)∥2 → 0 as
N → ∞.

Proof. [71, Prop. 4.2], which, ifm > 1 or p > 1, can elementwise be applied.

Thus the asymptotic transition of G̃[N ](iω) in Corollary 6.3.2 from the finite-
dimensional KYP lemma to G(iω) in Table 5.2 is established. In particular, the
lemma can be used to prove the convergence of the splitting-based solvability
bound described by Condition 7.2.5.

Theorem 7.3.6. Assume that ẋ(t) = f I(xt) defined in (5.48) has an exponentially
stable equilibrium and GQ(s) ̸≡ 0 in (7.64). Then Condition 7.2.5 holds.

Proof. In Condition 7.2.5, γQ,max = 1
∥GQ∥∞

can be derived fromGQ(s) defined
in (7.64) due to Corollary 5.5.13. The above Lemma 7.3.5 and the reverse triangle
inequality in∣∣∥G[N ]

Q ∥∞ − ∥GQ∥∞
∣∣ ≤ ∥G[N ]

Q −GQ∥∞ → 0, as N → ∞ (7.90)

confirm (7.66), which concludes the proof.

Note that the involved stability assumption on ẋ(t) = f I(xt) (which is not
restrictive, see Remark 5.5.10), is already presumed in Theorem 7.2.8. Thus, the

17 supω∈R ∥E(iω)∥2 = ∥E∥∞ is the H∞-norm if E ∈ H∞ and otherwise still the peak gain
(L∞-norm, not to be confused with the peak-to-peak or induced L∞-gain of the system).
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provisionally imposed Condition 7.2.5 in Theorem 7.2.8 is always valid and can
be dropped.

As a result, Theorem 7.3.6 completes the proof of the convergence statement in
Theorem 7.2.8, which is

∀ϕ ∈ C : Ṽ [N ](π̃[N ](ϕ)) → V (ϕ), (N → ∞), (7.91)

without imposing additional assumptions. Consequently, the convergence, which
for the Legendre-tau-based approximation of LK functionals of complete type has
already be shown in Section 4.6.2 of Chapter 4, also holds for the Legendre-tau-
based approximation of the LK functionals of robust type.

7.4 Revisiting the Main Points of the Chapter

• The ARE is associated to an LQR problem. Therefore, the convergence
proof can benefit from known results on a Legendre-tau-based approach to
optimal control problems in time-delay systems.

• However, there are two major differences to standard LQR problems.

– First, the associated LQR problem is an LQR problem with indefinite
costs, whereas, in standard LQR problems, costs are always nonneg-
ative.

– Second, the matrix-valued ARE actually addresses an LQR problem
with costs that involve delayed terms. However, this issue is already
resolved by the splitting approach from Section 5.5.1, on which the
proofs in this chapter rely.

• Because of the indefinite costs, aspects like the existence of solutions and
the uniform boundedness of solutions have to be proven differently than for
the AREs from standard LQR problems (considering the sequence of finite-
dimensional AREs that arise by increasing the discretization resolutionN ).
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• For the considered LTI system (6.3) with a state delay and both delayed
and non-delayed output terms, it is shown that the Legendre-tau-based
finite-dimensional LTI system (6.10) is a state space realization of the
common Padé-based rational approximation of the transfer function G(s).
Therefore, known results on these wide-spread rational approximations
apply. They ensure that if the frequency-domain existence condition for
the LK functional of robust type V (ϕ) is satisfied, then the approximation
Ṽ (x̃) of the LK functional also exists if N is sufficiently large.

• The obtained convergence statement (Theorem7.2.8) equals the one already
obtained for complete-type LK functionals in Section 4.6.2: Under the
imposed assumptions, for any given argument ϕ ∈ C, it is proven that the
resulting Ṽ (x̃) = x̃⊤P̃ x̃ (where x̃ represents coordinates of the polynomial
approximation of ϕ in the chosen polynomial basis) converges to the value
of the LK functional of robust type V (ϕ) as the discretization resolutionN
increases.
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8 Conclusion

The guiding theme of the present thesis is given by the simple delay-free template
from Section 1.2. The template breaks down the known approach of complete-
type Lyapunov–Krasovskii (LK) functionals to its counterpart in delay-free ODEs,
namely the well-known construction of Lyapunov functions from a Lyapunov
equation.

The numerical approach to complete-type LK functionals that is proposed in
Section 4.1 relies on an ODE approximation of the time-delay system. Only a
finite-dimensional Lyapunov equation has to be solved. As a consequence, it
brings the template (the Lyapunov-equation-based construction of a Lyapunov
function for an ODE) and its counterpart (the complete-type LK functional for
a time-delay system) closer together. In fact, the approach merges two seem-
ingly disjunctive schools concerning stability in linear time-invariant time-delay
systems: constructing an LK functional versus numerically computing charac-
teristic roots via discretization (to be more precise, computing eigenvalues of a
matrix that actually belongs to an ODE approximation). Indeed, the presented
finite-dimensional approximation of the LK functional is shown to be a partial
Lyapunov function that proves partial asymptotic stability of the ODE approxi-
mation. For a suitably chosen approximation scheme, the latter in turn means that
all eigenvalues of the ODE system matrix have negative real parts.

Additionally, the numerical approach opens up new freedoms in how to construct
the defining equation of the LK functional. Clearly, at the level of the involved
ODE, amore general Lyapunov equation could be solved aswell, without requiring
any additional effort. At the same time, the numerical approach makes the
importance of the structure of the problem apparent, thus calling for a construction
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that can incorporate structural information. This is achieved by replacing the
Lyapunov-equation template by an algebraic-Riccati-equation template. From the
theory on absolute stability in ODEs, algebraic Riccati equations are known to be
more appropriate when questions of robustness shall be tackled. The reader might
rather associate LMIs or frequency-domain methods with robustness theory for
ODEs, which is why the thesis also intends to explain the relations, and known
equivalences, in a concise manner. Most importantly, a time-delay counterpart to
the template of an algebraic-Riccati-equation-based Lyapunov function does not
exist in the same spirit as complete-type LK functionals represent a time-delay
counterpart to the template of a Lyapunov-equation-based Lyapunov function.
The newly introduced Lyapunov–Krasovskii functionals of robust type fill that
gap.

8.1 Summary of the Contributions

In view of the objectives declared in Section 1.5, the following has been achieved.

I The first part of the thesis (Chapter 2) is devoted to the issue of how to
prove stability in a linear time-delay system.

• A necessary and sufficient criterion for delay-independent exponential
stability in ẋ(t) = A0x(t)+A1x(t−h) is proposed (Theorem 2.3.4).
Merely the spectral abscissa ofM(φ) = A0 + eiφA1 must be plotted
over φ ∈ [0, π].

• For delay-dependent stability, a constrained minimization problem
is formulated, which describes the exact critical delay value (Theo-
rem 2.2.2).
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8.1 Summary of the Contributions

• An underlying framework of three possible perspectives on the two-
variable formulation of the characteristic equation is introduced (Sec-
tion 2.1.2). In particular, this framework makes the parallels be-
tween the proposed criteria and the wide-spread so-called frequency-
sweeping tests apparent.

II The second part (Chapter 3 and 4) is devoted to the issue of how to compute
Lyapunov–Krasovskii functionals of complete type numerically.

• A numerical approach is proposed that relies on an ODE approxima-
tion of the time-delay system. Only a finite-dimensional Lyapunov
equation must be solved to obtain an approximation of the complete-
type Lyapunov–Krasovskii functional (Section 4.1.1).

• A formula for the coefficient of a quadratic lower bound on the nu-
merical result of the Lyapunov–Krasovskii functional is derived (The-
orem 4.3.2). Examples confirm that this lower-bound coefficient is
significantly less conservative than known formulas (Table 4.1).

• For both the value of the functional as well as the lower-bound coef-
ficient convergence is proven (Theorem 4.6.8 and Theorem 4.6.10).

• An insightful finding is that the Lyapunov–Krasovskii theorem is the
counterpart of a theorem for Lyapunov–Rumyantsev partial asymp-
totic stability in ODEs (Section 4.5). The proposed finite-dimensional
approximation of the Lyapunov–Krasovskii functional is shown to be a
partial Lyapunov function for the underlying finite-dimensional ODE
(Theorem 4.5.12).

• Basic concepts from tensor algebra are exploited to make precise in
which sense the involved matrices represent operators and how to
handle these coordinate representations (Appendix A).

III The final part (Chapter 5, 6, 7) is devoted to a new class of Lyapunov–
Krasovskii functionals.
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• Lyapunov–Krasovskii functionals of robust type are proposed (Def-
inition 5.2.4). Instead of relying on an arbitrarily chosen desired
derivative of the functional along solutions of the nominal system, the
proposed construction incorporates decisive information about the
nonlinear term that perturbs the linear nominal system: the structure
of the injection into the system and a sector restriction within which
the nonlinearity is allowed to reside.

• Important properties of these functionals are proven (Theorem 5.3.2
and Theorem 5.4.1).

• The robustness statements that can be obtained from these functionals
are derived (Theorem 5.5.11, Corollary 5.5.13, Corollary 5.5.14, and
Corollary 5.5.17). The results are significantly less restrictive than
the ones arising from Lyapunov–Krasovskii functionals of complete
type (Table 5.3).

• A numerical approach for Lyapunov–Krasovskii functionals of robust
type is proposed, which is along the lines of the proposed approach
for Lyapunov–Krasovskii functionals of complete type. Instead of the
matrix-valued Lyapunov equation, a matrix-valued algebraic Riccati
equation must be solved (Section 6.1.3).

• Concerning the underlying algebraic Riccati equation, various inter-
relations are clarified (Section 6.2 and Section 6.3).

• A convergence statement on the proposed numerical approach is
proven (Theorem 7.2.8).

8.2 Outlook

Various further developments and generalizations are in order.
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8.2 Outlook

• Regional stability statements in terms of an estimation of the domain of
attraction: If the nonlinearity resides only locally within the considered
sector, then, based on a (restricted) sublevel set of the Lyapunov–Krasovskii
(LK) functional, a guaranteed subset of the domain of attraction can be
concluded. If C0 = C1 = In, the approach that is known from complete-
type LK functionals can be adopted directly to LK functionals of robust
type. Still, it remains to discuss the more general cases.

• Using the numerical approach to derive other bounds on the LK functional
(for both LK functionals of complete and robust type): So far, the numerical
approach is only used for the coefficient of the global quadratic lower bound
on the LK functional. This coefficient is needed in the above mentioned
estimation of the domain of attraction. However, already if, for the sake of
comparability, a norm ball within the domain of attraction shall be given,
a quadratic upper bound on the LK functional is required as well. Besides,
in more general cases where no quadratic lower bound exists, an estimation
of the domain of attraction will be based on the quadratic lower bound on
a Razumikhin-like set. Such types of bounds can also be derived from the
finite-dimensional approximation of the LK functional.

• Application to further example systems and comparison with results from
complete-type LK functionals: The example in Section 5.6 relies on a
linear norm bound, which makes the result well comparable to the results
from complete-type LK functionals. However, in many applications, the
additional freedom in choosing the perturbation restriction that is offered
by LK functionals of robust type is expected to come along with further
improvements.

• Generalizations of the presented results to more general system classes:

– The necessary and sufficient criterion for delay-independent stability
as well as the constrained minimization problem for delay-dependent
stability turn out to be particularly insightful when it comes tomultiple
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incommensurate delays, multiple commensurate delays and perturba-
tions thereof.

– The concept of LK functionals of robust type should be generalized
in various directions. Note that the concept of complete-type LK
functionals has been extended in the literature, for instance, to

* RFDEs with multiple commensurate delays,

* RFDEs with multiple incommensurate delays,

* RFDEs with distributed delays, and

* neutral functional differential equations (NFDEs),

see, e.g., the monograph [110].

– The numerical approach also has to be considered for these more
general system classes, which concerns both the approximation of LK
functionals of robust type and the approximations of LK functionals
of complete type.

• Using the LK functional of robust type as an initialization in an iterative
approach to improved estimations of the domain of attraction: A truncation
of the obtained LK functional of robust type could be combined with a
sum-of-squares (SOS)-based approach.

• Further development of LK functionals of robust type: The mature theory
on absolute stability for ODEs comes along with many developments that
motivate various possible extensions of the proposed concept.

• Coping with time-varying time delays: Results based on LK function-
als of complete type could be adopted to LK functionals of robust type.
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8.2 Outlook

Moreover, the theory of absolute stability is closely related to integral-
quadratic-constraints (IQCs), which, however, usually only copewith finite-
dimensional nominal systems and consider the overall delay as an uncer-
tainty. Incorporating infinite-dimensional nominal systems in IQC-based
approaches appears to be promising.
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A Appendix: A Tensorial Point of
View on Polynomials

The present thesis draws heavily on coordinate representations of polynomials
and operators: be it, e.g., Legendre coordinates c(t) that represent a polynomial
approximation of the state xt, be it the corresponding system matrix Ac that
represents an operator A [N ], or be it the resulting matrix Pc from a Lyapunov
or algebraic Riccati equation that represents an operator P [N ]. The present
appendix focuses on the results that arise from the Legendre tau method. The
objective is to clarify how the operators are precisely defined by their coordinate
representations and how to compute inner products, norms, operator norms, or
adjoints from the coordinates, taking into account that the considered bases of the
arising polynomial subspaces ofM2 are nonorthonormal.

Clearly, the coordinate representation of a polynomial can be transformed by
changing the basis, see Section 3.6, while the represented object—the polynomial—
remains the same. This, however, is exactly what tensor calculus is about. Since
polynomials of degree at most N form a finite-dimensional vector space, basic
concepts from tensor algebra, like metric coefficients, dual bases and dyadic
products, can be applied to polynomials in M2, which is the leading idea in the
present appendix.

The present appendix is organized as follows. First,Appendix A.1 introduces the
basis functions that are associated with Legendre coordinates and with mixed co-
ordinates for the considered polynomial subspaces ofM2. Then,Appendix A.2.1
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explains how to compute inner products, how to represent operators in that finite-
dimensional polynomial subspace, and how the adjoint looks like. Finally, a pro-
jection operator is incorporated inAppendix A.3 such that the finite-dimensional
domain is left and the operators A [N ] and P [N ] that occur in the main part of the
present thesis can be described. Appendix A.4 revisits important results of this
appendix.

To simplify the considerations for readers not familiar with tensor calculus, the
present appendix employs two deviations from the common notation [180, p.
14-15], [128, 86, 37].

• Summation symbols are explicitly given instead of using Einstein’s sum-
mation convention. According to the latter, any index that occurs two times
in a term would be recognized to belong to a summation without writing
the summation symbol. Nevertheless, looking at the occurring sums, the
reader will probably quickly understand why that convention is convenient.

• An underline is added to variables that deviate from the standard coordinates
or basis elements used in the main part of this thesis. That is, the dual basis
and its coordinates are underlined. In the usual index notation, the original
basis and its (contravariant) coordinates are only distinguished from the
dual basis and its (covariant) coordinates by the position of the indices.
These index positions are still also employed—which is why the reader
will probably quickly understand that the underline is actually a redundant
information in a pure index notation.

Moreover, for the sake of notational compactness, the present section only con-
siders scalar polynomials,

n = 1. (A.1)

Nevertheless, the results can straightforwardly be extended to vector-valued poly-
nomials.
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A.1 Basis Functions for Polynomials in M2

The present section discusses for Legendre coordinates c and for mixed coordi-
nates χ the corresponding bases inM2 and their metric coefficients. Both inter-
pretations encountered in Section 3.5.2.3 are discussed: the standard continuous
interpretation, where the Legendre coordinates are understood as coefficients of
the 0-th toN -th Legendre polynomial, and the alternative discontinuous interpre-
tation where the last Legendre coordinate cN instead amounts to a discontinuous
end point that is appended to the remaining (N − 1)-th degree polynomial.

A.1.1 Legendre Coordinates

Legendre Coordinates, Continuous Consider the standard interpretation
of Legendre coordinates from (3.46). The resulting function and its (continuous)
end point give rise to the following element inM2

[ ϕ[N](·)
ϕ[N](0)

]
=

N∑
k=0

ck
[ pk(ϑ(·))
pk(ϑ(0))

]
=:

N∑
k=0

ckgc,k. (A.2)

Consequently, since pk(ϑ(0)) = pk(1) = 1 (see Figure 3.5), the basis functions
of the associated polynomial subspace ofM2 read

gc,0 =
[
p0(ϑ(·))

1

]
, . . . , gc,N−1 =

[
pN−1(ϑ(·))

1

]
, gc,N =

[
pN (ϑ(·))

1

]
. (A.3)

The metric coefficients are nothing more than the inner products of (A.3).

Definition A.1.1 (Metric coefficients). Let {gk}k∈{0,...,N} be the basis of a sub-
space inM2. The metric coefficients Gjk, with j, k ∈ {0, . . . , N}, are

Gjk = ⟨gj , gk⟩M2
. (A.4)

If Gjk = δjk, the basis is said to be orthonormal.
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For the above defined basis elements {gc,k}k,

Gc,jk = ⟨gc,j , gc,k⟩M2
= ⟨pj(ϑ(·)), pk(ϑ(·))⟩L2([−h,0],R)︸ ︷︷ ︸∫ 0

−h
pj(ϑ(θ))pk(ϑ(θ)) dθ

+ pj(ϑ(0))︸ ︷︷ ︸
1

pk(ϑ(0))︸ ︷︷ ︸
1

=

{
h
2

2
2k+1 + 1 if k = j,

1 otherwise
(A.5)

gives a dense matrix of metric coefficients

Gc =



(h2 2 + 1) 1 · · · 1

1 (h2
2
3 + 1) 1

...
. . .

...

1 (h2
2

2(N−1)+1 + 1) 1

1 · · · 1 (h2
2

2N+1 + 1)


.

(A.6)

Not having an orthonormal basis is the raison d’être of the present appendix.

Legendre Coordinates, Discontinuous In Section 3.5.2.2, the interpreta-
tion of the Legendre coordinates in terms of a polynomial of degree at mostN−1

and a discontinuous end point occurs. This interpretation amounts to

[ ϕ̄[N]

d (·)
ϕ[N]

d (0)

]
=

N−1∑
k=0

ck
[
pk(ϑ(·))

1

]
+ cN

[
0
1

]
=:

N∑
k=0

ckhc,k (A.7)

(where ϕ[N ]

d (0) =
∑N
k=0 c

k still applies), i.e., the basis functions

hc,0 =
[
p0(ϑ(·))

1

]
, . . . , hc,N−1 =

[
pN−1(ϑ(·))

1

]
, hc,N =

[
0
1

]
(A.8)

span the corresponding subspace ofM2.
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Since, compared to {gk}k, only the last basis element has changed, only the last
row and last column of the metric coefficients Gc can be affected. In fact, only
the lower diagonal element Hc,NN = ⟨hN , hN ⟩M2

= 1 is altered, giving rise to

Hc,jk = ⟨hc,j , hc,k⟩M2 , (A.9)

Hc =



(h2 2 + 1) 1 · · · 1

1 (h2
2
3 + 1) 1

...

...
. . .

1 (h2
2

2(N−1)+1 + 1) 1

1 · · · 1 1


. (A.10)

A.1.2 Change of Basis, Mixed Coordinates

Change of Basis Clearly, a change of basis from Legendre coordinates c
to mixed coordinates χ discussed in Section 3.6.2 must leave the polynomial
unaltered

[ ϕ[N](·)
ϕ[N](0)

]
=

N∑
k=0

ckgc,k =

N∑
k=0

χkgχ,k. (A.11)

Using the transformation law of the coordinates c = Tcχχ (relying on the inverse
Tcχ = T−1

χc of the transformation matrix (3.64) from χ = Tχcc) in the above
expression

N∑
k=0

ckgc,k =
[
gc,0 · · · gc,N

]
c0

...
cN


︸ ︷︷ ︸
Tcχχ

=
[
gχ,0 · · · gχ,N

]
χ0

...
χN


︸ ︷︷ ︸

χ

(A.12)

267



A Appendix: A Tensorial Point of View on Polynomials

shows that the basis elements are related by this inverse transformation matrix via[
gχ,0 · · · gχ,N

]
=
[
gc,0 · · · gc,N

]
Tcχ (A.13)

=
[
gc,0 · · · gc,N

]


1
. . .

1

−1 · · · −1 1

 . (A.14)

Mixed Coordinates, Continuous As a result of (A.14), the basis that is
associated with the mixed coordinates χ in the continuous interpretation is given
by

gχ,0 = gc,0 − gc,N =
[
p0(ϑ(·))−pN (ϑ(·))

0

]
, . . . , (A.15)

gχ,N−1 = gc,N−1 − gc,N =
[
pN−1(ϑ(·))−pN (ϑ(·))

0

]
, gχ,N = gc,N =

[
pN (ϑ(·))

1

]
.

With

⟨pN (ϑ(·)), pN (ϑ(·))⟩L2([−h,0],R) =
h

2

2

2N + 1
=: ν, (A.16)

the metric coefficients are

Gχ,jk = ⟨gχ,j , gχ,k⟩M2

Gχ =



(h2 2 + ν) ν · · · ν −ν

ν (h2
2
3 + ν) ν

...
...

... . . . ν

ν · · · ν (h2
2

2(N−1)+1 + ν) −ν
−ν · · · −ν (ν + 1)


.

(A.17)
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The same result can also be derived via

Gχ = T⊤
cχGcTcχ, (A.18)

which will become clear from (A.26) below.

Mixed Coordinates, Discontinuous Analogously to (A.14), the basis
{hχ,k}k associated with the mixed coordinates χ in the discontinuous inter-
pretation can be deduced from {hc,k}k in (A.8) and Tcχ as

hχ,0 = hc,0 − hc,N =
[
p0(ϑ(·))

0

]
, . . . , (A.19)

hχ,N−1 = hc,N−1 − hc,N =
[
pN−1(ϑ(·))

0

]
, hχ,N = hc,N =

[
0
1

]
.

The metric coefficients

Hχ,jk = ⟨hχ,j , hχ,k⟩M2
, (A.20)

Hχ =



h
2 2 0 · · · 0

0 h
2
2
3 0

... . . .
...

0 h
2

2
2(N−1)+1 0

0 · · · 0 1


(A.21)

= T⊤
cχHcTcχ (A.22)

show that, in the discontinuous interpretation, the basis that is associated with
the mixed coordinates χ is an orthogonal but still no orthonormal basis (which,
however, could simply be achieved by scaling each basis function).
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A.2 Operators on the Considered Polynomial
Subspaces of M2

Henceforth, instead of denotingLegendre coordinates by ck ∈ R, k ∈ {0, . . . , N},
and mixed coordinates by χk ∈ R, general variable names are introduced, where
instead a subscript indicates the chosen basis. For instance, an element b ∈
span({gc,k}k) = span({gχ,k}k) ⊂ M2 (i.e., a polynomial of degree N and its
end point) that is represented in the basis from (A.3), respectively in the basis
from (A.15), is denoted by

b =

N∑
k=0

bkcgc,k =

N∑
k=0

bkχgχ,k. (A.23)

The involved Legendre coordinates bkc ∈ R and mixed coordinates bkχ ∈ R are
related by  b0c

...
bNc

 = Tcχ

 b0χ

...
bNχ

 (A.24)

according to Section 3.6. Moreover, if the basis can arbitrarily (but of course
consistently) be chosen, this subscript is omitted, i.e.,

b =

N∑
k=0

bkgk.

Henceforth, aj , bk ∈ R and j, k ∈ {0, . . . , N}, unless otherwise stated.

To make the appendix self-contained, the present section involves the derivations
of some elementary relations in Appendix A.2.1.
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A.2.1 Preliminaries

Inner Product in a Non-Orthonormal Basis The metric coefficients
are important when computing inner products. Consider two functions a =∑N
k=0 a

kgk and b =
∑N
k=0 b

kgk in an arbitrary basis {gk}k∈{0,...,N} of the
considered1 (N + 1)-dimensional subspace ofM2. Then

⟨a, b⟩M2 =

〈
N∑
j=0

ajgj ,
N∑
k=0

bkgk

〉
M2

=

N∑
j=0

N∑
k=0

aj⟨gj , gk⟩M2b
k =

∑
j,k

ajGjkb
k

= a⊤Gb, a =

[
a0

...
aN

]
, b =

[
b0

...
bN

]
. (A.25)

Moreover, the congruence transformation law for metric coefficients stated in
(A.18) is immediately explained by recognizing that the scalar result ⟨a, b⟩M2

must be invariant with respect to the chosen basis. Thus, considering a and b in
Legendre coordinates or in mixed coordinates related by (A.24) may not make a
difference in

⟨a, b⟩M2 = a⊤c Gcbc = (Tcχaχ)
⊤Gc(Tcχbχ) = a⊤χ T

⊤
cχGcTcχ︸ ︷︷ ︸
=:Gχ

bχ. (A.26)

The Dual Basis Functions The dual basis functions are functions that are
orthogonal to the original basis functions {gk}k. In a tensor calculus setting, it
is common practice to distinguish the original basis and the dual basis only by
the position of the indices, notating the latter with upper indices. In the present
appendix an underline gk intends to to emphasize the difference more clearly.

1 For notational convenience, the subspace is denoted by span({gk}k), but the results in this
section hold equally well for span({hk}k) or any other (N + 1)-dimensional subspace of M2.
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Definition A.2.1 (Dual basis functions). Let {gk}k be a basis of the (N + 1)-
dimensional space V = span({gk}k) ⊂ M2. The dual basis functions gk ∈ V

are uniquely defined by requiring that ∀j, k ∈ {0, . . . , N} :

⟨gj , gk⟩M2
= δkj , δkj

def
= δjk =

{
1 if j = k,

0 if j ̸= k.
(A.27)

With a slight abuse of nomenclature, the term dual basis will henceforth refer to
{gk}k, although the latter is a basis of the original space V rather than a basis of
the dual space V ∗, which, however, is isomorphic to V (see Remark A.2.2).

As a consequence, any function b ∈ V can equally well be represented in the
original basis or in the dual basis, for which the coordinates in turn are denoted
by lower indices

b =

N∑
k=0

bkgk =

N∑
k=0

bkg
k. (A.28)

The transformation matrix, which transforms b ∈ RN+1 to b ∈ RN+1 will be
discussed in (A.31) below.

Remark A.2.2 (Alternative nomenclature referring to the dual space). The
dual space V ∗ of V = span({gk}k) ⊂ M2 is spanned by the associated func-
tionals

⟨gk, ·⟩M2
. (A.29)

In the literature, the term dual basis is frequently taken literally and refers to
these functionals. Moreover, this reading motivates the use of row vectors for the
coordinates in the dual basis, and these row vectors are also called covectors or
one-forms as a synonym for linear functionals. Since the present section does not
follow this interpretation, coordinates in the dual basis are—such as coordinates
in any other basis of V—collected in column vectors. In the mere index notation,
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there is no need to distinguish between row and column vectors anyway, see the
calculations below.

Inner Product without Metric Coefficients The sense behind the dual
basis is that, if either a or b is represented in the dual basis, then no metric
coefficients occur in (A.25). Instead, using that

∑
j

δkj x
j = xk,

⟨a, b⟩M2
=

〈
N∑
j=0

ajgj ,
N∑
k=0

bkg
k

〉
M2

=
∑
j,k

aj ⟨gj , gk⟩M2︸ ︷︷ ︸
δkj

bk =
∑
k

akbk

= a⊤ b, a =

[
a0

...
aN

]
, b =

[ b0
...
bN

]
. (A.30)

Associated Transformation of the Coordinates Comparing (A.25) and
(A.30) already shows that both coordinate representations are related by

b = Gb. (A.31)

The same conclusion can also be drawn from noting that the i-th coordinate bi
in the dual basis results from taking an inner product with the i-th original basis
element gi

⟨gi, b⟩M2
= ⟨gi,

N∑
k=0

bkg
k⟩M2

=

N∑
k=0

⟨gi, gk⟩M2︸ ︷︷ ︸
δki

bk = bi, (A.32)

and, at the same time,

⟨gi, b⟩M2
= ⟨gi,

N∑
k=0

bkgk⟩M2
=

N∑
k=0

⟨gi, gk⟩M2
bk =

N∑
k=0

Gikb
k. (A.33)

Comparing both also shows the known relation bi =
∑N
k=0Gikb

k.
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Computing the Dual Basis Functions Analogously to the change of basis
discussed in (A.13),

N∑
k=0

bkgk =
[
g0 · · · gN

]
b0

...
bN


︸ ︷︷ ︸

b

=

N∑
k=0

bkg
k =

[
g0 · · · gN

]
bi
...
bN


︸ ︷︷ ︸
b=Gb

shows that the dual basis functions gk can be computed from the original basis
functions gk via [

g0 · · · gN
]
=
[
g0 · · · gN

]
G−1. (A.34)

Clearly, all these results hold for arbitrary basis functions, including the ones that
are associated with the discontinuous interpretation, where as well[

h0 · · · hN
]
=
[
h0 · · · hN

]
H−1 (A.35)

gives the dual basis such that ⟨hj , hk⟩M2 = δkj .

Change of Coordinates in the Dual Basis Similarly to bc = Tcχbχ from
(A.24), if bχ are coordinates in {gk

χ
}k, then

bc
(A.31)
= Gcbc = GcTcχbχ

(A.31)
= GcTcχG

−1
χ bχ

(A.26)
= (T⊤

χcGχTχc)TcχG
−1
χ bχ

= T⊤
χc bχ (A.36)

are the coordinates in {gk
c
}k . The same transformation applies if bχ are coordi-

nates in {hkχ}k (where Gχ and Gc above are replaced by Hχ and Hc).
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Using the Dual Basis to Obtain the Coordinates in the Original Basis
Analogously to (A.32),

⟨gi, b⟩M2
= ⟨gi,

N∑
k=0

bkgk⟩M2
=

N∑
k=0

⟨gi, gk⟩M2︸ ︷︷ ︸
δik

bk = bi. (A.37)

Metric Coefficients The matrix of metric coefficients of the dual basis are

G = G−1, (A.38)

which becomes obvious from comparing

⟨a, b⟩M2
=

〈
N∑
j=0

ajg
j ,

N∑
k=0

bkg
k

〉
M2

=

N∑
j=0

N∑
k=0

aj ⟨gj , gk⟩M2︸ ︷︷ ︸
Gjk

bk = a⊤Gb

with

⟨a, b⟩M2
= a⊤Gb

(A.31)
= (G−1a)⊤G(G−1b) = a⊤G−1b. (A.39)

Transformation Laws of Basis Functions Since G = G⊤, (A.34) com-
bined with (A.38) gives

gk =

N∑
j=0

Gjkg
j =

N∑
j=0

Gkjg
j , gk =

N∑
j=0

Gjkgj =
N∑
j=0

Gkjgj . (A.40)

A.2.2 Representation of Operators on the Polynomial
Subspaces of M2

In view of the operators A [N ] and P [N ] that occur in the present thesis, the
following section takes a closer look on two related types of operators, which,
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however, do not yet incorporate a projection. Instead, they are only defined on the
polynomial subspaces that are spanned by the basis functions fromAppendix A.1.

Linear Operator L from span({gj}j) to span({hj}j) Consider a linear
operatorL thatmaps a function x ∈ span({gk}k) to a function y ∈ span({hk}k),

x =
∑
k

xkgk 7→ L x := y =
∑
j

yjhj with yj = Ljk x
k. (A.41)

The matrix that maps the coordinate representation of x to the coordinate repre-
sentation of y in  y0

...
yN

 =

 L0
0 ··· L0

N

...
...

LN
0 ··· LN

N

[ x0

...
xN

]
(A.42)

is a coordinate representation of that operator. The operator is explicitly given by

L =

N∑
j=0

N∑
k=0

Ljk hj ⊗ gk, (A.43)

relying on the following definition.

DefinitionA.2.3 (Dyadic product inM2). The dyadic product (or tensor product)
⊗ is defined by2

(a⊗ b) · def= a⟨b, ·⟩M2
. (A.44)

2 The resulting operator can be applied to elements of the overall space M2 rather than only the
polynomial subspace considered in the present section (see Appendix A.3.1).
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Indeed, (A.43) applied to x

L x =
(∑
j,k

Ljkhj ⊗ gk
)(∑

l

xlgl
)

(A.44)
=

∑
j,k,l

Ljkhj ⟨g
k, gl⟩M2︸ ︷︷ ︸
δkl

xl (A.45)

=
∑
j,k

Ljkx
khj =

∑
j

yjhj (A.46)

gives y defined in (A.41). The latter can also directly be recognized from the
definition (A.44)

L · =
∑
j,k

Ljk⟨g
k, ·⟩M2

hj (A.47)

by noticing that, according to (A.32), ⟨gk, x⟩M2 = xk extracts the k-th component
in the original basis.

Alternative Representations Since span({hj}j) = span({hj}j) and also
span({gk}k) = span({gk}k), the same operator could as well be rewritten as

L =
∑
j,k

Ljk hj⊗ gk =
∑
j,k

Ljk hj⊗ gk =
∑
j,k

Ljk hj⊗ gk =
∑
j,k

L k
j hj⊗ gk,

(A.48)

where in general Ljk ̸= Ljk ̸= Ljk ̸= L k
j holds for nonorthonormal bases. The

conversion laws between the various matrices can be concluded from (A.40).

Operator W in a Bilinear Form on span({hj}j) Let the bilinear form

(z, y) =

(∑
k

zkhk,
∑
k

ykhk

)
7→ ⟨z,W y⟩M2 :=

∑
j,k

zjWjky
k (A.49)
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map two functions that are represented by the coordinate vectors z and y to the
scalar value

∑
j,k

zjWjky
k =

[
z0

...
zN

]⊤ [ W00 ··· W0N

...
...

WN0 ··· WNN

] y0

...
yN

 . (A.50)

The involved operator is

W =

N∑
j=0

N∑
k=0

Wjk hj ⊗ hk (A.51)

since then wj :=
∑
kWjky

k are the coordinates of

w := W y =
(∑
j,k

Wjkh
j ⊗ hk

)(∑
l

ylhl
)

(A.44)
=

∑
j,k,l

Wjkh
j ⟨hk, hl⟩M2︸ ︷︷ ︸

δkl

yl

=
∑
j,k

Wjky
khj =

∑
j

wjh
j (A.52)

in the dual basis (in contrast to the result from (A.46)). As a consequence, the com-
putation of ⟨z,w⟩M2 in (A.49) does not introduce additional metric coefficients
but, cf. (A.30), simply becomes

⟨z,W y⟩M2
=
〈∑

j

zjhj ,
∑
k

wkh
k
〉
M2

=
∑
j,k

zj ⟨hj , hk⟩M2︸ ︷︷ ︸
δkj

wk =
∑
j

zjwj

as desired in (A.49).

Relation Between the Operator and its Coordinates Conversely to the
construction of the operator from the coordinates in (A.51), the coordinates are
recovered from the operator (no matter in which form it is given) via

Wjk = ⟨hj ,W hk⟩M2
(A.53)

278



A.2 Operators on the Considered Polynomial Subspaces of M2

since

⟨hj ,W hk⟩M2
=
〈
hj ,
(∑
l,m

Wlm hl ⊗ hm
)
hk
〉
M2

(A.54)

=
∑
l,m

⟨hj , hl⟩M2︸ ︷︷ ︸
δlj

Wlm ⟨hm, hk⟩M2︸ ︷︷ ︸
δmk

=Wjk. (A.55)

Similarly, concerning (A.43),

Ljk = ⟨hj ,L gk⟩M2
. (A.56)

A.2.3 Norm and Operator Norm

M2-Norm Consider a function x =
∑
j x

jgj . Because of (A.25), the norm
∥x∥M2

=
√
⟨x, x⟩M2

is derived from the coordinates x ∈ RN+1 via

∥x∥M2
=

√
x⊤Gx = ∥G1/2x∥2, (A.57)

where the matrix square root can equally well be replaced by an arbitrary decom-
position G = C⊤C.

Operatornorm of L Let L : span({gk}k) → span({hk}k) be described by
L =

∑
j,k L

j
k hj ⊗ gk. The operator norm is computed from the matrix L with

entries Ljk via

∥L ∥ = ∥H1/2LG−1/2∥2 (A.58)
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since

∥L ∥2 = sup
x∈span({gk}k)\{0M2

}

∥L x∥2M2

∥x∥2M2

(A.57)
= sup

x∈R(N+1)\{0N+1}

x⊤L⊤HLx

x⊤Gx

= sup
u∈R(N+1)\{0N+1}

u⊤G−1/2L⊤HLG−1/2u

u⊤u
. (A.59)

Operatornorm of W In the representation W =
∑
j,kWjk hj ⊗ hk, the

matrixW with entriesWjk maps to coordinates in the dual basis {hj}. Therefore,
the metric coefficients of {hj}, which due to (A.38) are given by H−1, occur in

∥W ∥ =

√
sup

x∈R(N+1)\{0N+1}

x⊤W⊤H−1Wx

x⊤Hx
= ∥H−1/2WH−1/2∥2. (A.60)

A.2.4 Adjoint Operator

Adjoint of L The adjoint of L : span({gk}k) → span({hk}k),

L =
∑
j,k

Ljk hj ⊗ gk, L :=

 L0
0 ··· L0

N

...
LN

0 ··· LN
N

 , (A.61)

becomes L ∗ : span({hk}k) → span({gk}k),

L ∗ =
∑
j,k

Sjkgj ⊗ hk, S =

 S0
0 ··· S0

N

...
SN

0 ··· SN
N

 := G−1L⊤H, (A.62)

and thus (in this representation) the coordinate matrix S of the adjoint is not the
matrix transpose of L unless both {gk}k and {hk}k are orthonormal bases.

The reasoning is as follows: The adjoint L ∗ must satisfy

⟨z,L x⟩M2
= ⟨L ∗z, x⟩M2

. (A.63)
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The left-hand side of (A.63) becomes

⟨z,L x⟩M2
=
〈∑

j

zjhj ,
(∑
k,l

Lklhk ⊗ gl
)∑

m

xmgm
〉
M2

=
∑
j,k,m

zjHjkL
k
mx

m

= z⊤HLx. (A.64)

The right-hand side of (A.63) becomes

⟨L ∗z, x⟩M2 =
〈(∑

j,k

Sjkgj ⊗ hk
)∑

l

zlhl,
∑
m

xmgm
〉
M2

=
∑
j,k,m

zkSjkGjmx
m

= z⊤S⊤Gx. (A.65)

Therefore, (A.63) requires that (by G = G⊤ and H = H⊤)

S := G−1L⊤H. (A.66)

If the same operator L ∗ is instead represented as

L ∗ =
∑
j,k

S k
j gj ⊗ hk, S =

 S 0
0 ··· S N

0

...
S 0

N ··· S N
N

 , (A.67)

then the right-hand side becomes

⟨L ∗z, x⟩M2
=
〈(∑

k,l

S l
k gk ⊗ hl

)∑
j

zjhj ,
∑
m

xmgm
〉
M2

=
∑
j,k,m

zjHjlS
l
mx

m

= z⊤HS⊤x (A.68)

and thus, in view of (A.64), (A.63) is established by

S := L⊤. (A.69)

The formerly used coordinates S map coordinates z of z in the original basis
{hk}k to coordinates Sz of L ∗z in the original basis {gk}k, whereas S maps
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coordinates z of z in the dual basis {hk}k to coordinates Sz of L ∗z in the dual
basis {gk}k. Thus, the latter is even more convenient if z is already represented
by z =

∑
j zjh

j . Then the left-hand side of (A.63) simplifies to z⊤Lx and the
right-hand side of (A.63) simplifies to z⊤S⊤x.

The transformation S = G−1SH between (A.67) and (A.62), where G−1 = G,
can also directly be recognized from (A.40) in

L ∗ =
∑
j,k

Sjkgj ⊗ hk =
∑
j,k

S k
j gj︸︷︷︸∑N

l=0G
jlhl

⊗ hk︸︷︷︸∑N
m=0Hkmhm

. (A.70)

Adjoint of W The adjoint W ∗ of W must satisfy

⟨z,W x⟩M2
= ⟨W ∗z, x⟩M2

. (A.71)

According to (A.49), the left-hand side of (A.71) is z⊤Wx. If W ∗ is represented
in the same basis as W in (A.51), i.e.,

W ∗ =
∑
j,k

Rjkh
j ⊗ hk, (A.72)

then the right-hand side of (A.71) becomes

⟨W ∗z, x⟩M2
=
〈(∑

j,k

Rjkh
j ⊗ hk

)∑
l

zlhl,
∑
m

xmhm
〉
M2

=
∑
j,k

zkRjkx
j

= z⊤R⊤x, (A.73)

which is why the coordinates Rjk of the adjoint operator must be

R :=W⊤, whereW = (Wjk)jk and R = (Rjk)jk. (A.74)

Thus, despite of a possibly nonorthonormal basis, self-adjointness W = W ∗

simply requires that W with entries Wjk is a symmetric matrix. Note that, for
entriesW j

k along the lines of (A.48), this statement would not be true.
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A.3 The Operators in the Present Thesis

Recap that, for notational simplicity, the present appendix considers only the
scalar case n = 1 (but the following results can easily be extended to n > 1).
The approximated infinitesimal generator A [N ] from (3.55) that is represented by
the Legendre-tau-based ODE system matrix is—in contrast to the operators from
the last section—not only defined for polynomial arguments. Due to the involved
projection, it can be applied to arbitrary arguments inM2. If, however, only the
restriction to the polynomial subspace span({gk}k) ⊂ M2 is considered, that
projection is not needed and A [N ] behaves like L discussed above: It maps any
such x ∈ span({gk}k) to some y ∈ span({hk}k). Thus, Ajk in the correspond-
ingly defined

∑N
j=0

∑N
k=0A

j
khj ⊗ gk is the (j, k)-th entry of the ODE system

matrix, which in terms of Legendre coordinates is given by (3.28). According to
Section 3.5.3, on the restriction to that polynomial subspace, A [N ] even coincides
with the exact infinitesimal generator A , and thus

A |span({gk}k∈{0,...,N}) =

N∑
j=0

N∑
k=0

Ajk hj ⊗ gk. (A.75)

A.3.1 The Projection Operator in the Legendre Tau
Method

The present section discusses the projection operator Projcont from (3.51). In
accordance with the ansatz made in the Legendre tau method, this projection
maps to a function in the polynomial subspace span({gk}k). The resulting
polynomial is represented by the coordinates from the discretization that is used
in the Legendre tau method.

Orthogonality Between the Continuous Basis and the Dual Discon-
tinuous Basis In the previous sections, the relation bk = ⟨gk, b⟩M2 is used to
obtain the coordinates bk from a given function b ∈ span({gk}k∈{0,...,N}). This
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relation from (A.37) is only based on the orthogonality ⟨gj , gk⟩M2 = δjk. In fact,
the dual basis elements gk are even uniquely defined by that relation. However,
this uniqueness only holds in the polynomial space span({gk}k∈{0,...,N}). In the
overall space M2, {gk}k∈{0,...,N} is not the only set of functions orthogonal to
{gk}k∈{0,...,N}. In particular, the discontinuous functions {hk}k∈{0,...,N} also
satisfy the orthogonality relation

∀j, k ∈ {0, . . . , N} : ⟨hj , gk⟩M2
= δjk. (A.76)

The latter can be recognized best in mixed coordinates, where, by (A.35),

hkχ =

{ [ 2
h

2j+1
2 pk(ϑ(·))

0

]
, k < N,[

0
1

]
, k = N,

gχ,k =

{ [
pk(ϑ(·))−pN (ϑ(·))

0

]
, k < N,[

pN (ϑ(·))
1

]
, k = N.

(A.77)

The orthogonality, however, applies independently from the chosen coordinates
since the thus achieved

〈 N∑
j=0

ajg
j ,

N∑
k=0

bkgk
〉
M2︸ ︷︷ ︸

⟨a,b⟩M2

= a⊤b =
〈 N∑
j=0

ajh
j ,

N∑
k=0

bkgk
〉
M2︸ ︷︷ ︸

=:⟨d,b⟩M2

, (A.78)

also holds after a change of coordinates, which due to (A.36) equally transforms3

the coordinates of a in {gj} and the coordinates of d in {hj}.

3 The coincidence only holds in the dual basis. In the original basis, by (A.31), d = H−1d and
a = G−1a do no longer coincide and therefore ⟨hj , gk⟩M2

̸= δkj .
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Obtaining the Coefficients of {gk}k via hj Instead of gj As a result,
instead of (A.37), the coordinates b of b =

∑N
k=0 b

kgk can also be obtained via

⟨hi, b⟩M2
=
〈
hi,

N∑
k=0

bkgk
〉
M2

=

N∑
k=0

⟨hi, gk⟩M2︸ ︷︷ ︸
δik

bk = bi. (A.79)

The Projection Operator The projection operator

Proj[N ]

cont :M2 → span({gk}k∈{0,...,N}) (A.80)

shall be defined on the overall spaceM2 and map to the continuous interpretation
of the coordinates from the Legendre tau method as described in (3.51). In terms
of the above defined basis functions, it becomes

Proj[N ]

cont =

N∑
j=0

N∑
k=0

δjkgj ⊗ hk =

N∑
j=0

gj ⊗ hj =
N∑
j=0

⟨hj , ·⟩M2
gj . (A.81)

Henceforth, the result of that projection will be denoted by a tilde,

x̃ := Proj[N ]

contx =
( N∑
j=0

gj ⊗ hj
) ∞∑
l=0

xlgl

(A.76)
=

N∑
j=0

xjgj +
( N∑
j=0

gj ⊗ hj
) ∞∑
l=N+1

xlgl =:

N∑
j=0

x̃jgj . (A.82)

Note that the first term in (A.82) is the series truncation discussed in Sec-
tion 3.5.2.1. The second term, when taking mixed coordinates for the projection
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operator, with hjχ given in (A.78), and taking Legendre coordinates for the series
remainder, becomes

( N∑
j=0

gχ,j ⊗ hjχ

) ∞∑
l=N+1

xlgc,l (A.83)

=

N−1∑
j=0

gχ,j
〈
hjχ,

∞∑
l=N+1

xlgc,l
〉
M2︸ ︷︷ ︸

0

+ gχ,N︸︷︷︸
=gc,N

〈
hNχ ,

∞∑
l=N+1

xlgc,l
〉
M2

=

〈[
0n[−h,0]

1

]
,

∞∑
l=N+1

xlcgc,l

〉
M2

gc,N . (A.84)

Thus, it extracts the bottom component of the remainder term and provides the
correction that achieves for x̃ and x =

∑∞
l=0 x

lgl coincidence in the bottom
components of the M2-tuples (in Legendre coordinates, these are

∑N
j=0 x̃

j
c and∑∞

l=0 x
l
c =: x̂), see (3.47).

A.3.2 The Legendre-Tau-Based Approximation of the
Infinitesimal Generator

The Operator A [N ] As a result, the operator

A [N ] : M2 → span({hj}j∈{0,...,N}) (A.85)

introduced in (3.55) can be written as

A [N ] = A |span({gk}k∈{0,...,N})
Proj[N ]

cont

(A.75)
(A.81)
=

(∑
j,k

Ajk hj ⊗ gk
)(∑

l

gl ⊗ hl
)

=

N∑
j=0

N∑
k=0

Ajk hj ⊗ hk. (A.86)
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Thus, A [N ]x = A x̃. Note that A [N ]
cc from (3.52) instead becomes

A [N ]

cc := Proj[N ]

contA |span({gk}k)
Proj[N ]

cont =
∑
j,k

Ajk gj ⊗ hk. (A.87)

The Adjoint The operator (A [N ])∗ : span({hj}j∈{0,...,N}) →M2

(A [N ])∗ =
∑
j,k

U jkhj ⊗ hk =
∑
j,k

U k
j hj ⊗ hk (A.88)

with U = H−1A⊤H and U = A⊤ (A.89)

achieves that

⟨z,A [N ]x⟩M2
=
〈 N∑
j=0

zjhj ,
( N∑
k,l=0

Aklhk ⊗ hl
) ∞∑
m=0

xmgm
〉
M2

= z⊤HAx̃ (A.90)

equals

⟨(A [N ])∗z, x⟩M2 =
〈( N∑

j,k=0

U k
j h

j ⊗ hk
) N∑
l=0

zlhl,
∞∑
m=0

xmgm
〉
M2

= z⊤HU⊤x̃. (A.91)

Remark A.3.1 (Relation to A ∗). The adjoint of A from (3.12) is

A ∗

[
ψ

r

]
=

[
−ψ′

ψ(0) +A⊤
0 r

]
, (A.92a)

D(A ∗) = {[ ψr ] ∈M2 : ψ(−h) = A⊤
1 r, ψ

′ ∈ L2, ψ ∈ AC}, (A.92b)

[183, Thm. 5.1], [47, Lem. 3.3.9]. In particular, it entails the negative of a dif-
ferentiation operator. How can this go together with a transposed differentiation
matrix that occurs instead in A⊤

c in (A.89)?
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Without loss of generality, consider ϕ : [−h, 0] → R and ψ : [−h, 0] → R,

piecewise defined by ψ(θ) =

{
ψ̄(θ), θ ∈ [−h, 0),
r, θ = 0,

with ψ̄ ∈ AC such that

x =

[
ϕ

ϕ(0)

]
∈ D(A ) and z =

[
ψ

ψ(0+)

]
(inM2)
=

[
ψ̄

r

]
∈ D(A ∗) (A.93)

(ψ(0−) = ψ̄(0) does not have to equal ψ(0+) = r). Compare the following.

1a) The result of ⟨z,A x⟩M2 :

⟨z,A x⟩M2
=

〈[
ψ

ψ(0+)

]
,A

[
ϕ

ϕ(0)

]〉
M2

(A.94)

=

〈[
ψ

ψ(0+)

]
,

[
ϕ′

A0ϕ(0) +A1ϕ(−h)

]〉
M2

= ⟨ψ, ϕ′⟩L2︸ ︷︷ ︸
=:β0

+ ⟨ψ(0+), A0ϕ(0) +A1ϕ(−h)⟩R︸ ︷︷ ︸
=:βA

. (A.95)

1b) Where −ψ′ in A ∗ stems from:
The term β0 in (A.95) is tackled by integration by parts,

β0 = ⟨ψ(0−), ϕ(0)⟩R − ⟨ψ(−h), ϕ(−h)⟩R − ⟨ψ′, ϕ⟩L2
(A.96)

=

〈[
−ψ′

ψ(0−)

]
,

[
ϕ

ϕ(0)

]〉
M2

− ⟨ψ(−h), ϕ(−h)⟩R, (A.97)

βA =

〈[
0

A⊤
0 ψ(0

+)

]
,

[
ϕ

ϕ(0)

]〉
M2

+ ⟨A⊤
1 ψ(0

+), ϕ(−h)⟩R. (A.98)

As a result, if the second terms cancel out in β0 + βA by

ψ(−h) = A⊤
1 ψ(0

+) (A.99)
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which becomes a requirement for z being in the domain (A.92b), then

⟨z,A x⟩M2

(A.95)
=

〈[
−ψ′

ψ(0−) +A⊤
0 ψ(0

+)

]
,

[
ϕ

ϕ(0)

]〉
M2

!
= ⟨A ∗z, x⟩M2

.

2a) The result of ⟨z,A [N ]x⟩M2 :
According to (A.90), the numerical result is simply

⟨z,A [N ]x⟩M2
= z⊤HAx̃. (A.100)

Consider A0 = A1 = 0, for which βA = 0 in (A.95). The result will cor-
respondingly be denoted by β̃0. The decomposition Hjk = ⟨hj , hk⟩M2

=

⟨(hj)1, (hk)1⟩L2
+ ⟨(hj)2, (hk)2⟩R is henceforth used to split the metric

coefficient matrix into H = HL2 + HR, where, in Legendre coordinates,
HR,c = 1(N+1)×(N+1) and HL2,c is the remaining diagonal matrix in
(A.10). Then, in Legendre coordinates, with Ac from (3.28),

β̃0 := z⊤c HcAc|(A0=A1=0) x̃c = z⊤c (HL2,c +HR,c)Ac|(A0=A1=0) x̃c

= z⊤c


 0 2 0 ... 2

0 2 ... 0
0 ... 2

. . .
0

+HR,cAc|(A0=A1=0)︸ ︷︷ ︸
0

 x̃c. (A.101)

2b) Follow up how −ψ′ emerged in 1b):
Compare (A.101) with the result of the integration by parts (A.96), where
x is replaced by its polynomial projection x̃ ∈ span({gk}k∈{0,...N}). As in
(A.90), let z ∈ span({hk}k∈{0,...N}). Then Legendre coordinates

x̃ = Proj[N ]

contx =

[
ϕ̃

ϕ̃(0)

]
=

N∑
k=0

x̃kcgc,k, z =

[
ψ

ψ(0+)

]
=

N∑
k=0

zkc hc,k

ϕ̃(0) =

N∑
k=0

x̃kc , ψ(0−) =

N−1∑
k=0

zkc
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ϕ̃(−h) =
N∑
k=0

(−1)kx̃kc , ψ(−h) =
N−1∑
k=0

(−1)kzkc

give in (A.96)

β0 = ⟨ψ(0−), ϕ̃(0)⟩R − ⟨ψ(−h), ϕ̃(−h)⟩R − ⟨ψ′, ϕ̃⟩L2

=

 zc,0

...
zc,N−1
zc,N

⊤
[ 1

...
1
0

]
[ 1 ··· 1 ]−


1
−1

...
(−1)N

0

 [ 1 (−1) ··· (−1)N ]


 x̃c,0

...
x̃c,N



−

Dc

 zc,0

...
zc,N−1

0

⊤

HL2

 x̃c,0

...
x̃c,N



=

 zc,0

...
zc,N−1
zc,N

⊤



0 2 0 ··· 2
2 0 2 ··· 0
0 2 0 ··· 2
...

1−(−1)N−1 0
0 0 0 ··· 0

−


0

. . .
2 ··· 0
0 ··· 2 0
2 ··· 0 2 0
0 ··· 0 0 0 0



 x̃c,0

...
x̃c,N



= z⊤c

 0 2 0 ... 2
0 2 ... 0
0 ... 2

. . .
0

 x̃c. (A.102)

The last step shows that the occurrence of a lower triangular matrix−D⊤
c has its

justification. Of course, −⟨ψ(−h), ϕ(−h)⟩R from (A.97) may not be neglected,
respectively (A.99) must hold.

A.3.3 Lyapunov and Algebraic Riccati Equations and
the Involved Operator P [N ]

The matrix P (denoted by P̃ in Section 6.1) from a matrix-valued Lyapunov or
algebraic Riccati equation in this thesis (no matter in which coordinates Pc, Pχ
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or Py) is used in a quadratic form like (A.50). Therefore, P is considered to be a
coordinate representation of

P [N ] =

N∑
j=0

N∑
k=0

Pjk hj ⊗ hk (A.103)

like W from (A.51), respectively like its extension Proj∗contW Projcont to M2

which still looks the same.

Lyapunov Equation As a result, the operator-valued Lyapunov equation〈
x,P [N ]A [N ]x

〉
M2

+
〈
x, (A [N ])∗P [N ]x

〉
M2

= ⟨x,Qx⟩M2
, (A.104)

∀x ∈ D(A ), yields in the first term〈
x,P [N ]A [N ]x

〉
M2

=

〈 ∞∑
j=0

xjgj ,
( N∑
k,l=0

Pklh
k ⊗ hl

)( N∑
o,p=0

Aopho ⊗ hp
) ∞∑
m=0

xmgm

〉
M2

=

N∑
j,l,m=0

x̃jPjlA
l
mx̃

m = x̃⊤PAx̃ (A.105)

and in the second term〈
x, (A [N ])∗P [N ]x

〉
M2

=

〈 ∞∑
j=0

xjgj ,
( N∑
k,l=0

U l
kh
k ⊗ hl

)( N∑
o,p=0

Poph
o ⊗ hp

) ∞∑
m=0

xmgm

〉
M2

=

N∑
j,l,m=0

x̃jU l
j Plmx̃

m = x̃⊤A⊤Px̃. (A.106)

Therefore, the operator-valued Lyapunov equation leads to the matrix-valued Lya-
punov equation considered in this thesis.
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Note that, with A [N ]
cc from (A.87), the same results would arise in (A.105) and

(A.106).

Algebraic Riccati Equation The algebraic Riccati equation from (5.65) be-
comes in terms of the approximated operators A [N ] and P [N ]

⟨x,P [N ]A [N ]x⟩M2
+ ⟨x, (A [N ])∗P [N ]x⟩M2

= −⟨x,Qx⟩M2
− ⟨B∗P [N ]x, (−Πaa)

−1B∗P [N ]x⟩Rm . (A.107)

In view of the common parts with (A.104), it only remains to discuss the last term
on the right-hand side. Note that B : Rm → M2 from (5.66) can be written as
(again considering only one component, n = 1, i.e., assuming that B ∈ R1×m)

B =

N∑
j=0

m∑
k=1

Ljkhj ⊗ ek =

m∑
k=1

B·k
[
0[−h,0]

1

]︸ ︷︷ ︸
=hχ,N=hc,N

⊗ ek, (A.108)

i.e., Lχ = Lc =

 0 ... 0
...

...
0 ... 0

LN
c, 1 ... L

N
c, m

 =
[
0N×m

B

]
, (A.109)

where {ek}k∈{1,...,m} = {ek}k is the canonical basis of Rm. In this sense,
(6.8) is a coordinate representation of B. Analogously to (A.67), the adjoint is
B∗ =

∑m
j=1

∑N
k=0 S

k
j ej ⊗ hk with S = L⊤ and therefore

B∗P [N ]x =
( m∑
j=1

N∑
k=0

S k
j ej ⊗ hk

)( N∑
o=0

N∑
p=0

Poph
o ⊗ hp

)( ∞∑
l=0

xlgl
)

=

m∑
j=1

N∑
k=0

N∑
l=0

S k
j Pklx̃

l ej , (A.110)
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respectively

⟨B∗P [N ]x, (−Πaa)
−1B∗P [N ]x⟩Rm = x̃⊤P⊤S⊤(−Πaa)

−1SP x̃

= x̃⊤PL(−Πaa)
−1L⊤Px̃, (A.111)

which coincides with the corresponding term in (7.24).

Operator norm The operator norm of P [N ] is still the same as the opera-
tor norm of its restriction P [N ]|span({hk}k)

to the finite-dimensional subspace
span({hk}k) ⊂M2, for which the result of Appendix A.2.3 applies,

∥P [N ]∥ = ∥H−1/2PH−1/2∥2. (A.112)

The reason for the equality

∥P [N ]∥2 = sup
x∈M2\{0M2

}

∥P [N ]x∥2M2

∥x∥2M2

= sup
x̃∈span({hk}k)\{0M2

}

∥P [N ]x̃∥2M2

∥x̃∥2M2

is that the supremum over M2 among all x ∈ M2 that have in common to be
projected to x̃ ∈ span({hk}k) is attained by the one that achieves the infimum
possible norm value ∥x̃∥M2 in the denominator, i.e., by x = x̃ ∈ span({hk}k).

Written-Out Result of P [N ] In mixed coordinates, the basis functions hkχ
that occur in P [N ] from (A.103) are very simple, see (A.77). In fact, P [N ] can
even compactly be written out in the integral form of (4.48) with explicitly given
kernel functions. To establish the separation between Pzz(ξ, η) and Pzz,diag(η)

in (4.11a), the splitting approach from (4.46) should be applied and explicit
kernel functions only be computed for the remaining operator P [N ]

0 . See also
Remark 4.1.1.
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To make the explicit integral formula of P [N ] visible, note that, by (A.103),

P [N ]
[ ϕ
ϕ(0)

]
=
(∑
j,k

Pjk hj ⊗ hk
)[ ϕ

ϕ(0)

] (A.44)
=

N∑
j=0

N∑
k=0

Pjkh
j
〈
hk,
[ ϕ
ϕ(0)

]〉
M2
.

According to (A.77), the dual basis functions are, in mixed coordinates, given by

hjχ =

{ [ 2
h

2j+1
2 pj(ϑ(·))

0

]
if j ̸= N,[

0
1

]
if j = N,

. Using the latter, in the end, yields the

written out result

P [N ]
[ ϕ
ϕ(0)

]
=



∫ 0

−h

Pzz(·,η)︷ ︸︸ ︷∑N−1
j=0

∑N−1
k=0 Pχ,jk

2j+1
h pj(ϑ(·)) 2k+1

h pk(ϑ(η))ϕ(η) dη

+
∑N−1
j=0 Pχ,jN

2j+1
h pj(ϑ(·))︸ ︷︷ ︸

Pzx(·)

ϕ(0)

∫ 0

−h
∑N−1
k=0 Pχ,Nk

2k+1
h pk(ϑ(η))︸ ︷︷ ︸

Pxz(η)

ϕ(η) dη + Pχ,NN︸ ︷︷ ︸
Pxx

ϕ(0)


.

(A.113)

Thus, the structure is the same as the one encountered in (4.48).

A.4 Revisiting the Main Points of the Chapter

• The chapter uses basic concepts from tensor algebra like metric coefficients,
dual bases, and dyadic products to explain how to deal with coordinate
representations of polynomials and polynomial operators inM2.

• The basis functions of two (N + 1)-dimensional subspaces of M2 are
considered:

– {gk}k amounts to a polynomial of degree atmostN and its continuous
end point, motivated by the polynomial ansatz in the Legendre tau
method.
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– {hk}k amounts to the discontinuous interpretation of the coordinates,
describing a polynomial of degree at most N − 1 and a discontinu-
ous end point. In Section 3.5.2.2, this interpretation might not have
seemed compelling. However, due to the projection operator Projcont
from Appendix A.3.1, the associated dual functions {hk}k turn out to
be crucial. In the end, both operators A [N ] and P [N ] do not even rely
on {gk}k but only on {hk}k and the associated dual functions {hk}k.

• The metric coefficients, which are the inner products of the basis func-
tions, are given for Legendre coordinates and mixed coordinates in both
interpretations (Appendix A.1).

• None of the considered bases is orthonormal. However, at least {hχ,k}k
from the discontinuous interpretation in mixed coordinates is orthogonal.

• The dual basis functions are defined as being orthogonal to the original basis
functions. They can be computed from the original basis functions based
on the inverse of the metric coefficient matrix. In mixed coordinates, the
basis functions {hkχ}k from the discontinuous interpretation are particularly
simple, see (A.77).

• In the matrices that are coordinate representations of operators, each matrix
entry is associated with a dyadic product⊗ between a basis function of the
codomain and a (dual) basis function of the domain of the operator.

– The matrix A ∈ {Ac, Aχ, Ay, . . .} from the Legendre tau method
represents the operator A [N ] =

∑
j,k A

j
k hj ⊗ hk.

– The matrix P ∈ {Pc, Pχ, Py, . . .} in the quadratic form that approxi-
mates an LK functional represents P [N ] =

∑
j,k Pjk hj ⊗ hk.

• Despite of a nonorthonormal basis, the operator P [N ] is self-adjoint if the
matrix P is symmetric. Due to the different representation, such a result
would, e.g., not be true for the matrix A that describes the operator A [N ].

295



Appendix

• The operator norm of P [N ], which becomes relevant in the statement of
uniformboundedness in Lemma4.6.5, can be computed from the coordinate
matrix P via (A.112).

• The operator P [N ] becomes particularly simple in mixed coordinates Pχ,
for which P [N ] is made explicit in (A.113).

• Appendix A.3.3 confirms that the matrix-valued Lyapunov and algebraic
Riccati equation considered in the main part of the thesis exactly address
the operator-valued Lyapunov and algebraic Riccati equation withA [N ] and
P [N ].
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B.1 Addendum to the
Numerical-Integration-Based Approach

Besides of the ODE-based approach, proposed in Section 4.1, a numerical-
integration based approach is proposed in Section 4.2 for the sake of validation.
The latter makes use of the known formula of complete-type and related LK
functionals V (ϕ) given in (1.15).

B.1.1 Delay Lyapunov Matrix Function

In contrast to the ODE-based approach, the numerical integration of the LK
functional formula (1.15) requires explicit knowledge of the delay Lyapunov
matrix function Ψ on which (1.15) relies.

This delay Lyapunov matrix function, associated to a given matrix Q ≻ 0n×n
and to the given time-delay system (1.4), is defined as being a solution Ψ ∈
C([−h, h],Rn×n) of

d
dsΨ(s) = Ψ(s)A0 +Ψ(s− h)A1, s ∈ (0, h], (B.1a)
Ψ(s) = Ψ⊤(−s), s ∈ [−h, 0], (B.1b)

Ψ(0)A0 +Ψ(−h)A1 = −A⊤
0 Ψ(0)−A⊤

1 Ψ(h)−Q, (B.1c)

[110, Thm. 2.6]. These conditions are commonly referred to as the dynamic
property (B.1a), the symmetry property (B.1b), and the algebraic property (B.1c).
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Proposition B.1.1 (Lyapunov condition, unique solution, [110, Thm. 2.8]).
Let σ(A) = {s ∈ C : (1.6)} denote the characteristic roots of (1.4). If σ(A) ∩
(−σ(A)) = ∅, then a unique solution Ψ ∈ C([−h, h],Rn×n) of (B.1) exists.

For the considered system class, a semi-analytical solution, which still relies on a
matrix exponential, can be derived in vectorized form.

Proposition B.1.2 (Semi-analytical solution for Ψ(s), cf. [69]). If Proposi-
tion B.1.1 holds, then the solution Ψ: [−h, h] → Rn×n of (B.1) is given by[

vec(Ψ(s− h))

vec(Ψ(s))

]
= E(s)y0, s ∈ [0, h] (B.2)

where E : [0, h] → R2n2×2n2

describes the matrix exponential

E(s) = exp

([
−In ⊗A⊤

0 −In ⊗A⊤
1

A⊤
1 ⊗ In A⊤

0 ⊗ In

]
s

)
(B.3)

and y0 ∈ R2n2

is a solution of([
In2 0n2×n2

0n2×n2 In ⊗A⊤
1

]
E(h) +

[
0n2×n2 −In2

A⊤
1 ⊗ In In ⊗A⊤

0 +A⊤
0 ⊗ In

])
y0

=

[
0n2

−vec(Q)

]
. (B.4)

B.1.2 A Factorization of the Numerical Integration of
Complete-Type LK Functionals

The numerical integration result from (4.16) reveals some further structure, when
incorporating the kernel functions from (4.11b). The following proposition pri-
marily addresses P quad

y from Section 4.2. However, it is not restricted to poly-
nomial quadrature rules, like Clenshaw–Curtis quadrature or Gauss with added
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zero-weighted boundary nodes. It equally well holds for Riemann-sum approxi-
mations of the integrals.

In particular, the proposition makes clear that

(Ψ(θ̃j − θ̃k))jk =



Ψ(0) Ψ(θ̃0−θ̃1) ··· Ψ(θ̃0−θ̃N )

Ψ(θ̃1−θ̃0) Ψ(0)
...

. . .
... Ψ(θ̃N−1−θ̃N )

Ψ(θ̃N−θ̃0) ··· Ψ(θ̃N−θ̃N−1) Ψ(0)

 , (B.5)

which, due to (4.11b), is closely related to (Pzz(θ̃j , θ̃k))jk in (4.16), is rather
decisive. The matrix (B.5) is known to be positive semidefinite whenever the
RFDE equilibrium is exponentially stable, no matter how coarse the grid is, see
[62, Thm. 9] (also being valid for non-equidistant grids {θ̃k}k). An immediate
consequence of the following proposition is that the same holds for P quad

y from
Section 4.2.

Proposition B.1.3 (Factorization of the numerical integration result (4.16)).
For any u ∈ C([−h, 0],R), let∫ 0

−h
u(θ) dθ ≈

N∑
k=0

u(θ̃k)wk

be a numerical integration rule relying on θ̃0=−h < θ̃1 < . . . < θ̃N−1 < θ̃N =0

and corresponding integration weights (wk)k∈{0,...,N} ∈ RN+1. Applying such
a rule to (4.11a) with (4.11b) gives

V (ϕ) ≈

 ϕ(θ̃0)

...
ϕ(θ̃N )

⊤

P quad
y

 ϕ(θ̃0)

...
ϕ(θ̃N )

 , P quad
y = S⊤(Ψ(θ̃j − θ̃k)

)
jk
S +D,

where S = diag((wk)k)⊗A1+
[

0n×nN In
0nN×nN 0nN×n

]
, and where the block diagonal

matrix D = blkdiag((wk(Q1 + (h + θ̃k)Q2))k) vanishes if Q1 = Q2 = 0n×n
and otherwise inherits the positive semidefiniteness from Q1, Q2.
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Proof. Let

y =

 ϕ(θ̃0)

...
ϕ(θ̃N )

 =

[
ϕ(−h)
...

ϕ(0)

]
, W =

[
w0A1

. . .
wNA1

]
, E⊤ =

[
0 ··· 0
... ...
0 0
In 0 ··· 0

]
.

Then ( 12 times) the second term of V (ϕ) in (4.11a) becomes (where, in fact, (B.6)
only precises what is already given as the second term in (4.16) )∫ 0

−h
ϕ⊤(0)Pxz(θ)ϕ(θ) dθ =

∫ 0

−h
ϕ⊤(0)Ψ(−h− θ)A1ϕ(θ)︸ ︷︷ ︸

u(θ)

dθ

≈
N∑
k=0

ϕ⊤(0)Ψ(−h− θ̃k)A1ϕ(θ̃k)︸ ︷︷ ︸
u(θ̃k)

wk

= ϕ⊤(0)︸ ︷︷ ︸
ϕ⊤(θ̃N )

(
Ψ(−h︸︷︷︸

θ̃0

−θ̃0)A1ϕ(θ̃0)w0 + . . .+Ψ(−h︸︷︷︸
θ̃0

−θ̃N )A1ϕ(θ̃N )wN

)

=

 ϕ(θ̃0)

...
ϕ(θ̃N )

⊤ [
0 ... 0
...

...
w0Ψ(θ̃0−θ̃0)A1 ... wNΨ(θ̃0−θ̃N )A1

] ϕ(θ̃0)

...
ϕ(θ̃N )

 (B.6)

=

[
ϕ(θ0)

...
ϕ(θN )

]⊤
E⊤

 Ψ(θ̃0−θ̃0) ··· Ψ(θ̃0−θ̃N )

...
. . .

...
Ψ(θ̃N−θ̃0) ··· Ψ(θ̃N−θ̃N )

W [
ϕ(θ0)

...
ϕ(θN )

]
= y⊤E⊤(Ψ(θ̃j − θ̃k)

)
jk
W y. (B.7)

Being scalar, the latter is also equal to its transpose∫ 0

−h
ϕ⊤(θ)P⊤

xz(θ)ϕ(0) dθ = y⊤W⊤(Ψ⊤(θ̃k − θ̃j)︸ ︷︷ ︸
(B.1b)
= Ψ(θ̃j−θ̃k)

)
jk
E y. (B.8)

The first term of V (ϕ) in (4.11a) is

ϕ⊤(0)Pxxϕ(0) = ϕ⊤(0)Ψ(0)ϕ(0) = y⊤E⊤(Ψ(θ̃j − θ̃k)
)
jk
Ey, (B.9)
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and the third one∫ 0

−h

∫ 0

−h
ϕ⊤(ξ)Pzz(ξ, θ)ϕ(θ) dθdξ =

∫ 0

−h

∫ 0

−h
ϕ⊤(ξ)A⊤

1 Ψ(ξ − θ)A1ϕ(θ) dθdξ

≈
N∑
j=0

wj

N∑
k=0

wkϕ
⊤(θ̃j)A

⊤
1 Ψ(θ̃j − θ̃k)A1ϕ(θ̃k)

= y⊤W⊤(Ψ(θ̃j − θ̃k)
)
jk
W y. (B.10)

Altogether, abbreviating P =
(
Ψ(θ̃j − θ̃k)

)
jk
,

W⊤PW +W⊤PE + E⊤PW + E⊤PE = (W + E)⊤P (W + E) = S⊤PS.

The remaining term D is as in (4.16).

B.1.3 Some Remarks

Some remarks are in order.

Remark B.1.4 (ODE-based vs. numerical-integration-based approach). Both
the ODE-based approach from Section 4.1.1 and the numerical-integration-based
approach from Section 4.2 provide an approximation Vy(y) = y⊤Pyy. The for-
mer seeks for an approximative solution of the defining equation (1.14). In
contrast, the latter already starts with the exact knowledge of the LK functional
(1.15), presupposing knowledge of Ψ, and only has to describe a discretization
thereof. In so far, the numerical-integration-based approach is related to dis-
cretizations of the known V (ϕ) already proposed in the literature—be it based
on piecewise cubic polynomials that approximate ϕ [136, 134] or, recently, on
a Legendre series truncation of ϕ [10] (also used in [12, 11]), or a certain
fundamental-matrix-dependent discontinuous approximation of ϕ [72, 60, 62].
With the exception of the latter discontinuous approximation (which, however,
only addresses zero Q0 and Q2), integral terms with Ψ must still be evaluated in
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these approaches, which is not the case for the interpolatory quadrature proposed
in Section 4.2.

Remark B.1.5 (The role of the delay Lyapunov matrix function). In a common
perception, the delay Lyapunov matrix functionΨ (defined in (B.1)) is considered
as being the counterpart to the Lyapunov equation solution P from the finite-
dimensional template ii in Section 1.2. The more direct counterpart, however,
is addressed by the matrix Py (in fact, Py represents an approximation of an
operator P on M2 that is introduced in Section 4.6.2.1). Take a look at the
ODE-based approach in Section 4.1.1. If Ay is Hurwitz, then the solution Py
of the Lyapunov equation (4.3) is well known to be expressible by an improper
integral, yielding

Vy(y) = y⊤Pyy, with Py =

∫ ∞

0

eA
⊤
y tQye

Ayt dt. (B.11)

This formula for Vy and the LK functional formula (1.15) withQ1 = Q2 = 0n×n
can be proven quite analogously, see [110]. However, the derivation of (1.15) does
not consider the solution operator T (t) : C → C, respectively T (t) : M2 →M2

in the Hilbert space setting, which would be the counterpart to eAyt in (B.11).
Instead the solution formula for x0 7→ x(t) is used. The latter relies on the
RFDE fundamental matrix functionX . See Table B.1. Therefore, in the resulting
formula for V (ϕ), terms of the form

∫∞
0
X⊤(t)Q̃X(t+s) dt occur. This is where

the delay Lyapunov matrix functionΨ originates from. It is defined to encapsulate
the decisive expression

Ψ(s; Q̃) =

∫ ∞

0

X⊤(t)Q̃X(t+ s) dt, (B.12)

[110, Def. 2.4]. That substitution finally leads to the famous formula of the LK
functional (1.15). As a consequence, the involvedΨmerely relies onX . However,
X(t) represents only a part of the whole solution operator, which is actually
required (see (4.59) relying on T (t) in M2) and readily approximated by the
whole matrix exponential eAyt in (B.11). That is why the ODE-based approach
neither needs to approximate the fundamental matrix functionX nor the resulting
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RFDE state at time t ≥ 0
xt ∈ C([−h, 0],Rn)

ODE state at t ≥ 0
y(t) ∈ Rn(N+1)

Solution value at time t ≥ −h
x(t) = xt(0) ∈ Rn

Lower subvector of y(t)
x̂(t) = yN (t) ∈ Rn

Solution operator T (t) for x0 7→ xt

xt = T (t)x0

Matrix exponential
y(t) = eAyty(0)

Solution formula for x0 7→ x(t)

x(t) =

∫ 0

−h
X(t− η − h)A1x0(η) dη +X(t)x0(0)

Lower block row of eAyt

yN (t) = (eAyt)(N,:)y(0)

Fundamental matrix at t ≥ 0
X(t) ∈ Rn×n, which is the matrix solution for the

matrix-valued initial condition X(t) =

{
0n×n if t < 0,
In if t = 0

Right lower submatrix
(eAyt)(N,N) if t ≥ 0

Table B.1: Correspondences between the RFDE and the approximating ODE. (No claim of conver-
gence of the solution operator approximation inC. However, for the Legendre tau method,
a convergence statement inM2 is available, see Lemma 3.5.6.)

delay Lyapunov matrix function Ψ as suggested by the LK functional formula
(1.15). Instead, the ODE-based approach readily yields an approximation of the
whole LK functional V in one step.

Remark B.1.6. The numerical result for Ψ(0; Q̃) in [101, 140] is founded on
a comparison between the improper integral for Ψ(0; Q̃) from (B.12) and the
improper integral for Py (with Q1 = Q2 = 0n×n in (4.4)) from (B.11), in-
corporating the last row of Table B.1. These improper integrals, however, are
only applicable if the solution decays exponentially. For that reason, the re-
sult has been restricted to exponentially stable equilibria. However, comparing
Vy(y) in (4.10) with V (ϕ) in (4.11), suggests as well that the right lower subma-
trix (Py)

(N,N) = Py,xx approximates Ψ(0; Q̃) = Pxx, even without a stability
restriction.

303



B Appendix: Further Aspects

B.2 A Lemma Related to the Equicontinuity of
Solutions for Linear RFDEs

The proof of Theorem 5.4.1 relies on the following lemma. Although the lemma
intends to express the explicit dependence of ∥x(t1) − x(t0)∥ on the individual
norm of the initial function ∥xt0∥C , it is closely related to equicontinuity of
RFDE solutions that share to have xt0 from a common bounded set. In fact,
fixing a norm ball of initial functions with ∥xt0∥C < r for some given r > 0, this
equicontinuity at t0 for the resulting family of solutions x : R≥t0 → Rn could
directly be concluded from the lemma.

Lemma B.2.1. Solutions x of (5.36) satisfy

∀α ≥ 0,∃δ(α) ≥ 0,∀t1 ≥ t0 ≥ 0 :

t1 − t0 ≤ δ(α) =⇒ ∥x(t1)− x(t0)∥ ≤ α∥xt0∥C , (B.13)

and δ : R≥0 → R≥0;α 7→ δ(α) can be chosen linear.

Proof. Let (5.36) be ẋ(t) = Ã0x(t) + Ã1x(t− h). Then

∥x(t1)− x(t0)∥ =
∥∥∥∫ t1

t0

(
Ã0x(t) + Ã1x(t− h)

)
dt
∥∥∥

≤ (t1 − t0) (∥Ã0∥+ ∥Ã1∥) max
t∈[t0−h,t1]

∥x(t)∥. (B.14)

Due to the uniform stability, ∀εs > 0,∃δs(εs) > 0,∀t0 ≥ 0 : ∥ϕ∥C ≤ δs(εs) =⇒
∀t ≥ t0 − h : ∥x(t; t0, ϕ)∥ ≤ εs. Thus, ψ = 1

bϕ with b := ∥ϕ∥C

δs(1)
, i.e., ∥ψ∥C =

δs(1), implies ∥x(t; t0, ψ)∥ ≤ 1. By linearity, x(t; t0, ψ) = 1
bx(t; t0, ϕ). Hence,

∀t ≥ t0 − h : ∥x(t; t0, ϕ)∥ ≤ b = ∥ϕ∥C

δs(1)
with ϕ = xt0 . Consequently, (B.13) is

obtained by choosing t1 − t0 ≤ δ(α) := δs(1)α
∥A0∥+∥A1∥ in (B.14).
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B.3 Two Lemmas on Bessel Polynomials

Bessel polynomials are known to satisfy the recurrence relation [114]

b0(z) ≡ 1, (B.15)
b1(z) = z + 1, (B.16)

bN+1(z) = (2N + 1)z︸ ︷︷ ︸
=:βN (z)

bN (z) + bN−1(z), (B.17)

based on which the following two lemmas establish alternative expressions for
bN (z), laying the foundation for Theorem 7.3.4.

Lemma B.3.1. For N ≥ 2, the N -th Bessel polynomial is

bN (z) =
[
1 1

] [β0(z) 1

1 0

]
· · ·

[
βN−2(z) 1

1 0

][
βN−1(z)

1

]
, (B.18)

where βj(z) = (2j + 1)z, j ≥ 0.

Proof. Let [hN,1(z) hN,2(z)] = [1 1]
∏N−2
k=0

[
βk(z) 1

1 0

]
denote the product from

(B.18) without the last vector, such that (B.20) below holds. Then

bN−1(z) =
[
hN,1(z) hN,2(z)

] [1
0

]
, (B.19)

bN (z) =
[
hN,1(z) hN,2(z)

] [βN−1(z)

1

]
, (B.20)

bN+1(z) =
[
hN,1(z) hN,2(z)

] [βN−1(z) 1

1 0

][
βN (z)

1

]
= βN (z)bN (z) + bN−1(z) (B.21)

shows that the recurrence relation (B.17) is valid. Moreover, b2(z) and b3(z) can
be verified to coincide with the above definition.
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Lemma B.3.2. Assume N ≥ 2, and let rN (z) = [rN,0(z), . . . , rN,(N−1)(z)]
⊤

solve the system of linear equations
1 −β0(z) −1

. . . . . . −1

−βN−2(z)

1


︸ ︷︷ ︸

MN

rN (z) =


0
...
1

βN−1(z)

 , (B.22)

with βj(z) = (2j + 1)z, j ≥ 0. Then, the N -th Bessel polynomial bN (z) and
(−1)NbN (−z) are given by

bN (z) = rN,0(z) + rN,1(z), (B.23)
(−1)NbN (−z) = rN,0(z)− rN,1(z), (B.24)

using the first two components of rN (z) from (B.22).

Proof. The triangular matrixMN has exclusively ones on the diagonal, and thus

M−1
N =

1

det(MN )
adj(MN ) = adj(MN ). (B.25)

Being only interested in the first two components rN,0(z) and rN,1(z) of the
unknown vector rN (z) in (B.22), only the right upper 2 × 2 submatrix from
(B.25) is required,[

rN,0(z)

rN,1(z)

]
=

[
(−1)(N−1)+1m[N−1,1] (−1)N+1m[N,1]

(−1)(N−1)+2m[N−1,2] (−1)N+2m[N,2]

][
1

βN−1(z)

]
,

(B.26)
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where m[j,k] denotes the j-th row, k-th column minor of the N ×N matrixMN ,

m[N−1,1] = det

[−β0 −1

1
. . .
1 −βN−3 −1

0 ··· 0 1

]
, m[N,1] = det

[−β0 −1

1
. . .

−1
1 −βN−2

]
,

m[N−1,2] = det

 1 −1
0 −β1
... 1

. . .
1 −βN−3 −1

0 ··· 0 1

 , m[N,2] = det

[
1 −1
0 −β1
... 1 . . . −1
0 1 −βN−2

]
.

The signs in (B.26) simplify by using thatdet(Mred) = (−1)N−1 det(−Mred) for
Mred ∈ R(N−1)×(N−1). Continuants, i.e., determinants of tridiagonal matrices

K[i,...,j](z) = det




βi(z) 1

−1
. . . . . .
. . . . . . 1

−1 βj(z)



 (B.27)

occur in the minors, in terms of which (B.26) can be written as[
rN,0(z)

rN,1(z)

]
=

[
K[0,...,(N−3)](z) K[0,...,(N−2)](z)

K[1,...,(N−3)](z) K[1,...,(N−2)](z)

][
1

βN−1(z)

]
. (B.28)

From the context of continued fractions (to which continuants are closely related
as K[0,...,j](z)

K[1,...,j](z)
represents a finite continued fraction), the matrix identity

[
K[0,...,j](z) K[0,...,j−1](z)

K[1,...,j](z) K[1,...,j−1](z)

]
=

[
β0(z) 1

1 0

]
· · ·

[
βj(z) 1

1 0

]
(B.29)

is known [181]. Hence, (B.28) with permuted columns becomes[
rN,0(z)

rN,1(z)

]
=

[
β0(z) 1

1 0

]
· · ·

[
βN−2(z) 1

1 0

][
βN−1(z)

1

]
. (B.30)
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Lemma B.3.1, shows that

bN (z) =
[
1 1

] [rN,0(z)
rN,1(z)

]
, (B.31)

which completes the proof of (B.23). Moreover, (B.24) holds since, if N is even,
then rN,0 contains only even powers of z, and rN,1 contains only odd powers of z,
whereas, ifN is odd, then rN,0 contains only odd powers of z, and rN,1 contains
only even powers of z.
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