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1. Introduction

Adsorption is an interfacial process in which substances dis-
solved in a fluid adhere to the surface of a solid material, the
sorbent. In the reversed process, called desorption, the adsorbed
substances, called adsorbates, are released from the surface of
the sorbent into the surrounding fluid phase or vacuum.
These sorption processes are the basis for numerous widespread

and indispensable (bio-)chemical applica-
tions such as enzyme immobilization,[1,2]

biosensors,[3,4] controlled drug delivery,[5,6]

water treatment,[7,8] and molecular purifica-
tion processes.[9–11] For example, column
chromatography has become indispensable
in many industries, such as fine chemical
and pharmaceutical production.[12,13]

To optimize the binding capacity for tar-
get molecules, it is crucial to maximize the
sorbent’s surface area. Because of their
extraordinarily high surface-to-volume
ratio, nano- and microparticles are widely
employed in adsorptive biochemical pro-
cesses.[14,15] Magnetic beads incorporating
a superparamagnetic core of iron-oxides
are a subclass of nano- and microparticles
which have gained particular attention.
Due to their superparamagnetic properties,
magnetic beads are versatile tools, enabling
simple and effective isolation and concen-
tration of (bio)molecules by applying a
magnetic field.[16,17] In the simplest case,
the only technical equipment needed for
the separation process is a permanent
magnet.

Due to the involvement of two phases and multiple process
steps, there is a multitude of parameters that have to be opti-
mized to achieve an efficient process. Simultaneous optimization
for multiple targets, such as yield and purity in bioseparation pro-
cesses, and the inference of the different process steps addition-
ally increase the complexity of the task. Moreover, for
biochemical processes, the variance of biological raw material
can pose an additional challenge.[18] Thus, the optimization of
adsorptive biochemical processes remains highly time-, labor-
and resource-intensive.[19,20] The combination of automated
high-throughput experimentation with data-driven and mecha-
nistic modeling is currently widely used to accelerate the devel-
opment of adsorptive bioprocesses such as chromatographical
purification.[21,22]

A very prominent biochemical adsorptive process is the puri-
fication of nucleic acids, DNA and/or RNA, the carriers of
genetic information. Nucleic acid separation and purification
are of immense importance across various fields, such as
clinical diagnostics,[23] therapeutics,[24] nanotechnology,[25] and
forensics.[26] Presently, solid-phase extraction (SPE) using silica
as the adsorbent medium is the predominant method
employed.[16] Most commonly, the Boom method is used, in
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development and optimization of solid-phase extraction processes. As a use case,
the SDL was used to optimize a DNA purification process using silica magnetic
beads. Through the integration of robotics, machine learning, and data-driven
experimentation, the SDL demonstrates a highly accelerated process optimiza-
tion with minimal human intervention. In the multistep purification approach,
the system is able to optimize buffer compositions for DNA extraction from
complex samples, demonstrating effectiveness in both conventional chaotropic
salt-based methods and innovative chaotropic salt-free buffers. The study
highlights the SDL’s capability to autonomously refine process parameters,
achieving significant enhancements in yield and purity of the product. This
blueprint for future self-driving optimization of bioprocess parameters showcases
the potential of autonomous systems to revolutionize biochemical process
development, offering insights into scalable, environmentally sustainable, and
cost-effective solutions.
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which DNA binds to silica at slightly acidic conditions (pH< 6.5)
and high concentrations, up to 10 M, of chaotropic salts such as
guanidine hydrochloride or guanidine isothiocyanate.[27] For the
binding step, the complex sample, containing the nucleic acids
and various contaminants, such as proteins, carbohydrates, lip-
ids, and cell debris is mixed with the binding buffer and exposed
to the silica material, which is either in the form of magnetic
beads or spin columns. After the binding step, multiple wash
steps with high concentrations of alcohol are performed to
remove unspecifically bound contaminants. Finally, the bound
nucleic acids are released from the silica surface in the elution
step. Although the process has been employed since the early
1990s, the exact adsorption mechanism of DNA/RNA to silica
surfaces continues to be a topic of scientific debate.[28]

Despite their widespread use, the DNA binding buffers con-
taining high concentrations of chaotropic salts present signifi-
cant drawbacks. First, residual chaotropic salts interfere with
many downstream operations, such as polymerase chain reaction
(PCR) due to their strongly denaturing effects.[29] Furthermore,
most chaotropic salts, such as guanidium thiocyanate and gua-
nidium hydrochloride are classified as hazardous materials.
Their toxicity poses a safety risk to lab personnel, necessitating
protective equipment and careful handling. In response to these
severe drawbacks, recent research has focused on exploring alter-
native binding buffer components to minimize or replace or cha-
otropic salts in nucleic acid binding buffers. For example, acetic
acid (AA),[28] potassium chloride (KCl),[28] magnesium chloride
(MgCl2),

[30] polyethylene glycol (PEG),[31] and various amino
acids[32,33] show great promise as binding buffer components.
Binding simulations have suggested that the use of multiple
binding agents can increase nucleic acid binding efficiency.[33]

However, it was not yet investigated, how these components per-
form for isolating nucleic acids from complex samples and
whether synergistic effects between these components can be
achieved by optimal concentration ratios for maximizing binding
efficiency.

To solve complex optimization problems for adsorptive bio-
processes such as nucleic acid purification, with minimal time,
effort, and labor, so-called self-driving laboratories (SDLs) can be
employed.[34] SDLs combine modular lab automation via robotics
and data-driven experiment planning via machine learning (ML)
to create a closed-loop feedback system.[35–37] These intelligent
experimental platforms systematically execute cycles of experi-
ments with parameters selected by ML algorithms to solve a task
with a predefined target by the end-user. Thus, minimal human
intervention is required, as the system autonomously performs
all experimental and data analysis tasks. This autonomous oper-
ational framework minimizes human intervention by indepen-
dently managing all experimental procedures and data
analyses. Unlike traditional high-throughput screening (HTPS)
systems that primarily focus on volume, SDLs enhance the effi-
ciency of exploring experimental parameter spaces, thereby dras-
tically conserving time and resources.[38] The main advantages of
the SDL approach over conventional experimental methods are
presented in Table 1. While advantages 4 to 8 apply to automated
experimental platforms in general, such as HTPS systems, points
1 to 3 are unique to SDLs.

SDLs have already proven to be extremely effective tools for
the accelerated discovery, optimization, and synthesis in the field
of complex organic compounds,[38–42] nanomaterials,[43–48] thin
films[49–52] as well as biomolecules and biosystems,[53–59] among
others.

In this research, we present our versatile SDL designed for pro-
cess optimization of biochemical SPEmethods, applicable for both
magnetic and nonmagnetic solid-phase materials. As a proof-of-
concept, this SDL was employed to optimize the buffer composi-
tions in a multistep purification process of DNA from a complex
sample. Initially, this involved using conventional binding buffers
with chaotropic salts and silica-coatedmagnetic beads as the adsor-
bent. Subsequently, our system successfully optimized a nucleic
acid binding buffer devoid of chaotropic salts, offering a promis-
ing alternative to the buffers commonly in use today.

Table 1. Advantages of SDLs over conventional experimental methods.

Advantage Description

Efficient experiment
planning

SDLs leverage ML methods to plan and optimize experiments efficiently, quickly identifying the most promising research paths
and accelerating scientific discoveries. This ML-driven approach allows for adaptive experimentation, where the system learns from previous
results to refine and focus subsequent experiments, speeding up the discovery process significantly. Compared to classical “brute-force”HTPS,

this approach drastically reduces the amount of experiments.

Innovative discovery By automating the exploration of experimental parameters, SDLs can uncover unexpected patterns or results that might not be apparent
through traditional methods like design-of-experiments.

Resource efficiency Over time, SDLs can reduce labor costs and minimize the use of reagents by optimizing experiments, making research more cost-effective.
Due to lower number of experiments, the approach is much more resource-efficient than classical HTPS.

High throughput Automation of experimentation and data processing enables more experiments to be conducted simultaneously and continuously,
increasing overall throughput.

Improved reproducibility Automation reduces human error and variation in experimental setup, leading to more reproducible results.

Remote operation SDLs can be operated remotely, facilitating research continuity during disruptions (e.g., like pandemics) and enabling collaboration
across different locations.

Data integration SDLs integrate seamlessly with electronic lab notebooks and other data management systems, improving data traceability
and accessibility for further analysis.

Safety Automating hazardous processes can reduce the risk of accidents, enhancing safety in the laboratory environment.
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2. Results and Discussion

2.1. SDL Platform Architecture and Workflow Overview

We developed a SDL platform specifically for the autonomous
optimization of SPE processes. This system integrates eight
laboratory devices on a custom-built workbench, as depicted
schematically in Figure 1a. A photograph of the platform can
be found in the Supporting Information (Figure S1,
Supporting Information). The platform includes a liquid han-
dling station (OT-2, Opentrons, USA) that offers pipetting, heat-
ing, shaking, and magnetic separation functionalities, facilitating
various (bio-)chemical reactions and assays in well-plate format.
A vacuum pump (MD 4 VARIO select, Vacuubrand, Germany),
in conjunction with a custom vacuum manifold, enables the
separation of nonmagnetic particles and solid materials from liq-
uid phases. Magnetic particles with a minimum size of 100 nm
can be separated using the automated magnetic separation mod-
ule, which incorporates neodymium permanent magnets.
Nonmagnetic particles are separated using commercially avail-
able 96-well filter plates, which feature pore sizes as small as
200 nm. The system’s custom workbench houses storage, sort-
ing, and stacking capabilities for well-plates, pipette tips, and liq-
uid reservoirs. Additionally, a six-jointed robotic arm (UR5e,
Universal Robots, Denmark) equipped with an adaptive gripper
(Hand-E, Robotiq, Canada) and custom 3D-printed arms man-
ages the transport and stacking of these items. For spectroscopic
analysis, the platform includes a multimode plate-reader (Spark,
Tecan, Switzerland) capable of conducting UV–vis spectroscopy,
fluorescence, and luminescence measurements.

The well-plate-based part of the platform is connected to
flow-based microcapillary system using a capillary positioning
system (RotAXYS, Cetoni, Germany) to aspirate liquids from
and dispense them into well-plates. Fluid transport in the capil-
lary system is facilitated by precision syringe pumps (nemeSYS
S, Cetoni, Germany) and a flow-selection valve module (6-port
Qmix V Valve, Cetoni, Germany). Particle characterization is
automated through a dynamic light scattering (DLS) and zeta
potential analysis device (Zetasizer Nano ZS, Malvern
Panalytical, UK), which is connected to the capillary system via
a flow-through absorption cuvette (178.712-QS, Hellma,
Germany). For the automated DNA purification process demon-
strated in this work, only the liquid handling station, the
robot arm, and the plate reader were utilized in the workflow.
By additionally using the vacuum pump, the system was recently
successfully employed for the automated determination of
adsorption isotherms in batch incubation chromatography
experiments.[60] The modular design of the platform allows for
easy expansion with additional devices, such as microreactors
or other measurement modules, to accommodate specific appli-
cation requirements.

Through the integration of a self-developed ML-reinforced
control software the platform not only allows for automated
but autonomous experimentation through intelligent planning
of experimental cycles. The software utilizes a Python-based lay-
ered modular design, where each device and its functionalities
are encapsulated into separate modules. This structure promotes
easy updates and scalability through independent modifications.
Each device is represented by a class in a separate module with

methods for the device functionalities. For example, initializing
an object of the Tecan Spark class established the connection
to the device. Device functionalities such as opening and closing
the device or starting a measurement according to a configura-
tion file can then be called with the methods of the class. The
UR5e robot arm additionally uses lab-setup-specific modules that
contain the exact joint positions and compound movements for
transfer between the devices. New devices can be integrated with
minimal configurational changes. These device classes for con-
trol and data exchange lay the foundation for automated experi-
mentation. The software architecture is illustrated schematically
in Figure 1b. In Table 2, the utilized application programming
interface (API) and the communication protocol for the different
devices are shown.

Every specific process, i.e., each type of experiment, is
orchestrated by a superordinate main workflow script which
coordinates the functionalities of the devices with the process-
specific parameters in sequential order. For each experiment type
templates of the main script and Opentrons protocols were cre-
ated. Next to the device modules for automation, the main script
also calls the modules for script generation, data processing, and
optimization to enable autonomous experimentation. In each
experimental cycle, the script generator first dynamically creates
scripts for the liquid handling station and the plate reader based
on the parameter values suggested by the optimization algorithm
on the basis of process-specific templates. The data processing
module contains functions for computation of target values
and plot generation from raw data tailored to the measurement
device, the sample number, and the experiment type. The opti-
mization module contains functions to create an initial set of
parameter combinations for the first experimental cycle and to
generate new parameter combinations for following experimen-
tal cycles. Different initialization procedures and optimization
algorithms (genetic, model-based, or hybrid; see Experimental
Section) are included in this module. The database connector
module automatically saves the generated data into a MySQL
database on a local server.

Autonomous process optimization begins with the user
defining the experiment. This definition includes selecting the
experiment type, setting both fixed and variable process param-
eters, establishing variable limits, determining the objective and
its value, setting configurations for the measurement devices,
choosing the type of optimization algorithm, specifying algo-
rithm parameters, and deciding on a maximum number of
experimental cycles. Users navigate this setup via a custom-
developed graphical user interface (GUI). Following this initial
setup, the optimization algorithm generates the first set of
parameter combinations for the variables. This triggers the
automatic generation of a process workflow script based on a
template of the main script for the according experiment type,
which orchestrates the automated lab. The system then executes
the first fully automated experimental cycle of the SPE process
using these initial parameters. As the experiment proceeds,
the measurement devices generate raw data, which the system
automatically processes to perform calculations and generate
plots. These data are stored in a MySQL database and analyzed
by the optimization algorithm to determine optimized parameter
values for subsequent experimental cycles. The included algo-
rithms are either based on fitting an empirical model and
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sampling points around the predicted optimum, an evolutionary
principle as in a genetic algorithm (GA), or a hybrid of both
(see Experimental Section). The system continues to repeat
experimental cycles, adjusting parameters based on the

optimization algorithm’s predictions, until it achieves the prede-
fined objective or reaches the maximum number of cycles
allowed. Upon completion, the system undertakes a final evalu-
ation of all collected data, performs statistical model-fitting, and

Figure 1. a) Hardware and b) software schematic of the developed SDL for SPE process optimization.
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generates plots. All plots shown in this article were automatically
generated by the data processing software module. A flowchart
illustrating the autonomous process optimization is shown in
Figure 2.

2.2. Autonomous Buffer Optimization for DNA Purification
Processes

For a first proof-of-concept, the system was given the task to opti-
mize the composition of the binding, wash, and elution buffer of
a DNA purification process from a complex sample by varying
the concentrations of Gu-HCl, EtOH, and Tris. In the first set
of experiments, a GA (see Experimental Section) was used to iter-
atively optimize the buffer compositions.

The fitness function was defined as the product of loading and
purity, with the purity being defined as the ratio of absorbance at
260 nm and 280 nm wavelength (A260=A280) in the purified sam-
ple (Equation (4)). The objective for the process optimization was
a fitness value of 4 μg mg�1. In Figure 3a, the loading of the
beads with DNA (calculated from the eluate), purity levels,
and the corresponding value of the target function are shown
for the best parameter combination of each experimental cycle.
In the first generation, which was created randomly by the
algorithm, a maximal fitness value of 2.35 was achieved with
a loading of 1.20� 0.14 μg mg�1 and a purity of 1.98� 0.09.
Throughout the experimental cycles, there was a consistent
increase in maximal DNA loading, while the purity remained rel-
atively stable, oscillating between 1.9 and 2.0. By the sixth exper-
imental cycle, the objective of the optimization was met. The best
buffer composition achieved a fitness value of 4.10, with a DNA
loading of 1.98� 0.10 μg mg�1 and a purity of 2.07� 0.07. The
normalized parameter values of the best combinations per gen-
eration alongside their respective loading are shown in Figure 3b.
The best parameter combination in the initial generation was
5.20 M Gu-HCl, 65.0% EtOH, and 8.0mM Tris. The overall best
parameter combination in the sixth generation was 5.89 M

Gu-HCl, 95.7% EtOH, and 24.4mM Tris. There was no clear

trend of the Gu-HCl and Tris concentration throughout
the experiment cycles, while the EtOH concentration of the
best parameter combination continuously increased. In the
Supporting Information, the data for all investigated parameter
combinations in each experimental cycle are included (Figure S2,
Supporting Information).

In this study, after achieving the specified optimization objec-
tive, a statistical model was automatically fitted to all collected
data points to enhance process knowledge. A quadratic interac-
tion model was selected to elucidate the dependence of DNA
loading onto the beads on the concentrations of the buffer com-
ponents. As illustrated in Figure 3c, the model accurately pre-
dicts the binding capacity, yielding an R2 value of 0.90. Based
on the fitted model, surface plots (Figure 3d–f ) are generated
to visually illustrate the influence of each parameter on the target.
The surface plots revealed that optimal DNA loading on the
beads is achieved with a high concentration of Gu-HCl in the
binding buffer, a high concentration of EtOH in the wash buffer,
and a low concentration of Tris in the elution buffer. The model
predicts a maximal loading of 2.47 μg mg�1 at buffer concentra-
tions of 6.0 M Gu-HCl, 100.0% EtOH, and 5.0 mM Tris.

The results demonstrate that the system successfully autono-
mously optimized the DNA purification process until the prede-
fined objective was reached. Notably, the optimized buffer
compositions closely mirror those used in the well-established
Boommethod, supporting the validity of both the optimized con-
ditions and the statistical model predictions in line with prior
research and established scientific theories. In the Boom
method,[27] DNA binds to silica at high concentration of chaot-
ropic salts and at slightly acidic pH. Under high concentrations
of chaotropic salts, adsorption is hypothesized to be driven by the
hydrophobic effect due to dehydration of nucleic acids and the
silica surface as well as salt bridging.[61–64] The slightly acidic
environment (pH< 6.5) decreases the electrostatic repulsion
between DNA and silica, which are both negatively charged
and thus facilitates adsorption.[65] Following the binding step,
multiple wash steps with high concentrations of alcohols, typi-
cally ethanol or isopropanol are performed. These steps are

Table 2. Devices integrated into the SDL with the API and communication protocol used for automation.

Device type Manufacturer model API Communication protocol

Liquid handling station Opentrons
OT-2

HTTP[72] TCP/IP

6-Joint Robot Arm Universal Robots UR5e Primary Interface[73] (Port 30001) TCP/IP

Vacuum pump VacuuSelect
MD Vario 4

Modbus[74] TCP/IP

UV–vis spectroscopy multimode plate reader Tecan
Spark

SiLA 2[75] gRPC

Positioning system for well-plate sampling Cetoni
RotAXYS

Cetoni SDK[76]

(Python Integration)
CANopen

Syringe pumps Cetoni
nemeSYS

Cetoni SDK
(Python Integration)

CANopen

Valve module Cetoni
Qmix V

Cetoni SDK
(Python Integration)

CANopen

DLS instrument Malvern
Zetasizer Nano ZS

Custom GUI TCP/IP
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critical to remove unspecifically bound contaminants and excess
salt from the binding buffer while precipitating the DNA onto the
silica surface. High alcohol concentrations prevent the DNA
from being eluted from the beads. Finally, the bound nucleic
acids are released from the silica surface in the elution step into
a low ionic strength buffer with slightly alkaline pH, typically 5 or
10mM Tris or Tris-EDTA buffer with pH 8.5. The combination
of low ionic strength and the slightly alkaline pH increase the
electrostatic repulsion between DNA and silica and aids the elu-
tion of DNA from the beads.[65,66]

The optimization algorithm employs elitism and prohibits
mutations in the best parameter combinations during the recom-
bination process, ensuring that each experimental cycle either
improves or maintains the highest fitness value. The effective-
ness of these features is evidenced by the continuous improve-
ment in DNA loading and, consequently, the fitness function
values throughout the experiments. The consistently high purity
observed across the experimental cycles can be attributed to the
selective DNA binding properties of the beads used, which
appear to be largely independent of the buffer compositions.

This suggests that the beads effectively differentiate between
DNA and other molecular species, ensuring a high purity of the
extracted DNA regardless of variations in the buffer conditions.

The GA demonstrated its capability to optimize the buffer
composition without requiring mechanistic input. This feature
makes it particularly useful for optimizing processes where
key influencing factors are known, but the details of their rela-
tionships with the target or their interactions with each other are
not. However, the inherent trial-and-error nature of the algo-
rithm means that the optimization process is not directed.
Consequently, potentially favorable values of a parameter might
be overlooked or discarded if altering another parameter leads to
an overall increase in the fitness function value. For instance, in
this series of experiments, the concentrations of Gu-HCl and
Tris in the optimal combinations did not show a consistent pat-
tern across the experimental cycles; rather, they exhibited fluctu-
ations, illustrating the nonlinear and somewhat unpredictable
behavior typical of GA optimizations.[67]

To address the limitations of the GA and potentially accelerate
the optimization process, we tested an alternative algorithm that

Figure 2. Flowchart of the autonomous SPE process optimization workflow. (1) The workflow starts with the experiment definition, where the experiment
type, the optimization algorithm, the fixed parameters, the variable process parameters subject to optimization, and the optimization target are defined.
(2) Based on the experiment definition a first set of parameter combinations is generated either random or according to an experimental design.
(3) A dedicated software module subsequently generates the configuration files for each device according to the parameter combinations and the fixed
parameters according to templates. (4) These are called from a subordinate workflow script for process orchestration in the adjacent execution of the
experimental cycle. (5) The raw data generated during the experimental cycle is automatically evaluated and the target values for each parameter combi-
nation are calculated. (6) All generated data are then stored in a MySQL database on a local server. (7) The optimization algorithm then checks if the
optimization target is reached, i.e., at least one parameter combination reaches the target fitness value. (8) If the target is not reached, the algorithm
predicts optimized parameter combinations for an adjacent experiment cycle and repeats steps (3)–(8) until either the target is achieved or the maximum
number of experimental cycles is reached. (9) Once the target is reached, a final data evaluation and plot generation are performed and the workflow is
finished (10).
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dynamically fits a statistical model to all available data points to
predict the optimal parameter values for subsequent experimen-
tal cycles. We employed a quadratic interaction model for its
adaptability across a variety of processes and its demonstrated
accuracy with the data from the GA. To ensure comparability,
the process optimization using the model-based algorithm

(MBA) commenced with the same initial parameter combina-
tions as those used with the GA. The MBA achieved convergence
by the second experimental cycle, effectively predicting the opti-
mum from just eight data points gathered in the initial cycle. As
shown in Figure 4a, the maximal fitness value in the first gener-
ation was 2.33 with a loading of 1.19� 0.17 μg mg�1 and a purity

Figure 3. Results of the autonomous DNA purification process optimization using conventional buffer components and a GA. a) Loading, purity, and
fitness function (loading*purity) value of the best parameter combination for each experimental cycle. b) Normalized parameter values and achieved
loading of the best parameter combinations for each experimental cycle. Parameter values are normalized by the specified upper concentration limit.
c) Experimentally determined loading versus loading predicted by the fitted quadratic interaction model. d–f ) Surface plots of predicted loading at varying
Gu-HCl and Tris concentration at fixed (0%, 50%, 100%) EtOH concentrations.
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of 1.96� 0.03. By the second generation, the objective was
reached with a maximal fitness value of 4.24, corresponding
to a loading of 2.12� 0.10 μg mg�1 and a purity of 2.00� 0.08.
The best parameter combination for the first generation
remained consistent with the GA, featuring 5.20 M Gu-HCl,
65.0% EtOH, and 8.0 mM Tris, as shown in Figure 4b. The over-
all best parameter combination in the second generation that
reached the target fitness value comprised 6.00 M Gu-HCl,

100% EtOH, and 5mM Tris. The data for all tested parameter
combinations are shown in Figure S3 (Supporting
Information). To verify the reproducibility of the experiments
performed by the robotic setup, the initial experimental cycle
was repeated a third time. The results shown in Supporting
Information Figure S4 reveal a high reproducibility of the auto-
mated experiments, notably the standard deviation of the deter-
mined loading is ≤0.1 μg mg�1 between the same parameter

Figure 4. Results of the autonomous DNA purification process optimization using conventional buffer components and a GA. a) Loading, purity, and
fitness function (loading*purity) value of the best parameter combination for each experimental cycle. b) Normalized parameter values and achieved
loading of the best parameter combinations for each experimental cycle. Parameter values are normalized by the specified upper concentration limit.
c) Experimentally determined loading versus predicted loading by the fitted quadratic interaction model. d–f ) Surface plots of predicted loading at varying
Gu-HCl and Tris concentration at fixed (0%, 50%, 100%) EtOH concentrations.
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combinations in replicated cycles. The final quadratic-interaction
model, following the second generation, maintained an excellent
fit with an R2= 0.987, as seen in Figure 4c. The corresponding
surface plots, illustrating the DNA loading at variable concentra-
tions of Gu-HCl, Tris, and EtOH, are displayed in Figure 4d–f.
Consistent with the previous results, predictions indicate that
DNA loading increases with higher concentrations of Gu-HCl
and EtOH and decreases with higher Tris concentrations. The
maximal predicted loading, achieved with 6.00 M Gu-HCl,
100% EtOH, and 5mM Tris, was 19.0% less than that predicted
by themodel fitted to data from the GA. However, the actual max-
imal loading reached with the best parameter combination using
the MBA was 7.0% higher. This improvement can be attributed
to slightly higher concentrations of Gu-HCl and EtOH, and a
lower concentration of Tris compared to the optimal combina-
tion identified by the GA, leading to enhanced DNA binding,
reduced wash loss, and increased elution yield.

In conclusion, the MBA effectively addresses the process opti-
mization problem involving three variables, achieving conver-
gence in just two experimental cycles—significantly fewer
than the six required by the GA. Moreover, it identified a more
optimal parameter combination that yielded a higher fitness
value and enhanced DNA loading. The final models constructed
from the generated data consistently demonstrated similar qual-
itative influences of the parameters. To maximize the yield of
purified DNA, the concentrations of Gu-HCl and EtOH should
be maximized, while keeping the Tris concentration minimized,
aligning with findings from previous studies. Thus, the proposed
quadratic-interaction model proved to be a simple but accurate
model for describing the concentration influences on the yield
of purified DNA. This suggests its potential as a viable algorithm
in autonomous process optimization tasks, particularly when
dealing with a smaller number of process variables. This is
important because the number of coefficients in the model
increases quadratically with the number of variables, which could
lead to overfitting when data points are scarce. The maximally
achieved loading is 26.5% of the binding capacity specified by
the manufacturer. This could be attributed to the occupation
of binding sites with unspecifically bound contaminants from
the sample mixture. Especially bovine serum albumin (BSA),
which is present in a 100-fold higher concentration than DNA
in the sample, is known to have a strong interaction with silica
surfaces, especially at low pH and high ionic strength.[68,69] In
addition, the DNA loading in this study is determined from
the amount of eluted DNA. If the loading is determined using
the DNA concentration in the supernatant from the binding step,
a higher loading might be observed due to losses in the subse-
quent wash steps and only partial desorption of DNA during
elution.

2.3. Autonomous Optimization of Alternative Binding Buffer

To demonstrate the capability of the autonomous system to accel-
erate scientific innovation, it was employed to develop an alter-
native binding buffer free from chaotropic salts. Chaotropic salts
were excluded due to their drawbacks, including high chemical
consumption, toxicity, and inhibition of downstream applica-
tions, among others. Instead, a mixture of alternative

compounds, namely, acetate, L-histidine, L-arginine, potassium
chloride, magnesium chloride, and PEG-8000 was utilized to
facilitate DNA adsorption to the silica magnetic beads. The sys-
tem was allowed to arbitrarily mix these compounds within spec-
ified concentration limits (see Experimental Section) in 20mM
Tris-HCl buffer at pH 5 to limit the total chemical consumption.
For the optimization process, a novel hybrid algorithm combin-
ing genetic and model-based elements was developed. This
method leverages the exploratory capabilities of the GA alongside
the predictive accuracy of the model-based approach to iteratively
refine the buffer compositions. The wash and elution buffers
were maintained at their previously optimized compositions to
ensure consistency and to isolate the effects of the novel binding
buffer components on the purification process. The objective for
this optimization was defined as achieving a minimum product
of loading and purity of 2 μg mg�1.

This target was successfully reached by the 11th experimental
cycle, as shown in Figure 5a. The progression from the initial
experimental cycle, which began with randomly selected param-
eters, to the final cycle demonstrated a significant improvement
in performance. In the first experimental cycle the maximal load-
ing was 0.27� 0.02 μg mg�1. From cycle 2 to 6, the maximal
loading remained relatively constant between 0.40� 0.02
and 0.48� 0.02 μg mg�1 and then sharply increased to
0.74� 0.06 μg mg�1 in the 7th cycle. Then the loading continu-
ously increased until the target was reached in the 11th cycle with
a loading of 1.09� 0.06 μg mg�1 and a corresponding fitness
value of 2.09. The only exception is cycle 9 with a small drop
in the maximal loading, which however is not statistically signif-
icant (p= 0.366 in t-test). Throughout these cycles, the purity of
the best parameter combinations remained consistent, fluctuat-
ing between 1.79 and 2.00. In Figure 5b, the normalized param-
eter values of the best parameter combinations in each
generation are shown. The highest loadings were achieved when
only the two amino acids L-histidine and L-arginine were present
in the buffer. It was found that optimal results were obtained
when both amino acids were present at concentrations below
their maximum allowable limits. The optimal binding buffer
composition was determined to be 65.8mM L-histidine and
41.0mM L-arginine in 20mM Tris-HCl at pH 5. In the
Supporting Information, the data for all investigated parameter
combinations is shown in Figure S5.1 and S5.2 (Supporting
Information). The final quadratic-interaction model has an
R2= 0.593, indicating a moderate level of explanatory power
(Figure 5c). Thus, the commonly used quadratic interaction
model appears unable to accurately capture the underlying rela-
tionship between the parameters and the loading. Some effects
may not be correctly represented by the parameter influences
included in the model. Moreover, the quadratic interaction
model assumes a continuous input-output relationship, which
may not be appropriate for this problem, as we suspect disconti-
nuities with certain combinations of compounds in the binding
buffer. These discontinuities could potentially arise from factors
such as synergistic or antagonistic interactions between com-
pounds, as well as the crossing of solubility boundaries. In con-
trast, nonparametric models, such as Random Forest Regressors,
Gaussian Processes, or Decision Trees, may be better suited.
Indeed, a Random Forest Regression model achieved the best
performance, with R2= 0.933 when fitted to all data and
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R2= 0.629 on the test set when using an 80/20 training/test split.
For comparison, the quadratic interaction model yielded
R2= 0.593 on all data and R2= 0.348 on the test set. A compari-
son of the model predictions is shown in Supporting
Information in Figure S6.

In summary, the development and optimization of an alterna-
tive binding buffer were demonstrated successfully. The buffer
achieved 51.4% of the loading capacity compared to the best
chaotrope-based buffer while using only 3.6% of the chemicals
by weight and maintaining equivalent purity levels. It could thus
be considered a more economically and ecologically sustainable
alternative to conventional chaotrope-based buffers, particularly
in applications where maximal recovery is not crucial, such as
when subsequent processes include PCR amplification.
Previous studies have already suggested that buffers containing
positively charged and polar neutral amino acids, particularly
L-arginine and L-histidine, show promise as alternatives to cha-
otropic salt-based methods for solid-phase DNA extraction.[32]

However, these studies did not explore the performance of these
buffers with complex samples containing impurities or

investigate potential synergistic effects between different amino
acids. Bag et al. conducted a study precisely simulating the DNA
adsorption to silica and unveiling the underlying cooperative
adsorptionmechanism.[33] It was ultimately concluded that using
multiple binding agents could enhance DNA binding affinity to
silica surfaces. Our study extends these findings by demonstrat-
ing that amino acid buffers can selectively bind DNA from com-
plex samples with high purity. Moreover, we observed synergistic
effects between L-histidine and L-arginine that maximize DNA
loading at their optimal concentrations, providing a compelling
case for their combined use in practical applications. A possible
explanation is a favorable combination of different binding
mechanisms leading to more stable interactions. While both
amino acids facilitate cooperative adsorption serving as positively
charged mediator between the negatively charged DNA and silica
under binding conditions, L-arginine additionally exhibits a
strong interaction to the guanidine bases of DNA, especially
through hydrogen bonding.[70] Further studies focusing on sim-
ulating the interaction between DNA and silica under these con-
ditions would be required for a definitive explanation.

Figure 5. Results of the autonomous chaotropic salt-free DNA binding buffer optimization using a hybrid algorithm. a) Loading, purity, and fitness
function (loading*purity) value of the best parameter combination for each experimental cycle. b) Normalized parameter values and achieved loading
of the best parameter combinations for each experimental cycle. Parameter values are normalized by the specified upper concentration limit.
c) Experimentally determined loading versus predicted loading by the fitted quadratic interaction model.
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2.4. Comparison of Conventional and Alternative Binding Buffer

For additional analysis of the DNA purified using both the con-
ventional and alternative binding buffers, the conductivity of the
wash buffer and elution supernatants was assessed with a con-
ductivity cell (Table 2). Conductivity levels in the wash and elu-
tion supernatants were notably higher when the conventional
binding buffer was used, implying a carry-over of chaotropic salts
from the initial binding step. For instance, the conductivity of the
eluate was 865.0� 18.1 μS when using the conventional binding
buffer and 285.9� 10.0 μS when using the alternative binding
buffer. Using a calibration curve (Figure S7, Supporting
Information), the residual concentration of Gu-HCl in the elu-
tion buffer was estimated assuming the increased conductivity
is solely caused by salt carry-over. The remaining Gu-HCl con-
centration in the eluate is �6mM which is 0.15% of the initial
concentration during the binding step. In contrast, in the alter-
native process, the increased conductivity in the eluate compared
to the pure elution buffer is likely attributable to the presence of
amino acids from the binding buffer. Chaotropic salts, such as
the utilized Gu-HCl are known to be PCR inhibitors due their
strong denaturing effect and thus may be problematic for down-
stream applications, e.g., in diagnostics, forensics, or biosensing.
PCR inhibition with increased Ct-values in qPCR is observable at
Gu-HCl concentrations exceeding 100mM.[71] However, the
extent of chaotropic salts carry-over can vary when using other
protocols, strongly increasing when more supernatant remains
in each separation step due to for example error-prone manual
liquid handling, unfavorable setup geometry, or nonoptimized
automated protocols. In addition, many protocols incorporate
chaotropic salts in the wash buffer to reduce DNA loss during
wash steps, which further increases salt carry-over into the elu-
ate. These risks can be completely mitigated using the alternative
amino acid binding buffer. Moreover, the alternative buffer pro-
duces 96.7% less waste of chemicals and uses no hazardous com-
pounds, while having 89.4% lower cost. The main disadvantage
is a 48.6% lower DNA yield, which however in applications
involving downstream amplification techniques may not be prob-
lematic. To conclusively validate the efficacy of this novel buffer
for DNA purification, it is required to extend testing to actual
biological samples, incorporating an initial cell lysis step, as
the present study employed a synthetic complex sample.

3. Conclusion

In conclusion, this study successfully demonstrated a SDL
designed to optimize SPE processes for bioseparations. The
developed autonomous system seamlessly integrates robotics,
advanced ML algorithms, and an efficient laboratory workflow
through a modular layered software framework. Specifically,
in the presented use case of silica magnetic bead-based DNA
purification, the system has proven to be a powerful tool for rapid
and effective process optimization. By employing this system, we
demonstrated that substantial improvements in process effi-
ciency can be achieved with minimal human intervention.

The system was able to find optimal buffer compositions for
all process steps in a multivariate process optimization aimed at
maximizing yield and purity of the extracted DNA from a

complex sample. Both a GA and a model-fitting algorithm based
on a quadratic interaction model have proven to be very effective
tools in this use case. Based on these two algorithms, we devel-
oped a hybrid algorithm. This algorithm combines the explor-
atory strength of GAs with the predictive accuracy of
dynamically updated models fitted to all existing data to guide
parameter adjustments. Employing the hybrid algorithm, a bind-
ing buffer free from chaotropic salts was optimized by the system
to avoid the drawbacks of these compounds. The final optimized
buffer is composed of 65.8 mM L-histidine and 41.0mM L-argi-
nine in 20mM Tris-HCl at pH 5. With this buffer 51.4% yield,
equal purity measured by A260=A280 and a lower salt contamina-
tion compared to the conventional binding buffer were accom-
plished. At the same time, the novel binding buffer achieves
96.7% less chemical consumption and 89.4% lower cost while
avoiding toxic and potentially inhibitory compounds. These
results highlight the capability of the SDL for the highly acceler-
ated development of efficient, environmentally safe, and cost-
effective processes.

Most importantly the system is highly flexible and can be
employed to optimize SPEs across a diverse range of adsorbents
and adsorbates. For example, the system can be used to optimize
buffer compositions for chromatographic processes with batch
adsorption experiments or to optimize enzyme immobilization
processes. To further expand the capabilities of the autonomous
laboratory, additional devices for experimentation and analysis,
such as a robotic centrifuge or a HPLC system could be inte-
grated into the modular platform. Future work will also focus
on refining the optimization algorithms and developing suitable
models, especially for processes with a large number of
parameters.

Our research offers a blueprint for incorporating autonomous
platforms into diverse bioprocessing applications, catalyzing
major improvements in process development. The extremely
potent synergy of artificial intelligence and automation is trans-
forming whole industries already today. Through continued
progress in artificial intelligence, robotic automation, and
high-throughput instrumentation, intelligent autonomous sys-
tems will become even more powerful and indispensable tools
in scientific discovery and industrial production.

4. Experimental Section

Materials: All chemicals and reagents were used as received without
additional purification. Ethanol (EtOH) (Ph. Eur., >99.5%), guanidium
hydrochloride (Gu-HCl), L-arginine (Arg), acetic acid (AA), magnesium
chloride (MgCl2), potassium chloride (KCl), polyethylene glycol 8000
(PEG-8000), Tris(hydroxymethyl)aminomethane hydrochloride (Tris-
HCl), and tris(hydroxymethyl)aminomethane (Tris) were purchased from
VWR Chemicals (Germany). L-histidine hydrochloride monohydrate (His)
was obtained from PanReac AppliChem (Germany). Sodium hydroxide
(NaOH, 1.0 N), hydrochloric acid (HCl, 36.5–38%), DNA sodium salt from
salmon testes, BSA, and cholesterol were obtained from Sigma Aldrich
(Germany). SeraSil-Mag 700 silica magnetic beads (d= 700 nm) were pur-
chased from Cytiva (USA).

Automated DNA Purification and Quantification: For automated purifi-
cation of DNA using magnetic beads, an optimized protocol for the
robotic liquid handling workstation (OT-2, Opentrons, USA) was devel-
oped. Prior to each experimental cycle, the user exchanges nonautomat-
able labware and fills up the required reagent reservoirs for the buffer
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solutions, the sample, and the magnetic beads. Once the user confirms
correct deck setup, the workflow continues with the execution of the liquid
handling protocol.

The protocol initiates by calculating the required mixture of different
buffers based on the input concentrations specified for the experiment.
These concentrations ci are then transformed into the exact volumes of
stock solutions, Vstock,i, and diluents Vdiluent needed for the procedure,
using the following equations Equation (1) and (2) and the buffers are
mixed in a designated well-plate.

Vstock,i ¼
ci

cstock,i
V total (1)

Vdiluent ¼ V total �
Xi¼n

i¼1

Vstock,i (2)

Here, cstock,i is the concentration of the stock solution of substance i
and V total is the total volume of the buffer.

After buffer mixing, 100 μL each of the binding buffer was transferred
from the buffer mixing plate into a 96-well PCR plate positioned on the
magnet separator module of the OT-2. Subsequently, the magnetic bead
solution was homogenized in the reagent reservoir by pipetting and then
20 μL of the particle suspension was immediately added to the binding
buffer in the PCR plate to ensure precise and consistent dosing. Lastly,
30 μL of the DNA-containing sample solution was added and the mixture
was incubated for 10min in the binding step. During the binding step, the
solution was agitated every 2 min by pipetting to ensure homogeneity and
enhance mass transfer. After the incubation, the magnet separator was
activated to separate the magnetic beads from the solution. Once the
beads were fully separated, the supernatant was carefully removed by slow
pipetting (5 μL s�1) and transferred to the liquid waste. A separation time
of 5 min was determined to be optimal for all separation steps. Following
the binding step, the system performs two identical wash steps to remove
excess salt and unspecifically bound contaminants. For this purpose, the
magnetic module was deactivated to release the magnetic beads, and
100 μL of the wash buffer was added. The beads were then resuspended
by thorough pipetting. After 2 min of incubation in the wash buffer, the
magnetic module was reactivated again to separate the beads and the
supernatant was transferred to the liquid waste. Lastly, an elution step
was performed to release the bound DNA. After deactivating the magnetic
module, 150 μL of elution buffer was added and the beads were resus-
pended by thorough pipetting. The beads were incubated for 10min with
intermittent agitation every 2 min through pipetting. Finally, the beads
were separated by the magnetic module and 75 μL of the eluate from each
well was transferred to a 96-well UV-plate for UV–vis spectroscopy analy-
sis. To procure 150 μL per well for the absorption measurement, eluates
from two wells belonging to the same parameter combination were
pooled.

The UV-plate containing the eluate was transferred into the UV–vis
plate-reader (Spark, Tecan, Switzerland) by the robotic arm (UR 5e,
Universal Robots, Denmark). The absorbance was then measured at
260 and 280 nm wavelength. The concentration of DNA in the elution
buffer is quantified using a calibration curve established from readings
at 260 nm. This calibration curve was generated in a 5mM Tris buffer
at pH 8.5, which is also employed as the blank for accurate measurements.
From the DNA concentration in the elution buffer, the DNA loading of the
magnetic beads was calculated using Equation (3):

q ¼ cDNA

cbeads
(3)

Here, cDNA is the concentration of DNA and cbeads is the concentration
of magnetic beads in the elution buffer.

To determine the purity P of the extracted DNA, the ratio of the blank-
corrected absorbance between 260 and 280 nm (A260=A280) is calculated
according to Equation (4):

Purity ¼ P ¼ A260=A280 ¼
A260 nm, sample � A260 nm, blank

A280 nm, sample � A280 nm, blank
(4)

Autonomous Process Optimization of DNA Purification with Silica
Magnetic Beads: As the first proof-of-concept for capability of autonomous
process optimization, the system was tasked with optimizing the binding,
wash, and elution buffer in the automated DNA purification process. Key
variables selected for optimization included the concentration of Gu-HCl
in the binding buffer, EtOH in the wash buffer, and Tris in the elution
buffer. The concentrations were freely adjustable in the limits of 0–6 M

Gu-HCl, 0�100% (v/v) EtOH, and 5 to 100mM Tris. To facilitate the mix-
ing of arbitrary concentrations of the buffer components for optimization
experiments, stock and diluent solutions for each the binding, wash, and
elution and buffer were prepared according to Table 3.

To simulate a complex biological sample, a mixture containing salmon
spermDNA (0.1 mgmL�1), BSA (10mgmL�1), glucose (1 mgmL�1), and
cholesterol (0.1 mg mL�1) was prepared in UPW containing 1% EtOH to
solubilize cholesterol by magnetic stirring overnight. The magnetic beads
were first washed twice with UPW and then resuspended in 20mM Tris-
HCl at pH 5 by thorough vortexing. The magnetic beads were loaded into
the reagent reservoir at a particle concentration of 15mgmL�1, establish-
ing a final concentration of 2 mgmL�1 during the binding step.

The concentrations of the buffer components were optimized using
both a GA and a MBA in two separate sets of experiments, each composed
of multiple experimental cycles. During each experimental cycle, 8 different
parameter combinations were evaluated in the automated DNA purifica-
tion process. A parameter combination was defined as a tuple composed
of a Gu-HCl, EtOH, and Tris concentration and was given a unique identi-
fier (UID), which is a sequential integer. For the initial experimental cycle, 8
parameter combinations were randomly generated by the algorithm.
Subsequent to each experimental cycle, the resulting absorbance data
were automatically evaluated and plotted (s. Supporting Information
Figure S2 and S3) by the software. From the raw absorbance data, the
loading of the magnetic beads as well as the purity of DNA in the eluate
were calculated according to Equation (3) and (4).

To determine the parameter combinations for subsequent generations,
the GA first computes the value of the fitness function for each parameter
combination (=individual) as outlined in Equation (5):

Fitness ¼ Loading ⋅Purity ¼ q ⋅P (5)

In Equation (5), q is the loading of the magnetic beads in μg mg�1 and
P is the dimensionless purity. The unit of the fitness function is thus
μg mg�1. Both loading and purity values are mean values derived from
triplicated experiments to ensure reproducibility.

The parameter combinations are subsequently ranked by their fitness
function value. The top four combinations are selected as parent candi-
dates to generate the parameter set for the next generation. The top
two parameter combinations are passed to the next generation. The
remaining six parameter combinations are created by recombination.
During this process, each parameter value (Gu-HCl, EtOH, and Tris con-
centration) in the offspring is randomly chosen from the values of the
parent parameter combinations. After recombination, the individuals

Table 3. Conductivity of wash and elution supernatants from the DNA
purification process using the conventional and the alternative binding
buffer. For reference, the conductivity of the pure wash buffer (100%
EtOH) and elution buffer (5 mM Tris at pH 8.5) are included. All
values represent the mean and standard deviation of replicated
experiments (n= 3).

Wash 1 [μS] Wash 2 [μS] Eluate [μS]

Conventional binding buffer 3166.7� 13.7 538.0� 5.8 865.0� 18.1

Alternative binding buffer 182.2� 8.4 21.8� 2.6 285.9� 10.0

Reference 0.2� 0.0 0.2� 0.0 238.5� 0.9
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Figure 6. Flowcharts of the employed optimization algorithms for autonomous DNA purification process optimization. a) GA, b) MBA, and c) hybrid
algorithm.
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undergo a mutation step, in which the value of each parameter is altered to
a random value within the predefined limits with a probability of 20%. Only
the individual represented by the best parameter combination from the
previous cycle is not allowed to mutate, so that each experimental
cycle improves or at least maintains the highest achieved performance.
The GA is visually summarized in a flow chart shown in Figure 6a.

The MBA employed in this study dynamically fits a quadratic interaction
model to all accumulated data points to optimize the DNA purification
process. This model predicts the fitness function, q ⋅P, as a function of
the concentrations of the variable buffer components ci, …, cn. The model
incorporates linear, quadratic, and interaction terms as delineated by
Equation (6):

Fitness ¼ q ⋅P ¼ β0 þ
Xn

i¼1

βici þ
Xn

i¼1

βiici2 þ
Xn�1

i¼1

Xn

j¼iþ1

βijcicj (6)

In Equation (6), β0 is the intercept and βi, βii, and βij are the coefficients
for linear, quadratic, and interaction terms, respectively. Using the fitted
equation, the algorithm identifies the parameter combination that maxi-
mizes the predicted fitness value by applying the L-BFGS-B optimization
algorithm to minimize the negative of the fitness function. The parameter
combinations for the next experimental cycle are determined as follows:
One parameter combination is situated exactly at the calculated optimum.
Three additional combinations are selected within a random distance of
up to 20% from the optimum. This strategy tests the robustness of the
model near the predicted optimum and explores slight variations that
could potentially enhance performance. The remaining four parameter
combinations are chosen randomly to introduce diversity into the dataset
and expand the modeled parameter space, aiding in the robustness and
generalizability of the model. In Figure 6b, the MBA is illustrated in a
flowchart.

With either algorithm, the system runs experimental cycles until the
defined target is met or a maximum number of experimental cycles is
reached. For the DNA purification process optimization, a fitness value
of q ⋅P ≥ 4 was set as objective and the maximum cycle number was
20. Upon finishing the optimization, the system automatically proceeds
to data analysis. This includes generating plots that compare maximum
fitness values across generations and illustrate the parameter values of
the best combinations from each cycle. Moreover, a quadratic-interaction
model is refitted to all data collected through the experimental runs to
validate and refine the predictions. The system is capable to fit other sta-
tistical and computational models, such as multiple linear regression and
artificial neural networks. A plot comparing the actual versus predicted
values is generated, additionally displaying the model’s goodness of fit,
represented by the coefficient of determination R2. Additionally, surface
plots are created to visually represent the influence of each buffer compo-
nent concentration on the DNA loading, thereby enhancing the under-
standing of the process and informing future optimizations.

Autonomous Optimization of Chaotropic Salt-Free Binding Buffer: In an
effort to develop a chaotropic salt-free binding buffer, six alternative
substances were evaluated for their potential to replace Gu-HCl. These
substances were tested in arbitrary combinations and concentrations
within the constraints outlined in Table 4. Each substance’s stock
solution was prepared at the specified concentration in 20mM Tris, with
the pH adjusted to 5 using 1 M HCl and 1 M NaOH. For dilution
of the binding buffer to the final volume, 20mM Tris at pH 5 was used
(Table 5).

For all experiments, a wash buffer consisting of 100% EtOH and an
elution buffer consisting of 5 mM Tris at pH 8.5 were utilized. The sample
and bead preparation were conducted analog to the process optimization
in the previous paragraph, maintaining a constant bead concentration of
2 mg mL�1.

A hybrid algorithm, combining the previously described GA and MBA,
was employed to optimize the composition of the binding buffer for max-
imal loading and purity. This approach is visualized in the flowchart in
Figure 6c. After each cycle, measurement data were analyzed, and the fit-
ness function value, based on Equation (5), was recalculated. Eight

adjusted parameter combinations were then selected by each of the algo-
rithms for further testing, resulting in a total 16 parameter combinations
per experimental cycle. The objective for the optimization was set at a fit-
ness value of 2 μg mg�1 with a maximal cycle number of 20.

Comparison of Eluate Purity via Conductivity Analysis: To compare the
purity of DNA purified using the conventional Gu-HCl binding buffer
and the newly optimized chaotrope-free binding buffer, conductivity
measurements were performed. The wash buffers and the eluates were
analyzed using an ÄKTA conductivity cell (Cytiva, USA) connected to a
conductometer (Konduktometer 703, Knick, Germany). To ensure
adequate sample volume for these measurements, the automated DNA
purification process was executed using both buffer systems across a
complete PCR plate (n= 96). The supernatants from these processes were
consolidated into three tubes to facilitate triplicate conductivity
measurements.
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Table 4. Buffer stock and diluent solutions composition for autonomous
DNA purification process optimization experiments.

Buffer type Stock solution Diluent solution

Binding 6 M Gu-HCl
20 mM Tris-HCl

pH 5

0 MGu-HCl
20 mM Tris-HCl

pH 5

Wash 100% (v/v) EtOH
0% UPW

0% (v/v) EtOH
100% UPW

Elution 100 mM Tris
pH 8.5

5mM Tris
pH 8.5

Table 5. Alternative buffer compounds with concentration limits and stock
solution concentration for the autonomous development of chaotropic
salt-free binding buffer.

Substance Lower
concentration limit

Upper
concentration limit

Stock solution
concentration

Acetic acid 0 mM 200mM 1000mM

L-histidine 0mM 100mM 500mM

L-arginine 0mM 100mM 500mM

KCl 0 mM 400mM 4000mM

MgCl2 0 mM 400mM 4000mM

PEG-8000 0 g L�1 50 g L�1 400 g L�1
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