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A B S T R A C T

This paper is a contribution in the context of variational data assimilation combined with
statistical learning. The framework of data assimilation traditionally uses data collected at
sensor locations in order to bring corrections to a numerical model designed using knowledge
of the physical system of interest. However, some applications do not have available data at all
times, but only during an initial training phase. Hence, we suggest to combine data assimilation
with statistical learning methods; namely, deep learning. More precisely, for time steps at which
data is unavailable, a surrogate deep learning model runs predictions of the ‘true’ data which is
then assimilated by the new model. In this paper, we also derive a priori error estimates on this
statistical variational data assimilation (SVDA) approximation. Finally, we assess the method
by numerical test cases.

1. Introduction

State estimation is a task in which the quantity of interest is the ‘true’ state 𝑢true of a physical system over a space or space–time
domain of interest. In general, numerical prediction using mathematical models based on the physical knowledge of a system may
be deficient due to limitations imposed by available knowledge. Data assimilation (DA) has the goal to overcome these limitations
and produce more accurate predictions by incorporating experimental observations in numerical models. For this reason, data
assimilation methods have been widely explored in the literature. The goal of these methods is to use a priori information to
deduce the best mathematical model, while using available experimental data to produce the most accurate approximation of a
physical system. Many data assimilation methods involve the minimization of a cost function. As opposed to statistical techniques
such as Bayesian data assimilation [1] or Kalman filtering [2], variational data assimilation more explicitly uses the mathematical
(variational) structure of the problem to formulate the data assimilation method. For instance, the widely studied methods 3D-
VAR and 4D-VAR both usually rely on the weak formulation of the PDE to define the constrained minimization problem. Like
many variational data assimilation methods, one of the drawbacks of 3D-VAR and 4D-VAR is their computational intrusivity, which
means that at any stage, computational procedures need to access the model in order to perform their calculations. Intrusivity
is very inconvenient in many contexts, for instance when using industrial high-fidelity black-box solvers. Hence, non-intrusive or
partially-intrusive options can be valuable. The parametrized background data weak (PBDW) method introduced in [3] is closely
related to and inspired by the 3D-VAR, but is non-intrusive in the above discussed sense. It has been studied in many further works,
with the presence of noise [4,5], and in time-dependent contexts [6,7]. Another drawback of variational data assimilation is that
it assumes that data is available at all times, which is not the case in many industrial contexts. For instance, in numerical weather
prediction, data is collected using weather balloons to be sent at predefined times. Another common industrial framework is that
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in which data collection campaigns are conducted during limited periods of time, whereas numerical investigation of the physical
phenomena of interest may be carried out during longer periods.

The key conceptual idea in this contribution is to use machine learning (ML) in combination with data assimilation in the
bove described context of partially available real data. In the literature, other works bring data assimilation and statistical learning
ethods together. Equivalences between data assimilation and machine learning are discussed in the review paper [8], which
rovides a review of existing methods in the context of earth systems. In [9], a DA-ML method is suggested to constrain the output
or mass conservation. The chosen data assimilation method uses Ensemble Kalman filtering, and statistical learning is performed via

a convolutional neural network. Moreover, [10] suggests an offline DA-ML method, with iterative application of Ensemble Kalman
filtering and convolutional neural networks. The goal is to estimate the state at the current step given the state at the previous
one. The core idea is to derive a convolutional neural network trained using data assimilation during the offline stage. Since data
assimilation is only used offline, the resulting online processing is of statistical nature. Regarding the use of variational methods for
data assimilation, [11] explores two ideas. It compares the performance of DA-ML for resolvent correction and tendency correction
using a modified 4D-VAR formulation. The offline training uses the DA-ML method introduced in [10]. An online training of the
neural network is also explored in [11].

In this paper, we try to overcome the data-availability concern by combining data assimilation with statistical prediction. As
main contribution, we introduce a novel concept called statistical variational data assimilation (SVDA). It is split into two stages: an
offline stage during which we train a deep learning method, and an online stage during which we run our data assimilation model,
with real observations replaced by their statistically predicted counterparts. This main idea together with the necessary notation is
explained in Section 2. As a conceptual idea, SVDA offers a lot of flexibility in the choice of the data assimilation and especially
the deep learning method, which should be chosen adapted to the considered use case. To illustrate how a concrete SVDA could
look like in detail, we present an exemplary data assimilation and a deep learning method in Section 3. Specifically, we use the
PBDW approach to circumvent the intrusivity of the classical data assimilation methods. For the deep learning, we choose a so-called
LSTM-RNN which has proven good time prediction capabilities in the literature. In Section 4, we present an error analysis of the
method. Finally, in Section 5, the SVDA is illustrated by some numerical results.

2. Statistical variational data assimilation

In this context, we define a so-called ‘best-knowledge’ model (bk) as the best possible model established by human expertise.
The bk model is a mathematical model rendering the behavior of the system given all available knowledge about a physical system.
More concretely, we will use a PDE or a set of PDEs that best models the physical problem.

In the applications we have in mind, variational data assimilation methods typically incorporate observations into so-called
forecasts obtained by existing bk models. Data/Observations are collected, e.g. using sensors, and integrated into the bk model at
selected so-called update times, finally building a data-driven model. Having formulated the bk model and set the sensor locations,
ariational data assimilation typically consists of the following two steps which are done for every new calculation (e.g., new time
nstance or parameter):

• Collect observations at sensor locations
• Solve the data assimilation problem using the collected observations as input

However, ready-to-use data is not always available. In fact, a common engineering scenario is that in which measure-
ents/observations are available for a given time interval or for given parametrizations explored during a training phase. This

raining phase is more commonly referred to as a ‘test campaign’ in industrial and engineering scenarios. Thus, it is of great interest
o develop appropriate and optimal use of the collected observations to understand the behavior of the system.

In this section, we introduce a new method to overcome the issue of unavailable observations. More precisely, we do not deal
ith cases where some observations have been collected inaccurately or are missing [12]. We rather deal with situations in which
ata has been collected for given time windows but is not available at later times. Towards this end, we suggest to use prediction-
ased methods in order to approximate the observations. The predicted observations will then be plugged into a data assimilation
ramework as a surrogate to real-time data. In this paper, we use the Parametrized Background Data-Weak approach (PBDW) as a
ariational data assimilation method.

As mentioned, we need to perform a statistical learning step in the SVDA. The goal of this step is to predict the alternative
ata needed for the data assimilation problem using chosen input variables. Many methods can be used depending on which inputs
ill be used to train the model. As an example, the behavior of linear phenomena can be predicted using linear regression [13],
nd nonlinear phenomena can be addressed using polynomial regression, or neural networks [14]. In this paper, the phenomena
f interest are time-dependent and nonlinear. Hence, in the presented framework, the SVDA relies on a type of Neural Networks
NN) called Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN). Yet, the method can be run using any other deep
earning or machine learning method [15]. The choice should be made in light of the intricacies of the problem of interest.

.1. Main ideas

SVDA can be used in different contexts. This paper mainly focuses on ‘future predictions’, i.e., on generating machine learning
bservations from a bk model and given observations collected at previous times. The hope is to thereby improve the ‘future’

imulations where real observations are not available. Another configuration for the use of the SVDA will be considered in the
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numerical test cases; namely SVDA in parametric contexts. In that case, the underlying model is a parametrized PDE and observations
are available for one or a few distinct parameters. The machine learning model is trained only on these data, but its ‘predictions’
for the model with a different parameter can be used as surrogate data in the data assimilation process for the model with this new
parameter. Independent of the application case, the SVDA can algorithmically be divided into an offline and an online phase. Let
us now describe the main conceptual steps of both stages in the context of ‘future predictions’.

Consider a finite time interval 𝐼 = [0, 𝑇 ], with 𝑇 > 0. To discretize in time, we consider an integer 𝐾 ≥ 1, we define
= 𝑡0 < ⋯ < 𝑡𝐾 = 𝑇 as (𝐾 + 1) distinct time nodes over 𝐼 , and we set Ktr = {1,… , 𝐾}, K

tr
= {0} ∪ Ktr and 𝐼 tr = {𝑡𝑘}

𝑘∈K
tr .

he aim is to derive a state estimate for a time-dependent solution.
We assume the existence of an initial offline phase [0, 𝛥𝑡] of width 𝛥𝑡 > 0, and an integer 𝑘off > 0 such that 𝛥𝑡 = 𝑡𝑘off−1. In other

ords, 𝑘off is the first index at which the observations are unavailable. During the offline stage of SVDA, we use the data available in
he time window [0, 𝛥𝑡] to predict the evolution of the observables via a deep learning model (LSTM-RNN). We emphasize that we
earn the observations and not the state estimates directly with the neural network for two main reasons. First, state estimates of the
rue solution (and not the bk model) are typically never directly accessible, even in the offline time window, in real applications.
nly the data collected at sensor locations can thus be used to train the neural network. Second, this approach of producing synthetic
bservations aligns better with the traditional data assimilation ansatz where observations are the input of the data assimilation
roblem. Therefore, this allows us to easily incorporate the SVDA concept into traditional, potentially commercial, data assimilation
oftware. The offline stage also consists of two additional steps: building a background space 𝑁 of dimension 𝑁 , and building an
bservable space 𝑀 of dimension 𝑀 . These spaces respectively model the solution (state) space for the bk model (e.g. the PDE
f interest) and the space used to capture the observations. Additional details on the construction of such spaces will be given in
ection 3 below.

Using the statistical (deep learning) LSTM-RNN model, data for future times (starting at time index 𝑘off ) is predicted for all
ensor locations in the online stage of SVDA. Despite the absence of real data, it now becomes possible to perform a more informed
imulation for the next time steps without relying solely on the bk model. In fact, the LSTM-RNN provides a surrogate prediction of
he system response to circumvent the first step of collecting observations in the above traditional data assimilation procedure. The
tep of actually solving the data assimilation problem can then be run using a prediction of the true unavailable data observations.
ence, the final solution is obtained through a combination of a bk model and statistical learning.

. Practical SVDA formulation

In this section, we illustrate how the SVDA concept can be put into practice, in particular by combining an LSTM-RNN with the
BDW data assimilation method. We first introduce the setting and some notation in Section 3.1. Then in Section 3.2, we review
he main ideas of the PBDW approach for (traditional) variational data assimilation. The practical SVDA formulations are outlined
or the offline stage in Section 3.3 and for the online stage in Section 3.4.

.1. Setting and notation

We consider a spatial domain (open, bounded, connected subset) 𝛺 ⊂ R𝑑 , 𝑑 ≥ 1, with a Lipschitz boundary. We introduce a
ilbert space  composed of functions defined over 𝛺. The space  is endowed with an inner product (⋅, ⋅) and we denote by ‖ ⋅ ‖

he induced norm;  consists of functions {𝑤 ∶ 𝛺 → R | ‖𝑤‖ < ∞}. To fix the ideas, we assume that 𝐻1
0 (𝛺) ⊂  ⊂ 𝐻1(𝛺), and we

enote the dual space of  by  ′. The Riesz operator 𝑅 ∶  ′ →  satisfies, for each 𝓁 ∈  ′, and for all 𝑣 ∈  , the equality
𝑅 (𝓁), 𝑣

)

= 𝓁(𝑣). For any closed subspace  ⊂  , the orthogonal complement of  is defined as ⟂ ∶= {𝑤 ∈  | (𝑤, 𝑣) = 0, ∀𝑣 ∈ }.
inally, we introduce a parameter set  ⊂ R𝑝, 𝑝 ≥ 1, whose elements are generically denoted by 𝜇 ∈  .

We recall that we use a ‘best-knowledge’ (bk) mathematical model in the form of a parametrized PDE posed over the domain
(or more generally, over a domain 𝛺bk such that 𝛺 ⊂ 𝛺bk). Then, we introduce the manifold associated with the solutions of the
k model bk ⊂  . In ideal situations, the true solution 𝑢true is well approximated by the bk manifold, i.e., the model error

𝜖bkmod(𝑢
true) ∶= inf

𝑧∈bk
‖𝑢true − 𝑧‖, (1)

s very small.
We introduce nested background subspaces 1 ⊂ … ⊂ 𝑁 ⊂ … ⊂  that are generated to approximate the bk manifold bk to

certain accuracy. These subspaces can be built using various model-order reduction techniques, for instance, the Reduced Basis
ethod [16–18]. Note that the indices of the subspaces conventionally indicate their dimensions. To measure how well the true

olution is approximated by the background space 𝑁 , we define the quantity 𝜖bk𝑁 (𝑢true) ∶= inf𝑧∈𝑁
‖𝑢true−𝑧‖. The background space

s built so that 𝜖bk𝑁 (𝑢true) →
𝑁→+∞

𝜖bkmod(𝑢
true). Moreover, we introduce the reduction error 𝜖bkred,𝑁 ∶= sup

𝑢∈bk
inf

𝑧∈𝑁
‖𝑢 − 𝑧‖, which encodes

he loss of accuracy caused by solving the bk model in the 𝑁-dimensional background space 𝑁 . For later purposes, we introduce
𝑁

(𝑢true) as the closest point to 𝑢true in 𝑁 . Note that 𝛱𝑁
is the  -orthogonal projection onto 𝑁 . The background space 𝑁

an be interpreted as a prior space that approximates the bk manifold which we hope approximates well the true state 𝑢true. As
reviously alluded to, 𝑢true rarely lies in bk in realistic engineering study cases. In the remainder of this Section, we give a brief

eview of the PBDW method and present the SVDA setting in the PBDW context.
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3.2. PBDW formulation in the time-dependent context

Since the SVDA builds upon the PBDW, we recap the main ideas of the PBDW formulation for time-dependent problems,
ollowing [6,7].

Even when one can collect observations, full-knowledge of 𝑢true is unrealistic. In many engineering cases, only a limited number of
experimental observations of the true state 𝑢true is affordable — interpreted as the application of prescribed observation functionals
𝓁obs
𝑚 ∈  ′ for all 𝑚 ∈ {1,… ,𝑀}. One can consider any observation functional that renders the behavior of some physical sensor.

In the time-dependent setting, we let these observation functionals act on time-averaged snapshots of the true solution. We also
make the regularity assumption 𝑢true ∈ 𝐿1(𝐼 ; ) on the true state. We introduce the time-integration intervals

𝑘 = [𝑡𝑘 − 𝛿𝑡𝑘, 𝑡𝑘 + 𝛿𝑡𝑘], ∀𝑘 ∈ Ktr , (2)

where 𝛿𝑡𝑘 > 0 is a parameter related to the time-precision of sensors. Then, for any function 𝑣 ∈ 𝐿1(𝐼 ; ), we define the
time-averaged snapshots

𝑣𝑘(𝑥) ∶= 1
|𝑘

|
∫𝑘

𝑣(𝑡, 𝑥) 𝑑𝑡 ∈  , ∀𝑘 ∈ Ktr . (3)

Now we consider

𝓁𝑘,obs
𝑚 (𝑢true) ∶= 𝓁obs

𝑚 (𝑢𝑘,true), ∀𝑚 ∈ {1,… ,𝑀}, ∀𝑘 ∈ Ktr . (4)

For instance, if the sensors act through local uniform time integration, we have

𝓁𝑘,obs
𝑚 (𝑢true) = 1

|𝑚| ∫𝑚

𝑢𝑘,true(𝑥) 𝑑𝑥 = 1
|𝑚|

1
|𝑘| ∫𝑚

∫𝑘
𝑢true(𝑡, 𝑥) 𝑑𝑥𝑑𝑡, (5)

where 𝑚 denotes the spatial domain of influence for the 𝑚th measurement.
The most convenient configuration to collect observations in industrial contexts is to measure the quantities at user-defined

space–time locations. In actual practice, sensors do not take pointwise measures but localized ones. A sensor collects the data that
is enclosed in a small area centered at the sensor location. Hence, Eq. (5) means that the sensor returns a measurement that is
equal to the space–time averaged quantity we are collecting. Moreover, the observation functionals 𝓁𝑘,obs

𝑚 are Riesz representations
of any type of physical data available for the user, and not necessarily pointwise or pointwise-like (integrations over small patches)
observations.

Generally, we introduce the time-independent observable space 𝑀 ⊂  such that

𝑀 = Span{𝑞1,… , 𝑞𝑀}, (6)

where 𝑞𝑚 ∶= 𝑅 (𝓁obs
𝑚 ) is the Riesz representation of 𝓁obs

𝑚 ∈  ′, for all 𝑚 ∈ {1,… ,𝑀}, i.e.,

𝓁obs
𝑚 (𝑢𝑘,true) = (𝑢𝑘,true, 𝑞𝑚), ∀𝑚 ∈ {1,… ,𝑀}, ∀𝑘 ∈ Ktr . (7)

Note that, for fixed sensor locations, the computational effort to compute the Riesz representations of the observation functionals
is time-independent and is incurred only once so that, for all 𝑚 ∈ {1,… ,𝑀} and 𝑘 ∈ Ktr , the experimental observations of the true
state satisfy:

𝓁𝑘,obs
𝑚 (𝑢true) =

(

𝑢𝑘,true, 𝑞𝑚
)

= 1
|𝑘| ∫𝑘

𝓁obs
𝑚 (𝑢true(𝑡, ⋅))𝑑𝑡. (8)

Hence, for all 𝑞 ∈ 𝑀 such that,

𝑞 =
𝑀
∑

𝑚=1
𝛼𝑚𝑞𝑚, (9)

the inner product
(

𝑢𝑘,true, 𝑞
)

is deduced from the experimental observations as follows:

(

𝑢𝑘,true, 𝑞
)

= 1
|𝑘| ∫𝑘

𝑀
∑

𝑚=1
𝛼𝑚

(

𝑢true(𝑡, ⋅), 𝑞𝑚
)

𝑑𝑡

= 1
|𝑘|

𝑀
∑

𝑚=1
𝛼𝑚 ∫𝑘

𝓁obs
𝑚 (𝑢true(𝑡, ⋅))𝑑𝑡.

(10)

Henceforth, we make the crucial assumption that

𝑁 ∩ ⟂
𝑀 = {0}, (11)

which is also equivalent to

𝛽𝑁,𝑀 ∶= inf sup
(𝑤, 𝑣)

∈ (0, 1], (12)

𝑤∈𝑁 𝑣∈𝑀 ‖𝑤‖ ‖𝑣‖

4 
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where 𝛽𝑁,𝑀 is the so-called stability constant (the reader can refer to [19] for a proof). Assumption (11) can be viewed as a
requirement to have enough sensors (note that 𝑁 ∩ ⟂ = {0}). Under this assumption, the limited-observations PBDW statement
eads: for each 𝑘 ∈ Ktr , find (𝑢𝑘,∗𝑁,𝑀 , 𝑧𝑘,∗𝑁,𝑀 , 𝜂𝑘,∗𝑁,𝑀 ) ∈  ×𝑁 ×𝑀 such that

(𝑢𝑘,∗𝑁,𝑀 , 𝑧𝑘,∗𝑁,𝑀 , 𝜂𝑘,∗𝑁,𝑀 ) = arginf
𝑢𝑁,𝑀∈
𝑧𝑁,𝑀∈𝑁
𝜂𝑁,𝑀∈𝑀

‖𝜂𝑁,𝑀‖

2, (13a)

subject to (𝑢𝑁,𝑀 , 𝑣) = (𝜂𝑁,𝑀 , 𝑣) + (𝑧𝑁,𝑀 , 𝑣), ∀𝑣 ∈  , (13b)

(𝑢𝑁,𝑀 , 𝜙) = (𝑢𝑘,true, 𝜙), ∀𝜙 ∈ 𝑀 . (13c)

he limited-observations saddle-point problem associated with (13) reads: for each 𝑘 ∈ Ktr , find (𝑧𝑘,∗𝑁,𝑀 , 𝜂𝑘,∗𝑁,𝑀 ) ∈ 𝑁 ×𝑀 such that

(𝜂𝑘,∗𝑁,𝑀 , 𝑞) + (𝑧𝑘,∗𝑁,𝑀 , 𝑞) = (𝑢𝑘,true, 𝑞), ∀𝑞 ∈ 𝑀 , (14a)

(𝜂𝑘,∗𝑁,𝑀 , 𝑝) = 0, ∀𝑝 ∈ 𝑁 , (14b)

ence, the limited-observations state estimate is

𝑢𝑘,∗𝑁,𝑀 = 𝑧𝑘,∗𝑁,𝑀 + 𝜂𝑘,∗𝑁,𝑀 , ∀𝑘 ∈ Ktr . (15)

n algebraic form, the limited-observations PBDW statement reads: for each 𝑘 ∈ Ktr , find (𝒛𝑘,∗𝑁,𝑀 , 𝜼𝑘,∗𝑁,𝑀 ) ∈ R𝑁 × R𝑀 such that

(

𝐀 𝐁
𝐁𝑇 𝟎

)

(

𝜼𝑘,∗𝑁,𝑀
𝒛𝑘,∗𝑁,𝑀

)

=
(

𝓵𝑘,obs
𝑀
𝟎

)

, (16)

ith the matrices

𝐀 =
(

(𝑞𝑚′ , 𝑞𝑚)
)

1≤𝑚,𝑚′≤𝑀
∈ R𝑀×𝑀 , 𝐁 =

(

(𝜁𝑛, 𝑞𝑚)
)

1≤𝑚≤𝑀,1≤𝑛≤𝑁
∈ R𝑀×𝑁 , (17)

where 𝑁 = span{𝜁1,… , 𝜁𝑁}, and the vector of observations

𝓵𝑘,obs
𝑀 =

(

𝓁obs
𝑚 (𝑢𝑘,true)

)

1≤𝑚≤𝑀 ∈ R𝑀 . (18)

Note that the matrices 𝐀 and 𝐁 are time-independent; only the right-hand side in (16) depends on 𝑘.

Remark 1 (3D-VAR). We highlight that the PBDW is a special case of 3D-VAR [20] variational data assimilation. We introduce the
bilinear forms 𝑎 ∶  × → R and 𝑏 ∶  × → R, and the linear form 𝑓 ∶  → R. In a noise-free context, the 3D-VAR method
consists in solving

(𝑧𝑘,∗, 𝜂𝑘,∗) = arginf
𝑧∈
𝜂∈𝑀

1
2
‖𝜂‖2 + 𝜆

2
‖𝛱𝑀

𝑢𝑘,true −𝛱𝑀
(𝑧 + 𝜂)‖2, (19a)

subject to 𝑎(𝑧, 𝑣) = 𝑓 (𝑣) + 𝑏(𝜂, 𝑣), ∀𝑣 ∈  , (19b)

hich is equivalent to solving

(𝑧𝑘,∗, 𝜂𝑘,∗) = arginf
𝑢∈ 
𝑧∈ 
𝜂∈ 

‖𝜂‖2, (20a)

subject to 𝑎(𝑧, 𝑣) = 𝑓 (𝑣) + 𝑏(𝜂, 𝑣), ∀𝑣 ∈  , (20b)

(𝑧 + 𝜂, 𝜙) = (𝑢𝑘,true, 𝜙), ∀𝑣 ∈ 𝑀 . (20c)

If 𝑏 ≡ 0, the constraint (20b) can be replaced by a requirement that 𝑧 belongs to the manifold of solutions  = {𝑢 ∈  | 𝑎(𝑢, 𝑣) = 𝑓 (𝑣)}.
In this case, the 3D-VAR problem reads:

(𝑢∗, 𝑧∗, 𝜂∗) = arginf
𝑢∈ 
𝑧∈ 
𝜂∈ 

‖𝜂‖2, (21a)

subject to (𝑢, 𝑣) = (𝑧, 𝑣) + (𝜂, 𝑣), ∀𝑣 ∈  , (21b)

(𝑢, 𝜙) = (𝑢true, 𝜙), ∀𝑣 ∈ 𝑀 , (21c)

which is the same idea as the PBDW formulation.
5 
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Fig. 1. Sketch of the LSTM-RNN setting in the numerical experiments. For better visibility, only the propagation of the recurrent state is depicted.

3.3. SVDA offline phase

As described in Section 2, the SVDA consists of an offline and an online phase. During the offline stage (cf. Algorithm 1 below),
ne precomputes the functions (𝜁𝑛)1≤𝑛≤𝑁 as basis of 𝑁 and the Riesz representations (𝑞𝑚)1≤𝑚≤𝑀 , cf. (7). Recall that the basis
𝜁𝑛)1≤𝑛≤𝑁 is computed in our case using the Reduced Basis Method [16–18] based on solution snapshots of the bk model. With 𝜁𝑛
nd 𝑞𝑚 at hand, one precomputes and stores the matrices 𝐀 ∈ R𝑀×𝑀 and 𝐁 ∈ R𝑀×𝑁 defined in (17) once and for all.

One also runs the deep learning module on the training data in order to produce an LSTM-RNN prediction function. Concretely,
we now describe the set-up of our LSTM-RNN model for the SVDA. Recall that the specific choice of the machine learning model
can be exchanged in the SVDA formulation and should be adapted to the problem context. We therefore focus our description on
the concepts used in the numerical experiments below.

For completeness, we briefly describe how a single LSTM cell works. As LSTMs are recurrent networks, there is a recurrent state
denoted by 𝐡. Additionally, an LSTM unit also includes a cell state 𝐜. At unit 𝑗, 𝐜𝑗 and 𝐡𝑗 are computed from the previous steps 𝐜𝑗−1
nd 𝐡𝑗−1 as well as from the input value 𝐱𝑗 , which reflects the input variable at time instance 𝑡𝑗 . 𝐡𝑗−1 and 𝐱𝑗 are concatenated to
̂𝑗 , from which the values between 0 and 1 of the forget, update and output gates 𝐟𝑗 ,𝐮𝑗 , 𝐨𝑗 are computed via

𝐟𝑗 = 𝜎(𝐖𝑓 �̂�𝑗 + 𝐛𝑓 ), 𝐮𝑗 = 𝜎(𝐖𝑢�̂�𝑗 + 𝐛𝑢), 𝐨𝑗 = 𝜎(𝐖𝑜�̂�𝑗 + 𝐛𝑜).

ere, 𝐖𝑓 ,𝐖𝑢,𝐖𝑜 and 𝐛𝑓 ,𝐛𝑢,𝐛𝑜 are the trainable weights and biases, respectively, and 𝜎 denotes the activation function. The gate
echanism is the cornerstone of every LSTM unit and determines how the recurrent and cell state are updated. First a new candidate

ell state �̃�𝑗 is computed as

�̃�𝑗 = tanh(𝐖𝑐 �̂�𝑗 + 𝐛𝑐 ),

here 𝐖𝑐 and 𝐛𝑐 are yet another trainable weight and bias, respectively. Then, the updated quantities are calculated via

𝐜𝑗 = 𝐟𝑗 ⊙ 𝐜𝑗−1 + 𝐮𝑗 ⊙ �̃�𝑗 , 𝐡𝑗 = 𝐨𝑗 ⊙ tanh 𝐜𝑗 ,

here ⊙ denotes the component-wise product. While 𝐜 is an internal variable, the recurrent state 𝐡 also serves as output, especially
at the final LSTM unit. We refer the reader to [21] as well as the original articles [22,23] for more details on LSTMs.

For our LSTM-RNN model, we use 𝑙𝑏 LSTM units with the so-called lookback variable 𝑙𝑏 ≤ 𝑘off − 1. In other words, this variable
determines how many previous time steps are used for the prediction of the observables at the current time. Consequently, the input
variable has the shape R𝑙𝑏×𝑀 . Besides the LSTM units, our neural network consists of dense layer(s), see Fig. 1 for a sketch. Details
on the used architecture and the training are provided in Section 5. The described neural network construction is used to emulate
the map from (𝓵𝑘,…𝓵𝑘+𝑙𝑏−1) to 𝓵𝑘+𝑙𝑏 for each training time step 𝑡𝑘, where we recall that 𝓵𝑘 denotes the vector of observations,
f. (18). For fixed 𝑘off , 𝑙𝑏 also influences the number of available input/output training data pairs. To better illustrate this, let us
onsider two extreme cases. On the one hand, for 𝑙𝑏 = 1, we have 𝑘off − 1 training data pairs. On the other hand, for 𝑙𝑏 = 𝑘off − 1,

we have only a single training data pair.

Algorithm 1 Offline stage of the SVDA

Input : {𝑞1,… , 𝑞𝑀}: Riesz representations of the observations; bk model and set of training parameters; lookback variable 𝑙𝑏
and hyperparameters for LSTM-RNN

1: Compute 𝑁 = span{𝜁1,… , , 𝜁𝑁} using the Reduced Basis Method based on bk model and training parameters.
2: Set 𝑀 ∶= Span{𝑞1,… , 𝑞𝑀}.
3: Compute the matrices 𝐀 and 𝐁 according to (17) using 𝑁 and 𝑀 .
4: Compute the LSTM-RNN prediction function 𝓵DL

𝑀 using 𝑙𝑏 LSTM units and additional dense layers, cf. Fig. 1, training based on
Adams optimizer, cf. Section 5.

Output : 𝑁 , 𝑀 , 𝐀 and 𝐁, 𝓵DL
𝑀 .
6 
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3.4. SVDA online phase

During the online stage (cf. Algorithm 2), we would like to solve the PBDW problem (16) at each time step 𝑡𝑘 in [𝛥𝑡, 𝑇 ]. However,
ecall that in the SVDA context, the observations are not available at the time steps of interest. Hence, one cannot evaluate the
bservations 𝓁𝑘,obs

𝑚 (𝑢true) in (4), which will be replaced by their LSTM-RNN prediction. Therefore, we apply the trained LSTM-RNN
rediction function to the input data in order to generate a vector of predicted observations 𝓵𝑘,DL

𝑀 to replace 𝓵𝑘,obs
𝑀 in (16). Precisely,

e get the predictions 𝓵𝑘,𝐷𝐿 for any time step 𝑡𝑘 very cheaply by providing observations at 𝑙𝑏 previous time steps. We, hence, have
o sequentially run the neural network several times to get all surrogate observations in [𝛥𝑡, 𝑇 ]. Since the evaluation of a trained
eural network is rather cheap, this sequential run comes at extremely low cost. The computation of 𝓵𝑘,𝐷𝐿 for times 𝑡𝑘 in [𝛥𝑡, 𝑇 ]
an also be viewed as a machine learning based time stepping.

Let us now present the SVDA formulation of the PBDW problem. We directly start from the algebraic formulation (16) and
eplace 𝓵𝑘,obs

𝑀 by 𝓵𝑘,DL
𝑀 . The SVDA-PBDW statement reads: for each 𝑘 ∈ Ktr , find (𝒛𝑘,svda𝑁,𝑀 , 𝜼𝑘,svda𝑁,𝑀 ) ∈ R𝑁 × R𝑀 such that

(

𝐀 𝐁
𝐁𝑇 𝟎

)

(

𝜼𝑘,svda𝑁,𝑀
𝒛𝑘,svda𝑁,𝑀

)

=
(

𝓵𝑘,DL
𝑀
𝟎

)

, (22)

ith the matrices 𝐀,𝐁 as in the original PBDW formulation above (cf. (17)). Having solved this linear (𝑁+𝑀)-dimensional problem,
or each 𝑘 ∈ {𝑘off ,… , 𝐾}, the SVDA state estimate 𝒖𝑘,svda𝑁,𝑀 is deduced as follows:

𝒖𝑘,svda𝑁,𝑀 = 𝐙𝑁𝒛𝑘,svda𝑁,𝑀 + 𝐔𝑀𝜼𝑘,svda𝑁,𝑀 , (23)

here 𝐙𝑁 and 𝐔𝑀 are the algebraic counterparts of 𝑁 and 𝑀 respectively. Here, we emphasize that predicting 𝓵𝑘,DL
𝑀 with the

STM-RNN instead of the ‘state’ 𝒛𝑁,𝑀 , 𝜼𝑁,𝑀 allows us to use the traditional data assimilation framework of PBDW, as we already
xplained in Section 2.1. This ensures ‘consistency’ in the solver between time steps in the sense that model (16) for time steps
ith real data available and model (22) for time steps without available data are of similar nature. Additionally, we can in this
ay easily guarantee that indeed 𝜂𝑘,svda𝑁,𝑀 ∈ ⟂

𝑁 . Finally, note that predicting 𝓁 instead of [𝑧, 𝜂] implies less computational costs as
he observation vector has only 𝑀 components instead of 𝑁 +𝑀 .

Algorithm 2 Online stage of the SVDA

Input : 𝑘off , output of the offline stage: 𝑁 ,𝑀 , matrices 𝑨,𝑩, trained LSTM-RNN prediction function 𝓵DL
𝑀 .

1: for 𝑘 ∈ {𝑘off ,… , 𝐾} do
2: Compute 𝓵𝑘,DL

𝑀 by applying the LSTM-RNN prediction function 𝓵DL
𝑀 at time 𝑡𝑘 to input data from previous 𝑙𝑏 time steps.

3: Solve the SVDA online system (22) at time 𝑡𝑘.
4: Update the SVDA state estimate 𝒖𝑘,svda𝑁,𝑀 according to (23).
5: end for

Output : SVDA future trajectory {𝒖𝑘,svda𝑁,𝑀 }𝑘off≤𝑘≤𝐾 .

Note that we can reformulate (22) into variational form similar to the PBDW, which is useful for the error analysis, but not used
n the practical implementation. For this, we use (7) to define LSTM-RNN predictions of the state out of 𝓵𝑘,DL

𝑀 . Precisely, we define
he field of LSTM-RNN state predictions 𝑢𝑘,DL ∈ 𝑀 via

𝑢𝑘,DL =
𝑀
∑

𝑚=1
𝑢𝑘,DL𝑚 𝑞𝑚 (24)

nd

𝓵𝑘,DL
𝑀 =

(

𝓁obs
𝑚 (𝑢𝑘,DL)

)

1≤𝑚≤𝑀 =
(

(𝑢𝑘,DL, 𝑞𝑚)
)

1≤𝑚≤𝑀 (25)

he variational form of (22) of the SVDA problem now reads: for each 𝑘 ∈ Ktr , find (𝑧𝑘,svda𝑁,𝑀 , 𝜂𝑘,svda𝑁,𝑀 ) ∈ 𝑁 ×𝑀 such that

(𝜂𝑘,svda𝑁,𝑀 , 𝑞) + (𝑧𝑘,svda𝑁,𝑀 , 𝑞) = (𝑢𝑘,DL, 𝑞), ∀𝑞 ∈ 𝑀 , (26a)

(𝜂𝑘,svda𝑁,𝑀 , 𝑝) = 0, ∀𝑝 ∈ 𝑁 , (26b)

ence, the SVDA state estimate is

𝑢𝑘,svda𝑁,𝑀 = 𝑧𝑘,svda𝑁,𝑀 + 𝜂𝑘,svda𝑁,𝑀 , ∀𝑘 ∈ Ktr . (27)

𝑘,svda 𝑘,svda
ote that 𝑢𝑁,𝑀 is, hence, the function associated with the vector 𝒖𝑁,𝑀 .

7 
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4. Error estimation

In this section, we establish an a priori error analysis of the SVDA approximation. We first recall an important result proved
in [3,24].

Proposition 1. At each time step 𝑘 ∈ Ktr , the PBDW error estimation satisfies

‖𝑢𝑘,true − 𝑢𝑘,∗𝑁,𝑀‖ ≤ 1
𝛽𝑁,𝑀

inf
𝑞∈𝑀∩⟂

𝑁

‖𝛱𝑁
𝑢𝑘,true − 𝑞‖, (28)

where 𝛽𝑁,𝑀 is the stability constant defined as

𝛽𝑁,𝑀 ∶= inf
𝑧∈𝑁

sup
𝑞∈𝑀

(𝑧, 𝑞)
‖𝑧‖‖𝑞‖

∈ (0, 1].

Proof. See [3], Proposition 2, and for the improved constant of 1
𝛽𝑁,𝑀

see [24].

Let us now estimate the SVDA approximation error.

roposition 2. In the present context, the following upper bounds on the SVDA approximation hold true

‖𝑢𝑘,∗𝑁,𝑀 − 𝑢𝑘,svda𝑁,𝑀 ‖ ≤
(

1 + 2
𝛽𝑁,𝑀

)

‖𝛱𝑀
𝑢𝑘,true − 𝑢𝑘,DL‖. (29)

‖𝑢𝑘,true − 𝑢𝑘,svda𝑁,𝑀 ‖ ≤ 1
𝛽𝑁,𝑀

inf
𝑞∈𝑀∩⟂

𝑁

‖𝛱𝑁
𝑢𝑘,true − 𝑞‖

+
(

1 + 2
𝛽𝑁,𝑀

)

‖𝛱𝑀
𝑢𝑘,true − 𝑢𝑘,DL‖.

(30)

Proof.

1. By subtracting (26a) from (14a), we obtain

(𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 , 𝑞) + (𝑧𝑘,∗𝑁,𝑀 − 𝑧𝑘,svda𝑁,𝑀 , 𝑞) = (𝑢𝑘,true − 𝑢𝑘,DL, 𝑞), ∀𝑞 ∈ 𝑀 .

Let us choose the test function 𝑞 = 𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ∈ 𝑀 as a test function. Using the fact that 𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ∈ ⟂
𝑁 along with

the Cauchy–Schwarz inequality, we get

‖𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ‖

2 =
(

𝛱𝑀
(𝑢𝑘,true − 𝑢𝑘,DL), 𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀

)

≤ ‖𝛱𝑀
(𝑢𝑘,true − 𝑢𝑘,DL)‖ ‖𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ‖.

Hence,

‖𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ‖ ≤ ‖𝛱𝑀
(𝑢𝑘,true − 𝑢𝑘,DL)‖. (31)

Moreover, (𝑧𝑘,∗𝑁,𝑀 − 𝑧𝑘,svda𝑁,𝑀 ) ∈ 𝑁 leads to

𝛽𝑁,𝑀‖𝑧𝑘,∗𝑁,𝑀 − 𝑧𝑘,svda𝑁,𝑀 ‖ ≤ sup
𝑞∈𝑀

(𝑧𝑘,∗𝑁,𝑀 − 𝑧𝑘,svda𝑁,𝑀 , 𝑞)

‖𝑞‖

= sup
𝑞∈𝑀

(𝑢𝑘,true − 𝑢𝑘,DL − (𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ), 𝑞)

‖𝑞‖

≤ ‖𝛱𝑀
(𝑢𝑘,true − 𝑢𝑘,DL)‖ + ‖𝜂𝑘,∗𝑁,𝑀 − 𝜂𝑘,svda𝑁,𝑀 ‖

≤ 2‖𝛱𝑀
𝑢𝑘,true − 𝑢𝑘,DL‖,

where the last inequality follows from (31) and the fact that 𝑢𝑘,DL ∈ 𝑀 . Hence,

‖𝑧𝑘,∗𝑁,𝑀 − 𝑧𝑘,svda𝑁,𝑀 ‖ ≤ 2
𝛽𝑁,𝑀

‖𝛱𝑀
𝑢𝑘,true − 𝑢𝑘,DL‖. (32)

Combining (31) and (32), we obtain

‖𝑢𝑘,∗𝑁,𝑀 − 𝑢𝑘,svda𝑁,𝑀 ‖ ≤
(

1 + 2
𝛽𝑁,𝑀

)

‖𝛱𝑀
𝑢𝑘,true − 𝑢𝑘,DL‖. (33)

The spirit of this proof is similar to that of noisy observations [4].
8 
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Fig. 2. Computational domain and mesh with  = 6561. The little black squares are observation subsets {𝑚}121𝑚=1. Left: Mono-material plate. Right: Bi-material
plate.

2. Using the triangle inequality, we have

‖𝑢𝑘,true − 𝑢𝑘,svda𝑁,𝑀 ‖ ≤ ‖𝑢𝑘,true − 𝑢𝑘,∗𝑁,𝑀‖ + ‖𝑢𝑘,∗𝑁,𝑀 − 𝑢𝑘,svda𝑁,𝑀 ‖. (34)

It follows from (34), (28), and (33) that

‖𝑢𝑘,true − 𝑢𝑘,svda𝑁,𝑀 ‖ ≤ 1
𝛽𝑁,𝑀

inf
𝑞∈𝑀∩⟂

𝑁

‖𝛱𝑁
𝑢𝑘,true − 𝑞‖ (35)

+
(

1 + 2
𝛽𝑁,𝑀

)

‖𝛱𝑀
𝑢𝑘,true − 𝑢𝑘,DL‖. (36)

The result in (30) shows that the quality of the SVDA approximation has two contributions. The first contribution depends on the
quality of the PBDW spaces. The better the quality of the background space 𝑁 and the observable space 𝑀 , the smaller the error
‖𝑢𝑘,true − 𝑢𝑘,svda𝑁,𝑀 ‖. The second contribution is related to the quality of the statistical prediction. The more accurate 𝑢𝑘,DL, the smaller
the error ‖𝑢𝑘,true − 𝑢𝑘,svda𝑁,𝑀 ‖. In concrete applications, both error contributions may be estimated further or assessed with an indicator
to yield an overall bound for the SVDA quality. While there is a rich literature on error estimation for variational data assimilation,
see e.g. [3] in the PBDW context, the performance of machine learning methods is typically assessed by heuristics and experimental
studies for use cases. For instance, the class of LSTM-RNN networks is widely used in the literature and has shown excellent
performance for time series prediction tasks, see [21–23] and references therein. While the good general approximation properties
of neural networks are well established, see e.g. [25] for parabolic problems and [26] for parametrized PDEs, error estimates for
concrete trained neural networks are much more rare. Two interesting approaches that might allow to estimate ‖𝛱𝑀

𝑢𝑘,true−𝑢𝑘,DL‖
for appropriate machine learning methods within SVDA in the future are the following: [27] proposes an error analysis framework
for physics informed neural networks. [28] combines machine learning with certified reduced basis approaches for parametric PDEs.

5. Numerical results

In this section, we implement the above developments. The goal is to illustrate the computational performance of the SVDA
method as a proof of concept. We resort to the following numerical strategy:

1. Synthesize two different models out of the same PDE. Towards that end, an efficient strategy is to change a (physical)
parameter. The first model will be considered as the ‘true’ model and the second will be the ‘best-knowledge’ model.

2. Using the ‘true’ model, create training data for the initial time interval [0, 𝛥𝑡].
3. Train the statistical model using LSTM-RNN.
4. Run the online SVDA.

We consider a two-dimensional setting based on the plate illustrated in the left panel of Fig. 2 with 𝛺 = (−2, 2)2 ⊂ R2. We use
a finite element (FE) [29] subspace  ⊂  = 𝐻1(𝛺), where 𝐻1(𝛺) is the linear space of square integrable and differentiable
functions defined on 𝛺. The subspace  consists of continuous, piecewise affine functions in order to generate FE solutions. The FE
subspace  is based on a mesh that contains  = 6561 nodes. The experimental data is generated synthetically and the observation
subsets {𝑚}1≤𝑚≤𝑀 are uniformly selected over the plate as illustrated in the right panel of Fig. 2. Regarding the implementation,
the FE computations use the software FreeFem++ [30], the SVDA algorithm has been developed in Python. The deep learning
subroutines of the SVDA use the Python library Tensorflow.keras [31].
9 
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5.1. Physical model problem

We apply the above methodology to the following parabolic PDE: For any value of the parameter 𝜇 ∈  , find 𝑢(𝜇) ∶ 𝐼 ×𝛺 → R
such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑢(𝜇)
𝜕𝑡

− ∇ ⋅ (𝐷(𝜇)∇𝑢(𝜇)) = 0, in 𝐼 ×𝛺,

𝑢(𝜇)(𝑡 = 0, ⋅) = 𝑢0, in 𝛺,

Boundary conditions, on 𝐼 × 𝜕𝛺,

(37)

where 𝑢0 = 293.15 K (20 ◦C). We will supplement (37) with Stefan–Boltzmann boundary conditions on 𝜕𝛺, i.e.,

−𝐷(𝜇) 𝜕𝑢
𝜕𝑛

= 𝜎𝜀(𝑢4 − 𝑢4𝑟 ), on 𝐼 × 𝜕𝛺, (38)

with an enclosure temperature 𝑢𝑟 = 303.15 K (30 ◦C), the Stefan–Boltzmann constant 𝜎 = 5.67 × 10−8 W m−2 K−4, and an emissivity
𝜀 = 3.10−3. The Stefan–Boltzmann boundary condition is nonlinear. Hence, the resulting problem (37)−(38) is nonlinear. For both
subsequent test cases, the background spaces 𝑁 will be generated by solving the nonlinear PDE (37)−(38) with a uniform diffusivity
function 𝐷(𝜇) such that for all 𝑥 ∈ 𝛺, 𝐷(𝜇)(𝑥) = 𝐷uni(𝜇)(𝑥) ∶= 𝜇𝟏𝛺(𝑥) (mono-material plate, cf. left panel of Fig. 2).

5.2. Synthetic data generation

We generate the data by first synthesizing a true solution and then applying to it the linear functionals by means of their Riesz
representations in the observable space 𝑀 . In order to synthesize the true solution, we consider a ‘true model’ based on the bi-
material plate (cf. right panel of Fig. 2) where we choose a fixed internal diffusivity 𝐷int = 1 and define, for each 𝜇 ∈  , the diffusivity
function 𝐷(𝜇) as 𝐷(𝜇)(𝑥) = 𝐷syn(𝜇)(𝑥) ∶= 𝜇𝐷int𝟏𝛺ext

(𝑥) +𝐷int𝟏𝛺𝑖𝑛𝑡
(𝑥), for all 𝑥 ∈ 𝛺, where 𝛺int = (−1, 1)2 and 𝛺ext = (−2, 2)2 ⧵ (−1, 1)2,

so that 𝛺 = 𝛺int ∪𝛺ext and 𝛺int ∩𝛺ext = ∅. The synthetic true solutions are then defined as the solutions of (37)−(38) for all 𝜇 ∈  .

5.3. Test case (a) : Future forecast

For time discretization, we consider the time interval 𝐼 = [0, 2.5] s, a constant time step 𝜏𝑘 = 1.25×10−2 s for all 𝑘 ∈ Ktr , and the
set of discrete time nodes Ktr = {1,… , 200}. The parameter of the true model is fixed to 𝜇 = 15, both for training as well as testing.
We first build the bk space. Using a Proper Orthogonal decomposition (POD), we obtain 𝑁 = 4 basis functions. In this section,
the bk model corresponds to the solution of (37)−(38) for the mono-material plate without incorporating any data. We train our
LSTM-RNN (cf. Section 2) with 2 additional dense hidden layers and 1 dense output layer using the data on the first 50 time steps.
Using a mean squared error loss function and the Adam optimizer with a learning rate 10−2, we perform the SVDA prediction for the
remaining future time steps. We refer the reader to [14] for more details on how to fit a neural network (number of hidden layers,
optimizer choice, etc.). We recall that the non-deterministic nature of the LSTM-RNN propagates to the SVDA. Hence, the output
results are tendencies of the solution behavior and not exactly reproducible solutions. For the values of the lookback parameter
𝑙𝑏 ∈ {1, 7} (cf. Section 2), Fig. 3 displays the relative 𝐿2 errors to the true solution.

We clearly see that the machine learning surrogates improve the accuracy of the future prediction in comparison to using only
the bk model (in green). Comparable results – errors of about one percent – are also achieved if we increase the training time
window to the first 100 time steps (data not shown). Note that the orange line, which depicts the (unrealistic) situation that true
observations are available for data assimilation also at future time steps, is not a lower bound for the SVDA error. The reason is that
the data assimilation problem is constrained, i.e., it is a problem of minimization under constraint. This means that the solution to
the problem is non-unique and only a local optimum can be recovered. The local optimum recovered by PBDW and SVDA may be
different and may or may not be the global optimum over the discrete space. In particular, the local optimum recovered by SVDA
may be better than the local optimum recovered by PBDW. As expected, errors grow over time as we depart from the time window
with true observations available at close previous steps, but the error growth is rather moderate overall. Fig. 4 shows the error
of a pure LSTM-RNN prediction for 𝓁 at all ‘future’ time steps. We observe that the error shows the same qualitative trend as the
SVDA error in Fig. 3, but the values for pure LSTM-RNN prediction are about a factor 3 to 4 larger at the final time. We, therefore,
concentrate on the SVDA error in the following. Since all results are quite similar for the different lookback values, we will focus
on 𝑙𝑏 = 1 in the following.

5.4. Test case (b) : Parametric forecast

For a parametric forecast, we train the LSTM-RNN using the true model with 𝜇 = 15 over the whole time interval [0, 2.5]𝑠. The time
steps, the spatial discretization and the network architecture are the same as in Test case (a). In particular, the PBDW background
space 𝑛 is based on the mono-material plate with 𝜇 = 15, cf. Section 5.1. We use the trained LSTM-RNN to create surrogate data at
all time steps for the value 𝜇 = 17 and integrate those surrogate observations into the SVDA. Fig. 5 shows the relative 𝐿2 errors to the
true solution. As announced, we focus on the case 𝑙𝑏 = 1. As in the previous section, the bk model corresponds to the mono-material
plate with 𝜇 = 15. Although the parameter change from 𝜇 = 15 for the bk model to 𝜇 = 17 for the true model is very moderate, the
green line for the bk error grows immediately and the average bk error is about 4.5 ⋅ 10−2. Again, the SVDA is able to improve the
10 
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Fig. 3. Error estimation for 𝑙𝑏 = 1 (left) and 𝑙𝑏 = 7 (right).

Fig. 4. Error estimation for a pure LSTM-RNN prediction of 𝓁 for the two lookback values.

Fig. 5. Error estimation in the parametric case.

accuracy and its average error is about 6 ⋅10−3. We emphasize that the LSTM-RNN predictions within SVDA are parameter-agnostic,
i.e., LSTM-RNN predicts the solution at the next time step just from the input of the solution at the previous time step, but without
any parameter input. Only the PBDW segment of the SVDA handles parameter variation. Therefore, considered test case with a
rather limited training set for the LSTM-RNN is a challenge and underlines the promising properties of SVDA. Interestingly, the
SVDA error even drops quite drastically somewhere in the middle of time simulation. We believe that the nonlinearity of the model
as well as the statistical training allow for such an error behavior, which is rather uncommon for traditional numerical methods.
Finally, we mention that comparable results for the SVDA were even obtained when testing for other parameters — even if they
were rather different from the bk parameter 𝜇 = 15.

6. Conclusion

We introduced a statistical variational data assimilation (SVDA) method providing a new concept that combines machine learning
methods with traditional data assimilation. While we explained the details of the framework based on long-short term memory
(LSTM) networks and the parametric background data weak (PBDW) approach for data assimilation, the key idea is very flexible
and versatile and can be easily adapted to other neural networks and data assimilation schemes. The core idea is to train a neural
network based on available observations and use the network’s predictions as surrogate data in situations where no observations
are available, but data assimilation is needed or wished. We rigorously proved that the overall SVDA error is bounded above by
the quality of discrete (approximation) spaces used in data assimilation and the quality of the machine learning model. To illustrate
the performance and applicability of the SVDA in practice, we considered a parametric heat equation with nonlinear boundary
conditions. Both for future and parametric forecasts, the SVDA showed promising results. The flexibility of the framework entails that
we cannot test the plethora of potential applications. Further investigations for more realistic scenarios (e.g. weather prediction) and
on the influence of the various method parameters (lookback, neural network choice, etc.) are interesting future research directions.
Further, the influence of noisy data should be considered, where one could apply a noise correction filter to the observations prior
11 
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to their use as an input to the LSTM-RNN or one could use the PBDW variant in [32] and additionally control the noise propagation
in this time-dependent case by a weighting factor varying with the time step of the PBDW correction.
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