Tragverhalten von Stabdübeln in Brettschichtholz und

Vollholz verschiedener Holzarten bei unterschiedlichen

Rißlinienanordnungen

von

Jürgen Ehlbeck und Hartmut Werner

Versuchsanstalt für Stahl, Holz und Steine

Abt. Ingenieurholzbau

Universität Fridericiana Karlsruhe

Univ.-Prof. Dr.-Ing. Jürgen Ehlbeck

1989

KURZFASSUNG

TRAGVERHALTEN VON STABDÜBELN IN BRETTSCHICHTHOLZ UND VOLLHOLZ

VERSCHIEDENER HOLZARTEN BEI UNTERSCHIEDLICHEN RISSLINIENANORDNUNGEN

Jürgen Ehlbeck und Hartmut Werner

Das Trag- und Verformungsverhalten von Stabdübelverbindungen bei einer Belastung in Faserrichtung des Holzes wurde an 149 Prüfkörpern experimentell untersucht. Dabei wurden die Stabdübelanordnung, die Rohdichte des Holzes, die Beanspruchungsart, der Stabdübeldurchmesser, die Schlankheit, der Stabdübelwerkstoff sowie die Holzart variiert. Die Tragfähigkeiten von Verbindungen mit versetzter und unversetzter Anordnung der Stabdübel bei sonst gleichen Versuchsbedingungen unterschieden sich kaum. Ein Vergleich der Druckversuche mit den Zugscherversuchen zeigt jedoch eine deutlich geringere Tragfähigkeit der Zugscherversuche. Aus den Versuchsergebnissen konnte eine effektive Lochleibungsfestigkeit parallel der Faserrichtung angegeben werden, die abhängig ist vom Stabdübeldurchmesser und der Rohdichte des Holzes.

Mit Hilfe eines Rechenmodelles auf der Grundlage der Theorien von Johansen und Moeller lassen sich die Tragfähigkeiten von Stabdübelverbindungen rechnerisch bestimmen. Als rechnerische Fließspannung des Verbindungsmittels sollte dabei das arithmetische Mittel aus der Zugfestigkeit und der Streckgrenze eingesetzt werden.

Ein vereinfachter Rechenansatz wurde vorgeschlagen. Dieses mechanische Modell für den Grenzzustand der Tragfähigkeit von Stabdübelverbindungen kann als Grundlage dazu dienen, die Zuverlässigkeit dieser wirtschaftlichen Verbindungsmittelart zu ermitteln.

SUMMARY

LOAD-CARRYING CAPACITY OF DOWELED JOINTS IN GLUED LAMINATED AND SOLID TIMBER OF DIFFERENT FASTENER CONFIGURATIONS

Jürgen Ehlbeck and Hartmut Werner

The load-carrying capacity and the load-deformation behaviour of dowel joints loaded parallel to grain was studied by tests with 149 test specimens. The joint configuration, the wood density, the type of loading, the dowel diameter, the dowel slenderness, the material properties of the dowels and the wood species were varied. Staggering or non-staggering of adjacent dowels located along the same wood grain was of negligible influence on the load-carrying capacity. A comparison between test specimens loaded in tension shear as well as in compression shear attested a significant lower load-carrying capacity of tension shear joints. From the tests an effective embedding strength in grain direction of the members could be evaluated. This embedding strength is dependent on the dowel diameter as well as the wood density.

Using a calculation based on Johansen's and Moeller's theory the load-carrying capacity of dowel joints can be predicted. The yield strength of the dowel can be taken as a fictive value which is the arithmetical mean between the tensile strength and the actual yield strength of the steel used.

A simplified calculation model was proposed for determining the limit state of the load-carrying capacity of doweled joints. This model can be used for reliability calculations of this economic type of timber joints.

Resumé

Comportement de broches avec configuration variable dans de différents espèces des bois et de bois lamellé collé

Jürgen Ehlbeck et Hartmut Werner

Pour le cas d'un effort parallèle au fil, la résistance et la déformation des broches fûrent étudiées. 149 essais fûrent effectuées au total en variant la configuration, la masse volumique du bois, la soumission à l'effort, l'élancement, le diamètre et le matériau des broches ainsi que l'espèce de bois.

La résistance des assemblages avec configuration contrariée ne se distingaient guère de celle des assemblages avec configuration non contrariée.

La résistance déterminée par des essais de cisaillement à compression était nettement plus haute que celle déterminée par des essais de cisaillement à traction.

A l'aide de ces essais, la résistance de la paroi du trou pouvait être décrite en fonction du diamètre des broches et de la masse volumique du bois.

La résistance des assemlages avec broches peut être déterminée en utilisant un modèle de calcul basant sur les théories de Johansen et Moeller. En faisant cela on devrait calculer avec le moyenne arithmétique de la résistance à traction et de la limite élastique comme valeur de la tension découlement de l'assembleur.

Une méthode de calcul simplifiée fût proposée. Ce modèle mécanique pour l'état limite ultime des assemblages avec broches peut servir de base pour déterminer le niveau de fiabilité de cette espèce d'assemblage économique.

Tragverhalten von Stabdübeln in Brettschichtholz und

Vollholz verschiedener Holzarten bei unterschiedlichen

Rißlinienanordnungen

von

Jürgen Ehlbeck und Hartmut Werner

Versuchsanstalt für Stahl, Holz und Steine

Abt. Ingenieurholzbau

Universität Fridericiana Karlsruhe

Univ.-Prof. Dr.-Ing. Jürgen Ehlbeck

1989

VORWORT

Diese Arbeit entstand in den Jahren 1985 bis 1988 im Auftrag und mit Unterstützung der Entwicklungsgemeinschaft Holzbau (EGH) in der Deutschen Gesellschaft für Holzforschung (DGfH). Die finanziellen Mittel wurden vom Institut für Bautechnik, Berlin, bereitgestellt.

Das Ziel der Arbeit bestand einerseits darin, zu überprüfen, ob Stabdübelverbindungen im Holzbau, bei denen die Löcher im Holz mit einem Durchmesser gleich dem Stabdübeldurchmesser vorgebohrt sind, einer versetzten Anordnung bezüglich der Faserrichtung des Holzes bedürfen. Andererseits war es im Hinblick auf den Einfluß verschiedener Holzarten und der Geometrie des Anschlußbildes auf die Tragfähigkeit von Stabdübelverbindungen von besonderem Interesse, die nationalen deutschen Bemessungsregeln vergleichend zu den internationalen Vorschlägen im Rahmen der europäischen Harmonisierung der Holzbaubestimmungen zu überprüfen. Aus den Untersuchungen konnten wichtige neue Erkenntnisse gewonnen werden, die als deutscher Beitrag in die europäische Normung einfließen werden.

Planung und Durchführung der theoretischen und versuchstechnischen Arbeiten erfolgten unter der Anleitung des Herrn Dipl.-Ing. Hartmut Werner. Die Herstellung und Prüfung der vielfältigen Versuchskörper besorgten die Herren Günter Rüd und Johann Lafferthon. Bei der Auswertung und Darstellung der Ergebnisse halfen mit großem Interesse die wissenschaftlichen Hilfskräfte, Herr cand.ing. Peter Schuler und Herr cand.ing. Markus Wassmer. Allen Beteiligten an diesem Projekt sei für die harmonische Zusammenarbeit gedankt.

Jürgen Ehlbeck

INHALT

1	Ziel der Untersuchung	1
2	Theorien über das Tragverhalten von	
	Stabdübelverbindungen	2
2.1	Plastizitätstheorie	2
2.2	Entwurf zu EUROCODE 5	7
2.3	CIB-Structural Timber Design Code	9
2.4	Vorschlag zur Berechnung der Traglast	
	nach Gehri und Fontana	10
3	Bisherige experimentelle Untersuchungen	11
3.1	Prüfung von Stiftverbindungen an der	
	Bayer. Landesgewerbeanstalt Nürnberg	11
3.2	Untersuchungen der deutschen Versuchsanstalt	
	für Luftfahrt	11
3.3	Versuche an der Eidgen. Techn. Hochschule	
	in Zürich	12
3.4	Untersuchungen am Forest Products Laboratory	
	in Madison (USA)	12
3.5	Neuere Forschungsarbeiten der TRADA (England)	
	auf dem Gebiet der mechanischen Verbindungsmittel	13
3.6	Neuere Untersuchungen in Japan	14
3.7	Weitere Veröffentlichungen im Zusammenhang mit	
	Stabdübelverbindungen	16
4	Versuche	18
4.1	Versuchsbezeichnung und Versuchsprogramm	18
4.2	Versuchsmaterial	21
4.2.1	Brettschichtholz	21
4.2.2	Vollholz aus Nadelholz	23
4.2.3	Laubholz	24
4.2.4	Stabdübel	25
4.3	Prüfkörper und Versuchsdurchführung	27

5	Ergebnisse der Versuche	32
6	Untersuchung verschiedener Einflüsse auf die	
	Tragfähigkeit der Stabdübelverbindungen	
	(Auswertung der Versuche)	37
6.1	Unterschied zwischen versetzter und unversetzter	
	Stabdübelanordnung	37
6.2	Einfluß der Rohdichte	39
6.3	Unterschied zwischen Druckscher- und	
	Zugscherbeanspruchung	41
6.4	Einfluß des Stabdübeldurchmessers	44
6.5	Einfluß der Stabdübelschlankheit	48
6.6	Einfluß des Stabdübelwerkstoffes	54
6.7	Tragfähigkeit von Stabdübeln in Vollholz	
	verschiedener Holzarten	54
6.7.1	Nadelhölzer	54
6.7.2	Laubhölzer	57
7	Verformungsverhalten und Verschiebungsmodul	
	von Stabdübelverbindungen	61
8	Zusammenfassung	67
9	Schrifttum	73
	Anhang:	
	Verwendete Zeichen und Symbole	77
	49 Anlagen	

2

and the second of the

1 Ziel der Untersuchung

Stabdübel werden in Verbindungen des Ingenieurholzbaues häufig zur Aufnahme großer Kräfte eingesetzt. Nach DIN 1052 Teil 2 – "Mechanische Verbindungen" – (April 1988) müssen Stabdübel in Faserrichtung des Holzes versetzt angeordnet werden. Die internationalen Normentwürfe (CIB-Structural Timber Design Code [7], Eurocode 5 [8]) sehen jedoch eine versetzte Anordnung nicht vor. Neuere Untersuchungen an zweischnittigen Stabdübelverbindungen mit unversetzter Anordnung ergaben gegenüber den zulässigen Belastungen nach DIN 1052 eine abnehmende Tragsicherheit bei zunehmender Stabdübelschlankheit $\lambda = \frac{\alpha_m}{d}$ (Mittelholzdicke/Stabdübeldurchmesser). Im Rahmen dieses Forschungsvorhabens sollte untersucht werden, ob die abnehmenden Tragsicherheiten allein in der unversetzten Anordnung begründet liegen und welchen Einfluß insbesondere Stabdübeldurchmesser bis zu 30 mm sowie Schlankheit und Rohdichte des Holzes unterschiedlicher Holzarten auf das Tragverhalten ausüben.

Infolge der schrittweisen Umstellung des Sicherheitskonzeptes im Bauwesen von einer deterministischen auf eine probabilistische Grundlage sollen die Versuchsdaten auch zur Ermittlung charakteristischer Werte des Bauteilwiderstandes beitragen und gleichzeitig Schwierigkeiten bei der Vereinheitlichung der Baubestimmungen auf europäischer Ebene zu vermeiden helfen.

2 Theorien über das Tragverhalten von Stabdübelverbindungen

2.1 Plastizitätstheorie

Eine Plastizitätstheorie wurde erstmals von Johansen ||| schon im Jahre 1941 entwickelt und später von Moeller |2| und Meyer |3| erweitert. Larsen |4|, |5|, |6| faßte die Ergebnisse zusammen und stellte Gleichungen zur Berechnung der Traglast auf, die später in die internationalen Normvorschläge des CIB-Structural Timber Design Code |7| und des Entwurfes zum Eurocode 5 "Gemeinsame einheitliche Regeln für Holzbauwerke" |8| einflossen.

Das Berechnungsmodell geht davon aus, daß sich sowohl der Stabdübelwerkstoff (in der Regel Stahl) unter der Biegebeanspruchung als auch das Holz unter der Lochleibungsbeanspruchung ideal elastischplastisch verhalten. Mit dieser Theorie können die Verformungen der Verbindungen nicht beschrieben werden. Desweiteren geht diese Theorie davon aus, daß ein Versagen wegen z.B. zu geringer Abstände der Verbindungsmittel untereinander bzw. vom Holzrand, vor Erreichen der Fließspannung nicht eintritt. Auch die Reibung zwischen Verbindungsmittel und Holz oder zwischen den Holzteilen allein bleibt unberücksichtigt, da sie schwer zu erfassen ist und teilweise nicht existiert.

Im folgenden werden für die zweischnittige Verbindung mit Seitenhölzern und Mittelholz die aus dieser Theorie sich ergebenden Beziehungen für die aufnehmbaren Kräfte zusammengestellt und nach der Lochleibungsfestigkeit des Seitenholzes aufgelöst. Diese Beziehungen werden für die Auswertung der Tragfähigkeitsversuche benötigt.

Bei der zweischnittigen Verbindung sind grundsätzlich vier Bruchursachen (siehe <u>Bild 1</u>) zu unterscheiden: (die vier möglichen Fälle werden in Anlehnung an die bestehende Fachliteratur mit 2.1 bis 2.4 bezeichnet, um damit die <u>Zwei-</u> schnittigkeit der betrachteten Verbindungen anzudeuten).

- Fall 2.1: Plastizieren des Holzes in den Seitenhölzern. Ein plastisches Moment des Verbindungsmittels wird noch nicht erreicht.
- Fall 2.2: Plastizieren des Holzes im Mittelholz. Ein plastisches Moment des Verbindungsmittels wird noch nicht erreicht.
- Fall 2.3: Plastizieren des Holzes in allen Teilen. Ein plastisches Moment des Verbindungsmittels wird an zwei Stellen erreicht.
- Fall 2.4: Plastizieren des Holzes in allen Teilen. Ein plastisches Moment des Verbindungsmittels wird an vier Stellen erreicht.

In den Gleichungen gelten allgemein folgende Abkürzungen und Beziehungen:

$$\lambda = \lambda_{\rm m} = \frac{a_{\rm m}}{d} \tag{1}$$

$$\alpha = \frac{a_{\rm m}}{a_{\rm s}}$$
(2)

$$\beta = \frac{f_m}{f_s}$$
(3)

$$\gamma = \frac{M_{p1}}{f_{s}}$$
(4)

$$M_{pl} = f_{y} \cdot W_{pl}$$
 (5)

$$W_{pl} = \frac{d^3}{6}$$
 (Kreisquerschnitt) (6)

Bild 1: Die zweischnittige Verbindung vier Bruchursachen nach der Plastizitätstheorie für eine

Bruchursache Fall 2.1

$$R_{\rm U} = f_{\rm s} \cdot a_{\rm s} \cdot d \tag{7}$$

$$f_{s} = \frac{R_{u}}{a_{s} \cdot d}$$
(8)

Dickenbedingung für die Bruchursache:

$$0 < \frac{\alpha_{s}}{\sqrt{\gamma}} \le 1$$

$$\alpha > 2$$

Bruchursache Fall 2.2

$$R_{u} = 0, 5 \cdot f_{m} \cdot a_{m} \cdot d \qquad (9)$$

$$= 0, 5 \cdot \beta \cdot f_{s} \cdot a_{m} \cdot d$$

$$= 0, 5 \cdot \alpha \cdot \beta \cdot f_{s} \cdot a_{s} \cdot d$$

$$f_{s} = \frac{R_{u}}{0, 5 \cdot \alpha \cdot \beta \cdot a_{s} \cdot d} \qquad (10)$$

ş

Dickenbedingung für die Bruchursache:

$$\alpha \cdot \beta < 2$$

$$\frac{a_{m}}{\sqrt{\gamma}} < \frac{4}{\sqrt{\beta(1+\beta)}}$$

Bruchursache Fall 2.3

$$R_{\upsilon} = \left[-\sqrt{\frac{2(1+\beta)}{\beta}} + \frac{2}{3} \cdot \left(\frac{2+\beta}{\beta}\right) \cdot \frac{d^{2}}{\alpha_{s}^{2}} \cdot f_{y} - 1 \right] \cdot \frac{\beta}{2+\beta} \cdot \alpha_{s} \cdot d \cdot f_{s}$$

$$= f_{s} \cdot d \cdot \left[-\sqrt{\frac{2\beta(1+\beta)\alpha_{s}^{2}}{(2+\beta)^{2}} + \frac{4\beta\gamma}{2+\beta}} - \frac{\beta \cdot \alpha_{s}}{2+\beta} \right]$$

$$f_{s} = \left(\frac{R_{\upsilon}}{d \cdot \alpha_{s}} - \frac{f_{v} \cdot d^{2}}{3 \cdot \alpha_{s}^{2}} \right) \left(- \right) \frac{1}{3 \cdot \alpha_{s}^{2} \cdot d} \sqrt{9 \cdot R_{\upsilon}^{2} \cdot \alpha_{s}^{2}} - 6 \cdot R_{\upsilon} \cdot f_{v} \cdot \alpha_{s} \cdot d^{3} + f_{v}^{2} \cdot d^{6} + \frac{9(2+\beta)}{\beta} \cdot R_{\upsilon}^{2} \cdot \alpha_{s}^{2}$$

$$(12)$$

Dickenbedingung für die Bruchursache :

$$a_{m} \stackrel{\alpha}{\geq} \frac{2 + \sqrt{\frac{\beta}{1+\beta}}}{\beta \cdot (2+\beta) \cdot \gamma} = 2 \cdot \beta \cdot \alpha_{s}}$$

Bruchursache Fall 2.4

$$R_{u} = f_{s} \cdot d^{2} \cdot \sqrt{\frac{2 \cdot \beta}{3(1+\beta)}} \cdot \frac{f_{y}}{f_{s}}$$

$$= \sqrt{\frac{4 \cdot \beta \cdot f_{s} \cdot d \cdot M_{pl}}{(1+\beta)}}$$

$$f_{s} = \frac{3(1+\beta)}{2\beta} \cdot \frac{R_{u}^{2}}{f_{y} \cdot d^{4}}$$
(13)

ł,

Dickenbedingung für die Bruchursache:

· ·

$$\frac{\alpha_{s}}{\sqrt{\gamma}} \geq 2 + 2 \cdot \sqrt{\frac{\beta}{1+\beta}}$$
$$\frac{\alpha_{m}}{\sqrt{\gamma}} \geq \frac{4}{\sqrt{\beta \cdot (1+\beta)}}$$

Die Annahme des ideal elastisch-plastischen Verhaltens der Lochleibungsfestigkeit wird auch nach Aune und Patton-Mallory |9| für die Bestimmung der Traglast als ausreichend angesehen. Der folgende Ansatz einer Lochleibungsspannungs-Verformungs-Beziehung

ergab etwa 6 % kleinere Traglasten. Ein solcher Ansatz erlaubt jedoch eine Aussage über das Verformungsverhalten vor dem Versagen. Dies ist jedoch nicht Gegenstand dieser Untersuchungen.

2.2 Entwurf zu Eurocode 5

Die Berechnung der charakteristischen Tragfähigkeit R_{K} (N) eines Stabdübels bzw. Bolzens im Entwurf zu Eurocode 5 |8| basiert auf der Plastizitätstheorie. Für eine Belastung in Faserrichtung wird ${\rm R}_{\rm K}$ wie folgt berechnet:

$$R_{K} = \min \{4, 5 \cdot d^{2} \cdot \sqrt{f} + 0, 2 \cdot f \cdot a_{s} \cdot d \quad (Fall 2.3) \quad (15c)$$

$$9 \cdot d^2 \cdot \sqrt{f} \cdot \sqrt{f_y/240}$$
 (Fall 2.4) (15d)

Die Gleichung (15c) auf Grundlage der Bruchursache Fall 2.3 wurde dabei gegenüber Gleichung (11) vereinfacht. Für die Lochleibungsfestigkeit f soll nach diesem Entwurf angenommen werden:

$$f = 0,09 \cdot \rho_k$$
 (16)

Für die Verschiebung bei einem Drittel der charakteristischen Tragfähigkeit wird ein Wert von 0,1·d angegeben. Die vorgebohrten Löcher in den Holzteilen sollten einen Durchmesser besitzen, der nicht größer als der des Stabdübels ist.

Es werden im Entwurf zu Eurocode 5 die in <u>Bild 2</u> dargestellten Mindestabstände der Stabdübel untereinander und von den Holzrändern vorgeschlagen.

<u>Bild 2:</u> Mindestabstände untereinander und von den Rändern. Der Abstand a₁ darf bis auf 4.d reduziert werden, wenn auch die Kraft proportional abgemindert wird. Wenn die Fließgrenze f_y größer als 240 MPa ist, dann sollte der Abstand a₁ um den Faktor $\sqrt{f_y/240}$ erhöht werden. Nach neueren Untersuchungen von Whale, Smith und Larsen |10| wurde die "effektive" Lochleibungsfestigkeit parallel zur Faserrichtung sowohl für Bolzen als auch für Stabdübel mit

$$f = 0,082 \cdot (1 - 0,01 \cdot d) \cdot \rho$$
 (17)

vorgeschlagen, um die Abhängigkeit der Lochleibungsfestigkeit vom Durchmesser der Verbindungsmittel zu berücksichtigen.

2.3 CIB-Structural Timber Design Code

Bei der Berechnung der charakteristischen Tragfähigkeit $R_{K}(N)$ für Stabdübel im CIB-Structural Timber Design Code aus dem Jahre 1983 [7] wurde auf die Bruchursache Fall 2.3 (Gl. 15c) ganz verzichtet. Die charakteristische Rohdichte ist im CIB-Code definiert als der 5 %-Fraktilwert aus dem Verhältnis der Masse bei 0 % Holzfeuchte zum Volumen im Klima 20/65. Um den CIB-Code mit dem Entwurf zu Eurocode 5 vergleichen zu können, wird die Rohdichte durch den Faktor 1,13 dividiert, so daß Masse und Volumen auf das Normalklima 20/65 bezogen sind.

Für eine Belastung in Faserrichtung wird im CIB-Code ${\rm R}_{\rm K}$ wie folgt berechnet:

$$0,077 \cdot \rho_{K} \cdot a_{s} \cdot d$$
 (18a)

$$R_{K} = \min \left\{ \begin{array}{c} 0,039 \cdot \rho_{K} \cdot a_{m} \cdot d \end{array} \right.$$
(18b)

$$2,79.\sqrt{\rho_{\rm K}} \cdot \sqrt{f_{\rm y}/240} \cdot d^2$$
 (18d)

Die Mindestabstände sowie Bohrlochdurchmesser im CIB-Code entsprechen den Vorschlägen im Entwurf zu Eurocode 5.

2.4 Vorschlag zur Berechnung der Traglast nach Gehri und Fontana

Dieses Tragmodell beruht ebenfalls auf den früheren Betrachtungen von Johansen |1|. Gehri und Fontana |1|| gehen jedoch davon aus, daß die Lochleibungsfestigkeit des Holzes keinen konstanten Wert darstellt, sondern von der Lochleibungsfläche bzw. vom beanspruchten Volumen abhängig ist. Da keine umfassenden Unterlagen vorliegen, wurde dieser Einfluß abgeschätzt.

Angenommen wurde eine Abnahme der Lochleibungsfestigkeit proportional zu $d^{-0,2}$. Für die Tragfähigkeit eines Stabdübels pro Scherfläche wurde angegeben:

$$(19a)$$

$$R_{u} = \min \left\{ 0, 4 \cdot \sqrt{f \cdot \beta_{z}} \cdot d^{1,8} + 0, 3 \cdot f \cdot \frac{\lambda}{\alpha} \cdot d^{1,8} \right. (19b)$$

$$\sqrt{f \cdot \beta_z} \cdot d^{1,8}$$
 (19c)

Hierin soll die Lochleibungsfestigkeit für Fichtenholz mit

$$f = 0,7 \cdot \beta_{D||} |N/mm^2|$$
 (20)

eingesetzt werden. Dieser Vorschlag verwendet also eine Lochleibungsfestigkeit, die im Gegensatz zum Entwurf Eurocode 5 bzw. CIB-Code nicht von der Rohdichte sondern von der Druckfestigkeit in Faserrichtung des Holzes abhängig gemacht wird. Die Konstante in Gl. 20 wurde aus Versuchen mit Stabdübeln d = 16 mm für kleine Schlankheiten ($\lambda \leq 2$) ermittelt.

3 Bisherige experimentelle Untersuchungen

3.1 <u>Prüfung von Stiftverbindungen an der</u> <u>Bayer. Landesgewerbeanstalt Nürnberg</u>

Von der LGA Nürnberg |12| wurden 1938 umfangreiche Versuche mit Stabdübelverbindungen durchgeführt, die später zur Festlegung der zulässigen Belastungen in DIN 1052 (Ausgabe Okt. 69) herangezogen wurden. Die Prüfung der zwei- und vierschnittigen Druckscherkörper erfolgte mit Stabdübeldurchmessern d = 10 mm und d = 17 mm sowie den Schlankheiten λ = 4 bis 20. Dabei kamen größtenteils Stahlstifte mit einer Zugfestigkeit von mehr als 600 N/mm² zur Anwendung. Die Versuche erbrachten bei der zulässigen Belastung nach DIN 1052 eine mittlere Verschiebung von etwa 0,8 mm sowie eine mehr als dreifache Bruchsicherheit gegenüber den mittleren Tragfähigkeiten.

3.2 Untersuchungen der deutschen Versuchsanstalt für Luftfahrt

Schrenk und Pilgrim [13] untersuchten an der deutschen Versuchsanstalt für Luftfahrt e.V. Verbindungen mit eingepaßten Einzelbolzen von d = 10 mm bei unterschiedlicher Lagerung. Es ergab sich, daß die Tragfähigkeit bis zu einer Schlankheit λ = 5 proportional zunimmt. Bei größeren Schlankheiten war die Tragfähigkeitssteigerung nur noch gering. Es wurde vorgeschlagen, daß der Abstand des Bolzens vom Ende des Holzteiles nicht weniger als 3,5 • d beträgt.

Bei weiteren Untersuchungen wurde die Verteilung des Lochleibungsdruckes über die Bolzenlänge näher untersucht. Zu diesem Zwecke wurde die Theorie des "Trägers auf elastischer Bettung" herangezogen. Zuverlässige Werte für die Bettungsziffer konnten jedoch nicht angegeben werden, da die Messungen bei niedriger Pressung nicht genau genug waren und die Bettungsziffer sich im Bereich höherer Spannungen mit der Pressung erheblich änderte.

3.3 Versuche an der Eidgen. Techn. Hochschule in Zürich

An der Eidgen. Techn. Hochschule in Zürich wurden von Gehri und Fontana |11|, |14|, |15| experimentelle und theoretische Untersuchungen an Paßbolzenverbindungen (Stabdübelverbindungen) durchgeführt. Dabei wurden an Zugscherkörpern folgende Parameter variiert:

Stabdübelschlankheit λ	= λ _m	1,5 7,5	
Stabdübeldurchmesser	d	8 24	(mm)
Stabdübelanzahl pro Verbindung	l n	4 18	
Stabdübelanordnung	nach	SIA 164 (1981)	16
Holzart		Brettschichthol	lz der
		Festigkeitsklas	sse A
		aus Fichte nach	n SIA 164
Stabdübelanordnung		nicht versetzt	

Die Untersuchungen wurden mit drei verschiedenen Stahlqualitäten für die Stabdübel durchgeführt. Die Versuche zeigten, daß die Tragfähigkeit der Stabdübelverbindungen nicht mit d², sondern nur mit d^{1,7} zunimmt. Mit hochfesten Stählen konnte bei größeren Schlankheiten eine Steigerung um 25 % erzielt werden. Für den Verschiebungsmodul ergab sich mit dem Exponentialansatz d^{1,7} eine befriedigende Übereinstimmung mit den Versuchswerten. Mit versetzter Stabdübelanordnung wurden nur wenige Versuche durchgeführt, die keine schlüssigen Folgerungen für die Notwendigkeit der versetzten Anordnung zulassen.

3.4 Untersuchungen am Forest Products Laboratory in Madison (USA)

Neuere Untersuchungen am Forest Products Laboratory in Madison |17| haben eine gute Übereinstimmung mit den Beobachtungen ergeben, die Trayer |18| bereits vor über 50 Jahren an Verbindungen mit Einzelbolzen machte. Es wurden Versuche an Verbindungen mit drei Bolzendurchmessern (d = 12,7; 25,4; 38,1 mm) und Schlankheiten λ_m von 2 bis 13 (Holzart: Douglasie) durchgeführt. Das Verhältnis Mittelholzdicke zu Seitenholzdicke war einheitlich α = 2. Es wurde eine "effektive" Lochleibungsfestigkeit f_m = 29,2 N/mm² für Douglasie, bezogen auf das Mittelholz, angegeben.

3.5 <u>Neuere Forschungsarbeiten der TRADA (England) auf dem Gebiet</u> der mechanischen Verbindungsmittel

Die TRADA (Timber Research and Development Association) in England hat in jüngerer Zeit (1983 bis 1985) eine Vielzahl von Untersuchungen über Holzverbindungen mit mechanischen Verbindungsmitteln durchgeführt [19] bis [25]. An sieben verschiedenen Holzarten, darunter auch Laubhölzer, wurden Lochleibungsfestigkeiten ermittelt. Dabei wurden unter anderem Einzelbolzen zwischen d = 8 mm und d = 20 mm parallel und rechtwinklig zur Faserrichtung des Holzes nach Klimatisierung im Normalklima geprüft. Die Löcher waren um 1,5 mm größer vorgebohrt. Die Schlankheit war bei den Versuchen nicht größer als zwei. Dabei wurde folgende lineare Abhängigkeit der "effektiven" Lochleibungsfestigkeit von der Rohdichte festgestellt:

$$f = \frac{0.1 - 0.0016 d}{2.5 \sin^2 \varphi + \cos^2 \varphi} \cdot \rho \qquad für Weichhölzer (21)$$

3

$$f = \frac{0.1 - 0.0016 \, d}{2.2 \sin^2 \Psi + \cos^2 \Psi} \quad f \text{ in Harthölzer} \quad (22)$$

und für Hart- und Weichhölzer zusammengenommen

$$f = \frac{0.082(1-0.01d)}{2.3\sin^2 \Psi + \cos^2 \Psi}$$
(23)

Es wurde bei den Versuchen beobachtet, daß es hinsichtlich der Tragfähigkeit der Verbindungen deutliche Unterschiede zwischen Bolzen aus warmgewalztem und kaltverformtem Stahl gibt. Zur Berücksichtigung der Verfestigung bei größeren Stahldehnungen wurde bei der Auswertung nach der Plastizitätstheorie für die Fließspannung als Rechenwert (sog. "rechnerische Fließspannung")

$$f_y = \frac{\beta_s + \beta_z}{2}$$
(24)

angenommen.

Zug- und Druckscherverbindungen zeigten, bedingt durch die unterschiedlichen Spannungsverteilungen im Bereich der Verbindungsmittel, auch unterschiedliche Lochleibungscharakteristiken; dies ist darauf zurückzuführen, daß sich das Holz bei Zugbeanspruchungen spröder verhält als bei Druckbeanspruchung.

3.6 Neuere Untersuchungen in Japan

In Tsukuba, Japan, |26| wurden verschiedene Einflüsse auf die Tragfähigkeit von Paßbolzenverbindungen an Brettschichtholz aus Tanne und Douglasie untersucht. Dabei wurden an fünf Versuchskörpertypen folgende Größen variiert:

Paßbolzendurchmesser	d	-	16 und 20 mm
Stabdübelschlankheit	λ _m	=	2; 4; 6 und 8
Stahlfließspannung	fy	Æ	500 N/mm²

Abstände

Randabstand ⊥ zur Kraftrichtung		2,5 d
Randabstand zur Kraftrichtung		2,5 d 10 d
Abstand untereinander in Faserrichtung		4 d und 7 d
des Holzes		
Anzahl der Bolzen pro Anschluß	n =	2 12
Anzahl der Reihen		1 3

Der Bohrlochdurchmesser entsprach dem Paßbolzendurchmesser. Als Ergebnis dieser Untersuchungen wurde folgendes mitgeteilt:

- Die mit Hilfe der Plastizitätstheorie berechneten Traglasten stimmen recht gut mit den Versuchsergebnissen überein, jedoch sind noch Forschungsarbeiten bezüglich der Lochleibungsfestigkeiten des Holzes und des plastischen Momentes der Verbindungsmittel erforderlich.
- Die Tragfähigkeit der Verbindungen ist bei kleiner werdenden Endabständen (Randabstände || zur Kraftrichtung) zunehmend von der Scherfestigkeit des Holzes abhängig.
- Bei Verbindungen mit Seiten- und Mittelhölzern ist die Traglast linear von der Schlankheit abhängig.
- Bei einer Schlankheit von 8 und einem Abstand von 7 d untereinander ist die Traglast pro Paßbolzen bei bis zu sechs hintereinanderliegenden Paßbolzen in etwa konstant. Bei den Schlankheiten 4 und 6 fällt die Traglast pro Paßbolzen mit steigender Paßbolzenanzahl ab. Bei einem Paßbolzenabstand von 4 d untereinander fällt die Traglast pro Paßbolzen bei steigender Paßbolzenanzahl unabhängig von der Schlankheit λ . Weiterhin wurde festgestellt, daß die Tragfähigkeiten der Verbindungen auch mit steigender Anzahl der Reihen abnehmen.

3.7 <u>Weitere Veröffentlichungen im Zusammenhang mit</u> <u>Stabdübelverbindungen</u>

In |27| sind weitere Veröffentlichungen angeführt, die im Zusammenhang mit Stiftverbindungen vor 1978 erschienen sind.

Im Rahmen eines Forschungsvorhabens an der FMPA Stuttgart wurde das Tragverhalten von Stabdübelanschlüssen bei Vorbohren mit dem Nenndurchmesser [28] an Stahlblech-Holz-Verbindungen untersucht. Die Versuchsergebnisse zeigten, daß bei diesen Verbindungen mit Stabdübeln der Durchmesser 8 und 16 mm die Verschiebung unter der zulässigen Belastung bei drei unterschiedlichen Herstellungsverfahren deutlich unter 1,5 mm lag.

Möhler hat in [29] viele in Deutschland durchgeführte Versuche bezüglich der Verschiebungsgrößen ausgewertet. Danach wurde für Stabdübelverbindungen folgendes vorgeschlagen:

Nadelvoll- und Brettschichtholz-Verbindungen:

Verschiebung bei der zul. Belastung zul F in N nach DIN 1052 Teil 2:

 $v_{zu} = 0,80 \text{ mm}$ (25)

Zugehöriger Verschiebungsmodul:

C = 1,25 zul F (N/mm) (26)

Stahlblech-Holz-Verbindungen (Löcher in den Blechen mit (d + 1) mm vorgebohrt):

> Verschiebung bei der zul. Belastung zul F in N nach DIN 1052 Teil 2:

 $v_{zulF} = 1,40 \text{ mm}$ (27)

Zugehöriger Verschiebungsmodul:

C = 0,7 zul F (N/mm) (28)

Verbindungen von Laubhölzern der Gruppe C nach DIN 1052 Teil 1:

Verschiebung bei der zul. Belastung zul F in N nach DIN 1052 Teil 2:

```
v_{zul F} = 0,67 \text{ mm} (29)
```

Zugehöriger Verschiebungsmodul:

C = 1,5 zul F (N/mm) (30)

Es wird jedoch ausdrücklich darauf aufmerksam gemacht, daß bei Anschlüssen für große Kräfte auch größere Verschiebungen auftreten können. Diese Vorschläge wurden in die Ausgabe April 1988 der DIN 1052 Teil 2 übernommen.

4 Versuche

Im Rahmen dieses Forschungsprojektes wurden an unterschiedlichen Prüfkörpern insgesamt 149 Einzelversuche an zweischnittigen Verbindungen durchgeführt. Die Belastung erfolgte grundsätzlich in Faserrichtung des Holzes. Anschlüsse unter einem Winkel zwischen Kraftund Faserrichtung des Holzes werden also bei diesen Untersuchungen nicht erfaßt.

4.1 Versuchsbezeichnung und Versuchsprogramm

Um die verschiedenen Einflüsse auf das Tragverhalten der Stabdübelverbindungen zu untersuchen, wurde ein umfangreiches Versuchsprogramm aufgestellt. <u>Tabelle 1</u> (Anlage 1) gibt eine Übersicht über die gesamten Versuche. Für die Versuchsbezeichnung wurde das unten dargestellte Schema gewählt:

Versuchsbezeichnung

Die einzelnen Versuchsreihen sollten folgende Einflüsse klären:

- Unterschied zwischen versetzter und unversetzter Stabdübelanordnung bei sonst gleichen Versuchsbedingungen;

Dazu wurden sowohl an Zugscherkörpern als auch an Druckscherkörpern mit verschiedenen Schlankheiten und Dübeldurchmessern vergleichende Versuche durchgeführt. Die Versuchsanzahl der einzelnen Reihen schwankte zwischen 3 und 5 Einzelversuchen.

- Einfluß der Rohdichte der zu verbindenden Hölzer;

Um den Rohdichteeinfluß genauer zu untersuchen,wurden Brettschichtholzträger aus Brettern mit niedriger und hoher Rohdichte in einem Holzleimbaubetrieb speziell für die Versuche zusammengestellt und verleimt. Die Auswahl der Bretter erfolgte durch Wägung. Somit konnte von einem gleichmäßigen Rohdichteverlauf über den Querschnitt ausgegangen werden. Es wurden zwei Versuchsreihen mit jeweils neun Einzelversuchen unter Druckscherbelastung und eine Versuchsreihe mit elf Einzelversuchen unter Zugscherbelastung durchgeführt.

Die Stabdübelschlankheit $\lambda = \lambda_m = 6$ wurde konstant gehalten. Pro Anschluß wurden jeweils sechs Stabdübel mit dem Durchmesser d = 16 mm bzw. d = 30 mm verwendet.

- Unterschied zwischen Druckscher- und Zugscherbelastung;

Die Beanspruchung des Holzes ist bei einer Zugscherbeanspruchung ungünstiger als bei einer Druckscherbeanspruchung. Da aber die Prüfung von Zugkörpern vor allem bei den großen Stabdübeldurchmessern einen großen materiellen und finanziellen Aufwand bedeutet, sollte der Unterschied an repräsentativen Versuchen ermittelt werden. Dazu wurden für die Stabdübelschlankheit $\lambda_m = 6$ Zugund Druckscherversuche mit den Stabdübeldurchmessern d = 8; 16; 24 und 30 mm durchgeführt. Bei den kleinen Durchmessern d = 8 mm und d = 16 mm wurde zusätzlich noch die Schlankheit variiert.

- Einfluß von Dübeldurchmesser und Schlankheit;

Stabdübeldurchmesser und Schlankheit haben einen signifikanten Einfluß auf die Tragfähigkeit der Verbindung. Folgende drei Stabdübelschlankheiten und vier Stabdübeldurchmesser wurden daher variiert:

> λ = 4; 6 und 8 d = 8; 16; 24 und 30 mm

- Einfluß des Stabdübelwerkstoffes;

In der Praxis wird zur Herstellung von Stabdübeln sowohl blanker (kaltverformter) als auch warmgewalzter Rundstahl St 37 verwendet. Die Hauptuntersuchung erfolgte an blankem Rundstahl St 37K. Zusätzlich wurde eine Versuchsreihe mit warmgewalztem Rundstahl St 37-2 aufgenommen.

- Tragverhalten verschiedener Holzarten;

Um das Tragverhalten von Vollholz verschiedener Holzarten zu untersuchen, wurden Versuche mit den einheimischen Nadelhölzern Fichte/Tanne und Douglasie sowie mit jeweils einem Vertreter der drei in DIN 1052 Teil 1 (Ausgabe April 1988) neu aufgenommenen Laubholzgruppen durchgeführt. Folgende Laubhölzer wurden als Zugscherkörper geprüft:

> Laubholzgruppe A – Buche Laubholzgruppe B – Afzelia Laubholzgruppe C – Bongossi (Azobé)

Dabei ergab sich die Schwierigkeit, Buche bzw. Afzelia in größeren Querschnitten zu erhalten, da diese Hölzer meist nur als Blockware im Holzhandel zur Verfügung stehen. Somit konnten entsprechende Versuchskörper nur mit Stabdübeln d = 8 mm hergestellt werden. Dagegen war Bongossi in unterschiedlichen Dimensionen als Kantholz erhältlich. Wegen der großen Bruchlasten bei den Druckscherkörpern aus Bongossi wurde die Stabdübelanzahl der Verbindungen auf vier reduziert. Somit war auch ein Vergleich mit bereits am Lehrstuhl für Ingenieurholzbau und Baukonstruktionen der Universität Karlsruhe früher durchgeführten Versuche mit versetzter Stabdübelanordnung möglich. Um die Versuchsdaten mit Vollholz aus Nadelholz denen aus Brettschichtholz direkt gegenüberstellen zu können, erfolgte die Prüfung an Druckscherkörpern.

4.2 Versuchsmaterial

4.2.1 Brettschichtholz

Das Brettschichtholz (BSH) aus Nadelholz für die Versuchskörper stammt aus mehreren Lieferungen eines deutschen Holzleimbaubetriebes. Die Lagerung aller Hölzer zur Klimatisierung und die Durchführung der Versuche erfolgte im Prüflabor bei Normalklima DIN 50 014 - 20/65-2.

Da Brettschichtholz in der Regel aus Lamellen unterschiedlicher Güte besteht, wurde die mittlere Rohdichte des Gesamtquerschnittes jedes einzelnen Seiten- und Mittelholzes durch Wiegen und Abmessen ermittelt. Zur statistischen Auswertung wurden jeweils 30 Einzelwerte für BSH hoher und niedriger Rohdichte und 320 Einzelwerte für BSH mittlerer Rohdichte herangezogen. Der Mittelwert der Rohdichte der Seiten- und Mittelhölzer <u>aller</u> Versuchskörper aus BSH betrug 443 kg/m³, die Standardabweichung 36 kg/m³. Somit errechnet sich der 5 %-Fraktilwert unter Annahme einer Gauß'schen Normalverteilung zu $\rho_5 = 384 \text{ kg/m}^3$. Zur Bestimmung der Holzeigenschaften wurden aus Lamellen im Bereich der Stabdübel insgesamt 100 Einzelproben in den Abmessungen 3 x 3 x 6 cm herausgeschnitten und nach den einschlägigen deutschen Holzprüfnormen geprüft. In <u>Tabelle 2</u> sind die Mittel- und Grenzwerte sowie die Standardabweichungen und die Variationskoeffizienten zusammengestellt.

		Brettschichtholz niedrige Rohdichte	Brettschichtholz mittlere Rohdichte 77	Brettschichtholz hohe Rohdichte
	.proben	£ 1		12
Rohdichte der	Kleinstwert	346	350	435
Einzelproben	Mittelwert	<u>382</u>	423	<u>528</u>
E	Größtwert	407	540	620
5u [kg/m³]	Standard- abweichung	27,8	46,2	63,8
₩- -	Variations- koeffizient	7,3 %	10,9 %	12,1 %
	Kleinstwert	9,2	8,9	10,0
Holzfeuchte	Mittelwert	<u>10,3</u>	<u>10,7</u>	10,7
U	Größtwert	11,0	12,5	11,3
[%]	Standord- abweichung	0,59	0,83	0,37
	Variations- koeffizient	5,7 %	7,7 %	3,5 %
Druckfestigkeit	Kleinstwert	31,4	33,2	48,0
in	Mittelwert	41,3	47,4	63,3
Faserrichtung	Größtwert	46,7	66,3	75,0
bei u≸ Gaŭ	Standard- abweichung	4,79	7,84	10,02
[N/mm ²]	Variations- koeffizient	11,6 %	16,5 %	15,8 %
Druckfestigkeit	Kleinstwert	23,9	27,8	38,9
in Faserrichtung	Mittelwert	32,6	38,2	50,6
umgerechnet	Größtwert	37,4	58,8	52,2
αυf υ= 15 %	Standard- abweichung	4,01	6,33	7,47
[N/mm ²]	Variations- koeffizient	12,3 %	16,5 %	14,8 %
mittlere	Kleinstwert	1,7	1,3	1,2
Jahrringbreite	Mittelwert	4,2	3,1	2,1
[mm]	Größtwert	6,3	6,6	3,6

ž

Tabelle 2: Materialeigenschaften des Brettschichtholzes

 $\beta_{D15} \| = \frac{17}{32 - u} \cdot \beta_D \|$

4.2.2 Vollholz aus Nadelholz

Für die vergleichenden Versuche mit den Nadelhölzern Fichte/Tanne und Douglasie wurden die in <u>Tabelle 3</u> zusammengestellten Holzeigenschaften an 18 Proben ermittelt.

Tabelle 3: Materialeigenschaften der Vollhölzer aus Nadelholz

		Fichte / Tanne niedrige Rohdichte	Fichte / Tanne hohe Rohdichte	Douglasie
Anzahl der Einzelpro	ben	6	6	6
Rohdichte der	Kleinstwert	346	471	411
Einzelproben	Mittelwert	<u>377</u>	<u>501</u>	<u>490</u>
g [£] u [kg∕m³]	Größtwert	407	531	588
Holzfeuchte	Kleinstwert	10,7	11,4	10,1
u (%)	Mittelwert	<u>11,0</u>	11,6	10,9
	Größtwert	11,4	11,9	11,5
Druckfestigkeit in	Kleinstwert	33,3	46,7	44,3
Faserrichtung bei	Mittelwert	40,4	53,3	54,2
u% β _D ∥ [N∕mm²]	Größtwert	46,0	58,7	66,1
Druckfestigkeit in Faserrichtung	Kleinstwert	27,5	38,9	36,4
umgerechnet auf u = 15%	Mittelwert	32,8	<u>44,4</u>	43,6
β _{D15} ll [N/mm²]	Größtwert	37,1	48,7	53,0
mittlere	Kleinstwert	3,1	1,7	4,5
Jahrringbreite	Mittelwert	6,0	2,6	5,7
[mm]	Größtwert	9,0	3,9	6,9

 $\beta_{D15} \parallel = \frac{17}{32 - 4} \cdot \beta_D \parallel$

4.2.3 Laubholz

Die Laubhölzer der verschiedenen Laubholzgruppen wurden vom Holzhandel bezogen. Das gedämpfte Buchen- und das kondensationsgetrocknete Afzeliaholz wurden als Blockware angeliefert. Dagegen war Bongossi als Schnittholz mit Querschnittsabmessungen von 20/40 cm ohne Schwierigkeiten erhältlich.

Die ermittelten Werkstoffeigenschaften der einzelnen Laubhölzer sind aus <u>Tabelle 4</u> ersichtlich.

Tabelle 4: Materialeigenschaften der Laubhölzer

		Gruppe A Buche	Gruppe B Afzelia	Gruppe C Bongossi
Anzahl der Einzelpro	ben	3	3	12
Rohdichte der	Kleinstwert	591	778	1018
Einzelproben	Mittelwert	<u>600</u>	<u>793</u>	<u>1053</u>
gu ^E [kg/m³]	Größtwert	610	812	1099
Holzfeuchte	Kleinstwert	10,3	11,6	13,5
u [%]	Mittelwert	10,4	11,7	<u>15,1</u>
	Größtwert	10,6	11,8	17,4
Druckfestigkeit in	Kleinstwert	55,5	72,3	69,4
Faserrichtung bei	Mittelwert	56,3	74,6	84,9
υ% β _D ‼ [N/mm²]	Größtwert	57,0	78,4	96,2
Druckfestigkeit in Faserrichtuna	Kleinstwert	43,5	60,8	79,0
umgerechnet auf v = 15%	Mittelwert	<u>44,3</u>	<u>62,4</u>	85,4
β _{D15} [N/mm²]	Größtwert	44,8	65,3	92,2

ş.

 $\beta_{D15} \parallel \approx \frac{17}{32 - u} \beta_D \parallel$

Die Rohdichte des Gesamtquerschnittes der einzelnen Seiten- und Mittelhölzer wurde nach dem Zuschneiden bestimmt. Folgende Kleinst-, Mittel- und Größtwerte wurden dabei ermittelt:

Buche	602	• • •	618	•••	655	kg∕m³
Afzelia	748	• • •	792	• • •	831	kg∕m³
Bongossi	1107	• • •	1183	• • •	1231	kg/m³

Der Unterschied zwischen der Rohdichte des Gesamtquerschnittes und der Einzelproben bei Bongossi ist auf die unterschiedliche Holzfeuchte zum Zeitpunkt der Bestimmung zurückzuführen. Nach dem Zuschneiden der Versuchshölzer war die Holzfeuchte mit ca. 25 %, bedingt durch die langsame Trockenzeit, noch relativ hoch. Dagegen hatte zum Zeitpunkt der Rohdichteermittlung bei den Einzelproben längere Zeit nach den Tragfähigkeitsversuchen die Holzfeuchte auf im Mittel 15,1 % abgenommen.

4.2.4 Stabdübel

Die Stabdübel wurden aus Rundstahl aus mehreren Lieferungen gefertigt. Aus verschiedenen Stangen wurde Material entnommen, um runde Zugproben nach DIN 50 125 herzustellen. Für jeden Durchmesser wurden bis zu fünf Zugversuche nach DIN 50 145 durchgeführt. Die Mittelwerte der Versuchsergebnisse sind in Tabelle 5 zusammengestellt.

Stahlqualitöt	Durchmesser		Mittelwerte			
noch Herstellerongoben	d [mm]	Oberfläche	Streckgrenze $\bar{\beta}_s \left[N/mm^2 \right]$	Zugfestigkeit ${ar{eta}}_z$ [N/mm²]	Bruchdehnung Ē _u [%]	
St 37 K	8	blank	670	678	13	
St 37 K	16	blank	612	620	13	
St 37 K	24	blank	506	552	17	
St 37 K	30	blank	578	636	16	
St 37-2	8	wormgewalzt	380	445	38	
St 37-2	16	warmgewalzt	368	448	38	
St 37-2	24	warmgewalzt	333	431	35	
St 37-2	30	warmgewalzt	312	433	34	

Tabelle 5: Werkstoffeigenschaften des Stabdübelmaterials

Hieraus geht hervor, daß die Stahlgüte je nach Durchmesser unterschiedlich war und die Festigkeitswerte vor allen Dingen bei dem blanken Material merklich über den Anforderungen der Stahlgüte St 37 lagen.

In <u>Bild 3</u> sind Spannungs-Dehnungslinien aus den Versuchen mit blankem und warmgewalztem Rundstahl qualitativ dargestellt. Man erkennt, daß durch die Kaltverformung der Stahl verfestigt wird und keine ausgeprägte Streckgrenze vorhanden ist.

ξ

<u>Bild 3:</u> Spannungs-Dehnungs-Diagramm von blankem und warmgewalztem Rundstahl

Zur Berücksichtigung der Verfestigung bei größeren Stahldehnungen wurde zur Auswertung nach der Plastizitätstheorie für die Fließspannung (siehe Abschnitt 3.5, Gl. (24))

$$f_y = \frac{\beta_s + \beta_z}{2}$$

eingesetzt.

4.3 Prüfkörper und Versuchsdurchführung

Die in <u>Bild 4</u> (Anlage 2) dargestellten Versuchskörper wurden mit den Durchmessern d = 8; 16; 24 und 30 mm sowie den Schlankheiten λ = 4; 6 und 8 geprüft. Das Verhältnis Seitenholzdicke a_s zu Mittelholzdicke a_m wurde bei allen Versuchen konstant gehalten (a_s/a_m = 0,75). In <u>Tabelle 6</u> (Anlage 3) sind die Querschnittsabmessungen und die Stabdübelabstände der einzelnen Versuchskörper angegeben. Die Löcher für die Stabdübel wurden mit dem Nenndurchmesser gebohrt. Die <u>Bilder</u> <u>5 und 6</u> zeigen den Versuchsaufbau für Zugscherversuche mit Stabdübeln d = 8 und 16 mm. <u>Bild 7</u> zeigt einen Druckscherkörper mit Stabdübeln d = 24 mm unter dem Prüfrahmen.

Im Gegensatz zu den Druckscherkörpern werden bei Zugscherkörpern zwei Anschlüsse gleichzeitig geprüft, wobei aber nur die Traglast des schwächeren der beiden Anschlüsse ermittelt werden kann.

Zur Bestimmung der Verschiebung des Anschlusses wurden induktive Wegaufnehmer, wie in <u>Bild 8</u> und <u>Bild 9</u> dargestellt, angebracht. Gemessen wurde für jeden Anschluß die Verschiebung zwischen Mittelund Seitenholz. Die Werte beider Wegaufnehmer pro Anschluß wurden automatisch gemittelt und mit Hilfe eines X-Y-Schreibers in Abhängigkeit von der Kraftanzeige der Prüfmaschine aufgezeichnet.

Die Durchführung der Versuche erfolgte nach ISO 6891-1983. Die Versuche wurden mit 1 mm/min weggesteuert gefahren. Die Druckscherkörper wurden unter einem Prüfrahmen mit einem bzw. zwei Druckzylindern (Höchstlast pro Kolben max F = 400 kN) geprüft. Bei Versuchen mit zwei Kolben wurde die Kraft über ein ausgesteiftes IPB-Profil in den Prüfkörper eingeleitet.

Die Zugscherkörper mit Stabdübeln d = 8 und 16 mm wurden mittels Universalprüfmaschinen mit einer Maximalprüfkraft von 100 kN bzw.

<u>Bild 5:</u> Zugscherkörper mit Stabdübeln d = 8 mm in der Prüfmaschine

Bild 6: Zugscherkörper mit Stabdübeln d = 16 mm in der Prüfmaschine

<u>Bild 7:</u> Druckscherkörper mit Stabdübeln d = 24 mm unter dem Prüfrahmen; beidseitig sind Wegaufnehmer angeordnet

Bild 8: Anordnung der Wegaufnehmer bei Zug- und Druckscherkörpern

Bild 9: Detail Zuganschluß mit induktiven Wegaufnehmern

- 29 -

250 kN auf Zug belastet. Bei diesen Prüfkörpern konnte die Krafteinleitung in die Mittelhölzer durch profilierte Stahlplatten erfolgen (vgl. Bild 5 und 6).

Dagegen konnten die Zugversuche mit Stabdübeln d = 24 und 30 mm nur unter großem Aufwand durchgeführt werden. Die Versuchskörper hierzu wurden entsprechend den <u>Bildern 10 und 11</u> (Anlage 4 und 5) ausgebildet. Die Krafteinleitung erfolgte mit Hilfe von eingeschlitzten Stahlplatten und Stabdübeln d = 16 mm. Die Einspannstelle wurde jeweils außen durch 10 mm dickes Baufurniersperrholz aus Buche verstärkt (vgl. <u>Bild 12</u>). Dieser Anschluß zeigte bei den Traglasten der zu prüfenden Verbindungen lediglich elastische Verformungen, so daß die Stabdübel wiederverwendet werden konnten. Die Versuche wurden in einer 3000 kN Zugprüfmaschine durchgeführt. Die gesamte Prüfkörperlänge mit den Spannköpfen betrug 4,40 m. <u>Bild 13</u> zeigt einen Versuchskörper mit Stabdübeln d = 30 mm in dieser Prüfmaschine.

ě.

<u>Bild 12:</u> Krafteinleitung mit Hilfe von eingeschlitzten Stahlplatten und Stabdübeln; Verstärkung durch Bau-Furniersperrholz aus Buche

Bild 13:

Prüfkörper mit Stabdübeln d = 30 mm in der Prüfmaschine

5 Ergebnisse der Versuche

Die Kraft-Verschiebungs-Diagramme aller Versuche sind in den <u>Bildern</u> <u>14 bis 74</u> (Anlage 6 bis 36) dargestellt. Die aufgenommenen Tragkräfte pro Stabdübel, die Zug- bzw. die Druckspannungen sowie die mittleren Lochleibungsspannungen im Mittelholzquerschnitt für jeden Einzelversuch sind in den <u>Tabellen 7a bis 14a</u> (Anlage 37 bis 46) zusammengestellt. Weiterhin ist aus den Tabellen die Kraft pro Stabdübel bei einer Verschiebung von 1,5 mm sowie die zulässige Belastung eines Stabdübels nach DIN 1052 ablesbar. In den <u>Tabellen</u> <u>7b bis 14b</u> (Anlage 37 bis 46) sind die einzelnen Versuchswerte und die daraus errechneten Verschiebungsmoduln angegeben. Die Verschiebungswerte bzw. Verschiebungsmoduln wurden nach ISO 6891 berechnet.

Es wurden dabei folgende Symbole und Beziehungen verwendet:

Tragkraft pro Stabdübel:	Fu,s
Kraft pro Stabdübel bei	
1,5 mm Verschiebung:	F _{1,5}
geschätzte Tragkraft pro Stabdübel:	F _{est}
zul. Belastung eines Stabdübels	
nach DIN 1052:	zul F
max. Druckspannung im Bruttoquerschnitt	
des Mittelholzes:	max. σ_{D}
max. Zugspannung im Nettoquerschnitt	
des Mittelholzes:	max. ♂Z∥,n
mittlere Lochleibungsfestigkeit	F
im Mittelholz:	$\beta_{l,m} = \frac{u,s}{\lambda \cdot d^2}$
Anfangsverschiebung:	v _a = v ₀₄
Anfangsverschiebung ohne Schlupf:	$v_{a,mod} = \frac{3}{4} (v_{04} - v_{01})$
Schlupf:	v _s = v _a - v _{a,mod}
Elastische Verschiebung:	$v_e = \frac{2}{3} (v_{14} + v_{24} - v_{11} - v_{21})$

Verschiebung bei der zul. Belastung nach DIN 1052:

Anfangsverschiebungsmodul:

Verschiebungsmodul ohne Schlupf:

^vzul F C = $\frac{0.4 \cdot F_{est}}{v_a}$ C_{mod} = $\frac{0.4 \cdot F_{est}}{v_{a,mod}}$

ķ

Das idealisierte Lastverschiebungsdiagramm in <u>Bild 75</u> soll die angegebenen Verschiebungsgrößen verdeutlichen.

Bild 75: Idealisiertes Last-Verschiebungsdiagramm

In den <u>Tabellen 15 bis 17</u> (Anlage 47 bis 49) sind die Ergebnisse der einzelnen Versuchsreihen zusammengefaßt. Es sind die Mittelwerte verschiedener Kraft- und Spannungsgrößen sowie der Mittelwert der Verschiebung bei der zul. Belastung nach DIN 1052 angegeben. In den beiden letzten Spalten dieser Tabellen sind die Mittelwerte des Anfangsverschiebungsmoduls und des Verschiebungsmoduls aus jeder Versuchsreihe ablesbar.

Die Hauptursache des Versagens der Prüfkörper war ein Aufspalten der Seitenhölzer. Fast ausschließlich war ein Aufreißen an der äußeren Dübelreihe zu beobachten. <u>Bild 76</u> zeigt ein vollkommen aufgespaltenes Seitenholz bei einem Zugscherkörper. Teilweise war auch ein Versagen des Mittelholzes, vor allen Dingen bei der Schlankheit $\lambda = 4$ festzustellen. In den <u>Bildern 76 bis 79</u> sind verschiedene Versagensarten dargestellt. Bei örtlichen Störungen durch Äste, wie in <u>Bild 78</u> zu sehen, war ein Zugbruch zu beobachten. Eine weitere Versagensform war das Abscheren des Vorholzes,wie in <u>Bild 79</u> gezeigt.

Bild 76: Aufspalten der Seitenhölzer eines Zugscherkörpers Versuch U 4/6/2

<u>Bild 77:</u> Aufspalten des Seitenholzes eines Druckscherkörpers Versuch U-D 3/8/3

<u>Bild 78:</u> Bruch des Gesamtquerschnittes infolge großer Ästigkeit Versuch V 1/6/1

Bild 79: Abscheren des Vorholzes Versuch U-D/W 2/6/1

6 Untersuchung verschiedener Einflüsse auf die Tragfähigkeit der Stabdübelverbindungen (Auswertung der Versuche)

6.1 Unterschied zwischen versetzter und unversetzter Stabdübelanordnung

Die Tragfähigkeit einer Stabdübelverbindung zeigte bei einer Belastung in Faserrichtung des Holzes keinen signifikanten Unterschied zwischen unversetzter und versetzter Anordnung der Stabdübel.

Die Kraft-Verschiebungs-Diagramme ließen zum großen Teil bei der unversetzten Anordnung sogar ein steiferes Verhalten erkennen. Vergleicht man die Kräfte bei 1,5 mm Verschiebung untereinander, so wird diese Beobachtung deutlich. In Tabelle 18 sind die Versuchsergebnisse der Tragkräfte gegenübergestellt. Es besteht jedoch ein geringfügiger Unterschied in der Beanspruchungsart. Bei reiner Zugbeanspruchung macht sich die versetzte Anordnung zum Teil ungünstig bemerkbar, da durch das Versetzen mehr Zugfasern des Holzes unterbrochen werden. Bei Druckbeanspruchung wirkt sich die versetzte Anordnung durchweg leicht vorteilhaft aus, da größtenteils als Bruchursache das Aufspalten der Seitenhölzer eintritt. Dem wirkt das Versetzen entgegen. Weiterhin ist zu bemerken, daß bei größeren Durchmessern und somit größeren Holzdicken ein geringfügiges Verlaufen der Holzbohrer unvermeidlich ist, so daß zwangsläufig die Stabdübel auf der Rückseite leicht versetzt sind. Aus diesem Grund nähern sich die Versuchsergebnisse der Druckscherversuche von versetzter und nicht versetzter Stabdübelanordnung bei steigendem Durchmesser an.

ş.

Frühere Druckscherversuche am Lehrstuhl für Ingenieurholzbau und Baukonstruktionen an Bongossiholz mit versetzter Stabdübelanordnung (siehe <u>Tabelle 22</u>) aber sonst gleichen Versuchsbedingungen ergaben im Vergleich mit denen im Rahmen dieses Forschungsvorhabens durchgeführten Druckscherversuchen ebenfalls keinen wesentlichen Unterschied.

Tabelle 18: Vergleich der Tragkräfte bei versetzter und unversetzter Stabdübelanordnung

Versuchsreihe	Anzahl der Versuche n	Beanspruchungs- art/Stabdübel- anordnung	Stabdübel- Durchmesser d mm	Schlankheits- grad λ	Mittelwert Tragkraft F _u kN	Verhältnis F _u versetzt F _u unversetzt
V 1/8/n	3	Zug/vers.	8	8	54,8	
U 1/8/n	5	Zug/unvers.	8	8	55,8	0,98
V-D 1/8/n	3	Druck/vers.	8	8	66,8	
V-D 1/8/n	5	Druck/unvers.	8	8	66,1	1,01
V 1/6/n	3	Zug/vers.	8	6	53,5	
U 1/6/n	5	Zug/unvers.	8	6	48,5	1,10
V 2/8/n	3	Zug/vers.	16	8	194,3	<u> </u>
U 2/8/n	5	Zug/unvers.	16	8	198,6	0,98
V-D 2/8/n	3	Druck/vers.	16	8	291,7	
U-D 2/8/n	5	Druck/unvers.	16	8	267,0	1,09
V 2/6/n	3	Zug/vers.	16	6	187,2	
U 2/6/n	5	Zug/unvers.	16	6	187,2	1,00
V-D 2/6/n	3	Druck/vers.	16	6	244,8	
U-D 2/6/n	3	Druck/unvers.	16	6	219,5	1,12
V-D 3/6/n	3	Druck/vers.	24	6	451,4	
U-D 3/6/n	3	Druck/unvers.	24	6	453,0	1,00
V-D 4/6/n	3	Druck/vers.	30	6	683,1	0.00
U-D 4/6/n	3	Druck/unvers.	30	6	689,5	0,44

è,

6.2 Einfluß der Rohdichte

Die Literaturrecherche ergab bereits, daß zwischen der Lochleibungsfestigkeit und der Rohdichte des Holzes ein enger Zusammenhang besteht. An drei Versuchsserien mit Brettschichtholz wurde dieser Einfluß experimentell untersucht. In <u>Bild 80</u> ist die Abhängigkeit der mittleren Lochleibungsfestigkeit $\beta_{l,m}$ von der Rohdichte bei Normalklima dargestellt. Dabei sind außer den Versuchswerten auch die Geraden eingezeichnet, die sich aus der linearen Regression ergeben. Die mittlere Lochleibungsfestigkeit ist wie folgt definiert:

$$\beta_{l,m} = \frac{F_u}{n \cdot \lambda \cdot d^2} \qquad |N/mm^2| \qquad (31)$$

ţ.

<u>Bild 81</u> veranschaulicht diese Definition. Als Bezugsrohdichte wurde der Mittelwert aller an der Verbindung beteiligten Hölzer gewählt.

Der Korrelationskoeffizient für die Druckscherversuche mit d = 16 mm ergibt sich zu r = 0,87, mit d = 30 mm zu r = 0,94. Bei den Druckscherversuchen mit Stabdübeln d = 16 mm war der Rohdichteunterschied zwischen den Seitenhölzern und dem Mittelholz größer, womit auch die größere Streuung zu erklären ist. Bei den Zugscherversuchen war die Anpassung der Versuchswerte an die Regressionsgerade nicht so gut wie bei den Druckscherversuchen (r = 0,77). Dieses hat seine Ursache im spröderen Bruchverhalten von Zugverbindungen. Eine quasi lineare Abhängigkeit der Lochleibungsfestigkeit des Brettschichtholzes von der Rohdichte konnte jedoch bestätigt werden. Sie ist aber von den Stabdübeldurchmessern und von der Beanspruchungsart (Zug- oder Druckscheren) abhängig.

Versuche mit Brettschichtholz Rohdichte = Mittelwert aus Seiten- und Mittelhölzer Stabdübelschlankheit= 6

<u>Bild 80:</u> Mittlere Lochleibungsfestigkeit $\beta_{l,m}$ in Abhängigkeit von der Rohdichte ρ des Holzes

- 40 -

Bild 81: Qualitative Verteilung der Lochleibungsspannung ($\beta = 1$)

6.3 Unterschied zwischen Druckscher- und Zugscherbeanspruchung

Die Tragfähigkeit der Stabdübelverbindung war bei Zugscherbeanspruchungen in allen Versuchen geringer als bei Druckscherbeanspruchungen. In <u>Tabelle 19</u> sind die Tragkräfte der unterschiedlichen Beanspruchungsarten gegenübergestellt. Bei den Zugscherversuchen wurde versuchsbedingt nur die Tragkraft des schwächeren der beiden Anschlüsse eines Prüfkörpers ermittelt. Statistisch gesehen ist die Tragfähigkeit des "zweiten" Anschlusses eines Zugscherkörpers in jedem Fall höher. Im Mittel war die Tragkraft bei Zugscherbeanspruchung um 20 % geringer als bei Druckscherbeanspruchung. Diese Beobachtung ist durch die ungünstigere Zugkrafteinleitung und das sprödere Verhalten des Holzes auf Zug zu erklären. Die sogenannte Kerbwirkung und die örtlich ungleichmäßige Spannungsverteilung macht sich bei einer Zugscherbeanspruchung offenbar infolge des geringen Abbaus der Spannungen durch plastische Verformungen stärker bemerkbar. Aus diesen Gründen ist auch der Unterschied zwischen Zug- und Druckscherbeanspruchung bei kleineren Schlankheiten nicht so groß, da die Lochleibungsspannungsverteilung in solchen Fällen wesentlich gleichmäßiger ist.

Zur Berücksichtigung der Beanspruchungsart kann als Ergebnis aus den Versuchen folgende Beziehung angenommen werden:

ş.

 $F_{u}^{\star} = 1,0 \cdot F_{u} \quad (Zug) \quad k_{ZS} = 1,0 \quad (Zugscheren)$ $F_{u}^{\star} = 0,8 \cdot F_{u} \quad (Druck) \quad k_{DS} = 1,25 \quad (Druckscheren)$ (32)

 F_{u}^{\star} ist dabei eine auf den Fall der Zugscherbeanspruchung bezogene Tragkraft.

Das Verformungsverhalten der Zug- und Druckscherkörper im elastischen Bereich ist im Rahmen der Paßgenauigkeit der Verbindung in etwa gleich.

Versuchsreihe	Beanspruchungsart/ Stabdübelanordnung	Stabdübel- durchmesser d	Schlankheitsgrad λ	Mittelwert Tragkraft F _u KN	Verhältnis F _u (Zug) F _u (Druck)	
U 1/8/n	Zug/unvers.	8	8	55,8	0.04	
U-D 1/8/n	Druck/unvers.	8	8	66,1	0,84	
V 1/8/n	Zug/vers.	8	8	54,8	0.00	
V-D 1/8/n	Druck/vers.	8	8	66,8	0,82	
U 1/6/n	Zug/unvers.	8	6	48,5	0.70	
U-D 1/6/n	Druck/unvers.	8	6	61,2	0,79	
U 2/8/n	Zug/unvers.	16	8	198,6	<u>.</u>	
U-D 2/8/n	Druck/unvers.	16	8	267,0	0,74	
V 2/8/n	Zug/vers.	16	8	194,3		
V-D 2/8/n	Druck/vers.	16	8	291,7	0,67	
U 2/6/n	Zug/unvers.	16	6	187,2	0.05	
U-D 2/6/n	Druck/unvers.	16	6	219,5	0,85	
V 2/6/n	Zug/vers.	16	6	187,2	0.70	
V-D 2/6/n	Druck/vers.	16	6	244,8	0,76	
N/U 2/6/n	Zug/unvers.	16	6	166,5		
N/U-D 2/6/n	Druck/unvers.	16	6	210,7	0,79	
H/U 2/6/n	Zug/unvers.	16	6	195,2		
H/U-D 2/6/n	Druck/unvers.	16	6	238,6	0,82	
U 2/4/n	Zug/unvers.	16	4	162,5		
U-D 2/4/n	Druck/unvers.	16	4	173,1	0,94	
U 3/6/n	Zug/unvers.	24	6	343,0		
U-D 3/6/n	Druck/unvers.	24	6	453,0	0,76	
U 4/6/n	Zug/unvers.	30	6	527,0		
U-D 4/6/n	Druck/unvers.	30	6	689,5	0,76	
		L	4	·	$\bar{x} = 0,80$	

ł,

Tabelle 19: Vergleich der Tragfähigkeiten bei Zugscher- und Druckscherbeanspruchung

6.4 Einfluß des Stabdübeldurchmessers

Wie die Betrachtungen über die Rohdichte zeigten, ist die Lochleibungsfestigkeit aber auch abhängig vom Durchmesser d des Stabdübels. Stellt man die mittlere Lochleibungsfestigkeit in Abhängigkeit vom Durchmesser für jede Schlankheit λ dar (<u>Bild 82</u>), so ergibt sich, daß mit steigendem Durchmesser die Lochleibungsfestigkeit abfällt. Die mittlere Lochleibungsfestigkeit $\beta_{l,m}$ wurde mit dem Faktor

$$\frac{1}{k\rho} = \frac{\overline{\rho}}{\min \rho_s}$$
(33.)

à

$$\bar{\rho}$$
 : Mittelwert der Rohdichte aller Versuchshölzer aus BSH
bei Normalklima ($\bar{\rho}$ = 443 kg/m³)

 $\mbox{min}~\rho_{S}$: Kleinster Rohdichtewert der Seitenhölzer eines Versuchskörpers

vervielfacht, um den Einfluß der Rohdichte des Brettschichtholzes zu berücksichtigen. Als Bezugsrohdichte wurde min ρ_s gewählt, weil als Bruchursache meistens das Versagen der Seitenhölzer eintrat. Weiterhin wurden die Tragkräfte aus den Druckscherversuche mit dem Faktor 0,8 multipliziert, um die Versuchsergebnisse beider Beanspruchungsarten angleichen zu können (vgl. dazu Abschnitt 6.3 und Gl. 32).

Wertet man die Versuchsergebnisse mit Hilfe einer linearen Regression aus, so ergibt sich für die Schlankheit λ = 6 die folgende Geradengleichung, bezogen auf den Mittelwert der Rohdichte aller Versuchshölzer:

$$\beta_{l,m} = 24,84 (1 - 0,012 d) r = -0,85$$
 (34)

Bei den Schlankheiten $\lambda = 4$ und 8 zeigte sich eine ähnliche Tendenz; sie konnte jedoch wegen der geringen Anzahl von Versuchen statistisch nicht abgesichert werden.

Versuche mit Brettschichtho Stabdübelschlankheit= 6 F^{*}_U = 0.8*F_U (Druck) F^{*}_U = 1.0*F_U (Zug)

<u>Bild 82:</u> Mittlere Lochleibungsfestigkeit $\beta_{1,m}$ in Abhängigkeit vom Durchmesser d des Stabdübels

- 45 - Setzt man die tatsächlich festgestellte Tragkraft und die geometrischen Größen eines jeden Versuchskörpers sowie die Fließspannungen des Stabdübelmaterials in die Gleichungen (8), (10), (12) und (14) des theoretisch hergeleiteten Rechenmodells (siehe Abschnitt 2.1) ein, so erhält man eine Lochleibungsspannung,die von der Schlankheit λ unabhängig ist. Zur Verdeutlichung des Unterschieds zwischen $\beta_{l,m}$ und f ist in <u>Bild 81</u> die qualitative Verteilung der Lochleibungsspannung angegeben. Bei dieser Berechnung wurde die unterschiedliche Rohdichte der einzelnen Hölzer der Versuchskörper mit Hilfe eines Faktors β^* berücksichtigt:

$$\beta^* = \frac{\rho_m}{\rho_s} \tag{35}$$

Der größte errechnete Wert aus den vier Gleichungen ergibt dann die tatsächliche Lochleibungsfestigkeit. In <u>Bild 83</u> ist diese Lochleibungsfestigkeit f in Abhängigkeit vom Durchmesser d des Stabdübels dargestellt. Die lineare Regression ergab folgende Geradengleichung bezogen auf den Mittelwert der Rohdichte aller Versuchshölzer:

$$f = 31,95 (1 - 0,012 d) r = -0,79$$

= 0,072 (1 - 0,012 d) $\overline{\rho}$ (36)

3

Weiterhin ergibt sich aus diesen Auswertungen, daß das Rechenmodell der Plastizitätstheorie ein geeignetes Mittel ist, die Tragfähigkeiten und die Bruchursachen von Stabdübelverbindungen zu bestimmen. Vergleicht man Gl. (36) mit Gl. (17), so ist die im Rahmen dieser Untersuchung ermittelte Lochleibungsfestigkeit geringer. Die "effektive" Lochleibungsfestigkeit nach Whale/Smith und Larsen [10] wurde jedoch aus Versuchen mit <u>einem</u> Bolzen und einem Randabstand von 7d an Versuchskörpern mit der Schlankheit $\lambda = 1,67$ bestimmt. Bei den hier durchgeführten Versuchen waren sechs Stabdübel pro Verbindung sowie geringere Abstände vorhanden, die die Tragfähigkeit der Verbindung insgesamt beeinflussen (siehe auch [26]).

- 47 -

Zug-u. Druckscherversuche mit Brettschichtholz $F_U^* = 1.0*F_U^* (Zug)$ $F_U^* = 0.8*F_U^* (Druck)$

<u>Bild 83:</u> Lochleibungsfestigkeit f nach Plastizitätstheorie in Abhängigkeit vom Durchmesser d des Stabdübels

6.5 Einfluß der Stabdübelschlankheit

Die Stabdübelschlankheit hat je nach Bruchursache einen mehr oder weniger großen Einfluß auf die Tragfähigkeit der Verbindung.

In den <u>Bildern 84 bis 87</u> sind die rechnerischen Tragkräfte R_u eines Stabdübels je Scherfläche für eine zweischnittige Verbindung in Abhängigkeit von der Schlankheit λ für alle geprüften Stabdübeldurchmesser dargestellt. In diese Diagramme wurden mit der in Abschnitt 6.4 ermittelten "effektiven" Lochleibungsfestigkeit und der vorhandenen Fließspannung die rechnerische Tragkraft nach der Plastizitätstheorie (siehe Abschnitt 2.1) eingezeichnet.

Daß sich bei den Stabdübeln entsprechend der Plastizitätstheorie unterschiedliche Biegelinien ausbilden, zeigen die <u>Bilder 88 bis</u> <u>90.</u> Bei der Schlankheit λ = 4 sind die Stabdübel nach Erreichen der Bruchlast kaum verformt. Dagegen zeigen die Verbindungsmittel bei den Schlankheiten λ = 6 und 8 größere Verformungen,jedoch mit unterschiedlichen Fließzonen.

Um die theoretische Gleichung für die Bruchursache Fall 2.3 (siehe Abschnitt 2.1) zu vereinfachen und um gleichzeitig eine bessere Übereinstimmung mit den Versuchsergebnissen zu erhalten,wurde mit Hilfe einer linearen Regression folgende Gerade "eingepaßt":

$$R_{u} = 5.5 \cdot \sqrt{f} \cdot d^{2} + 0.25 \cdot f \cdot a_{s} \cdot d |N|$$
 (37)

Stellt man in den <u>Bildern 84 bis 87</u> den 2,75-fachen Wert der zulässigen Belastung nach DIN 1052 Teil 2 in Abhängigkeit von der Schlankheit dar, so zeigt sich, daß diese Gleichungen nur bedingt das Tragverhalten zutreffend widerspiegeln. Insbesondere bei grö-Beren Stabdübeldurchmessern werden die vorhandenen Tragfähigkeiten offenbar überschätzt. Bei kleineren Durchmessern und großen Schlankheiten wäre hingegen eine bessere Ausnutzung der Anschlüsse möglich.

1

49 -

.

* Mittelwert einer Versuchsreihe
Gesamtanzahl der Versuche = 27
F^{*}_U = 1.0*F_U {Zug}
F^{*}_U = 0.8*F_U (Druck)

<u>Bild 84:</u> Tragkraft R_u je Scherfläche einer zweischnittigen Verbindung in Abhängigkeit von der Schlankheit λ für einen Stabdübel d = 8 mm

Gesamtanzahl der Versuche = 45 F^{*}_U =1.0+F_U (Zug) F^{*}_U =0.8+F_U (Druck)

<u>Bild 85:</u> Tragkraft R_u je Scherfläche einer zweischnittigen Verbindung in Abhängigkeit von der Schlankheit λ für einen Stabdübel <u>d = 16 mm</u>

- 50 -

<u>Bild 86:</u> Tragkraft R_u je Scherfläche einer zweischnittigen Verbindung in Abhängigkeit von der Schlankheit λ für einen Stabdübel <u>d = 24 mm</u>

Т ച 1

Gesamtanzahl der Versuchsteine $F_{U}^{*} = 1.0*F_{U}$ (Zug) $F_{U}^{*} = 0.8*F_{U}$ (Druck)

<u>Bild 87:</u> Tragkraft R_u je Scherfläche einer zweischnittigen Verbindung in Abhängigkeit von der Schlankheit λ für einen Stabdübel <u>d = 30 mm</u>

1 52 -

<u>Bild 88:</u> Aufgespaltener Versuchskörper U-D 2/4/3 Schlankheit λ = 4 Stabdübeldurchmesser d = 16 mm

Bild 89: Aufgespaltener Versuchskörper NH-N/U-D 2/6/1 Schlankheit λ = 6 Stabdübeldurchmesser d = 16 mm

<u>Bild 90:</u> Aufgespaltener Versuchskörper U-D 2/8/1 Schlankheit λ = 8 Stabdübeldurchmesser d = 16 mm

6.6 Einfluß des Stabdübelwerkstoffes

Versucht man die gewonnenen Erkenntnisse aus den vorausgegangenen Abschnitten auf die Versuchsreihen mit warmgewalztem Rundstahl anzuwenden (siehe <u>Tabelle 20</u>), so zeigt sich, daß außer bei den Versuchen mit d = 8 mm die Versuchsergebnisse mit den rechnerischen Tragkräften gut übereinstimmen. Die rechnerischen Tragkräfte wurden mit dem Faktor $k_{\rm DS}$ = 1,25 (siehe Gl. 32) multipliziert, da es sich um Druckscherversuche handelte.

Bei genauerer Untersuchung der Stabdübel mit d = 8 mm konnte festgestellt werden, daß die Oberflächen schon vor dem Einbau stark angerostet waren und somit die Reibung einen starken Einfluß auf die Tragfähigkeiten der Verbindungen hatte. Diese relativ starke Korrosion war bei den anderen Durchmessern nicht festzustellen. Die Oberfläche des warmgewalzten Rundstahls ist gegenüber dem blanken Material rauher sowie die Maßhaltigkeit geringer. Da diese handelsüblichen Stähle eine ausgeprägte Streckgrenze und eine deutliche Wiederverfestigung aufweisen, sollte zur Ermittlung der Traglast, die erst bei größeren Verformungen erreicht wird, für die Fließspannung fy die Beziehung nach Gl. (24) eingesetzt werden. Auch zeigten die aufgespaltenen Versuchskörper nach den Versuchen, daß die Schlankheit λ = 6 für St 37-2 in etwa die Grenze zwischen Bruchursache Fall 2.3 und Fall 2.4 darstellt.

6.7 <u>Tragfähigkeit von Stabdübeln in Vollholz verschiedener</u> Holzarten

6.7.1 Nadelhölzer

Die Versuche mit Vollholzprüfkörpern aus Fichte/Tanne mit ausgesuchter niedriger und hoher Rohdichte sowie Douglasie bestätigen das Rechenmodell. In <u>Tabelle 21</u> sind die rechnerisch ermittelten Trag-

Tabelle 20:Vergleich der rechnerisch ermittelten Tragkräfte mit denVersuchsergebnissen für Stabdübel aus St 37-2

Versuchs- Reihe	Durchmesser d mm	Mittelwert Tragkraft pro Stabdübel u. Scherfläche Fu,SS kN	rechn. Tragkraft ¹⁾ Bruchursache Fall 2.3 R _u KN	rechn. Tragkraft ²⁾ Bruchursache Fall 2.4 R _u kN	Verhältnis <u>Fu,SS</u> min R _u	Bruchursache nach Versuch
U-D/W 1/6/n	8	6,45	4,96	5,05	1,30	2.3
U-D/W 2/6/n	16	17,12	18,24	18,96	0,94	2.3 und 2.4
U-D/W 3/6/n	24	39,57	37,32	38,75	1,06	2.3 und 2.4
U-D/W 4/6/n	30	57,27	53,86	56,73	1,06	2.3

1)
$$R_u = 1,25 (5,5 \cdot \sqrt{f} \cdot d^2 + 0,25 \cdot f \cdot a_s \cdot d)$$

2) $R_u = 1,25 (f \cdot d^2 \sqrt{\frac{1}{3}} \frac{f_y}{f_y})$

(Bruchursache Fall 2.3)

(Bruchursache Fall 2.4)

$$f = 31,95 \cdot (1 - 0,012 d)$$
 $f_y = 0,5 \cdot (\beta_S + \beta_Z)$

Versuchsreihe	Durchmesser	Mittelwert	Mittelwert	rechn.	rechn.	rechn.	Verhältnis
	d	Tragkräfte	Rohdichte	Tragkräfte	Tragkräfte	Tragkräfte	F _{u.SS}
		pro Stabdübel		Bruchursache	Bruchursache	Bruchursache	min R ₁₁
		u. Scherfläche		2.2	2.3	2.4	U.
	(mm	aus Versuchen Fu,SS kN	₽ kg/m³	1) R _u KN	2) R _u KN	3) R <mark>u</mark> kN	
NH-H/U-D 2/6/n	16	21,30	501	27,98	<u>19,99</u>	24,76	1,07
NH-N/U-D 2/6/n	16	13,97	377	21,05	16,14	21,47	0,87
Dou/U-D 2/6/n	16	20,34	490	27,37	19,66	24,48	1,03

Tabelle 21:Vergleich der rechnerisch ermittelten Tragkräfte mit denVersuchsergebnissen von Vollholz aus Nadelholz

 $f = 0,072 \cdot (1 - 0,012 d) \cdot \overline{\rho}$

Druckscherbelastung: $k_{DS} = 1,25$ Zugscherbelastung: $k_{ZS} = 1,00$

1)
$$R_{u} = 0,5 \cdot f \cdot a_{m} \cdot d \cdot k_{DS,ZS}$$

2) $R_{u} = (5,5 \cdot \sqrt{f} \cdot d^{2} + 0,25 \cdot f \cdot a_{s} \cdot d) k_{DS,ZS}$
3) $R_{u} = (f \cdot d^{2} \cdot \sqrt{\frac{1}{3} f_{y}/f} \cdot k_{DS,ZS})$
 $d_{a_{m}}$ in $|mm| = R_{u}$ in $|N|$

(Bruchursache Fall 2.2)

(Bruchursache Fall 2.3)

(Bruchursache Fall 2.4)

kräfte den Versuchsergebnissen gegenübergestellt. Nur der Wert der Versuche mit niedriger Rohdichte liegt um 13 % unter dem Rechenwert. Bei niedriger Rohdichte weicht das Kraft-Verformungsdiagramm mehr von der Annahme eines ideal elastisch-plastischen Verhaltens ab. Der Übergangsbereich zwischen elastischem und plastischem Verhalten ist in diesem Fall ausgedehnter.

6.7.2 Laubhölzer

Für Bongossiholz lagen aus jüngerer Zeit Karlsruher Versuchsergebnisse für Druckscherkörper mit versetzter Stabdübelanordnung mit je vier verzinkten Stabdübeln und den Schlankheiten λ = 4; 6 und 8 vor. Vergleichende Versuche mit unversetzter Stabdübelanordnung und blanken Stabdübeln wurden daher im Rahmen dieses Forschungsvorhabens durchgeführt. Die Ergebnisse der beiden Untersuchungen mit Schlankheit $\lambda = 6$ sowie die Lochleibungsfestigkeiten, die sich daraus nach der Plastizitätstheorie ergeben, sind in Tabelle 22 angegeben. Hieraus geht hervor, daß die rechnerische Lochleibungsfestigkeit der früheren Versuche mit d = 24 und 30 mm stark von den neuen Versuchen abweicht. Diese Abweichungen nach der sicheren Seite sind in erster Linie durch Wirkung von zusätzlichen Längskräften infolge Reibung verursacht worden. Die feuerverzinkte Stabdübeloberfläche ist gegenüber der blanken rauher. Die Verzinkung der Stabdübel mit d = 16 mm war verhältnismäßig dick, so daß in diesem Fall die Zinkschicht während der Belastung der Prüfkörper mechanisch abgelöst werden konnte, und somit die Tragfähigkeit durch die Reibung kaum beeinflußt wurde.

Weiterhin lassen die Ergebnisse vermuten, daß die Lochleibungsfestigkeit bei Bongossiholz nicht in dem Maße wie bei anderen Holzarten vom Durchmesser abhängig ist. Der Mittelwert der "effektiven" Lochleibungsfestigkeit der Versuche mit blankem Rundstahl beträgt $f = 84,9 \text{ N/mm}^2$. Dividiert man diesen Wert durch den Mittelwert der Rohdichte des Gesamtquerschnittes von 1183 kg/m³, so ergibt sich folgende Beziehung:

$$f = 0,072 \ \overline{\rho}$$
 (38)

Diese Gleichung entspricht der Gl. (36), jedoch ohne den Anteil, der den Durchmessereinfluß berücksichtigt.

Setzt man in Gl. (38) die mittlere Rohdichte von Afzelia ein, so ergibt sich eine "effektive" Lochleibungsfestigkeit f von 57 N/mm² und daraus eine rechnerische Tragkraft R_u von 6,76 kN. Der Unterschied zwischen Versuch ($\overline{F}_{u,ss}$ = 7,27 kN) und Rechnung liegt somit bei 7,5 %.

Dagegen zeigte Buche ein anderes Bruch- und Verformungsverhalten gegenüber den anderen geprüften Laubhölzern. An <u>Bild 91</u> ist dieses sehr duktile Verhalten erkennbar. Das Aufspalten der Seiten- bzw. Mittelhölzer erfolgte,wenn überhaupt, bei sehr großen Verformungen. Aus den Kraft-Verschiebungsdiagrammen (Anlage 33) ist ein stetiges Ansteigen der Kraft-Verformungs-Linie zu erkennen, welches die Annahmen der Plastizitätstheorie verletzt. Die Tragkräfte der Verbindungen mit Buche und Bongossi unterscheiden sich nur geringfügig, die Rohdichten hingegen fast um den Faktor 2. Ob diese Duktilität der Buchen-Verbindung allein durch das Dämpfen der Buche hervorgerufen wird, konnte im Rahmen dieses Forschungsvorhabens nicht geklärt werden.

Tabelle 22: Versuchsergebnisse und rechnerische Lochleibungsspannung nach der Plastizitätstheorie von Bongossiholz

Versuchsreihe	Durchmesser d	Beanspruchungsart/ Stabdübelanordnung	Mittelwert Tragkraft aus Versuchen Fu,SS kN	Mittelwert rechn. Fließspannung f _y N/mm ²	Lochleibungs- festigkeit nach Plastizitätstheorie f N/mm ²	Bruch- ursache Fall
C/U 1/6/n	8	Zug/unvers.	8,31	674	75,0	2.4
C/U-D 2/6/n	16	Druck/unvers.	38,27	616	87,1	2.4
C/U-D 4/6/n	30	Druck/unvers.	137,63	607	92,5	2.4
Frühere Karlsruher Versuche						
1.2 a - c	16	Druck/vers.	31,32	508	70,7	2.4
2.2 a - b	24	Druck/vers.	86,89	434	125,8	2.4
3.2 a - b	30	Druck/vers.	133,95	342	155,4	2.4

$$f_y = \frac{\beta_S + \beta_Z}{2}$$

- 59 -

<u>Bild 91:</u> Aufgespaltene Versuchskörper aus Buche (A), Afzelia (B) und Bongossi (C)

7 Verformungsverhalten und Verschiebungsmodul von Stabdübelverbindungen

Zur genaueren Berechnung der Durchbiegung von Fachwerkträgern und Aussteifungsverbänden sowie zur Berücksichtigung der Nachgiebigkeit einer Verbindung werden Angaben über Verschiebungen unter Gebrauchslast und Verschiebungsmoduln benötigt. Die Auswertung der Versuche ergab, daß mit zunehmendem Durchmesser auch die Verschiebungen unter den zulässigen Belastungen nach DIN 1052 zunehmen. Stellt man den errechneten Verschiebungsmodul C_{mod} und den Anfangsverschiebungsmodul C nach ISO 6891 pro Scherfläche und Stabdübel für Nadelhölzer in Abhängigkeit vom Durchmesser d dar, (siehe <u>Bild 92 und 93</u>) so lassen sich die Versuchswerte mit Hilfe der Geraden

$$C_{mod} = (1,2 \cdot d - 1,6) \cdot \overline{\rho} \qquad r = 0,95 \qquad (39)$$

sowie C = (1,1 \cdot d - 2,0) \cdot \bar{\rho} \qquad r = 0,93 \qquad (40)

anpassen. Dabei wurde die Rohdichte eines jeden Versuchskörpers durch den Faktor $\overline{\rho}/_{\min\rho}$ berücksichtigt. Die Auswertung erfolgte anhand der Versuche mit blankem Rundstahl normiert auf die Fließspannung von 600 N/mm². Die Beziehungen nach Gl. (39 und 40) können auch für warmgewalzte Stähle St 37-2 angesetzt werden.

Somit kann die Verschiebung eines Anschlusses bis zu einer Belastung in Höhe von $R_{\mu}/2,75$ mit Hilfe folgender Gleichung berechnet werden:

$$v = \frac{\text{vorh } F}{C_{\text{mod}}} + v_{\text{S}}$$
(4))

ð.

Bei Stabdübelverbindungen aus Nadelholz kann ein Schlupf v_S von 0,2 mm angenommen werden. In <u>Tabelle 23</u> sind die errechneten Verschiebungen einer Verbindung nach Gl. (41) den Verschiebungen der Versuche mit entsprechendem Durchmesser bei zul F gegenübergestellt.

Zug- und Druckscherversuche mit Brettschichtholz

<u>Bild 92:</u> Verschiebungsmodul C_{mod} je Scherfläche einer zweischnittigen Verbindung mit blankem Rundstahl in Abhängigkeit vom Durchmesser d für einen Stabdübel - 62 -

Zug- und Druckscherversuche mit Brettschichtholz

<u>Bild 93:</u> Anfangsverschiebungsmodul C je Scherfläche einer zweischnittigen Verbindung mit blankem Rundstahl in Abhängigkeit vom Durchmesser d für einen Stabdübel - 63 -
Dabei wurde C_{mod} mit Hilfe des 5 %-Fraktilwertes der Rohdichte ($\rho_5 = 384 \text{ kg/m}^3$) berechnet. Die errechneten Verschiebungen lagen in allen Fällen über dem Mittelwert und innerhalb des angegebenen Bereichs. Auch die in [29] veröffentlichten Verschiebungsgrößen werden gut mit den oben angegebenen Gleichungen erfaßt.

Tabelle 23:	Gegenüberstellung der Verschiebungen bei zul F
	im Versuch und nach Gl. (41) für Verbindungen von
	Nadelhölzern

Stabdübel- durchmesser d	Verschiebungs- modul C _{mod} nach G1.39	Verschiebungen V _{zulF} aus Versuchen			^V zulF nach Gl. (41)
mm	N / mm	min	mittel	max	mm
8 16	6144 13517	0,35 0,48	0,61 0,98	0,85 1,42	0,72 1,14
24	20890	1,05	1,54	1,95	1,56
30	26419	1,10	1,58	2,05	1,88

Bei Bolzenverbindungen, bei denen das Bohrloch 1 mm größer als der Bolzenschaft gebohrt werden darf, beträgt der Schlupf v_S zwischen 1 und 2 mm. Zur genaueren Bestimmung dieses Wertes müßten entsprechende Versuche durchgeführt werden. Mit Hilfe von Gl. (41) könnte man aber einen Gebrauchstauglichkeitsnachweis führen, so daß man nicht generell die Anwendung von Bolzenverbindungen einschränken müßte.

Für Verbindungen von Laubhölzern kann ein etwa 25 % höherer Verschiebungsmodul gegenüber solchen von Nadelhölzern angenommen werden:

$$C_{\text{mod}} = 1,25 \ (1,2 \ d - 1,6) \cdot \overline{\rho}$$
 (42)

Der Schlupf v $_{\rm S}$ kann für Laubholzverbindungen mit maximal 0,1 mm angenommen werden.

In <u>Tabelle 24</u> sind Versuch und Rechnung gegenübergestellt. Da für Laubholz nur wenige Versuche vorliegen, war die Ermittlung des 5 %-Fraktilwertes der Rohdichte nicht sinnvoll. Somit wurde in die Gleichung für C_{mod} der Mittelwert der Rohdichte eingesetzt. Bei der Gegenüberstellung wurden die Versuchswerte mit Bongossiholzverbindungen aus |29| mitverwendet.

Tabelle 24:	Gegenüberstellung de	[.] Verschiebungen bei zul F im Versuch
	und nach Gl. (41) fü	[.] Verbindungen von Laubhölzern

Holzart	Stabdübel- durchmesser d	Verschiebungen ^V zulF ^{aus} Versuchen mm		Verschiebungs- modul C _{mod} nach Gl. (42)	V _{zul} F nach Gl. (41) (V _S = 0,1 mm)	
		min	mittel	max		
	mm				N / mm	mm
Buche	8	0,36	0,38	0,40	12360	0,40
Afzelia	8	0,23	0,30	0,36	15840	0,36
Bongossi	8	0,19	0,22	0,23	23600	0,32
Bongossi	16	0,28	0,35	0,71	51920	0,49
Bongossi	24	0,32	0,53	0,73	80240	0,67
Bongossi	30	0,46	0,65	0,75	101480	0,81

Die berechneten Verschiebungen nach Gl. (41) liegen höher als der Mittelwert der Versuchsergebnisse. Da aber nur wenige Versuche, vor allen Dingen mit anderen Laubhölzern, vorliegen, sollte der Verschiebungsmodul grundsätzlich mit der charakteristischen Rohdichte des einzelnen Laubholzes berechnet werden. Bei den bisherigen Versuchen war der Schlupf $v_{\rm S} < 0,1$ mm.

8 Zusammenfassung

Die Tragfähigkeit einer Stabdübelverbindung zeigt bei einer Belastung in Faserrichtung des Holzes keinen nennenswerten Unterschied zwischen versetzter und unversetzter Stabdübelanordnung. Das Vorbohren der Löcher mit dem Nenndurchmesser der Stabdübel reduziert die Spaltgefahr des Holzes im Vergleich zu der früher geforderten Vorbohrung mit einem kleineren Durchmesser. Die Tragfähigkeiten und die Steifigkeiten der Verbindungen steigen in etwa linear mit der Rohdichte des Holzes. Die ungünstigere Krafteinleitung und das sprödere Verhalten des Holzes reduzieren die Tragfähigkeiten bei reiner Zugscherbeanspruchung um etwa 20 % gegenüber einer Druckscherbeanspruchung. Somit kann bei reiner Druckscherbeanspruchung in Faserrichtung des Holzes die Tragfähigkeit einer Stabdübelverbindung unter Berücksichtigung eines Faktors

k_{DS} = 1,25 (Druckscheren)

berechnet werden. Bei Zugscherbeanspruchung ist jedoch

k₇₅ = 1,00 (Zugscheren)

anzusetzen.

Der Durchmesser der Stabdübel bzw. Bolzen hat einen Einfluß auf die Lochleibungsfestigkeit des Holzes. Diese "effektive" Lochleibungsfestigkeit kann für Nadelholz zu

 $f = 0,072 \cdot (1 - 0,012 \cdot d) \cdot \rho \quad |N/mm^2| \quad (36)$

angenommen werden. Eine Vereinfachung in Form:

$$f = 0,07 \cdot (1 - 0,01 \cdot d) \cdot \rho \qquad |N/mm^2| \qquad (43)$$

wirkt sich bei der rechnerischen Ermittlung der Tragkraft nicht nennenswert aus (vgl. Tabelle 25). Dabei ist d in mm und ρ in kg/m³

einzusetzen. Mit Hilfe dieser Lochleibungsfestigkeit f und der Fließspannung f, kann die Tragfähigkeit (in N) pro Verbindungsmittel und Scherfläche einer zweischnittigen Verbindung in Faserrichtung als kleinster Wert der folgenden Beziehungen errechnet werden:

ş.

$$0,5 \cdot f \cdot a_{m} \cdot d \cdot k_{DS,ZS}$$
(45)

 $R_{u} = \min \begin{cases} 0, 5 \cdot f \cdot a_{m} \cdot d \cdot k_{DS,ZS} \\ (5,5 \cdot \sqrt{f} \cdot d^{2} + 0, 25 \cdot f \cdot a_{s} \cdot d) \cdot k_{DS,ZS} \\ f \cdot d^{2} \cdot k_{DS,ZS} \cdot \sqrt{\frac{1}{3} \cdot f_{y/f}} \\ f, f_{y} \quad in |N/mm^{2}|; a_{s}, a_{m}, d \quad in |mm| \end{cases}$ $f_v = 0,5 (\beta_S + \beta_7)$

<u>Bild 94</u> zeigt den Verlauf von R $_{\rm u}$ /f \cdot d 2 für verschiedene Durchmesser in Abhängigkeit von der Schlankheit, welcher durch die oben angegebenen Formeln beschrieben wird.

In Tabelle 25 ist der Mittelwert der Tragkraft pro Stabdübel und Scherfläche aus jeder Versuchsreihe mit BSH mit der rechnerisch ermittelten Tragfähigkeit verglichen. Dabei wurde in Gl. (36) einmal der Mittelwert der Rohdichte (-- R_{μ}) der verwendeten Hölzer sowie in einer zweiten Rechnung der 5 %-Fraktilwert (-- R_{u,5}) eingesetzt. Vergleichend dazu wurde in einer dritten Rechnung der 5 %-Fraktilwert der Rohdichte in die vereinfachte Gleichung für die Lochleibungsfestigkeit (Gl. 43) eingesetzt. Die daraus ermittelten Tragfähigkeiten wurden mit $R_{u,5}^{*}$ bezeichnet. Läßt man die Versuchsreihe

-

Tabelle 25:	Vergleich der rechnerisch ermittelten Tragfähigkeiten
	mit den Versuchsergebnissen für Verbindungen aus
	Brettschichtholz

Versuchsreihe	F _{u,ss} [kn]	min R _u ¹⁾ [kN]	F _{u, ss} min R _u	2) min R _{U,5} [kN]	<u>F_{yss}</u> minR _{y5}	min R* ³⁾ [kN]	F _{uss} minR _{u5}
U 1/6/n V 1/6/n U 1/8/n V 1/8/n	4.04 4.46 4.65 4.57	3.97 3.97 4.66 4.66	1.02 1.12 1.00 0.98	3.56 3.56 4.16 4.16	1. 14 1. 25 1. 12 1. 10	3.53 3.53 4.12 4.12	1. 15 1. 26 1. 13 1. 11
N/U 2/6/n U 2/6/n H/U 2/6/n U 2/0/n V 2/6/n V 2/6/n V 2/8/n	13.88 15.60 16.26 16.55 15.60 16.19	14.57 14.57 14.57 17.04 14.57 17.04	0.95 1.07 1.12 0.97 1.07 0.95	13.09 13.09 13.09 15.23 13.09 15.23	1.06 1.19 1.24 1.09 1.19 1.06	13. 19 13. 19 13. 19 15. 36 13. 19 15. 36	1.05 1.18 1.23 1.08 1.18 1.05
U 3/6/n	28.58	29.81	0.96	26, 81	1.07	27.56	1.04
U 4/6/n	43.92	43.03	1.02	38.74	1. 13	40.52	1.08
U-D 1/6/n U-D/V 1/6/n U-D 1/8/n V-D 1/8/n	5. 10 6. 45 5. 51 5. 56	4.96 4.96 5.82 5.82	1.03 1.30 0.95 0.96	4.45 4.45 5.20 5.20	1. 15 1. 45 1. 06 1. 07	4.41 4.41 5.16 5.16	1.16 1.46 1.07 1.08
U-D 2/4/n N/U-D 2/6/n U-D 2/6/n U-D/V 2/6/n U-D/V 2/6/n U-D 2/8/n V-D 2/6/n V-D 2/8/n	14.42 17.56 18.29 19.88 17.12 22.25 20.40 24.31	15. 12 18. 21 18. 21 18. 21 18. 21 18. 21 18. 21 18. 21 21. 31 21. 31	0.95 0.96 1.00 1.09 0.94 1.04 1.12 1.14	13.68 16.36 16.36 16.36 16.36 16.36 19.04 16.36 19.04	1.05 1.07 1.12 1.22 1.25 1.17 1.25	13.78 16.49 16.49 16.49 16.49 16.49 19.20 16.49 19.20	1.05 1.06 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20
U-D 3/4/n U-D 3/6/n U-D/V 3/6/n U-D 3/8/n V-D 3/6/n V-D 3/8/n	29.91 37.75 39.57 39.47 37.62 44.06	31. 13 37. 27 37. 32 43. 40 37. 27 43. 40	0.96 1.01 1.06 0.91 1.01 1.02	28.20 33.51 33.51 38.83 33.51 38.83 33.51	1.06 1.13 1.18 1.02 1.12 1.13	20.93 34.27 34.27 39.45 34.95 34.96 39.96	1.03 1.10 1.15 0.99 1.09 1.10
U-D 4/4/n N/U-D 4/6/n U-D 4/6/n H/U-D 4/6/n U-D/V 4/6/n V-D 4/6/n	49.73 53.73 57.46 60.53 57.27 56.93	45. 10 53. 79 53. 79 53. 79 53. 79 53. 86 53. 79	1. 10 1. 00 1. 07 1. 13 1. 06 1. 06	39.81 48.42 48.42 48.42 48.42 48.27 48.42	1.25 1.11 1.19 1.25 1.19 1.18	42.34 50.65 50.65 50.77 50.77 50.65	1. 17 1. 06 1. 19 1. 20 1. 15 1. 12

ą.

1) Ru mit f=0,072(1-0,012·d)·g ·

2) $R_{u,5}$ mit $f = 0.072 \cdot (1 - 0.012 \cdot d) \cdot g_5$ 3) $R_{u,5}^{*}$ mit $f = 0.072 \cdot (1 - 0.012 \cdot d) \cdot g_5$

mit Stabdübeln des Durchmessers d = 8 mm aus warmgewalztem Rundstahl wegen der in Abschnitt 6.6 angegebenen Gründe außer Betracht, so beträgt der Unterschied zwischen der rechnerischen Tragkraft aus dem Mittelwert der Rohdichte und dem Versuchswert maximal 14 %, in den meisten Fällen aber unter 10 %. Die rechnerische Tragkraft mit Hilfe des 5 %-Fraktilwertes der Rohdichte in Gl. (36) und Gl. (43) wurde nur von zwei Einzelversuchsergebnissen unterschritten. Die Ermittlung der charakteristischen Tragfähigkeit einer Bolzen- und Stabdübelverbindung mit Hilfe der charakteristischen Rohdichte des verwendeten Holzes erscheint daher sinnvoll.

Mit den oben angegebenen Gleichungen steht ein mechanisches Modell zur Verfügung, welches das Tragverhalten im Grenzzustand beschreibt. Wenn das stochastische Modell der Basisvariablen – also der maßgebenden streuenden Einflußgrößen – bekannt ist, kann auch die Zuverlässigkeit im Rahmen des probabilistischen Sicherheitskonzepts abgeschätzt werden. Derartige Untersuchungen sollten in nachfolgende Forschungsprojekte einbezogen werden.

Die Versuche mit warmgewalztem Rundstahl machten deutlich, daß sich eine rauhere Oberflächenbeschaffenheit des Verbindungsmittels laststeigernd auswirken kann.

Die Lochleibungsfestigkeit von Bongossi ließ keine Abhängigkeit vom Durchmesser des Stabdübels erkennen. Wie sich die Lochleibungsfestigkeiten anderer Laubhölzer in Abhängigkeit vom Stabdübeldurchmesser verhalten, konnte im Rahmen dieses Forschungsprojektes nicht hinreichend geklärt werden. Auch zeigte gedämpfte Buche gegenüber den anderen geprüften Laubhölzern ein deutlich anderes Bruch- und Verformungsverhalten. Die Verschiebung einer Stabdübelverbindung bis zu einer Belastung von $R_{\rm u}/2,75$ kann mit Hilfe folgender Gleichung berechnet werden:

$$v = \frac{\text{vorh } F}{C_{\text{mod}}} + v_{\text{S}}$$
(41)

Dabei kann bei Stabdübelverbindungen für C $_{mod}$ und v $_{S}$ folgende Beziehung angesetzt werden:

Nadelholz:
$$C_{mod} = (1, 2 d - 1, 6) \cdot \rho_k$$
 $v_s = 0, 2 mm$ (48)
Laubholz: $C_{mod} = 1, 25 (1, 2 d - 1, 6) \cdot \rho_k$ $v_s = 0, 1 mm$ (49)

Obwohl eine Vielzahl von Versuchen durchgeführt wurde, bleiben noch einzelne Fragen offen:

- der Einfluß unterschiedlicher Stabdübelabstände,
- der Einfluß des Winkels zwischen Kraftrichtung und Faserrichtung des Holzes
- das Langzeitverhalten der Verbindungen, auch unter Klimaeinwirkungen.

Diesen Fragen sollten sich weitere theoretische und experimentelle Untersuchungen widmen. Außerdem lassen die vorliegenden Ergebnisse Möglichkeiten erkennen, durch Verstärkungen der Hölzer im Anschlußbereich zu erheblich höheren Tragfähigkeiten zu gelangen.

9 Schrifttum

- | 1| Johansen, K. W. (1949): Theory of Timber Connections. International Association for Bridge and Structural Engineering, Vol. 9 S. 249 - 262.
- | 2| Moeller, T. (1950): En ny metod foer beraekning av spikfoerband. Chalmers Tekniska Hoegskola Handlingar, No. 117, Goeteborg, Schweden.
- | 3| Meyer, A. (1957): Die Tragfähigkeit von Nagelverbindungen bei statischer Belastung. Holz als Roh- und Werkstoff 15 (2) S. 96 - 109.
- | 4| Larsen, H.J. (1973): The Yield Load of Bolted and Nailed Joints. IUFR0-5 Conference: 646 - 654, Pretoria, Südafrika.
- | 5| Larsen, H.J. (1977): K.W. Johansen's Nail Tests. Bygningsstatiske Meddelelser No. 48, 9 - 30, Kopenhagen, Dänemark.
- | 6| Larsen, H.J. (1979): Design of Bolted Joints. CIB-W18 Paper 12-7-2, Bordeaux, Frankreich.
- | 7| CIB-Structural Timber Design Code, 6. Edition, (1983): CIB Publication 56.
- | 8| Entwurf zum EUROCODE 5 (1987) Gemeinsame einheitliche Regeln für Holzbauwerke, Hrsg. von der Kommission der Europäischen Gemeinschaften, Brüssel, Belgien.

- Aune, P. und M. Patton-Mallory (1986): Lateral Load-Bearing Capacity of Nailed Joints Based on the Yield Theory
 Theoretical Development. - Res. Pap. FPL 469, United States Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Wi., USA.
- [10] Whale, L.R.J., I. Smith und H.J. Larsen (1987): Design of Nailed and Bolted Joints - Proposals for the revision of existing formulae in draft Eurocode 5 and the CIB Code. CIB-W18 Paper 20-7-1, Dublin, Irland.
- [11] Gehri, E. und M. Fontana (1983): Betrachtungen zum Tragverhalten von Paßbolzen in Holz-Holz-Verbindungen. Publikation Nr. 83-1, Baustatik und Stahlbau, Eidg. Techn. Hochschule Hönggerberg, Zürich, Schweiz.
- Materialprüfungsamt der Bayer. Landesgewerbeanstalt Nürnberg (1938): Prüfung von Holzverbindungsproben, Prüfzeugnis Nr. 12990, Nürnberg.
- [13] Schrenk, M. und M. v. Pilgrim (1928): Festigkeit von Bolzen in Holzbauteilen. 114. Bericht der deutschen Versuchsanstalt für Luftfahrt e.V., Berlin.
- |14| Gehri, E. (1983): Load-Carrying Capacity of Dowels, CIB-W18
 Paper 16-7-1, Lillehammer, Norway.
- [15] Gehri, E. (1980): Betrachtungen zum Tragverhalten von Bolzenverbindungen im Holzbau. Schweizer Ingenieur und Architekt, S. 1336 - 1344.
- |16| Schweizerischer Ingenieur- und Architekten-Verein (SIA) (1981): SIA 164 "Holzbau".

- [17] Soltis, L.A., F.K. Hubbard und Th.L. Wilkinson (1986): Bearing Strength of Bolted Timber Joints. Journal of Structural Engineering, Vol. 112, S. 2141 - 2154.
- [18] Trayer, G.W. (1932): The Bearing Strength of Wood under Bolts. Technical Bulletin 332, U.S. Department of Agriculture, Washington, D.C., USA.
- [19] Smith, I. (1983): Short-term load-deformation relationships for joints with dowel type connectors. Ph.D. Thesis, CNAA.
- [20] Smith, I. und L.R.J. Whale (1985): Mechanical properties of nails and their influence on mechanical properties of nailed timber joints subjected to lateral load. Part 1: Background and tests on nails of UK origin. TRADA Research Report 4/85. TRADA, High Wycombe (Bucks.), England.
- [21] Smith, I. und L.R.J. Whale (1985): Mechanical Properties of nails and their influence on mechanical properties of nailed timber joints subjected to lateral load. Part 2: Tests on nails of mainland Europe origin, comparisons of results with those of UK origin and conclusions. TRADA Research Report 9/85. TRADA, High Wycombe (Bucks.), England.
- [22] Whale, L.R.J.; I. Smith und B.O. Hilson (1986): Behaviour of nailed and bolted joints under short-term lateral load -Conclusions from some recent research. IUFRO Wood Engineering Group meeting, Florenz, Italien.
- [23] Whale, L.R.J. und I. Smith (1986): The derivation of design clauses for nailed and bolted joints in Eurocode 5. CIB-W18 Paper 19-7-6, Florenz, Italien.
- |24| Whale, L.R.J. und I. Smith (1986): Mechanical timber joints. TRADA Research Report 18/86, TRADA, High Wycombe (Bucks.), England.

- [25] Whale, L.R.J. und I. Smith (1986): Mechanical joints in structural timber - Information for probabilistic design. TRADA Research Report 17/86, TRADA, High Wycombe (Bucks.), England.
- [26] Yasumura, M., T. Murota und H. Sakai (1987): Ultimate properties of bolted joints in glued - laminated timber. CIB-W18 Paper 20-7-3, Dublin, Irland.
- [27] Ehlbeck, J. (1979): Nailed Joints in Wood Structures. Bulletin No. 166, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
- [28] Kolb, H. und B. Radović (1981): Tragverhalten von Stabdübelanschlüssen bei Vorbohren mit dem Nenndurchmesser. Forschungsbericht der Forschungs- und Materialprüfungsanstalt Baden-Württemberg, Stuttgart.
- [29] Möhler, K. (1986): Verschiebungsgrößen mechanischer Holzverbindungen der DIN 1052, Teil 2 (Entwurf 1984). bauen mit holz 4/86, S. 206 - 214.

ANHANG

Verwendete Zeichen und Symbole

In diesem Forschungsbericht werden folgende Zeichen und Symbole verwendet. Zeichen die nur lokale Anwendung finden, werden bei der Verwendung definiert.

Geometrische Größen

$\lambda = \lambda_{m}$	Schlankheitsgrad bezogen auf	das Mittelholz
λ _s	Schlankheitsgrad bezogen auf	das Seitenholz
a _s	Seitenholzdicke	mm
a _m	Mittelholzdicke	mm
d	Durchmesser des Stabdübels	mm
α	Verhältnis Mittelholzdicke/Se	eitenholzdicke
φ	Winkel zwischen Kraft und Fas	serrichtung
	des Holzes	
Wрl	Plastisches Widerstandsmoment	t mm ³

Kraftgrößen

Fu	Tragkraft des Prüfkörpers pro Anschluß
F _{u.S}	Tragkraft eines Stabdübels
F _{u.SS}	Tragkraft eines Stabdübels pro Scherfläche
R _u	rechn. Tragfähigkeit eines Stabdübels pro
	Scherfläche
^R u.S	rechn. Tragfähigkeit eines Stabdübels
M _{pl}	Plastisches Moment des Stabdübels
Rk	charakteristische Tragfähigkeit eines
	Stabdübels pro Scherfläche
F1.5	Belastung eines Stabdübels bei 1,5 mm Verschiebung
zul F	zulässige Belastung eines Stabdübels nach
	DIN 1052

Spannungsgrößen

f	effektive Lochleibungsfestigkeit	N/mm²
f _s	effektive Lochleibungsfestigkeit	
	des Seitenholzes	N/mm ²
f _m	effektive Lochleibungsfestigkeit	
	des Mittelholzes	N/mm ²
βl.m	mittlere Lochleibungsfestigkeit	
	bezogen auf das Mittelholz	N/mm²
β _{1.s}	mittlere Lochleibungsfestigkeit	
.,.	bezogen auf das Seitenholz	N/mm²
β _S	Streckgrenze des Verbindungsmittels	N/mm²
β _Z	Zugfestigkeit des Verbindungsmittel	N/mm²
f _v	rechnerische Fließspannung	
5	des Verbindungsmittels	N/mm²
β	Verhältnis Lochleibungsfestigkeit des Mitt	elholzes/
	Lochleibungsfestigkeit des Seit	enholzes
γ	Verhältnis Plastisches Moment des Verbindu	ngs-
	mittels/Lochleibungsfestigkeit	des
	Seitenholzes	
σ	Lochleibungsspannung	N/mm²
β _{DII}	Druckfestigkeit in Faserrichtung	
- 11	bei u %	N/mm²
β _{D15}	Druckfestigkeit in Faserrichtung	
	umgerechnet auf u = 15 %	N/mm²
max ozll.n	maximale Zugspannung im Mittelholz	
- 11 3	bezogen auf den Nettoquerschnitt	N/mm²
max σ _D	maximale Druckspannung im Mittelholz	N/mm²
••		

•

,

Rohdichtewerte

ρ _k	charakteristische Rohdichte,	
r.	bezogen auf das Normalklima 20/65	kg/m³
ρ	Rohdichte im Normalklima 20/65	kg/m³∣
ρ <mark>E</mark>	Rohdichte der Einzelproben bei der	
ŭ	vorhandenen Holzfeuchte u	kg/m³
ρ	Rohdichte des Gesamtquerschnittes bei	
ŭ	der vorhandenen Holzfeuchte	kg/m³
ρ	Rohdichte des Seitenholzes im	
2	Normalklima 20/65	kg/m³
ρ _m	Rohdichte des Mittelholzes im	
	Normalklima 20/65	kg/m³∣
ρ _s	5 %-Fraktilwert der Rohdichte	
Ŭ	des Gesamtquerschnittes	kg/m³

Verschiebungsgrößen

Siehe Abschnitt 5

Andere Größen

u	Holzfeuchte	%
n	Anzahl der Verbindungsmittel	
k _{ns zs}	Faktor zur Berücksichtigung	
50,20	der Beanspruchungsarten	

;

Tabelle 1: Versuchsprogramm

.

		· · · · · · · · · · · · · · · · · · ·				
Zugscherversuche	Druckscherversuche	Zugscherversuche	Druckscherversuche			
unversetzte	unversetzte	versetzte	versetzte			
Anordnung	Anordnung	Anordnung	Anordnung			
Brettschichtholz Mittlere Rohdichte						
U 1/8/1+5	U-D 1/8/1+5	V 1/8/1+3	V_D 1/8/1+3			
11 2/8/1+5	$U_{-}D 2/8/1+5$	V 2/8/1+3	V_D 2/8/1+3			
0 2/0/140	$U_{-D} \frac{3}{8}/1+3$		V-D 3/8/1+3			
U 1/6/1+5	U-D 1/6/1+3	V 1/6/1+3				
U 2/6/1+5	U-D 2/6/1+3	V 2/6/1+3	V-D 2/6/1+3			
U 3/6/1+3	U-D 3/6/1+3		V-D 3/6/1+3			
U 4/6/1+3	U-D 4/6/1+3		V-D 4/6/1+3			
11 2/4/3.5						
0 2/4/1+5	1 - 0 - 2/4/1+3					
	1 D 4/4/1+3					
	0-0 4/4/140					
	Pustterkishtete ¹	Niedere (N) Rohdicht	te			
	brettschichtholz	Hohe (H) Rohdicht	te			
N/U 2/6/1+3	N/U-D 2/6/1+3					
H/U 2/6/1+3	H/U-D 2/6/1+3					
	N/U-D 4/6/1+3					
	H/U_D 4/6/1₊3					
Bret	tschichtholz Mittler	e Rohdichte Stahl S	St 37-2 (warmgewalzt)			
· · · · · · · · · · · · · · · · · · ·						
	U_D/W 3/6/1+3					
	U-D/W 4/6/1+3					
	Niede:	re (N) Rohdichte	1			
	Nadeinoiz Hohe	(H) Rohdichte	·····			
	NH-N/U-D 2/6/1+3					
	NH-H/U-D 2/6/1+3					
	Dougle	osie				
	Dou/U-D 2/6/1+3					
	Buche Gru	uppe A	I			
+ /+ + / - /= = =		[······································			
A/U 1/6/1+3						
	Afzelia	Gruppe B				
B/U 1/6/1₊3						
	Bongossi	Gruppe C				
C/U 1/6/1+3	C/U-D 2/6/1+3					
	C/U_D 4/6/1+3					

Stabdübel-	Stabdübel-	Schlankheits-	Mittelholz-	Seitenholz-	Breite	Stabdübelabstände e [mm]				
durchmesser	anzahl	grad	dicke	dicke		untere	inander	beanspr.	unbeanspr.	
		α						Rand	Rand	
d	n	λ = <u>m</u>	a	a	ь	e _{il} =5d	e_=3d	e _{ll} =6d	e _{ii} =3d	e <u>1</u> =3d
[mm]		d	[mm]	[mm]	[mm]					
		6	48	36						
8	6	8	64	38	100	40	25	50	25	25
		4	64	48						
16	6	6 8	96 128	72 96	200	80	50	100	50	50
16	4	6	96	72	150	80	50	100	50	50
		4	96	72						
24	6	6	144	108	290	120	72,5	145	72,5	72,5
		8	192	144						
		4								
30	6	6 8	180	135	360	150	90	180	90	90
30	4	6	180	135	270	150	90	180	90	90

Tabelle 6:Abmessungen der Versuchskörper (vgl. dazu Bild 4/ Anlage 2)

.

.

Zugscherkörper mit Stabdübeln d = 24 mm

Zugscherkörper mit Stabdübeln d = 30 mm

 \mathcal{M}

Bild 17 . Kreft - Verschlebungsdiagramm Versuchsreihe V 1/8/n

Bild 19. Kraft - Verschlebungsdlagramm Versuchsreihe U 1/6/n

ş.

Versuchsreihe V 2/8/n

Bild 27: Kraf

Kraft - Verschiebungsdiegramm

Versucharethe

U 2/6/n

H/U 2/6/n Versucharethe

Versucharelhe

Bild 29: Kraft - Verschiebungsdiegremm

Bild 30+

Kraft - Verschiebungediegnemm

Versucharethe N/

• N/U 2/6/n

Bild 31: Kreft - Verschlebungsdiegramm

Versuchare the N

N/U 2/6/n

Versuchare the

rethe V 2/6/n

Versuchare I he V 2/6/n

Bild 34: Kraft - Verschlebungsdiagramm Versuchsreihe U 2/4/n

<u>Bild 35+</u>

Kraft - Verschlebungsdlegnamm

Versuchare the

uhe U 2/4/n

Versucharethe

U-D 1/8/3-5

2

V-D 1/8/1-2 Versucharethe

Bild 43: Kraft - Verschiebungsdiegramm

Versuchsreihe U-D/W 1/6/2-3

р/

Verschlebung v (mm)

Bild 471 Kraft - Verschiebungsdiagramm

Versuchsreihe

Bild 48: Kraft - Verschlebungsdiagramm Versuchereine H/U-D 2/6/1-3

BILG 491 Kr

Kraft - Verschlebungsdisgramm

Versucharethe

¢.

Bild 53: Kraft - Verschlebungsdiagramm

Versuchsreihe U

Bild 55

Versucharethe

Anlage 27

Versucharelhe Bild 56: Kraft - Verschlebungsdlagramm

<u>Bild 57:</u> Kraft - Verschiebungsdiagramm

Versucharethe

<u>Bild 59.</u> Kraft - Verschiebungsdiagramm

144

<u>Bild 61.</u> Kreft - Verschlebungsdiagramm

Versuchsreihe

<u>Bild 63</u>

Kraft - Verschlebungsdlagramm

Versucharelhe

Versuchare the NH-N/U-D 2/6/n

Kraft - Verschlebungsdlagnamm

Versucharathe

Bild 66: Kreft - Verschlebungsdiegramm Versuchsreihe DOU/U-D 2/5/n

Bild 68: Kraft - Verschlebungsdiagramm

Versuchareihe R/U 1/6/n

χ¢,

Versuchsreihe

ine B/U 1/6/n

ś

Bild 73: Kraft - Verschlebungsdisgramm Versuchsreihe C/U-D 2/6/n

Bild 74: Krafi - Verschiebungsdiagramm

Versuchare The C/U-D 4/6/n

Tabelle 7a:Zusammenstellung der Einzelergebnisse der Zugscherversuche
mit unversetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F 1,5	β _{l,m}	max o _{Zil,n}	zul F
Nr.	[m m]		[k N]	[k N]	[N/mm ²]	[N/mm²]	[k N]
U 1/8/1 U 1/8/2 U 1/8/3 U 1/8/4 U 1/8/5	0 0 0 0 0 0 0	88888	8.93 8.95 9.95 9.12 9.53	6.08 7.72 8.30 7.55 7.58	17.45 17.48 19.43 17.81 18.62	11.02 11.04 12.27 11.25 11.76	3.27 3.27 3.27 3.27 3.27 3.27
U 1/6/1 U 1/6/2 U 1/6/3 U 1/6/4 U 1/6/5	0 0 0 0 0 0	စ္ပတစာစာစာ	8.55 7.73 8.18 8.42 7.57	5.83 5.50 6.17 6.17 6.17	22.27 20.14 21.31 21.92 19.70	14.06 12.72 13.46 13.84 12.45	3. 17 3. 17 3. 17 3. 17 3. 17 3. 17
U 2/8/1 U 2/8/2 U 2/8/3 U 2/8/4 U 2/8/5	16 16 16 16 16	000000	34.83 33.12 31.97 35.98 29.62	22.92 15.50 20.83 16.50 18.50	17.01 16.17 15.61 17.57 14.46	10.74 10.21 9.86 11.10 9.13	13.05 13.05 13.05 13.05 13.05 13.05
U 2/6/1 U 2/6/2 U 2/6/3 U 2/6/4 U 2/6/5	16 16 16 16	തതതതത	32.67 32.03 29.77 33.02 28.53	17.67 24.75 19.17 19.17 22.33	21.27 20.86 19.38 21.50 18.58	13.43 13.17 12.24 13.58 11.73	12.67 12.67 12.67 12.67 12.67 12.67
N/U 2/6/1 N/U 2/6/2 N/U 2/6/3	16 16 16	0000	29.37 26.33 27.57	20. 17 20. 00 22. 33	19.12 17.14 17.95	12.08 10.83 11.33	12.67 12.67 12.67
H/U 2/6/1 H/U 2/6/2 H/U 2/6/3	16 16 16	തതത	34.42 33.58 29.58	25.17 27.33 24.67	22.41 21.86 19.26	14. 15 13. 81 12. 16	12.67 12.67 12.67
U 3/6/1 U 3/6/2 U 3/6/3	24 24 24	0 0 0 0	54.67 58.67 58.17	27.50 29.83 32.17	15.82 16.98 16.83	10.45 11.21 11.12	28.52 28.52 28.52
U 4/6/1 U 4/6/2 U 4/6/3	30 30 30	000	92.50 88.00 83.00	33.83 34.50 39.50	17.13 16.30 15.37	11.42 10.86 10.25	44.55 44.55 44.55

Tabelle 7b:Zusammenstellung der Einzelverschiebungsgrößen der Zugscherversuche
mit unversetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37 K)

Versuch	٧a	Va mod	∨s	٧ _e	V _{zul} F	С	C _{mod}
Nr.	[mm]	[mm]	[mm]	[mm] .	[m m]	[N/mm]	[N/mm]
U 1/8/1	0.51	0.89	-0.05	0.39	0.80	3968	3759
U 1/8/2	0.59	0.41	0.11	0.29	0.49	6472	8197
U 1/8/3	0.49	0.42	0.07	0.27	0.49	6803	7937
U 1/8/4	0.51	0.45	0.06	0.26	0.50	6536	7463
U 1/8/5	0.51	0.40	0.11	0.32	0.50	6536	8333
U 1/6/1 U 1/6/2 U 1/6/3 U 1/6/4 U 1/6/5	0.68 0.77 0.77 0.75 0.59	0.74 0.65 0.60 0.63 0.57	-0.05 0.13 0.18 0.12 0.02	0.32 0.36 0.25 0.20 0.31	0.64 0.74 0.72 0.51 0.56	+866 +301 +301 +444 5650	4505 5156 5263 5882
U 2/8/1	0.71	0.79	-0.08	0.44	0.76	18779	16949
U 2/8/2	1.17	1.17	-0.00	0.57	1.14	11396	11364
U 2/8/3	0.90	0.90	0.01	0.48	0.89	14733	14815
U 2/8/4	1.06	1.02	0.05	0.57	1.03	12520	13072
U 2/8/5	1.05	1.04	0.01	0.53	1.03	12698	12821
U 2/6/1	1.06	0.99	0.07	0.54	1.00	12579	13423
U 2/6/2	0.66	0.70	-0.04	0.42	0.61	20202	19048
U 2/6/3	0.97	0.99	-0.01	0.54	0.91	13675	13514
U 2/6/4	1.00	0.95	0.05	0.53	0.96	13267	13986
U 2/6/5	0.71	0.77	-0.06	0.48	0.68	18779	17391
N/U 2/6/1	0.75	0.85	-0.10	0.50	0.70	17778	15748
N/U 2/6/2	0.92	0.88	0.04	0.55	0.86	14493	15152
N/U 2/6/3	0.64	0.70	-0.06	0.45	0.59	20833	19048
H/U 2/6/1	0.60	0.65	-0.04	0.39	0.57	22039	20619
H/U 2/6/2	0.50	0.55	-0.05	0.35	0.48	26403	24096
H/U 2/6/3	0.58	0.63	-0.05	0.39	0.54	22989	21277
U 3/6/1	1.37	1.04	0.33	0.00	1.49	19465	25641
U 3/6/2	1.36	1.19	0.18	-0.01	1.44	19536	22472
U 3/6/3	1.25	1.07	0.18	-0.03	1.33	21248	24845
U 4/6/1	1.75	1.69	0.06	0. 16	1.88	23742	24606
U 4/6/2	1.69	1.49	0.20	0. 13	1.80	24655	27902
U 4/6/3	1.57	1.49	0.08	0. 13	1.68	26539	28027

Ļ

Tabelle 8a:Zusammenstellung der Einzelergebnisse der Zugscherversuche
mit versetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F _{1,5}	β _{l,m}	max OZIIn	zul F
Nr.	[m m]		[k N]	[k N]	[N/mm²]	[N/mm ²]	[kN]
V 1/8/1 V 1/8/2 V 1/8/3	8 8 8	8 8 8	9.48 9.05 8.87	5.67 5.75 5.72	18.52 17.68 17.32	11.70 11.16 10.94	3.27 3.27 3.27 3.27
V 1/6/1 V 1/6/2 V 1/6/3	8 8 8	തതത	6. 60 9. 15 6. 60	7.33 6.30 5.80	22. 92 23. 83 22. 92	14.47 15.05 14.47	3. 17 3. 17 3. 17 3. 17
V 2/8/1 V 2/8/2 V 2/8/3	16 16 16	@ @ @	28.50 35.68 32.98	12.50 14.33 13.83	13.92 17.42 16.11	8,79 11,00 10,17	13.05 13.05 13.05
V 2/6/1 V 2/6/2 V 2/6/3	16 16 16	တတတ	31. 17 31. 07 31. 38	15, 58 15, 08 18, 00	20. 29 20. 23 20. 43	12.82 12.77 12.90	12.67 12.67 12.67

Tabelle 8b:Zusammenstellung der Einzelverschiebungsgrößen der Zugscherversuche
mit versetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37 K)

Versuch	٧a	Va mod	۷ _s	٧e	V _{zul} F	С	C _{mod}
Nr.	[mm]	[mm]	[m m]	[mm] .	[m m]	[N/mm]	[N/mm]
V 1/8/1	0.88	0.82	0.06	0.35	0.85	3788	4065
V 1/8/2	0.89	0.79	0.11	0.43	0.85	3724	4237
V 1/8/3	0.84	0.76	0.09	0.39	0.83	3945	4386
V 1/6/1	0.60	0.46	0.14	0.34	0.59	5556	7246
V 1/6/2	0.72	0.67	0.05	0.36	0.68	4630	5000
V 1/6/3	0.76	0.69	0.07	0.36	0.71	4386	4808
V 2/8/1	1.45	1.21	0.25	0.58	1.42	9164	11050
V 2/8/2	1.28	1.23	0.05	0.52	1.26	10376	10811
V 2/8/3	1.37	1.17	0.21	0.59	1.33	9697	11429
V 2/6/1	1.17	1.24	-0.07	0.55	1. 10	11396	10753
V 2/6/2	1.28	1.24	0.05	0.58	1. 22	10376	10753
V 2/6/3	1.07	1.08	-0.00	0.61	1. 03	12403	12346

Tabelle 9a:Zusammenstellung der Einzelergebnisse der Druckscherversuche
mit unversetzter Stabdübelanordnung

(Holzart: Brettschichtholz; Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F _{1,5}	β _{l,m}	max O _{D II}	zul F
Nr.	[m m]		[k N]	(k N)	[N/mm²]	[N/mm²]	[kN]
U-D 1/8/1 U-D 1/8/2 U-D 1/8/3 U-D 1/8/4 U-D 1/8/5	00000	@@@@@@	10, 75 11, 62 10, 88 11, 12 10, 70	8.58 10.17 7.83 6.25 8.08	21.00 22.69 21.26 21.71 20.90	10.08 10.89 10.20 10.42 10.03	3.27 3.27 3.27 3.27 3.27 3.27
U-D 1/6/1 U-D 1/6/2 U-D 1/6/3	8 9 8	0 0 0 0	10. 27 10. 07 10. 27	6.92 6.47 6.92	26.74 26.22 26.74	12, 83 12, 58 12, 83	3. 17 3. 17 3. 17 3. 17
U-D 2/8/1 U-D 2/8/2 U-D 2/8/3 U-D 2/8/4 U-D 2/8/5	10 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	@@@@@@	41.67 43.33 46.33 44.50 46.67	16. 17 25. 00 24. 17 20. 00 19. 50	20.35 21.16 22.62 21.73 22.79	9.77 10,16 10.96 10.43 10.94	13.05 13.05 13.05 13.05 13.05 13.05
U-D 2/6/1 U-D 2/6/2 U-D 2/6/3	16 16 16	000 000	37.42 35.83 36.50	15.33 18.00 20.33	24.36 23.33 23.76	11, 69 11, 20 11, 41	12.67 12.67 12.67
N/U-D 2/6/1 N/U-D 2/6/2 N/U-D 2/6/3	16 16 16	0 0 0 0 0	36.97 34.67 33.70	19.83 19.50 18.17	.24.07 22.57 21.94	11, 55 10, 93 10, 53	12.67 12.67 12.67
H/U-D 2/6/1 H/U-D 2/6/2 H/U-D 2/6/3	16 16 16	0 0 0 0	39.62 38.30 41.37	25.00 25.17 26.67	25.79 24.93 26.93	12, 38 11, 97 12, 93	12.67 12.67 12.67
U-D 2/4/1 U-D 2/4/2 U-D 2/4/3	16 16 16	4 4 4	29.92 28.83 27.78	17.17 19.00 18.67	29.22 28.16 27.13	14.02 13.52 13.02	8.45 8.45 8.45
U-D 3/8/1 U-D 3/8/2 U-D 3/8/3	24 24 24	8 8 8	78.60 82.97 75.23	28.75 42.08 24.58	17.06 18.00 16.33	8.47 8.94 8.11	29, 38 29, 38 29, 38
U-D 3/6/1 U-D 3/6/2 U-D 3/6/3	24 24 24	0 0 0 0	74.20 72.63 79.67	22.92 27.50 22.60	21.47 21.02 23.05	10.66 10.44 11.45	28.52 28.52 28.52
U-D 3/4/1 U-D 3/4/2 U-D 3/4/3	24 24 24	4 4 4	59.63 59.50 60.30	21.67 23.33 24.17	25.88 25.82 26.17	12, 85 12, 82 13, 00	19.02 19.02 19.02
U-D 4/6/1 U-D 4/6/2 U-D 4/6/3	30 30 30	0 0 0 0	113.10 114.27 117.40	48.33 41.67 51.12	20, 94 21, 16 21, 74	10, 47 10, 58 10, 87	44.55 44.55 44.55
N/U-D 4/6/1 N/U-D 4/6/2 N/U-D 4/6/3	30 30 30	0 0 0 0	102.80 109.67 109.90	36.67 36.12 36.12	19.04 20.31 20.35	9.52 10.15 10.18	44.55 44.55 44.55
H/U-D 4/6/1 H/U-D 4/6/2 H/U-D 4/6/3	30 30 30	6 6 6	119.70 120.90 122.60	36.67 53.88 42.78	22. 17 22. 39 22. 70	11. 08 11. 19 11. 35	44.55 44.55 44.55
U-D 4/4/1 U-D 4/4/2 U-D 4/4/3	30 30 30	4 4 4	99.77 100.73 97.87	38.33 38.50 41.08	27.71 27.98 27.19	13.86 13.99 13.59	29.70 29.70 29.70

À

Tabelle 9b:Zusammenstellung der Einzelverschiebungsgrößen der
Druckscherversuche mit unversetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37 K)

Versuch	٧a	Va.mod	∨s	٧e	Vzul F	С	C _{mod}
Nr.	[mm]	[mm]	[mm]	[mm] .	[m m]	[N/mm]	[N/mm]
U-D 1/8/1 U-D 1/8/2 U-D 1/8/3 U-D 1/8/4 U-D 1/8/5	0.41 0.50 0.57 0.52 0.40	0.39 0.44 0.47 0.47 0.47 0.41	0.02 0.06 0.10 0.05 0.07	0. 14 0. 11 0. 12 0. 08 0. 11	0.40 0.60 0.58 0.53 0.48	8130 6667 5848 6410 6944	0621 7576 7143 7143 0065
U-D 1/6/1	0.66	0.53	0. 13	0.27	0.65	5051	6250
U-D 1/6/2	0.71	0.55	0. 16	0.27	0.68	4695	6098
U-D 1/6/3	0.66	0.51	0. 15	0.27	0.65	5051	6579
U-D 2/8/1	1.26	1. 13	0. 13	0.64	1.30	10582	11765
U-D 2/8/2	0.72	0. 75	-0. 03	0.37	0.70	18519	17857
U-D 2/8/3	0.78	0. 80	-0. 02	0.42	0.78	17094	16667
U-D 2/8/4	1.02	0. 80	-0. 22	0.35	1.03	13072	16667
U-D 2/8/5	1.06	0. 91	0. 15	0.42	1.05	12579	14706
U-D 2/6/1	1.35	0.96	0.39	0.49	1.30	9877	13889
U-D 2/6/2	1.18	0.88	0.30	0.45	1.15	11299	15152
U-D 2/6/3	1.06	0.80	0.26	0.40	1.05	12579	16667
N/U-D 2/6/1	1.08	0.77	0.31	0.40	1.05	12346	17241
N/U-D 2/6/2	1.08	0.75	0.33	0.37	1.05	12346	17857
N/U-D 2/6/3	1.16	0.83	0.33	0.41	1.10	11494	16129
H/U-D 2/6/1	0.90	0.65	0.25	0.40	0.88	14815	20408
H/U-D 2/6/2	0.89	0.57	0.32	0.29	0.88	14981	23256
H/U-D 2/6/3	0.78	0.55	0.23	0.29	0.75	17094	24390
U-D 2/4/1	1.20	0.85	0.35	0.50	1. 18	11111	15625
U-D 2/4/2	1.11	0.79	0.32	0.39	1. 08	12012	16949
U-D 2/4/3	1.17	0.76	0.41	0.37	1. 13	11396	17544
U-D 3/8/1	2.10	1.95	0. 15	0.75	1.55	19048	20548
U-D 3/8/2	1.38	1.23	0. 15	0.49	1.05	28986	32609
U-D 3/8/3	2.25	1.97	0. 28	1.04	1.73	17778	20270
U-D 3/6/1	2.48	2, 19	0.29	0.85	1.78	16129	18293
U-D 3/6/2	2.20	1, 95	0.25	0.88	1.58	18182	20548
U-D 3/6/3	2.44	2, 17	0.27	0.85	1.75	16393	18405
U-D 3/4/1	1.83	1.68	0. 15	0.56	1.35	14572	15873
U-D 3/4/2	1.72	1.63	0. 09	0.56	1.23	15504	16393
U-D 3/4/3	1.66	1.52	0. 14	0.60	1.23	16064	17544
U-D 4/6/1	1.66	1.67	-0.01	0.75	1.33	32129	32000
U-D 4/6/2	1.83	1.63	0.20	0.83	1.58	29144	32787
U-D 4/6/3	1.54	1.40	0.14	0.73	1.30	34632	38095
N/U-D-4/6/1	2. 16	1.99	0. 17	0.84	1.78	24691	26846
N/U-D 4/6/2	2. 12	1.95	0. 17	0.89	1.80	25157	27397
N/U-D 4/6/3	2. 20	2.12	0. 08	0.88	1.83	24242	25157
H/U-D 4/6/1	2.05	1.80	0.25	0.81	1.75	26016	29630
H/U-D 4/6/2	1.48	1.41	0.07	0.65	1.23	36036	37736
H/U-D 4/6/3	1.86	1.73	0.13	0.78	1.55	28674	30769
U-D 4/4/1	1.54	1.35	0. 19	0,65	1.23	25974	29703
U-D 4/4/2	1.51	1.39	0. 12	0.64	1.20	26490	28846
U-D 4/4/3	1.40	1.25	0. 15	0.60	1.10	28571	31915

Tabelle 11a:Zusammenstellung der Einzelergebnisse der Druckscherversuche
mit unversetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37-2)

Versuch	d	λ	F _{u,s}	F 1,5	βı,m	max 0 _{D11}	zul F
Nr.	[m m]		[k N]	[kN]	[N/mm²]	[N/mm²]	[k N]
U-D/W 1/6/1 U-D/W 1/6/2 U-D/W 1/6/3	8 8 8	0 0 0 0	12.73 13.53 12.42	8.38 8.88 8.88	33. 16 35. 24 32. 34	15. 92 16. 92 15. 52	3. 17 3. 17 3. 17
U-D/W 2/6/1 U-D/W 2/6/2 U-D/W 2/6/3	16 16 16	0 0 0 0	34.03 34.33 34.33	24.17 24.67 28.33	22. 16 22. 35 22. 35	10.64 10.73 10.73	12.67 12.67 12.67
U-D/W 3/6/1 U-D/W 3/6/2 U-D/W 3/6/3	24 24 24	0000	79.63 78.23 79.57	30.42 24.25 25.00	23.04 22.64 23.02	11. 44 11. 24 11. 43	28.52 28.52 28.52
U-D/W 4/6/1 U-D/W 4/6/2 U-D/W 4/6/3	30 30 30	0000	112.27 114.10 117.23	29.72 46.38 38.88	20.79 21.13 21.71	10.40 10.56 10.85	44.55 44.55 44.55

Tabelle 11b:Zusammenstellung der Einzelverschiebungsgrößen der
Druckscherversuche mit unversetzter Stabdübelanordnung
(Holzart: Brettschichtholz; Stabdübel St 37-2)

Versuch	٧a	Va ,mod	۷ _s	٧e	Vzul F	С	C _{mod}
Nr.	[m m]	[mm]	[mm]	[mm] .	[m m]	[N/mm]	[N/mm]
U-D/W 1/6/1	0.46	0.43	0.03	0.22	0.43	7246	7813
U-D/W 1/6/2	0.43	0.40	0.03	0.21	0.40	7752	8333
U-D/W 1/6/3	0.40	0.36	0.04	0.18	0.35	8333	9259
U-D/W 2/6/1	0.81	0.63	0. 18	0. 37	0.78	16461	21277
U-D/W 2/6/2	0.78	0.60	0. 18	0. 33	0.75	17094	22222
U-D/W 2/6/3	0.71	0.55	0. 16	0. 37	0.70	18779	24390
U-D/V 3/6/1	2. 15	2.23	-0.08	0.71	1.40	18605	17964
U-D/V 3/6/2	2. 55	2.40	0.15	0.71	1.75	15686	16667
U-D/V 3/6/3	2. 45	2.28	0.17	0.81	1.70	16327	17544
U-D/W 4/6/1	2.42	2. 19	0.23	0.87	2.05	22039	24390
U-D/W 4/6/2	2.01	1. 79	0.22	0.69	1.70	26534	29851
U-D/W 4/6/3	2.00	1. 79	0.21	0.75	1.68	26667	29851

-

Tabelle 12a:Zusammenstellung der Einzelergebnisse der Druckscherversuche
mit Vollholz aus Nadelholz und unversetzter Stabdübelanordnung
(Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F _{1,5}	βl,m	max O _{DII}	zul F
Nr.	[m m]		[k N]	[kN]	[N/mm²]	[N/mm²]	[kn]
D0U/U-D 2/6/1	16	തതത	41.95	25.00	27.31	13. 11	12.67
D0U/U-D 2/6/2	16		40.68	27.08	26.49	12. 71	12.67
D0U/U-D 2/6/3	16		39.37	23.58	25.63	12. 30	12.67
NH-N/U-D 2/6/1 NH-N/U-D 2/6/2 NH-N/U-D 2/6/3	16 16 16	0 0 0 0	28.08 27.78 27.93	13. 17 14. 42 13. 50	18.28 18.09 18.19	8.78 8.68 8.73	12.67 12.67 12.67
NH-H/U-D 2/6/1 NH-H/U-D 2/6/2 NH-H/U-D 2/6/3	16 16 16	9 9 9 9 9	45.43 40.02 42.35	22.33 20.25 19.58	29.58 26.05 27.57	14.20 12.51 13.23	12.67 12.67 12.67

Tabelle 12b:Zusammenstellung der Einzelverschiebungsgrößen der Druckscherversuche
mit Vollholz aus Nadelholz und unversetzter Stabdübelanordnung
(Stabdübel St 37 K)

Versuch	Va	Va,mod	Vs	Ve	^V zul F	C	C _{mod}
Nr.	[mm]	[mm]	[mm]	[mm]	[m m]	[N/mm]	[N/mm]
D0U/U-D 2/6/1	0.74	0.67	0.07	0.37	0.73	18018	20000
D0U/U-D 2/6/2	0.79	0.69	0.10	0.40	0.75	16878	19231
D0U/U-D 2/6/3	0.82	0.72	0.10	0.37	0.80	16260	18519
NH-N/U-D 2/6/1	1.50	1.20	0.30	0.56	1.43	8889	11111
NH-N/U-D 2/6/2	1.38	1.09	0.29	0.53	1.33	9662	12195
NH-N/U-D 2/6/3	1.44	1.13	0.31	0.57	1.38	9259	11765
NH-H/U-D 2/6/1	0.94	0.75	0. 19	0.33	0.90	14184	17857
NH-H/U-D 2/6/2	1.00	0.79	0. 21	0.37	0.95	13333	16949
NH-H/U-D 2/6/3	1.10	0.84	0. 26	0.48	1.05	12121	15873

Tabelle 13a:Zusammenstellung der Einzelergebnisse der Zugscherversuche
mit verschiedenen Laubhölzern und unversetzter Stabdübelanordnung
(Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F 1,5	β1,m	max O _{z II,n}	zul F
Nr.	[m m]		[kN]	[kn]	[N/mm²]	[N/mm²]	[kN]
A/U 1/6/1	0	0	16. 83	9.87	43.84	27.69	3.75
A/U 1/6/2	8	0	16. 00	9.77	41.67	26.32	3.75
A/U 1/6/3	8	0	16. 30	9.70	42.45	26.81	3.75
B/U 1/6/1	0	0	15.42	12.80	40.15	25.36	4.17
B/U 1/6/2	0	0	14.37	12.63	37.41	23.63	4.17
B/U 1/6/3	0	0	13.83	10.90	36.02	22.75	4.17
C/U 1/6/1	8	0000	16.47	14.60	42.88	27.08	5. 12
C/U 1/6/2	8		16.63	15.13	43.32	27.36	5. 12
C/U 1/6/3	8		16.75	14.47	43.62	27.55	5. 12

Tabelle 14a:Zusammenstellung der Einzelergebnisse der Druckscherversuche
mit Bongossiholz und unversetzter Stabdübelanordnung
(4 Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F _{1,5}	βl,m	max O _{D II}	zul F
Nr.	[m m]		[k N]	[kN]	[N/mm²]	[N/mm²]	[kn]
C/U-D 2/6/1 C/U-D 2/6/2 C/U-D 2/6/3	16 16 16	0 0 0 0	67.97 77.70 83.92	51.75 55.25 55.00	44.25 50.59 54.64	18.88 21.58 23.31	20.47 20.47 20.47
C/U-D 4/6/1	30	0000	270.75	134.17	50. 14	22.28	72.00
C/U-D 4/6/2	30		279.25	131.67	51. 71	22.98	72.00
C/U-D 4/6/3	30		275.75	130.00	51. 06	22.70	72.00

Tabelle 13b:Zusammenstellung der Einzelverschiebungsgrößen der Zugscherversuche
mit verschiedenen Laubhölzern und unversetzter Stabdübelanordnung
(Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F _{1,5}	βl,m	max O _{z ,n}	zul F
Nr.	[m m]		[kN]	[kn]	[N/mm²]	[N/mm²]	[kN]
A/U 1/6/1	8	0	16.83	9.87	43.84	27.69	3.75
A/U 1/6/2	8	0	16.00	9.77	41.67	26.32	3.75
A/U 1/6/3	8	0	16.30	9.70	42.45	26.81	3.75
B/U 1/6/1 B/U 1/6/2 B/U 1/6/3	8 8 8	0 0 0 0	15.42 14.37 13.83	12.80 12.63 10.90	40.15 37.41 36.02	25. 36 23. 63 22. 75	4.17 4.17 4.17
C/U 1/6/1	8	0000	16.47	14.60	42.88	27.08	5. 12
C/U 1/6/2	8		16.63	15.13	43.32	27.36	5. 12
C/U 1/6/3	8		16.75	14.47	43.62	27.55	5. 12

Tabelle 14b:Zusammenstellung der Einzelverschiebungsgrößen der Druckscherversuche
mit Bongossiholz und unversetzter Stabdübelanordnung
(4 Stabdübel St 37 K)

Versuch	d	λ	F _{u,s}	F _{1,5}	β _{l,m}	max O _{D II}	zul F
Nr.	[m m]		[k N]	[kn]	[N/mm²]	[N/mm²]	[kN]
C/U-D 2/6/1	16	0000	67.97	51.75	44.25	18.88	20.47
C/U-D 2/6/2	16		77.70	55.25	50.59	21.58	20.47
C/U-D 2/6/3	16		83.92	55.00	54.64	23.31	20.47
C/U-D 4/6/1 C/U-D 4/6/2 C/U-D 4/6/3	30 30 30	0 0 0 0	270.75 279.25 275.75	134.17 131.67 130.00	50. 14 51. 71 51. 06	22.28 22.98 22.70	72.00 72.00 72.00

Tabelle 15:Zusammenstellung der Mittelwerte der Versuchsergebnisse
aus den einzelnen Versuchsreihen
(Druckscherversuche mit Brettschichtholz)

Versuchsreihe	d [mm]	λ	F _{u,s} [k N]	F _{1,5} [kn]	β _{l,m} [N/mm²]	max o _{D11} [N/mm²]	zul F [kn]	V _{zul F} [mm]	C [N/mm]	⊂ _{mod} [N/mm]
U-D 1/6/n U-D/W 1/6/n U-D 1/8/n V-D 1/8/n	8 8 8 8	@ @ @ @	10.20 12.89 11.01 11.13	6.77 8.72 8.58 7.81	26.56 33.58 21.51 21.73	12.75 16.12 10.32 10.43	3. 17 3. 17 3. 27 3. 27 3. 27	0.66 0.39 0.52 0.59	4932 7777 6800 5804	6309 8468 7709 7459
U-D 2/4/n N/U-D 2/6/n U-D 2/6/n H/U-D 2/6/n U-D/W 2/6/n U-D 2/8/n V-D 2/8/n V-D 2/8/n	16 16 16 16 16 16 16 16	4 6 6 6 6 6 6 6 6 6 6 6 6 6	28.84 35.11 36.58 39.76 34.23 44.50 40.80 48.61	18.28 19.17 17.89 25.61 25.72 20.97 18.67 21.61	28. 17 22. 86 23. 82 25. 89 22. 29 21. 73 26. 56 23. 74	13.52 10.97 11.43 12.43 10.70 10.43 12.75 11.39	8.45 12.67 12.67 12.67 12.67 12.67 13.05 12.67 13.05	1. 13 1. 07 1. 17 0. 84 0. 74 0. 97 1. 14 0. 89	11506 12062 11252 15630 17445 14369 11241 14551	16706 17076 15236 22685 22630 15532 13902 14932
U-D 3/4/n U-D 3/6/n U-D/W 3/6/n U-D 3/8/n V-D 3/6/n V-D 3/8/n	24 24 24 24 24 24	4 6 6 8 6 8 8	59.81 75.50 79.14 78.93 75.23 88.11	23.06 24.34 26.56 31.81 21.81 28.54	25.96 21.85 22.90 17.13 21.77 19.12	12.89 10.85 11.37 8.51 10.81 9.49	19.02 28.52 28.52 29.38 28.52 29.38 29.38	1.27 1.70 1.62 1.44 1.80 1.55	15380 16901 16872 21937 15958 19339	16603 19082 17392 24476 18735 20818
U-D 4/4/n N/U-D 4/6/n U-D 4/6/n H/U-D 4/6/n U-D/W 4/6/n V-D 4/6/n	30 30 30 30 30 30	4 6 6 6 6 6	99.46 107.46 114.92 121.07 114.53 113.86	39.31 36.30 47.04 44.44 38.33 41.21	27.63 19.90 21.28 22.42 21.21 21.08	13.81 9.95 10.64 11.21 10.60 10.54	29.70 44.55 44.55 44.55 44.55 44.55 44.55	1. 18 1. 80 1. 40 1. 51 1. 81 1. 60	27012 24697 31968 30242 25080 28473	30155 26467 34294 32712 28031 33012

. .

Anlage 47

Tabelle 16:Zusammenstellung der Mittelwerte der Versuchsergebnisse
aus den einzelnen Versuchsreihen
(Zugscherversuche mit Brettschichtholz)

Versuchsreihe	d [mm]	λ	F _{u,s} [kn]	F _{1,5} [kn]	β _{l,m} [N/mm²]	max o _{Z II,n} [N/mm²]	zul F [kN]	V _{zul F} [mm]	Ē [N/mm]	C _{mod} [N/mm]
U 1/6/n U 1/8/n V 1/6/n V 1/8/n	8 8 8	9 9 9 9	8.09 9.30 8.92 9.13	5.97 7.45 6.48 5.71	21.07 18.16 23.22 17.84	13. 31 11. 47 14. 67 11. 27	3. 17 3. 27 3. 17 3. 27 3. 27	0.64 0.56 0.66 0.85	4712 6063 4857 3819	5272 7138 5685 4229
N/U 2/6/n U 2/6/n H/U 2/6/n U 2/8/n V 2/6/n V 2/8/n	16 16 16 16 16 16	6 6 8 6 8	27.76 31.20 32.53 33.10 31.21 32.39	20.83 20.62 25.72 18.85 16.22 13.56	18.07 20.31 21.18 16.16 20.32 15.81	11. 41 12. 83 13. 37 10. 21 12. 83 9. 99	12.67 12.67 12.67 13.05 12.67 13.05	0.72 0.84 0.53 0.97 1.12 1.34	17701 15700 23810 14025 11392 9746	16649 15472 21997 13804 11284 11096
U 3/6/n U 4/6/n	24 30	6 6	57.17 87.83	29. 83 35. 94	16.54 16.27	10. 93 10. 84	28.52 44.55	1.42 1.79	20083 24979	24319 26845

·``t--

Tabelle 17:Zusammenstellung der Mittelwerte der Versuchsergebnisse
aus den einzelnen Versuchsreihen
(Zug- und Druckscherversuche mit Vollholz aus Nadel- und Laubholz)

Ve rsuchsreihe	d [mm]	λ	F _{u,s} [kN]	Ē _{1,5} [kn]	β _{1,m} [N/mm²]	max $\overline{\sigma}_{ }$ [N/mm²]	zul F [kn]	V _{zul F} [mm]	C [N/mm]	⊂ _{mod} [N/mm]
A/U 1/6/n	8	0	16. 38	9.78	42.65	26. 94	3.75	0. 38	10077	11261
B/U 1/6/n	8	0	14. 54	12.11	37.86	23. 91	4.17	0. 30	13825	15620
C/U 1/6/n	8	0	16. 62	14.73	43.27	27. 33	5.12	0. 22	23248	21204
C/U-D 2/6/n	16	6	76.53	54.00	49.83	15.94	20.47	0.31	63034	57550
C/U-D 4/6/n	30	6	275.25	131.95	50.97	16.99	72.00	0.74	96446	90427
DOU/U-D 2/6/n NH-H/U-D 2/6/n NH-N/U-D 2/6/n	16 16 16	9 9 9 9	40.67 42.60 27.93	25. 22 20. 72 13. 69	26.48 27.73 18.19	12.71 13.31 8.73	12.67 12.67 12.67	0.76 0.97 1.38	17052 13213 9270	19250 16893 11690

 c_{W}