
HyperPIE: Hyperparameter Information
Extraction from Scientific Publications

Tarek Saier1, Mayumi Ohta2, Takuto Asakura3, and Michael Färber1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{tarek.saier,michael.faerber}@kit.edu

2 Fraunhofer Institute for Systems and Innovation Research, Karlsruhe, Germany
mayumi.ohta@isi.fraunhofer.de

3 The University of Tokyo, Tokyo, Japan
takuto@is.s.u-tokyo.ac.jp

Abstract. Automatic extraction of information from publications is key
to making scientific knowledge machine-readable at a large scale. The ex-
tracted information can, for example, facilitate academic search, decision
making, and knowledge graph construction. An important type of infor-
mation not covered by existing approaches is hyperparameters. In this
paper, we formalize and tackle hyperparameter information extraction
(HyperPIE) as an entity recognition and relation extraction task. We cre-
ate a labeled data set covering publications from a variety of computer
science disciplines. Using this data set, we train and evaluate BERT-
based fine-tuned models as well as five large language models: GPT-3.5,
GALACTICA, Falcon, Vicuna, and WizardLM. For fine-tuned models,
we develop a relation extraction approach that achieves an improvement
of 29% F1 over a state-of-the-art baseline. For large language models,
we develop an approach leveraging YAML output for structured data
extraction, which achieves an average improvement of 5.5% F1 in entity
recognition over using JSON. With our best performing model we ex-
tract hyperparameter information from a large number of unannotated
papers, and analyze patterns across disciplines. All our data and source
code is publicly available at https://github.com/IllDepence/hyperpie.

Keywords: Information Extraction, Scientific Text, Hyperparameter

1 Introduction

Models capable of extracting fine-grained information from publications can
make scientific knowledge machine-readable at a large scale. Aggregated, such
information can fuel platforms like Papers with Code4 and the Open Research
Knowledge Graph [26,3], and thereby facilitate academic search, recommenda-
tion, and reproducibility. Accordingly, a variety of approaches for information
extraction (IE) from scientific text have been proposed [19,13,12,16,11].

4 See https://paperswithcode.com/.

ar
X

iv
:2

31
2.

10
63

8v
1

 [
cs

.C
L

]
 1

7
D

ec
 2

02
3

https://orcid.org/0000-0001-5028-0109
https://orcid.org/0000-0001-5354-5571
https://orcid.org/0000-0001-6212-4779
https://orcid.org/0000-0001-5458-8645
https://github.com/IllDepence/hyperpie
https://paperswithcode.com/

2 T. Saier et al.

AdamW is chosen as the

optimizer. We use it with

a learning rate (α) of 1e-3

for all non BERT weights .

For BERT weights we set

α to 2e-5 .

text example
based on arXiv:2005.00512

relation
evidence

e2e1

e3 e4

e5 e6AdamW it
learning rate (α)

1e-3 non BERT weights 

BERT weights2e-5

α

entities , relations , and
entity mentions extracted

Fig. 1: Illustration of hyperparameter information in a text example alongside
the extracted entities and relations. Entity types are research artifact, parameter,
value, and context. Relations are indicated by arrows.

However, to the best of our knowledge, no approaches exist for the extrac-
tion of structured information on hyperparameter use from publications. That
is, information on with which parameters researchers use methods and data. We
refer to this information as “hyperparameter information” (see Fig. 1). Hyperpa-
rameter information is important for several reasons. (1) First, its existence in a
paper is an indicator for reproducibility [22] and, when extracted automatically,
can improve automated reproduction of results [25]. (2) Second, in aggregate it
can inform on both conventions in a field as well as trends over time. (3) Lastly,
it enables more fine-grained paper representations benefiting downstream ap-
plications based on document similarity, such as recommendation and search.
Hyperparameter information is challenging to extract, because (1) it is usually
reported in a dense format, (2) often includes special notation, and (3) oper-
ates on domain specific text (e.g. “For Adam we set α and β to 1e-3 and 0.9
respectively.”).

To address the lack of approaches for extracting this type of information, we
define the task of “hyperparameter information extraction” (HyperPIE) and de-
velop several approaches to it. Specifically, we formalize HyperPIE as an entity
recognition (ER) and relation extraction (RE) task. We create a labeled data set
spanning a variety of computer science disciplines from machine learning (ML)
and related areas. The data set is created by manual annotation of paper full-
texts, which is accelerated by a pre-annotation mechanism based on an external
knowledge base. Using our data set, we train and evaluate both BERT-based [10]
fine-tuned models as well as large language models (LLMs). For the former, we
develop a dedicated relation extraction model that achieves an improvement of
29% F1 compared to a state-of-the-art baseline. For LLMs, we develop an ap-
proach leveraging YAML output for structured data extraction, which achieves
a consistent improvement in entity recognition across all tested models, averag-

HyperPIE: Hyperparameter IE from Papers 3

ing at 5.5% F1. Using our best performing model, we extract hyperparameter
information from 15,000 unannotated papers, and analyze patterns across ML
disciplines of how authors report hyperparameters. All our data and source code
is made publicly available.5 In summary, we make the following contributions.

1. We formalize a novel and relevant IE task (HyperPIE).
2. We create a high quality, manually labeled data set from paper full-texts,

enabling the development and study of approaches to the task.
3. We develop two lines of approaches to HyperPIE and achieve performance

improvements in both of them over solutions based on existing work.
4. We demonstrate the utility of our approaches by application on large-scale,

unannotated data, and analyze the extracted hyperparameter information.

2 Related Work

Fine-Tuned Models Named entity recognition (NER) and RE from publi-
cations in ML and related fields have been tackled by SciERC [19] and subse-
quently SciREX [13]. The scope considered are methods, tasks, data sets, and
evaluation metrics. Proposed methods for the task utilize BiLSTMs, BERT and
SciBERT [5]. With both approaches, there is a partial overlap in entity types
to our task, as we also extract methods and data sets. The key difference arises
though the nature of parameters and values we relate them to, and the challenges
in extracting those as briefly laid out in the introduction.

IE models aiming to relate natural language to numerical values and mathe-
matical symbols have been introduced at SemEval 2021 Task 8 [12] and SemEval
2022 Task 12 [16] respectively. Most of the proposed models base their process-
ing of natural language on BERT or SciBERT. To handle numbers and symbols
rendered in LATEX, as well as to accomplish RE between entity types with highly
regular writing conventions (e.g. numbers and units such as “5 ms”), rule-based
approaches or dedicated smaller neural networks are commonly used.

Similarly, we find a level of regularity in how authors report parameters and
values, and make use of that in our approach accordingly. In line with related
work using fine-tuned models, we also use BERT and SciBERT for contextualized
token embeddings.

LLMs With the recent advances in LLMs, there has been a surge in efforts to
utilize them for IE from scientific text. Nevertheless, their performance is not on
par with dedicated models for NER and RE yet [32].

An improtant concept for IE with LLMs is introduced by Agrawal et al. [1]: a
“resolver” is a function that maps the potentially ambiguous output of an LLM to
a defined, task specific output space. In their work, the authors extract singular
values and lists from clinical notes using GPT-3. They use a variety of resolvers
that perform steps like tokenization, removal of specific symbols or words, and
pattern matching using regular expressions.
5 See https://github.com/IllDepence/hyperpie.

https://github.com/IllDepence/hyperpie

4 T. Saier et al.

Work with similar output data complexity (values and lists) has also been
done in the area of material science. Xie et al. [30] use GPT-3.5 to extract infor-
mation on solar cells from paper full-text. Similarly, Polak et al. [20] use Chat-
GPT to extract material, value, and unit information from sentences of material
science papers. They define a conversational progression, in which they prompt
the model generate tables, which are processed using simple string parsing rules.

An approach for IE of more complex information is proposed by Dunn et
al. [11]. They use GPT-3.5 to extract material information from materials chem-
istry papers. Given the hierarchical nature of the information to be extracted, the
authors find simple output formats insufficient. To overcome this, they prompt
the model to output the data in JSON format.

Given hyperparameter information also is hierarchical (see Fig. 1), we adopt
prompting LLMs to output data in a text based data serialization format. Dif-
ferent from the related work introduced above, we do not limit our experiments
to API access based closed source LLMs, but also evaluate various open LLMs,
because we recognize the importance of contributing efforts to the advancement
of the more transparent, accountable, and reproducibility friendly side of this
new and rapidly evolving area of research [17].

Besides IE from scientific publications, there have been efforts to extract hy-
perparameter schemata and constraints from Python docstrings [4] using CNL
grammars [15], and from Python code [23] using static analysis. Compared to
our task setting, these rely on a known context (e.g. a fit method) and operate
on constrained input (generated docstrings and source code instead).

3 Hyperparameter Information Extraction

3.1 Task Definition

We define HyperPIE as an ER+RE task with four entity classes “research ar-
tifact”, “parameter”, “value”, and “context”, and a single relation type. Briefly
illustrated by a minimal example, in the sentence “During fine-tuning, we use
the Adam optimizer with α = 10−4 .”, the research artifact Adam has the pa-
rameter α which is set to the value 10−4 in the context During fine-tuning.

The entity classes are characterized as follows. A “research artifact”, within
the scope of our task, is an entity used for a specific purpose with a set of
variable aspects that can be chosen by the user. These include methods, models,
and data sets.6 A “parameter” is a variable aspect of an artifact. This includes
model parameters, but also, for example, the size of a sub-sample of a data set.
A “value” expresses a numerical quantity and in our task is treated like an entity
rather than a literal. Lastly, a “context” can be attached to a value if the value
is only valid in that specific context. The single relation type relates entities as
follows: parameter→ research artifact, value→ parameter, and context→ value.
6 Broader definitions in other contexts also include software in general, empirical laws,

and ideas [18]. For our purposes, however, above specific definition is more useful.

HyperPIE: Hyperparameter IE from Papers 5

Co-reference relations implicitly exist between the mentions of a common entity
(e.g. “AdamW” and “it” in Fig. 1). That is, if an entity has multiple mentions
within the text, they are considered co-references to each other.

The scope of the IE task comprises the extraction of entities, their relations,
and the identification of all their mentions in the text (and thereby implicitly
co-references). Furthermore, we specifically consider IE from text, and not from
tables, graphs, or source code.7

3.2 Data Set Construction

Because HyperPIE is a novel task, we cannot rely on existing data sets for
training and evaluating our approaches. We therefore create a new data set by
manually annotating papers. As our data source we chose unarXive [24], because
it includes paper full-texts and, most importantly, retains mathematical notation
as LATEX. This is crucial because parsing such notation from PDFs is prone to
noise, which would be problematic for our parameter and value entities.

To ensure we cover a wide variety of artifacts and discipline specific writing
conventions, we use papers from multiple ML related fields. Specifically, these
are Machine Learning (ML), Computation and Language (CL), Computer Vision
(CV), and Digital Libraries (DL), which make up 143,203 papers in unarXive.8

We base our annotation guidelines on the widely used ACL RD-TEC guide-
line9 [21]. To make sure our resulting annotations are able to properly capture
how authors report hyperparameters in text, we perform two annotation rounds:
(1) an initial exploratory round, the results of which are used to refine the anno-
tation guidelines and inform later model development, and (2) the main annota-
tion round, the results of which constitute our data set used for model training
and evaluation. In the following, both steps are described in more detail.

Initial Annotation Round We heuristically pre-filter our ML paper corpus for
sections reporting on hyperparameters.10 Annotators then inspect these sections,
select a continuous segment of text that contain hyperparameter information,
and make their annotations. This task is performed independently by two anno-
tators and results in a total of 151 text segments (131 unique, 2×10 annotated by
both). The annotated text segments contain 1,345 entities and 1,110 relations.

As shown in Figure 2a, we observe text segments reporting on hyperparam-
eters to generally have a length below 600 characters. We furthermore see that
most text segments contain between 3 and 15 entities. Lastly, in Figure 2b,
show distances between artifacts and their parameters, as well as parameters
and their values. We see that artifacts usually are mentioned before their pa-
rameters (78%), and parameters before their values (93%). The reverse cases
7 We leave investigating multi-modal IE pipelines (text/code/graphs) for future work.
8 The respective arXiv categories are cs.LG, cs.CL, cs.AI, and cs.DL. See https://

arxiv.org/category_taxonomy for a more detailed description.
9 See http://pars.ie/publications/papers/pre-prints/acl-rd-tec-guidelines-ver2.pdf.

10 We filter based on key phrases (“use”, “set”, etc.), numbers, and LATEX math content.

https://arxiv.org/category_taxonomy
https://arxiv.org/category_taxonomy
http://pars.ie/publications/papers/pre-prints/acl-rd-tec-guidelines-ver2.pdf

6 T. Saier et al.

length (characters)

100

200

300

400

500

num. of entities
3

6

9

12

15

18

(a) text segments

0 10 20 30 40 50
artifact to parameter distance

0

10

20

30

pa
ra

m
et

er
 to

 v
al

ue
 d

ist
.

0

5

10

15

20

(b) relation distances (#chars)

Fig. 2: Observations of initial annotation round

also exists, but are less common. Additionally, we can see that values are most
commonly reported right after their parameter, while there is a higher variabil-
ity in distances between parameters and artifacts. Based on above observations
we determine the unit of annotation for the final round to be one paragraph
(on average 563.4 characters long in our corpus), as it is sufficient to capture
hyperparameters being reported.

The inter annotator agreement (IAA, reported as Cohen’s kappa) of the
text segments annotated by both annotators is 0.867 for entities and 0.737 for
relations11 (strong to almost perfect agreement) which is compares favorably to
SciERC [19] with an IAA of 0.769 for entities and 0.678 for relations.

Main Annotation Round In our main annotation round we annotate whole
papers (paragraph by paragraph) instead of pre-filtered text-segments. This is
done to ensure that the final annotation result reflects data as it will be en-
countered by a model during inference—that is, containing a realistic amount of
paragraphs that have no information on hyperparameters, or, for example, only
mention research artifacts but no parameters.

Similar to related work [13], we use Papers with Code as an external knowl-
edge base to pre-annotate entity candidates to make the annotation process
more efficient. In a similar fashion, we use annotator’s previously annotated en-
tity mentions for pre-annotation. Pre-annotated text spans are, as the name
suggests, set automatically, but need to be checked by annotators manually.

Through this process we annotate 444 paragraphs, which contain 1,971 en-
tities and 614 relations. The entity class distribution is 1,134 research artifacts,
131 parameters, 662 values, and 44 contexts. The annotation data is provided in
a JSON structure as shown in Figure 1, as well as in the W3C Web Annotation
Data Model12 to facilitate easy re-use and compatibility with existing systems.

11 Measured by the character level entity class and character level relation target span
agreement respectively.

12 See https://www.w3.org/TR/annotation-model/.

https://www.w3.org/TR/annotation-model/

HyperPIE: Hyperparameter IE from Papers 7

BERT token embedding

mean pooling

FFNN

entity class
vector

entity class
vector

entity
distance

token token token token token token

example input

Fig. 3: RE with emphasis on entity candidate pair types and distance.

4 Methods

We approach hyperparameter information extraction in two ways. First, we build
upon established ER+RE methods and develop an approach using a fine-tuned
model in a supervised learning setting. Second, given the recent promising ad-
vances with LLMs, we develop an approach utilizing LLMs in a zero-shot and
few-shot setting.

4.1 Fine-Tuned Models

We base our fine-tuned model approach on PL-Marker [33], the currently best
performing model on SciERC. Specifically, we use the ER component of PL-
Marker. Our reason is that (1) the text our model will be applied on is of the
same type as in SciERC (ML publications), and (2) there is some correspondence
between the entities to be identified—namely our entity class “research artifact”
including methods and datasets, which are both entity classes in SciERC.

For RE we develop an approach that utilizes token embeddings as well as
relative entity distance and entity class pairings. This is motivated by the fact
that (a) we observed a high level or regularity in the relative distance of research
artifact, parameter, and value mentions13 (see Fig. 2), and (b) relations only exist
between specific pairs of entity types.

In Figure 3 we show a schematic depiction of our new relation extraction com-
ponent. Entity candidate pair classes as well as the relative distance between the
entities in the text are used as a dedicated model input, BERT token embed-
dings of the entity mentions are combined using mean pooling. These inputs
are fed into a feed-forward neural network FFNN for prediction. Formally, the
model performs pairwise binary classification as FFNN(Ec

0, E
c
1, E

d, ET), where
Ec

i are class vectors, Ed encodes candidate distance, and ET is the token pair
embedding calculated as ET = 1

|T |
∑|T |

i=0 BERT(ti), the mean of the pair’s tokens
ti ∈ |T |.

During the development of our model we also experiment with concatena-
tion in favor of mean pooling to preserve information on the order of the entities,

13 We note that these observations where made during the initial exploratory annota-
tion round (Sec. 3.2) and not during annotation of the evaluation data.

8 T. Saier et al.

but find that mean pooling results in better performance. Furthermore, we in-
vestigated the use of SciBERT instead of BERT, but find that regular BERT
embeddings give us better results, despite our model handling scientific text.

4.2 LLM

We develop our LLM approach for a zero-shot and a few-shot setting. This means
the models perform the IE task based on either instructions only (zero-shot), or
instructions and a small number of examples (few-shot).

Performing IE using LLMs in zero-shot or few-shot settings requires the de-
sired structure of the output data to be specified within the model input. In
simple cases (e.g. numbers or yes/no decisions) this can be achieved by an in-
line specification of the format in natural language (e.g. “The answer (arabic
numerals) is”) [14]. IE from scientific publications, however, often seeks to ex-
tract more complex information. To achieve this, the model can be tasked to
produce output in a text based data serialization format such as JSON, as done
in previous work [11]. Especially for complex structured predictions, few-shot
prompting has been shown to further boost in-context learning (ICL) accuracy
and consistency at inference time [6].

Drawing from techniques used in previous work approaching other IE tasks,
we investigate several prompting strategies to build our approach.

1. Multi-stage prompting [20]: first determine the presence of hyperparameters
information; if present, extract the list of entities; lastly, determine relations.

2. In-text annotation [29]: let the input text be repeated with entity annota-
tions, e.g. repeat “We use BERT for ...” as “We use [a1|BERT] for ...”.

3. Data serialization format [11]: specify a serialization format in the promt
that is parsed afterwards; then match in-text mentions in the input.

4. (3)+(2): prompt as in (3); then match in-text mentions using (2).

We find (1) to lead to problems with errors propagation along steps, and with
(2) and (4) we frequently see alterations in the reproduced text. Accordingly, we
use prompt type (3) for our approach—specifying a data serialization format
in the prompt. While existing work uses the JSON format for this [11], we use
YAML, as it is less prone to “delimiter collision” problems due to its minimal
requirements for structural characters.14 In doing so, we expect to avoid problems
with LLM output not being parsable. Our overall LLM approach looks as follows.

Zero-shot: We build our zero-shot prompts from the following consecutive
components: [task][input text][format][completion prefix] In [task]
we specify the information to extract, i.e. research artifacts, their parameters, etc.
[input text] is the paragraph from which to extract the information. [format]
defines the output YAML schema. [completion prefix] is a piece of text that
directly precedes the LLM’s output, such as “ASSISTANT: ”. To then generate
predictions based on LLM output, we pass it to a standard YAML parser af-
ter cleansing (e.g. removing text around the YAML block). For each used LLM
14 See https://yaml.org/spec/1.2.2/.

https://yaml.org/spec/1.2.2/

HyperPIE: Hyperparameter IE from Papers 9

model, we individually perform prompt tuning. Here we determine, for example,
if a model gives better results when the [completion prefix] includes the be-
ginning of the serialized output data (e.g, “---\ntext_contains_entities: ”)
or if this leads to a deterioration in output quality.

Few-shot: Our few shot approach makes the following adjustments to the
method described above. Prompts additionally include a component [examples],
which are valid input output pairs sampled by their similarity to the input text.
Specifically, for an input text from a document X, we sample the 5 most similar
paragraphs from all ground truth documents excluding X. As these examples can
be confused with the input text, we place it after the examples, resulting in the
structure [task][format][examples][input text][completion prefix].

LLMs reaching a sufficient context size for a few-shot approach to our task are
a recent development. We can therefore additionally make use of other recently
added capabilities. Specifically, we make use of generation constrains via a gBNF
grammar15 to enforce LLM output according to our data scheme, allowing us to
mitigate parsing errors.

5 Experiments

We evaluate the fine-tuned models and LLM approach against baselines from
existing work. Both evaluations are performed on our data set described in Sec-
tion 3.2. Metrics used to measure prediction performance are precision, recall
and F1 score, abbreviated as P, R and F1 respectively.

5.1 Fine-Tuned Models

We use PL-Marker, the currently best performing model on SciERC, as our
baseline. Models are trained and evaluated using 5-fold cross validation (3 folds
training, 1 dev, 1 test). We train the ER component of PL-Marker as done in [33],
using scibert-scivocab-uncased as the encoder, Adam as the optimizer, a learning
rate of 2e-5, and for 50 epochs. The PL-Marker RE component is trained using
bert-base-uncased, Adam, a learning rate of 2e-5, and for 10 epochs. Our own RE
component also uses bert-base-uncased, Adam as the optimizer, and is trained
with a learning rate of 1e-3 for 90 epochs. Models are trained and evaluated on
a single GeForce RTX 3090.

Results In Figure 4 we show the results of PL-Marker ER (used for both
models) as well as the PL-Marker RE component and our RE model. For ER we
evaluate exact matches (no partial token overlap). In the case of RE, each entity
pair is predicted as having a relation or not—as there is just one relation type.

Mean ER performance is 81.5, 76.8, and 79.0 (P, R, F1). For RE, the precision
of PL-Marker and our model are similar at 33.5 and 30.7 respectively, but our
model performs more consistent. PL-Marker only achieves a very low recall of
15 See https://github.com/ggerganov/llama.cpp/pull/1773.

https://github.com/ggerganov/llama.cpp/pull/1773

10 T. Saier et al.

P R F1
0

20

40

60

80

100
Entity Recognition

P P R R F1 F1
0

20

40

60

80

100
Relation Extraction

PL-Marker
Ours

Fig. 4: Fine-tuned model evaluation (5-fold cross validation).

5.9, whereas our model, while showing large variability, achieves a mean of 65.0.
The resulting F1 scores are 9.9 for PL-Marker and 38.8 for our model.

Table 1: Ablation study

Used P [%] R [%] F1 [%]
␣CD 15.5 8.8 11.1
T␣D 16.6 29.8 19.6
TC␣ 26.5 65.0 35.5
TCD 30.7 65.0 38.8

Analysis Token level ER performance across entity
classes (none, artifact, parameter, value, context)
is at 98.5%, 77.8%, 47.9%, 84.4%, 0% F1. That is,
the model does predict contexts and struggles with
parameters, but artifacts and values are predicted
reliably. For our RE model, we observe that value-
parameter relations are more reliably predicted than
parameter-artifact relations.

0 10 20
Frequency [%]

st
ar

t
en

d
Po

sit
io

n
in

 th
e

pa
pe

r
cs.LG
cs.CV
cs.CL

Fig. 5: Mentioning
position in papers.

To assess the impact of the different components in
our RE model, we perform an ablation study with the
same 5-fold cross-validation setup as above. In Table 1,
showing its results, we can see that removing the BERT
token embeddings (T) results in the largest performance
loss, followed by entity class embeddings (C) and entity
distance (D). Removing any of the inputs results in worse
predictions.

Finally, we apply our full model to a random sample
of 15,000 papers. Analyzing the results, we find hyperpa-
rameters (artifact, parameter, value triples) are reported
in 36% of ML papers, 42% of CV papers, 36% of CL pa-
pers, and 7% of DL papers. In Figure 5 we further look at
the distribution of the information across the length of papers (excluding DL as
not being representative). We can see a clear tendency towards the latter half of
papers.

5.2 LLMs

For our LLM experiments we chose a variety of models, with sizes ranging from
13B to 175B parameters, as shown in Table 2. We chose WizardLM [31] as it is
meant to handle complex instructions, Vicuna [9] due to its performance relative

HyperPIE: Hyperparameter IE from Papers 11

Table 2: LLM selection (size in number of parameters).
Model Variant Size
WizardLM [31] WizardLM-13B-V1.1 13B
Vicuna4k [9] vicuna-13b-v1.3 13B
Vicuna16k [9] vicuna-13b-v1.5-16k 13B
Falcon [2] falcon-40b-instruct 40B
GALACTICA [28] galactica-120b 120B
GPT-3.5 [7] text-davinci-003 175B

Table 3: Prediction performance of LLM models. Subscripts (∆±n) show the
delta in F1 from JSON to YAML output of each model. Format: best, second.

Zero-shot Entity Recognition Relation Extraction
Model Output P [%] R [%] F1 [%] P [%] R [%] F1 [%]

WizardLM JSON 6.9 11.3 8.6 0.1 0.8 0.1
YAML 9.7 35.6 15.3∆+6.7 0.1 1.5 0.1∆+0.0

Vicuna4k
JSON 15.1 9.3 11.5 0.7 3.8 1.2
YAML 17.3 31.5 22.3∆+10.8 0.0 0.8 0.1∆-1.1

Falcon JSON 37.1 5.9 10.2 0.0 0.0 0.0
YAML 32.7 14.2 19.8∆+9.6 0.0 0.0 0.0∆+0.0

GALACTICA JSON 25.9 15.7 19.5 0.1 2.3 0.3
YAML 23.1 19.5 21.1∆+1.6 0.0 0.8 0.1∆-0.2

GPT-3.5 JSON 27.9 42.8 33.8 5.4 10.7 7.2
YAML 34.0 41.7 37.4∆+3.6 5.8 12.2 7.8∆+0.6

5-shot Entity Recognition Relation Extraction

Vicuna16k
JSON 34.4 46.7 39.6 0.8 4.6 1.3
YAML 43.9 44.1 44.0∆+0.4 4.5 9.9 6.1∆+4.8

to its size, Falcon [2] because of its alleged performance, and GALACTICA [28]
because it was trained on scientific text. Vicuna16k is a model extended using
Position Interpolation [8] based on Rotary Positional Embeddings [27], which
makes it the only model in our experiments with a sufficient context size for a
few-shot evaluation.

The models are run as follows. GPT-3.5 is accessed through its official API.
All open models are run on a high performance compute cluster. Vicuna4k and
WizardLM are run on nodes with 4×NVIDIA Tesla V100. GALACTICA, Falcon,
and Vicuna16k are run on nodes with 4×NVIDIA A100.

As a baseline, we use a JSON variant for each model, where the [format] and
[examples] compontents of prompts use JSON, and compare it to the respective
YAML version. All models are used with greedy decoding (temperature = 0) for
the sake of reproducibility.

Results In Table 3, show the prediction performance of all models and prompt
variants. Overall, LLM performance does not reach the level of our pre-trained
models. For zero-shot, we observe the best performance with both GPT-3.5

12 T. Saier et al.

0 25 50 75 100
Vicuna 16k (Y)
Vicuna 16k (J)

GPT-3.5 (Y)
GPT-3.5 (J)

GALACTICA (Y)
GALACTICA (J)

Falcon (Y)
Falcon (J)

Vicuna 4k (Y)
Vicuna 4k (J)
WizardLM (Y)
WizardLM (J)

 0%
 0%
 0%
 0.2%

 12.6%
 5%

 60.6%
 9%

 40.5%
 42.6%

 19.1%
 49.5%

(a) J/Y parse error

0 25 50 75 100

 0%
 0%
 0%
 0%

 36.3%
 8.6%

 63.7%
 89.6%

 16.2%
 46.2%

 9.7%
 1.4%

(b) Text around J/Y

0 25 50 75 100

 8.7%
 11.1%
 12.4%

 9.7%
 67.1%

 62.4%
 65.1%

 70.2%
 41.3%

 26.7%
 37.2%

 60.1%
(c) Entity not in text

0 25 50 75 100

 7.6%
 6.4%
 8.9%

 5.8%
 21.1%

 4.3%
 38.1%

 34.5%
 15.1%
 17.8%

(d) Ent. type out of scope

 Percentage of samples Percentage of predicted entities

n/a
n/a

Fig. 6: Parsing success, format adherence, hallucinations, and scope adherence
of LLM generated JSON (J) and YAML (Y).

variants, where YAML outperforms JSON (+3.6% ER and +0.6% RE in F1

score). The second highest ER F1 score by model is achieved by Vicuna4k (22.3),
despite its size being less than a 10th that of GPT-3.5. For RE, however, even
the best model only reaches 7.8%. With our few-shot approach, we are able to
considerably improve performance between Vicuna models (+27% ER and +6%
RE in F1), surpassing the zero-shot performance of GPT-3.5 in ER. Lastly, we
see that using YAML leads to better ER results accross all six models, with ER
performance being comparable or improved as well.

Analysis In Figure 6 we show an analysis of the steps leading up to model
prediction. Focussing first on the zero-shot models (upper five) we observe the
following across the four plots from left to right. (a) For three of five models,
prompting for YAML leads to fewer parsing errors. (b) Unwanted text around
the extracted data is generated more/less by two models each. (c) Hallucinated
entities and (d) out of scope entities appear overall slightly more often for in
YAML compared to JSON. For our few shot approach (bottom model), we see
that the use of a grammar (a, b) prevents all output format issues. Further-
more (c) hallucinated entities are reduced. (d) Out of scope entities can not be
evaluated, because our in-context examples lead to frequent omission of type
information in the output.

Through manual analysis, we find that “entities not in the text” can arise
from unsolicited LATEX parsing by the LLM (e.g. “\lambda” in text → “λ” in
YAML). Prompting for verbatim parameter/value strings did not mitigate this.

6 Discussion

Our overall results, with a top performance of 79% F1 for ER and 39% for RE,
show that HyperPIE can be accomplished to a degree that yields sound results,
but challenges still remain. Our novel data set enables further development of
approaches from hereon. Our IE results on large-scale unannotated data give an
indication of possible downstream analyses and applications. Here we see large
potential for reproducibility research, faceted search, and recommendation.

HyperPIE: Hyperparameter IE from Papers 13

Our LLM evaluation shows that for IE tasks dealing with complex informa-
tion, the choice of text based data serialization format can have a considerable
impact on performance, even when using grammar based generation constrains.
Additionally, we can see that in-context learning enabled by larger context sizes,
as well as grammars are an effective method to improve IE performance.

Limitations: Our work considers HyperPIE from text. This is sensible for
a focussed approach, but downstream applications could furthermore benefit
from composite pipelines also targeting extraction from tables, source code, etc.
Our work does not test transferability of methods to domains outside of ML
related fields. It would require domain expertise to find useful definitions for
hyperparameters in each respective domain. Lastly, our data and experiments
unfortunately are limited to English text only and do not cover other languages.

7 Conclusion

We formalize the novel ER+RE task HyperPIE and develop approaches for it,
thereby expanding IE from scientific text to hyperparameter information. To
this end, we create a manually labeled data set spanning various ML fields. In
a supervised learning setting, we propose a BERT-based model that achieves
an improvement of 29% F1 in RE compared to a state-of-the-art baseline. Us-
ing the model, we perform IE on a large amount of unannotated papers, and
analyze patterns of hyperparameter reporting across ML disciplines. In a zero-
/few-shot setting, we propose an LLM based approach using YAML for complex
IE, achieving an average improvement of 5.5% F1 in ER over using JSON. We
furthermore achieve large performance gains for LLMs using grammar based
generation constrains and in-context learning. In future work, we plan to in-
vestigate fine-tuning LLMs, as well as additional practical use cases for data
extracted from large publication corpora, such as knowledge graph construction.

Author Contributions

Tarek Saier: Conceptualization, Data curation, Formal analysis, Methodology,
Software, Visualization, Writing – original draft, Writing – review & editing.
Mayumi Ohta: Conceptualization (LLM few-shot), Formal analysis (LLM few-
shot), Methodology (LLM few-shot), Software (LLM few-shot), Writing – orig-
inal draft (support). Takuto Asakura: Conceptualization, Writing – review &
editing. Michael Färber: Writing – review & editing.

Acknowledgements

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) via [KOM,BI], a Software Campus project (01IS17042).
The authors acknowledge support by the state of Baden-Württemberg through
bwHPC. We thank Nicholas Popovic for extensive feedback on the experiment

14 T. Saier et al.

design and prompt engineering. We thank Tarek Gaddour for feedback during
the annotation scheme development, and Xiao Ning for input during early model
development.

References

1. Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., Sontag, D.: Large language mod-
els are few-shot clinical information extractors. In: Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing. pp. 1998–2022 (Dec
2022)

2. Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A., Cojocaru, R., Debbah,
M., Goffinet, E., Heslow, D., Launay, J., Malartic, Q., Noune, B., Pannier, B.,
Penedo, G.: Falcon-40B: an open large language model with state-of-the-art per-
formance (2023)

3. Auer, S., Oelen, A., Haris, M., Stocker, M., D’Souza, J., Farfar, K.E., Vogt, L.,
Prinz, M., Wiens, V., Jaradeh, M.Y.: Improving access to scientific literature with
knowledge graphs. Bibliothek Forschung und Praxis 44(3), 516–529 (2020). https:
//doi.org/10.1515/bfp-2020-2042

4. Baudart, G., Kirchner, P.D., Hirzel, M., Kate, K.: Mining documentation to ex-
tract hyperparameter schemas. In: Proceedings of the 7th ICML Workshop on
Automated Machine Learning (AutoML 2020) (2020)

5. Beltagy, I., Lo, K., Cohan, A.: SciBERT: A pretrained language model for scientific
text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). pp. 3615–3620. Association for Computational Lin-
guistics (Nov 2019). https://doi.org/10.18653/v1/D19-1371

6. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

7. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners. In: Proceedings of the 34th International Conference
on Neural Information Processing Systems. NIPS’20 (2020)

8. Chen, S., Wong, S., Chen, L., Tian, Y.: Extending context window of large language
models via positional interpolation. arXiv preprint arXiv:2306.15595 (2023)

9. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S.,
Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality (March 2023), https://lmsys.org/blog/
2023-03-30-vicuna/

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics (Jun 2019). https://doi.
org/10.18653/v1/N19-1423

https://doi.org/10.1515/bfp-2020-2042
https://doi.org/10.1515/bfp-2020-2042
https://doi.org/10.1515/bfp-2020-2042
https://doi.org/10.1515/bfp-2020-2042
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

HyperPIE: Hyperparameter IE from Papers 15

11. Dunn, A., Dagdelen, J., Walker, N., Lee, S., Rosen, A.S., Ceder, G., Persson, K.,
Jain, A.: Structured information extraction from complex scientific text with fine-
tuned large language models (Dec 2022). https://doi.org/10.48550/arXiv.2212.
05238

12. Harper, C., Cox, J., Kohler, C., Scerri, A., Daniel Jr., R., Groth, P.: SemEval-
2021 task 8: MeasEval – extracting counts and measurements and their related
contexts. In: Proceedings of the 15th International Workshop on Semantic Evalua-
tion (SemEval-2021). pp. 306–316 (Aug 2021). https://doi.org/10.18653/v1/2021.
semeval-1.38

13. Jain, S., van Zuylen, M., Hajishirzi, H., Beltagy, I.: SciREX: A Challenge Dataset
for Document-Level Information Extraction. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. pp. 7506–7516. Associa-
tion for Computational Linguistics (Jul 2020). https://doi.org/10.18653/v1/2020.
acl-main.670

14. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large Language Models
are Zero-Shot Reasoners. Advances in Neural Information Processing Systems 35,
22199–22213 (Dec 2022)

15. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (mar 2014). https://doi.org/10.1162/COLI_a_00168

16. Lai, V., Pouran Ben Veyseh, A., Dernoncourt, F., Nguyen, T.: SemEval 2022 task
12: Symlink - linking mathematical symbols to their descriptions. In: Proceedings
of the 16th International Workshop on Semantic Evaluation (SemEval-2022). pp.
1671–1678 (Jul 2022). https://doi.org/10.18653/v1/2022.semeval-1.230

17. Liesenfeld, A., Lopez, A., Dingemanse, M.: Opening up chatgpt: Tracking openness,
transparency, and accountability in instruction-tuned text generators. In: Proceed-
ings of the 5th International Conference on Conversational User Interfaces. CUI
’23, New York, NY, USA (2023). https://doi.org/10.1145/3571884.3604316

18. Lin, J., Yu, Y., Song, J., Shi, X.: Detecting and analyzing missing citations to
published scientific entities. Scientometrics 127(5), 2395–2412 (May 2022). https:
//doi.org/10.1007/s11192-022-04334-5

19. Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of enti-
ties, relations, and coreferencefor scientific knowledge graph construction. In: Proc.
Conf. Empirical Methods Natural Language Process. (EMNLP) (2018)

20. Polak, M.P., Morgan, D.: Extracting Accurate Materials Data from Research Pa-
pers with Conversational Language Models and Prompt Engineering – Example of
ChatGPT (Mar 2023). https://doi.org/10.48550/arXiv.2303.05352

21. QasemiZadeh, B., Schumann, A.K.: The ACL RD-TEC 2.0: A language resource
for evaluating term extraction and entity recognition methods. In: Proceedings
of the Tenth International Conference on Language Resources and Evaluation
(LREC’16). pp. 1862–1868. European Language Resources Association (ELRA)
(May 2016)

22. Raff, E.: A step toward quantifying independently reproducible machine learning
research. In: Advances in Neural Information Processing Systems. vol. 32. Curran
Associates, Inc. (2019)

23. Rak-Amnouykit, I., Milanova, A., Baudart, G., Hirzel, M., Dolby, J.: Extract-
ing Hyperparameter Constraints from Code. In: ICLR Workshop on Security and
Safety in Machine Learning Systems (May 2021), https://hal.science/hal-03401683

24. Saier, T., Krause, J., Färber, M.: unarXive 2022: All arXiv Publications Pre-
Processed for NLP, Including Structured Full-Text and Citation Network. In: Pro-
ceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries. JCDL ’23
(2023)

https://doi.org/10.48550/arXiv.2212.05238
https://doi.org/10.48550/arXiv.2212.05238
https://doi.org/10.48550/arXiv.2212.05238
https://doi.org/10.48550/arXiv.2212.05238
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2021.semeval-1.38
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.1162/COLI_a_00168
https://doi.org/10.1162/COLI_a_00168
https://doi.org/10.18653/v1/2022.semeval-1.230
https://doi.org/10.18653/v1/2022.semeval-1.230
https://doi.org/10.1145/3571884.3604316
https://doi.org/10.1145/3571884.3604316
https://doi.org/10.1007/s11192-022-04334-5
https://doi.org/10.1007/s11192-022-04334-5
https://doi.org/10.1007/s11192-022-04334-5
https://doi.org/10.1007/s11192-022-04334-5
https://doi.org/10.48550/arXiv.2303.05352
https://doi.org/10.48550/arXiv.2303.05352
https://hal.science/hal-03401683

16 T. Saier et al.

25. Sethi, A., Sankaran, A., Panwar, N., Khare, S., Mani, S.: Dlpaper2code: Auto-
generation of code from deep learning research papers. Proceedings of the AAAI
Conference on Artificial Intelligence 32(1) (Apr 2018). https://doi.org/10.1609/
aaai.v32i1.12326

26. Stocker, M., Oelen, A., Jaradeh, M.Y., Haris, M., Oghli, O.A., Heidari, G., Hussein,
H., Lorenz, A.L., Kabenamualu, S., Farfar, K.E., Prinz, M., Karras, O., D’Souza,
J., Vogt, L., Auer, S.: Fair scientific information with the open research knowledge
graph. FAIR Connect 1(1), 19–21 (2023). https://doi.org/10.3233/FC-221513

27. Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., Liu, Y.: Roformer: Enhanced trans-
former with rotary position embedding. arXiv preprint arXiv:2104.09864 (2021)

28. Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E.,
Poulton, A., Kerkez, V., Stojnic, R.: GALACTICA: A Large Language Model for
Science (2022)

29. Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F., Zhang, T., Li, J., Wang, G.:
GPT-NER: Named Entity Recognition via Large Language Models (May 2023).
https://doi.org/10.48550/arXiv.2304.10428

30. Xie, T., Wan, Y., Huang, W., Zhou, Y., Liu, Y., Linghu, Q., Wang, S., Kit, C.,
Grazian, C., Zhang, W., Hoex, B.: Large Language Models as Master Key: Un-
locking the Secrets of Materials Science with GPT (Apr 2023). https://doi.org/10.
48550/arXiv.2304.02213

31. Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao, C., Jiang, D.: Wiz-
ardlm: Empowering large language models to follow complex instructions (2023)

32. Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., Hu, X.: Harnessing
the Power of LLMs in Practice: A Survey on ChatGPT and Beyond (Apr 2023).
https://doi.org/10.48550/arXiv.2304.13712

33. Ye, D., Lin, Y., Li, P., Sun, M.: Packed Levitated Marker for Entity and Rela-
tion Extraction. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). pp. 4904–4917. Associa-
tion for Computational Linguistics (May 2022). https://doi.org/10.18653/v1/2022.
acl-long.337

https://doi.org/10.1609/aaai.v32i1.12326
https://doi.org/10.1609/aaai.v32i1.12326
https://doi.org/10.1609/aaai.v32i1.12326
https://doi.org/10.1609/aaai.v32i1.12326
https://doi.org/10.3233/FC-221513
https://doi.org/10.3233/FC-221513
https://doi.org/10.48550/arXiv.2304.10428
https://doi.org/10.48550/arXiv.2304.10428
https://doi.org/10.48550/arXiv.2304.02213
https://doi.org/10.48550/arXiv.2304.02213
https://doi.org/10.48550/arXiv.2304.02213
https://doi.org/10.48550/arXiv.2304.02213
https://doi.org/10.48550/arXiv.2304.13712
https://doi.org/10.48550/arXiv.2304.13712
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337

	HyperPIE: Hyperparameter Information Extraction from Scientific Publications

