KIT | KIT-Bibliothek | Impressum | Datenschutz

CAGE: Circumplex Affect Guided Expression Inference

Wagner, Niklas 1; Mätzler, Felix 1; Vossberg, Samed R. 1; Schneider, Helen ORCID iD icon 1; Pavlitska, Svetlana 2; Zöllner, J. Marius 1,2
1 Karlsruher Institut für Technologie (KIT)
2 FZI Forschungszentrum Informatik (FZI)

Abstract:

Understanding emotions and expressions is a task of interest across multiple disciplines, especially for improving user experiences. Contrary to the common perception, it has been shown that emotions are not discrete entities but instead exist along a continuum. People understand discrete emotions differently due to a variety of factors, including cultural background, individual experiences, and cognitive biases. Therefore, most approaches to expression understanding, particularly those relying on discrete categories, are inherently biased. In this paper, we present a comparative in-depth analysis of two common datasets (AffectNet and EMOTIC) equipped with the components of the circumplex model of affect. Further, we propose a model for the prediction of facial expressions tailored for lightweight applications. Using a small-scaled MaxViT-based model architecture, we evaluate the impact of discrete expression category labels in training with the continuous valence and arousal labels. We show that considering valence and arousal in addition to discrete category labels helps to significantly improve expression inference. The proposed model outperforms the current state-of-the-art models on AffectNet, establishing it as the best-performing model for inferring valence and arousal achieving a 7% lower RMSE. ... mehr


Download
Originalveröffentlichung
DOI: 10.1109/CVPRW63382.2024.00471
Scopus
Zitationen: 2
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 17.06.2024
Sprache Englisch
Identifikator ISBN: 979-8-3503-6548-1
KITopen-ID: 1000175847
Erschienen in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17-18 June 2024
Veranstaltung IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW 2024), Seattle, WA, USA, 16.06.2024 – 22.06.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 4683–4692
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page