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Abstract

In the nonrelativistic limit regime, nonlinear Dirac equations involve a small pa-
rameter ε > 0 which induces rapid temporal oscillations with frequency proportional
to ε−2. Efficient time integrators are challenging to construct, since their accuracy
has to be independent of ε or improve with smaller values of ε. In [10], Yongyong
Cai and Yan Wang have presented a nested Picard iterative integrator (NPI-2), which
is a uniformly accurate second-order scheme. We propose a novel method called the
nonresonant nested Picard iterative integrator (NRNPI), which takes advantage of
cancellation effects in the global error to significantly simplify the NPI-2. We prove
that for non-resonant step sizes τ ≥ π

4 ε
2, the NRNPI has the same accuracy as the

NPI-2 and is thus more efficient. Moreover, we show that for arbitrary τ < π
4 ε

2 the
error decreases proportionally to ε2τ . We provide numerical experiments to illustrate
the error behavior as well as the efficiency gain.

Keywords: nonlinear Dirac equation, nonrelativistic limit regime, highly oscillatory prob-
lems, time integration, error bounds, resonances.

AMS subject classifications: 35Q41 - 65M12 - 65M15.

1 Introduction

One of the most important partial differential equations (PDE) in particle physics is the
Dirac equation, which represents a well-established model for relativistic dynamics of elec-
trons, protons, neutrons, and other spin-1/2 particles in an external electromagnetic field
[12, 23]. In order to include effects related to self-interaction of particles and other phenom-
ena, nonlinear versions have been introduced in [14, 21, 22, 24]. After a proper nondimen-
sionalization, nonlinear Dirac equations involve a parameter ε > 0 inversely proportional
to the speed of light; cf. [1]. In the nonrelativistic limit regime, this parameter is very

∗Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project–ID
258734477 – SFB 1173.

†Karlsruher Institut für Technologie, Fakultät für Mathematik, Institut für Angewandte und Nu-
merische Mathematik, Englerstr. 2, D-76131 Karlsruhe, tobias.jahnke@kit.edu, michael.kirn@kit.edu

1



2

small, and solutions exhibit rapid oscillations in time with frequency proportional to ε−2.
In this situation, traditional time integrators require a tiny step size τ ∼ ε−2 and thus a
huge number of time steps to produce an acceptable accuracy; see [1] for details.

The construction of numerical methods with a better convergence behavior is a major
challenge. Several attempts have been made in this direction. If an accuracy of O

(
ε2
)

is sufficient, then one can solve the semi-nonrelativistic limit system, which is a non-
oscillatory problem and enables the approximation of solutions of nonlinear Dirac equations
with said accuracy [9]. For this purpose, we proposed the explicit exponential midpoint
rule (EEMR) in [16], which is a second-order integrator and consequently yields a total
accuracy of O

(
ε2 + τ2

)
. For very small step sizes τ < ε2, better accuracies can be achieved

with the multiscale time integrator pseudospectral method from [7], which has an error of
O
(
min{τ2 + ε2, τ2/ε2}

)
. This implies that the method is uniformly accurate with order

one, i.e. that the error can be bounded by Cτ with a constant C that does not depend on
ε. Splitting methods for nonlinear Dirac equations in the nonrelativistic limit regime were
analyzed in [2]. Although such methods usually suffer from a severe order reduction when
applied to highly oscillatory problems, it was shown that using special nonresonant step
sizes yields convergence of the Lie-Trotter splitting with the full order 1 and of the Strang
splitting with order 3/2 independently of ε. Unfortunately, the analysis in [2] is based on
the assumption that there is no magnetic field.

Two second-order uniformly accurate methods were proposed in [19] and [10]. In [19],
the authors devise an approach which allows them to replace the highly oscillatory Dirac
equation by a non-oscillatory augmented problem. The price to pay is that the augmented
problem has one additional dimension, which originates from the separation of the fast
and slow timescales. In [10], uniformly accurate nested Picard iterative integrators (NPI)
of first and second order are constructed. This is done by iterating Duhamel’s formula,
approximating the slowly varying parts of the integrands, but integrating all highly oscil-
latory phases exactly. However, the fact that the solution has to be expanded in a suitable
way and appears three times in the nonlinearity has the consequence that the number of
terms in the numerical flow of the first-order scheme (NPI-1) is already rather large (cf.
Section 2.2 in [10]). For the second-order method (NPI-2), where Duhamel’s formula has
to be used twice, the ansatz leads to a plethora of complicated terms (cf. Section 2.3 in
[10]). This makes the implementation and debugging of the integrator quite difficult and
causes considerable numerical costs per time step.

In this work we construct and analyze a new method called the nonresonant nested
Picard iterative integrator (NRNPI). This method is a modification of the NPI-2, but con-
tains only a small portion of the terms in its numerical flow. In spite of this simplification,
our integrator has essentially the same accuracy as the NPI-2 if the step size is not ex-
tremely small and is chosen in such a way that resonances in the error accumulation are
avoided. The construction is carried out for the transformed form of the nonlinear Dirac
equation introduced in [9]. We consider two different representations of this PDE and
show how to use them to reformulate the NPI-2 scheme for the transformed problem in a
very compact and structured way. This reformulation is crucial, because it allows us to
identify all terms in the numerical flow which are of O

(
τ2
)

and contain a factor of the
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type eiqtn/ε
2 for some q ̸= 0, where n ∈ N and tn = nτ are the time points where the

solution is approximated. Then, we obtain the new NRNPI by simply omitting all these
terms. In contrast to the NPI-2, the local error of the NRNPI is clearly not of O

(
τ3
)

anymore, such that second-order convergence in the classical sense cannot be expected.
Nevertheless, we prove that the NRNPI behaves like a second-order method for step sizes
which are moderately small (τ ≥ πε2/4) and not close to certain resonant values. The
reason is that for such choices of τ the omitted terms do not sum up critically in the error
accumulation due to the exponential factor eiqtn/ε

2 . A similar yet different technique has
been used in [2, 5, 13, 15, 18, 17]. The fact that the NRNPI achieves the same accuracy
as the NPI-2 with a significantly smaller number of terms improves the efficiency and fa-
cilitates implementation and debugging. We remark that choosing a nonresonant step size
is easy, because both the resonant and the optimal step sizes are known a priori. For very
small step sizes τ < π

4 ε
2, we prove that the NRNPI has an error of O

(
ε2τ

)
. In this range,

the error of the second-order NPI-2 is smaller, but this is only relevant if an extremely
small error of O

(
ε4
)

or less is required.
The paper is structured as follows. In Section 2 we introduce the nonlinear Dirac

equation in the nonrelativistic limit regime. We recall the transformation of variables
from [9] and present the two different representations of the resulting PDEs. With these
representations, we formulate the NPI-2 in the transformed variables and derive the NRNPI
in Section 3. In Section 4, we present a rigorous error analysis for the NRNPI. Our main
results are the global error bounds in Theorem 4.5 and Corollary 4.7. In particular, we show
why cancellation effects yield a limited error accumulation for nonresonant step sizes. To
keep the focus on the essentials, the proofs of a number of auxiliary results are postponed
to Section 6. In Section 5, we present several numerical experiments which corroborate
our error analysis and reveal certain interesting effects, which we discuss briefly. Finally,
we test the efficiency gain achieved with NRNPI.

2 Problem setting

2.1 Nonlinear Dirac equations in the nonrelativistic limit regime

In the nonlinear Dirac equations (NLDE), the complex-valued vector wave function ψ =
ψ(t, x) ∈ C4 is modeled by the partial differential equation

∂tψ = − i

ε2
Tεψ − iWψ − iF (ψ)ψ, x ∈ R3, t > 0, (2.1)

together with the initial data ψ(0, x) = ψ0(x) for some C4-valued function ψ0. The so-
lution ψ of (2.1) depends on the value of a parameter ε ∈ (0, 1). In the nonrelativistic
limit regime, this parameter is very small as it is inversely proportional to the speed of
light. The operator Tε and the function W = W (t, x) are the free Dirac operator and the
electromagnetic potential, respectively. They are given by

Tε = −i
3∑

j=1

εαj∂j + β, W (t, x) = V (t, x)I4 −
3∑

j=1

Aj(t, x)αj . (2.2)
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where V (t, x) ∈ R is the electric scalar potential and A(t, x) = (A1(t, x), ..., A3(t, x))
T is

the magnetic vector potential. The matrices

β =

(
I2 0
0 −I2

)
, αj =

(
0 σj
σj 0

)
, j = 1, 2, 3,

are the Dirac matrices, which are determined by the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Further, F is a nonlinearity of the form F (u) = γ1(u
∗βu)β + γ2 |u|2 I4 for γ1, γ2 ∈ R.

Here, u∗ = uT denotes the conjugate transpose and |u| =
√
u∗u the Euclidean norm of a

vector u, respectively. This type of nonlinearity is motivated by numerous applications in
physics and describes self-interaction of Dirac fermions; see, e.g., [14, 21, 22, 24] and the
references in [1, 2, 7, 10, 19]. In the rest of this paper, we limit ourselves to the second
type of nonlinearity, i.e. γ1 = 0. However, analogous results could be obtained for the case
γ1 ̸= 0. With no loss of generality, we set γ2 = 1.

The kinetic part − i
ε2
Tεψ of (2.1) causes oscillations in time with frequency of O

(
ε−2

)
.

As a consequence, classical numerical schemes can only be expected to converge if the step
size is significantly smaller than ε2, which results in prohibitive numerical costs.

2.2 Function spaces and assumptions

Throughout, the Fourier transform of u ∈ L2(R3) or u ∈
(
L2(R3)

)4 and the inverse trans-
form are defined by

û(ξ) =
1

(2π)3/2

∫
R3

e−ix·ξu(x)dx and u(x) =
1

(2π)3/2

∫
R3

eix·ξû(ξ)dξ,

respectively. For m ≥ 0 we equip the Sobolev spaces Hm(R3) and
(
Hm(R3)

)4 with the
norm

∥u∥Hm =

(∫
R3

(
1 + |ξ|22

)m
|û(ξ)|22 dξ

)1/2

.

Since we will later decompose a solution of (2.1) into two components, we further define
the space

Hm =
(
Hm(R3)

)4 × (
Hm(R3)

)4
for tuples u = (u−1, u+1) of two functions u−1, u+1 ∈

(
Hm(R3)

)4, and equip it with the
norm

|||u|||Hm = ∥u−1∥Hm + ∥u+1∥Hm .
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In the special case m = 0 we have H0 =
(
L2(R3)

)4 × (
L2(R3)

)4, and we write L2 instead
of H0 for clarity. Finally, we define Bm(R) = {u ∈ Hm : |||u|||Hm ≤ R} to be the closed
ball of radius R in Hm.

Having established the necessary notation, let us collect some important Sobolev in-
equalities that we will use frequently. There is a constant CS > 0 such that

∥uv∥H2 ≤ CS ∥u∥H2 ∥v∥H2 , u ∈ H2(R3), v ∈ H2(R3) (2.3)

∥uv∥L2 ≤ CS ∥u∥L2 ∥v∥H2 , u ∈ L2(R3), v ∈ H2(R3) (2.4)

In both cases, one of the functions may also be C4-valued. Further, we have

∥u∗v∥H2 ≤ CS ∥u∥H2 ∥v∥H2 , u ∈
(
H2(R3)

)4
, v ∈

(
H2(R3)

)4 (2.5)

∥u∗v∥L2 ≤ CS ∥u∥L2 ∥v∥H2 , u ∈
(
L2(R3)

)4
, v ∈

(
H2(R3)

)4
. (2.6)

All inequalities follow from the fact that Hm(R3) is an algebra for m ≥ 2 and from the
Sobolev embedding H2(R3) ⊂ L∞(R3).

The following assumptions regarding regularity of the initial data and the potential W
(determined by V and Aj via (2.2)) are crucial in the construction of our methods and will
thus be made henceforth.

Assumption 2.1. Let 0 < T <∞ be an arbitrary fixed time. We assume that

(A) V,Aj ∈ L∞(
[0, T ], H2(R3)

)
and that there is a constant Mex > 0 independent of ε such that for the exact solution ψ
of (2.1), we have

(B) sup
ε∈(0,1)

sup
t∈[0,T ]

∥ψ(t, ·)∥H4 ≤Mex.

We remark that assumption (B) is always fulfilled for some T > 0 if the potential and
the initial data are sufficiently regular, in particular if V,Aj ∈ L∞(

[0, T̃ ], H4(R3)
)

for some
T̃ > T and if ψ0 ∈ H4(R3), see [9, Theorem 2.1].

Assumption (A) together with the inequalities (2.3)–(2.6) yields the existence of some
constant CW > 0 such that for all t ∈ [0, T ], we have

∥W (t, ·)u∥L2 ≤ CW ∥u∥L2 , u ∈
(
L2(R3)

)4
,

∥W (t, ·)u∥H2 ≤ CW ∥u∥H2 , u ∈
(
H2(R3)

)4
.

(2.7)

2.3 Transformed Dirac equations

Whilst the uniform boundedness of solutions in (B) is a reasonable assumption, the time
derivative of a solution is unbounded w.r.t. ε due to the term − i

ε2
Tεψ on the right-hand

side of (2.1). In this subsection, we introduce a transformation of variables proposed
in [9] and state the PDEs for the new variables. These PDEs have the advantage that
for sufficiently smooth solutions, the right-hand side is uniformly bounded in ε, which is
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favorable for numerical approximation. A key step in the systematic formulation of the
methods in Section 3 will be to write those PDEs in an appropriate representation. In
fact, it will later turn out that two different representations of the PDEs are useful as each
of them has its individual advantages.

The transformation of variables used in [9] is based on the decomposition

Tε = ΛεΠ
ε
−1 − ΛεΠ

ε
+1 (2.8)

with the scalar operator Λε and the two projection operators Πε
∓1 given by

Λε =
√
Id− ε2∆, Πε

∓1 =
1

2

(
Id± (Id− ε2∆)−

1
2Tε

)
.

These pseudo-differential operators are defined in Fourier space, for example

Λεu(x) =
1

(2π)d/2

∫
Rd

eix·ξ
√
1 + ε2|ξ|22 û(ξ)dξ,

and similar for Πε
∓1. The decomposition (2.8) is obtained by performing an eigenspace

decomposition in Fourier space, see [4, Eq. (1.22)] and [9, Section 2]. It was shown in [4]
that for any m ≥ 0 the operators

Πε
∓1 :

(
Hm(R3)

)4 → (
Hm(R3)

)4
are indeed projectors, i.e. (Πε

∓1)
2 = Πε

∓1, and that
∥∥Πε

∓1

∥∥ = 1.
The decomposition (2.8) allows to filter out the main part of the temporal oscillations

in a solution ψ of the NLDE (2.1). This is achieved by introducing two new functions ϕ−1

and ϕ+1 defined by

ϕ−1(t, x) = eit/ε
2
Πε

−1 [ψ(t, x)] , ϕ+1(t, x) = e−it/ε2Πε
+1 [ψ(t, x)] (2.9)

for t ≥ 0 and x ∈ R3. To increase readability, we will omit the variable x from now on.
Assumption (B) together with the boundedness of the projectors immediately implies

sup
ε∈(0,1)

sup
t∈[0,T ]

∥ϕ−1(t)∥H4 ≤Mex, sup
ε∈(0,1)

sup
t∈[0,T ]

∥ϕ+1(t)∥H4 ≤Mex. (2.10)

The original variable ψ is determined from the pair ϕ = (ϕ−1, ϕ+1) via

ψ(t) = e−it/ε2ϕ−1(t) + eit/ε
2
ϕ+1(t) =

∑
j∈{−1,+1}

ejit/ε
2
ϕj(t). (2.11)

Derivating (2.9) w.r.t. time and inserting the Dirac equation (2.1) yields the PDEs

∂tϕ−1 = −iDεϕ−1 − ie+it/ε2Πε
−1 [Wψ]− ie+it/ε2Πε

−1

[
|ψ|2 ψ

]
, ϕ−1(0) = Πε

−1

[
ψ0

]
,

∂tϕ+1 = +iDεϕ+1 − ie−it/ε2Πε
+1 [Wψ]− ie−it/ε2Πε

+1

[
|ψ|2 ψ

]
, ϕ+1(0) = Πε

+1

[
ψ0

]
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with operator

Dε =
1

ε2

(√
1− ε2∆− Id

)
.

In fact, considering the very similar structure of both PDEs allows us to write them in a
general way as

∂tϕσ = σiDεϕσ − ie−σit/ε2Πε
σ [Wψ]− ie−σit/ε2Πε

σ

[
|ψ|2 ψ

]
, σ ∈ {−1,+1}. (2.12)

By expanding the product, we can represent the nonlinearity through ϕ as

|ψ|2 ψ =
(
e−it/ε2ϕ−1 + eit/ε

2
ϕ+1

)∗ (
e−it/ε2ϕ−1 + eit/ε

2
ϕ+1

)(
e−it/ε2ϕ−1 + eit/ε

2
ϕ+1

)
=

3∑
j=−3
j odd

∑
J∈J
#J=j

eijt/ε
2
(ϕ−j1)

∗ϕj2ϕj3 ,

where J = {−1,+1}3 is the set of all multi-indices and #J = j1 + j2 + j3 denotes the
sum of the entries of J = (j1, j2, j3) ∈ J . Additionally replacing ψ in the potential-term
of (2.12), we obtain the transformed Dirac equations

∂tϕσ = σiDεϕσ − i
∑

j∈{−1,1}

ei(j−σ)t/ε2Πε
σ [Wϕj ]

− i

3∑
j=−3
j odd

∑
J∈J
#J=j

ei(j−σ)t/ε2Πε
σ [(ϕ−j1)

∗ϕj2ϕj3 ] , σ ∈ {−1,+1}. (2.13)

In contrast to the operator − i
ε2
Tε in (2.1), the leading differential operator Dε in (2.13)

is uniformly bounded w.r.t. ε when considered as an operator from Hm+2(R3) to Hm(R3)
for m ≥ 0; cf. [9]. More precisely, it fulfills the estimate

∥Dεu∥Hm ≤ 1

2
∥u∥Hm+2 , u ∈

(
Hm+2(R3)

)
, (2.14)

see [16, Eq. (2.8)]. Thus, Assumption 2.1 implies that the first time derivative of ϕ−1 and
ϕ+1 is uniformly bounded in H2 w.r.t. ε, i.e. for σ ∈ {−1,+1} we have

sup
ε∈(0,1)

sup
t∈[0,T ]

∥∂tϕσ(t)∥H2 ≤ CD (2.15)

for some constant CD. The same then obviously holds in the L2-norm. This fact will be
crucial in the construction and error analysis of our methods.

In the PDEs (2.13), one can clearly recognize the origin of each term. However, the
double sum makes it somewhat complicated. An alternative representation of the PDEs
for ϕ−1 and ϕ+1 can be obtained by sorting the terms in (2.13) according to the arguments
in the exponential functions. For example, in the equation for ϕ−1, i.e. σ = −1 in (2.13),
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the argument 2it/ε2 is obtained by the value j = +1. Next, one can check which terms
appear with the associated prefactor e2it/ε

2 . In the first sum in (2.13), this is

Πε
−1 [Wϕ+1] ,

because for σ = −1 and j = +1 the summand is e2it/ε2Πε
−1 [Wϕ+1] . In the second sum, we

have to take into account all multi-indices J = (j1, j2, j3) ∈ J = {−1,+1}3 with #J = 1.
Those are (+1,+1,−1), (+1,−1,+1) and (−1,+1,+1), leading to the terms

Πε
−1 [(ϕ−1)

∗ϕ+1ϕ−1] , Πε
−1 [(ϕ−1)

∗ϕ−1ϕ+1] , and Πε
−1 [(ϕ+1)

∗ϕ+1ϕ+1] .

Carefully proceeding similarly for all other exponents and for both values of σ, one can
obtain the alternative representation

∂tϕσ = σiDεϕσ − ie−4σit/ε2Πε
σ [(ϕσ)

∗ϕ−σϕ−σ]

− ie−2σit/ε2
(
Πε

σ [Wϕ−σ] + Πε
σ

[(
|ϕ−1|2 + |ϕ+1|2

)
ϕ−σ + (ϕσ)

∗ϕ−σϕσ

])
− i

(
Πε

σ [Wϕσ] + Πε
σ

[(
|ϕ−1|2 + |ϕ+1|2

)
ϕσ + (ϕ−σ)

∗ϕσϕ−σ

])
− ie+2σit/ε2Πε

σ [(ϕ−σ)
∗ϕσϕσ] . (2.16)

This can be written in the more compact representation

∂tϕσ = σiDεϕσ +
2∑

p=−4
p even

epσit/ε
2
G(p)

σ (ϕ)[ϕ], σ ∈ {−1,+1}, (2.17)

where for each u = (u−1, u+1) ∈ H2, σ ∈ {−1,+1} and p ∈ {−4,−2, 0, 2}, the operators
G

(p)
σ (u) are defined by

G(−4)
σ (u)[v] := −iΠε

σ [(uσ)
∗u−σv−σ] ,

G(−2)
σ (u)[v] := −iΠε

σ [Wv−σ]− iΠε
σ

[(
|u−1|2 + |u+1|2

)
v−σ + (uσ)

∗u−σvσ

]
,

G(0)
σ (u)[v] := −iΠε

σ [Wvσ]− iΠε
σ

[(
|u−1|2 + |u+1|2

)
vσ + (u−σ)

∗uσv−σ

]
,

G(2)
σ (u)[v] := −iΠε

σ [(u−σ)
∗uσvσ]

for v = (v−1, v+1) ∈ L2. The linearity of the projectors Πε
∓1 and the estimates (2.3)-(2.7)

imply that for every u ∈ H2, G(p)
σ (u) are linear operators that map a tuple from L2 to a

function in
(
L2(R3)

)4 and a tuple from H2 to a function in
(
H2(R3)

)4.
In the derivation of our methods, we always consider the operators G(p)

σ with argument
ϕ(t), which are applied to the same function ϕ(t). In short, we consider G(p)

σ (ϕ(t))[ϕ(t)]
where ϕ(t) = (ϕ−1(t), ϕ+1(t)) is a solution of (2.13) (or, equivalently, (2.17)) at some time
t ≥ 0. In this case, we just write G(p)

σ (t) to increase readability. However, in our error
analysis, the distinction between the argument of G(p)

σ and the function to which it is
applied to will be crucial.
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The representation (2.17) is the most compact form to write the PDEs for ϕσ, involving
only four addends in the sum. However, there is no common structure of the individual
addends G(p)

σ for different values of p. In contrast to that, each addend in the sums
of (2.13) has exactly the same structure, and only the indices j or j1, j2, j3, determining
which solution component to be employed, differ. Nevertheless, the representation in (2.13)
is more involved due to the distinction between the potential and the nonlinearity parts
and the more complicated composition of the exponents. When constructing our numerical
methods, we will use both representations to make the best possible use of their individual
advantages.

3 Construction of time integration methods

In this section, we present the construction of two different time integration methods for
the NLDE. Both methods are based on the transformed Dirac equations (2.13) or (2.17)
and will therefore yield approximations

ϕn =
(
ϕn−1, ϕ

n
+1

)
≈ (ϕ−1(tn), ϕ+1(tn)) = ϕ(tn),

with tn = nτ for n = 0, 1, 2, ... and a step size τ > 0. The relation (2.11) between ϕ and ψ
can then be used to construct approximations ψn ≈ ψ(tn) by

ψn := e−itn/ε2ϕn−1 + eitn/ε
2
ϕn+1, n = 0, 1, . . . . (3.1)

Since

∥ψn − ψ(tn)∥L2 =
∥∥∥e−itn/ε2

(
ϕn−1 − ϕ−1(tn)

)
+ eitn/ε

2 (
ϕn+1 − ϕ+1(tn)

)∥∥∥
L2

≤
∥∥ϕn−1 − ϕ−1(tn)

∥∥
L2 +

∥∥ϕn+1 − ϕ+1(tn)
∥∥
L2 = |||ϕn − ϕ(tn)|||L2 , (3.2)

any error bound concerning the accuracy of ϕn transfers directly to ψn.
The first method constructed in this section is a uniformly accurate second-order time

integrator. It is similar and not superior to the NPI-2 from [10]. However, we formulate
the method in the transformed variables (ϕ−1, ϕ+1) instead of the original variable ψ. This
allows us to write the recursion formula in a special structure, which is fundamental for the
construction of the nonresonant nested Picard iterative integrator (NRNPI) in the second
part of this section. The NRNPI is a simplification of the first method, but in many cases
has the same accuracy and thus improved efficiency.

To make the formulas a little simpler, we assume that the potentialW is time-independent
throughout the rest of the paper. We will explain later how and under which assumptions
the methods can be extended to time-dependent potentials. In case of a time-independent
potential, assumption (A) simplifies to V,Aj ∈ H2(R3).

We write fε = O(tp) for a function fε = fε(t, x) and some p ∈ N0 to express that

∥fε(t, ·)∥L2 ≤ Ctp

for t→ 0 with some constant C which does not depend on t and ε.
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3.1 Iterating Duhamel’s formula for the transformed Dirac equations

The method we present here is based on the idea of iterating Duhamel’s formula for the
transformed Dirac equation (2.13) twice, and then only approximating the slowly varying
parts in the integrals, whereas the highly oscillatory parts are integrated exactly. The
same strategy has been used in [10] and for oscillatory Klein-Gordon equations also in,
e.g., [3, 6, 25, 11].

Duhamel’s formula for (2.13) yields the representation

ϕσ(tn + τ) = eσiτDεϕσ(tn)− i
∑

j∈{−1,1}

∫ τ

0
eσi(τ−s)Dεei(j−σ)(tn+s)/ε2Πε

σ [Wϕj(tn + s)] ds

− i
3∑

j=−3
j odd

∑
J∈J
#J=j

∫ τ

0
eσi(τ−s)Dεei(j−σ)(tn+s)/ε2Πε

σ [ϕ−j1(tn + s)∗ϕj2(tn + s)ϕj3(tn + s)] ds

(3.3)

for the solution ϕσ, σ ∈ {−1,+1}, at time tn+1 = tn + τ . In order to obtain a uniformly
accurate second-order method, the main challenge is to approximate the highly oscillatory
integrals up to O

(
τ3
)

by an expression where the unknown solution ϕ∓1 is only evaluated
at the current time tn. The first step to achieve this is to construct a sufficiently accurate
approximation to ϕ−1(tn + s) and ϕ+1(tn + s) by using Duhamel’s formula once again
and approximating non-oscillatory parts. To ensure stability, the differential operator
Dε : Hm+2(R3) → Hm(R3) is replaced by a filtered version in the second step. In the
third step, we insert this representation into (3.3) and compute all remaining oscillatory
integrals analytically.

3.1.1 Step 1: approximation of ϕ∓1(tn + s)

In order to approximate ϕ∓1(tn + s), we apply Duhamel’s formula again, but this time to
the representation (2.17) of the PDEs for ϕσ. This yields

ϕσ(tn + s) = eσisDεϕσ(tn) +
2∑

p=−4
p even

∫ s

0
eσi(s−r)Dεepσi(tn+r)/ε2G(p)

σ (tn + r) dr. (3.4)

Thanks to (2.15), we have

ϕσ(tn + r) = ϕσ(tn) +O(r) , r > 0 (3.5)

for σ ∈ {−1,+1}. Using (3.5) and the fact that the exact solution is uniformly bounded
in H2 at all times (even in H4 by assumption (B)), we obtain

ϕj1(tn + r)∗ϕj2(tn + r)ϕj3(tn + r) = ϕj1(tn)
∗ϕj2(tn)ϕj3(tn) +O(r)

for any j1, j2, j3 ∈ {−1,+1} and thus G(p)
σ (tn + r) = G

(p)
σ (tn) + O(r). Considering the

surrounding integral, fixing the solutions at time tn in the functions G(p)
σ in (3.4) produces

an error of O
(
s2
)
. Further, we can use the following
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Lemma 3.1. For any s ∈ R, we have∥∥eisDεu− u
∥∥
L2 ≤ 1

2
s ∥u∥H2 , u ∈

(
H2(R3)

)4
,∥∥eisDεu− (Id + isDε)u

∥∥
L2 ≤ 1

8
s2 ∥u∥H4 , u ∈

(
H4(R3)

)4
.

Proof. Apply Taylor’s theorem in Fourier space.

Using the first estimate inside and the second estimate outside the integrals in (3.4),
we overall obtain

ϕσ(tn + s) = ϕσ(tn) + σisDεϕσ(tn) +
2∑

p=−4
p even

∫ s

0
epσi(tn+r)/ε2 dr G(p)

σ (tn) +O
(
s2
)
. (3.6)

3.1.2 Step 2: filtered operator

Whilst the order of accuracy in (3.6) is sufficient, using this representation would lead to
instabilities of the methods we are about to construct. The reason is that the operator
Dε maps from Hm+2(R3) to Hm(R3) for m ≥ 0, and hence causes a loss of regularity;
cf. (2.14). This is why we replace Dε by the filtered version

D̂ε(τ) : H
m(R3) → Hm(R3), D̂ε(τ) =

sin(τDε)

τ
, τ > 0

as, e.g., in [8, 10]. The filtered operator D̂ε(τ) has the properties that∥∥∥D̂ε(τ)u
∥∥∥
Hm

≤ 1

τ
∥u∥Hm , u ∈

(
Hm(R3)

)4
, (3.7)∥∥∥D̂ε(τ)u

∥∥∥
Hm

≤ 1

2
∥u∥Hm+2 , u ∈

(
Hm+2(R3)

)4 (3.8)

for any m ≥ 0. The first inequality is obvious, whereas the second one can easily be shown
by using Taylor’s theorem in Fourier space. Moreover, using the same techniques, it is not
difficult so show that ∥∥∥(Dε − D̂ε(τ)

)
u
∥∥∥
L2

≤ τ

2
∥u∥H4 (3.9)

for all u ∈
(
H4(R3)

)4 (see [8, Proof of Lemma 3.2]). Since the exact solution is assumed to
be in H4, property (3.9) implies that replacing Dε by D̂ε in (3.6) introduces an O(sτ) error,
which is unproblematic in view of the error order we want to achieve. Further, combining
the term σisD̂ε(τ)ϕσ(tn) with G(0)

σ (tn) = G
(0)
σ (ϕ(tn))[ϕ(tn)] motivates the definition of the

operators Ĝ(p)
σ (u) for each u = (u−1, u+1) ∈ H2 by

Ĝ(0)
σ (u)[v] := G(0)

σ (u)[v] + σiD̂ε(τ)vσ,

Ĝ(p)
σ (u)[v] := G(p)

σ (u)[v], p ∈ {−4,−2, 2}
(3.10)
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for v = (v−1, v+1) ∈ L2. This leads to the representation

ϕσ(tn + s) = ϕσ(tn) +

2∑
p=−4
p even

∫ s

0
epσi(tn+r)/ε2 dr Ĝ(p)

σ (tn) +O
(
s2 + sτ

)
, (3.11)

where we wrote Ĝ(p)
σ (tn) instead of Ĝ(p)

σ (ϕ(tn))[ϕ(tn)] similar to before. Property (3.7)
ensures that for each u ∈ H2, Ĝ(0)

σ (u) are indeed well-defined operators mapping from and
to L2 (details on this and other properties of the operators Ĝ(p)

σ are discussed in Lemma 6.1
in Section 6). With the function φ1 given by

φ1(z) =

∫ 1

0
eθz dθ =

{
ez−1
z for z ∈ C, z ̸= 0,

1 for z = 0,

Eq. (3.11) can equivalently be expressed as

ϕσ(tn + s) = ϕσ(tn) +
2∑

p=−4
p even

epσitn/ε
2
sφ1(pσis/ε

2)Ĝ(p)
σ (tn) +O

(
s2 + sτ

)
. (3.12)

3.1.3 Step 3: Approximating the integrals in (3.3)

Eq. (3.12) can now be inserted into (3.3). At this point, it becomes clear why we established
two different representations of the PDEs for ϕσ: We would like our O

(
s2
)
-approximation

of ϕσ(tn + s) to be as simple as possible, which was achieved by using the representation
(2.17). When inserting (3.12) into (3.3), however, the similar structure of all terms provided
by representation (2.13) is essential such that we can take care of all of them at once instead
of considering every term individually, which would be very cumbersome as the nonlinearity
increases the number of terms even further.

When inserting (3.12) into the nonlinearity in (3.3), this gives rise to a number of O
(
s2
)

terms which lead to a total error of O
(
τ3
)
. After all, we can express each component of

the exact solution ϕ = (ϕ−1, ϕ+1) at time tn + τ as

ϕσ(tn + τ) = eσiτDεϕσ(tn)− iI1σ(tn, ϕ(tn))− iI2σ(tn, ϕ(tn)) +O
(
τ3
)
, (3.13)

σ ∈ {−1,+1}. Here, we define

I1σ(t, u) =
∑

j∈{−1,1}

ei(j−σ)t/ε2
∫ τ

0
eσi(τ−s)Dεei(j−σ)s/ε2 dsΠε

σ [Wuj ]

+
∑

j∈{−1,1}

2∑
p=−4
p even

ei(j−σ+pj)t/ε2
∫ τ

0
eσi(τ−s)Dεei(j−σ)s/ε2sφ1(pjis/ε

2) dsΠε
σ

[
WĜ

(p)
j (u)[u]

]
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for t ≥ 0 and u = (u−1, u+1) ∈ H2, such that I1σ(tn, ϕ(tn)) is the O
(
τ3
)
-approximation to

the integrals in (3.3) containing products with the potential W . Further, I2σ is given by

I2σ(t, u) =
3∑

j=−3
j odd

∑
J∈J
#J=j

ei(j−σ)t/ε2
∫ τ

0
eσi(τ−s)Dεei(j−σ)s/ε2 dsΠε

σ

[
u∗−j1uj2uj3

]

+

3∑
j=−3
j odd

∑
J∈J
#J=j

2∑
p=−4
p even

ei(j−σ+pj1)t/ε2
∫ τ

0
eσi(τ−s)Dεei(j−σ)s/ε2sφ1(pj1is/ε

2) dsΠε
σ

[(
Ĝ

(p)
−j1

(u)[u]
)∗
uj2uj3

]

+
3∑

j=−3
j odd

∑
J∈J
#J=j

2∑
p=−4
p even

ei(j−σ+pj2)t/ε2
∫ τ

0
eσi(τ−s)Dεei(j−σ)s/ε2sφ1(pj2is/ε

2) dsΠε
σ

[
u∗−j1Ĝ

(p)
j2

(u)[u]uj3

]

+
3∑

j=−3
j odd

∑
J∈J
#J=j

2∑
p=−4
p even

ei(j−σ+pj3)t/ε2
∫ τ

0
eσi(τ−s)Dεei(j−σ)s/ε2sφ1(pj3is/ε

2) dsΠε
σ

[
u∗−j1uj2Ĝ

(p)
j3

(u)[u]
]
,

which means that I2σ(tn, ϕ(tn)) is the O
(
τ3
)
-approximation to the integrals in (3.3) ac-

counting for the nonlinearity. The integrals in I1σ and I2σ do no longer involve the exact
solution ϕ. Instead, they are operators that can be computed and applied analytically. For
δ, ζ ∈ Z, we have

Aσ(δ) :=

∫ τ

0
eσi(τ−s)Dεeiδs/ε

2
ds = τeiδτ/ε

2
φ1

(
iτ(σDε − δ/ε2Id)

)
,

Bσ(δ, ζ) :=

∫ τ

0
eσi(τ−s)Dεseiδs/ε

2
φ1(ζis/ε

2) ds (3.14)

=

{
iτ ε2

ζ e
iτδ/ε2

(
φ1

(
iτ(σDε − δ

ε2
Id)

)
− eiτζ/ε

2
φ1

(
iτ(σDε − δ+ζ

ε2
Id)

))
, ζ ̸= 0,

τ2eiτδ/ε
2
φ2

(
iτ(σDε − δ/ε2Id)

)
, ζ = 0,

where the function φ2 is given by

φ2(z) =

∫ 1

0
θe(1−θ)z dθ =

{
φ1(z)−1

z for z ∈ C, z ̸= 0,
1
2 for z = 0.

Thus, we obtain

I1σ(t, u) =
∑

j∈{−1,1}

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ [Wuj ]

+
∑

j∈{−1,1}

2∑
p=−4
p even

ei(j−σ+pj)t/ε2Bσ(j − σ, pj)Πε
σ

[
WĜ

(p)
j (u)[u]

]
(3.15)
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and

I2σ(t, u) =
3∑

j=−3
j odd

∑
J∈J
#J=j

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ [(u−j1)

∗uj2uj3 ]

+

3∑
j=−3
j odd

∑
J∈J
#J=j

2∑
p=−4
p even

ei(j−σ+pj1)t/ε2Bσ(j − σ, pj1)Π
ε
σ

[(
Ĝ

(p)
−j1

(u)[u]
)∗
uj2uj3

]

+
3∑

j=−3
j odd

∑
J∈J
#J=j

2∑
p=−4
p even

ei(j−σ+pj2)t/ε2Bσ(j − σ, pj2)Π
ε
σ

[
(u−j1)

∗Ĝ
(p)
j2

(u)[u]uj3

]

+
3∑

j=−3
j odd

∑
J∈J
#J=j

2∑
p=−4
p even

ei(j−σ+pj3)t/ε2Bσ(j − σ, pj3)Π
ε
σ

[
(u−j1)

∗uj2Ĝ
(p)
j3

(u)[u]
]
. (3.16)

3.1.4 Specification of the time integrator and local error bound

Eq. (3.13) immediately suggests a time integrator: Replacing ϕ(tn) by numerical approxi-
mations ϕn =

(
ϕn−1, ϕ

n
+1

)
(thus also replacing Ĝ(p)

σ (tn) = Ĝ
(p)
σ (ϕ(tn))[ϕ(tn)] by Ĝ(p)

σ (ϕn)[ϕn])
and omitting the O

(
τ3
)

terms yields the recursion

ϕn+1 = ΦNPI(tn, ϕ
n), n = 0, 1, 2, . . . (3.17)

with the numerical flow1

ΦNPI(t, u) =

(
e−iτDεu−1 − iI1−1(t, u)− iI2−1(t, u)
e+iτDεu+1 − iI1+1(t, u)− iI2+1(t, u)

)
. (3.18)

The operator ΦNPI does of course depend on the step size τ and on ε (as I1±1 and I2±1 do).
However, we refrain from marking this dependency explicitly in order to keep the notation
clear. The method (3.17) is fully explicit. If the exact solution ϕ = (ϕ−1, ϕ+1) of (2.13) is
in H4 for all times, then by construction its local error

ℓn+1
NPI := ϕ(tn+1)−ΦNPI(tn, ϕ(tn)), n ∈ N0,

is bounded by ∣∣∣∣∣∣ℓn+1
NPI

∣∣∣∣∣∣
L2 ≤ Cτ3 (3.19)

for some constant C that is independent of τ and ε. This is one of the ingredients that
would be necessary to prove that the scheme is second-order accurate independently of ε,
which, however, is not our objective. Instead, this estimate will turn out to be useful for
the error analysis of the NRNPI in the next subsection.

1In general, we combine two functions u−1, u+1 ∈ Hm(R3) to a tuple (u−1, u+1) ∈ Hm. Only occasion-
ally, we stack two such functions into a vector for the sake of presentation.
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Remark 3.2. If the potential W =W (t, x) is time-dependent, a similar method can easily
be derived. In the inner application of Duhamel’s formula, that is Eq. (3.4) in step 1,
the potential W (appearing in G

(−2)
σ and G

(0)
σ ) is then evaluated at time tn + r, but ap-

proximating W (tn + r) ≈ W (tn) is sufficiently accurate here. In the outer application of
Duhamel’s formula from (3.3), W is evaluated at time tn + s. For a sufficient accuracy,
the linearization W (tn + s) ≈ W (tn) + s∂tW (tn) has to be employed here. In step 3, the
strategies remain unaltered, but the additional term s∂tW (tn) has to be taken into account.
One can check that the additional assumptions

V,Aj ∈ C1([0, T ], H2(R3)), V, Aj ∈ C2([0, T ], L2(R3))

are necessary for a rigorous local error and stability analysis in L2.

Remark 3.3. In [10], the authors presented the NPI-2, which is based on the same ideas.
There are however some differences. Firstly, they work in the context of the original Dirac
equation (2.1). This means that they cannot use an approximation of the type ψ(tn + r) ≈
ψ(tn) (as we did for the transformed variables, cf. (3.5)), since this would induce large
errors when ε is small due to the oscillatory dynamics of ψ. That is why in [10] the
approximation

ψ(tn + r) =
(
e−ir/ε2Πε

−1 + eir/ε
2
Πε

+1

)
ψ(tn) +O(r) , r > 0

was used instead, which is again motivated by Duhamel’s formula together with the de-
composition (2.8). Secondly, they used slightly different strategies for approximating the
remaining, slowly varying parts. In the end, their NPI-2 scheme is still very similar to the
method we presented in (3.17), which is why we will also refer to our version as NPI-2.
However, having formulated the method in the transformed variables ϕ = (ϕ−1, ϕ+1) allows
us to have a detailed look at the frequencies of the highly oscillatory phases involved. This
will be crucial for the derivation and analysis of our simplified method in the following
section.

3.2 Nonresonant nested Picard iterative integrator (NRNPI)

For the NPI-2 (3.17), one can derive a second-order global error bound with a constant that
does not depend on ε, as mentioned in [10, Sec. 4]. To do so, one has to combine the local
error bound (3.19) with suitable stability estimates and a standard Lady Windermere’s
fan argument. Even though second-order convergence uniformly in ε is a very favorable
property, the efficiency of the NPI-2 is to some extent limited by the huge amount of
terms that have to be computed in each time step: the numerical flow (3.18) contains
evaluations of I1± and I2±, which in turn involve multiple sums. Each addend then requires
the computation of a product of several functions in physical space and the application
of operators in Fourier space. The total numerical work to compute one time step of this
method is thus very large.

Our goal now is to omit a significant number of terms in the numerical flow without
affecting the accuracy, or only to a small extent. For this purpose, we return to the



16

representation (3.13) of an exact solution ϕ = (ϕ−1, ϕ+1) of (2.13) at time tn + τ , which
provided the basis for the method from the previous section. Here, it is worthwhile to
consider the structure of the actual addends that appear in the sums of I1± and I2± more
closely. Let us take a look, for instance, at the last three lines of I2σ, cf. Eq. (3.16). If I2σ
is evaluated with arguments tn and ϕ(tn) as in (3.13), then each of the addends is of the
type

eiqtn/ε
2Bσ(δ, ζ)Π

ε
σ [z(tn)] (3.20)

for some q ∈ {−6,−4,−2, 0, 2, 4, 6}, δ, ζ ∈ Z and some function z of the form

z(t) = u(t)∗v(t)w(t) (3.21)

where u, v and w each are either ϕσ for some σ ∈ {−1,+1} or Ĝ(p)
σ (ϕ(·))[ϕ(·)] for some

σ ∈ {−1,+1}, p ∈ {−4,−2, 0, 2}. We suggest a method where all terms of the type (3.20)
with q ̸= 0 are omitted, and are thus included in the local error instead. This may come as a
surprise since those terms are only in O

(
τ2
)

due to the norm bound of Bσ(δ, ζ). Hence, in a
standard error analysis based on the classical Lady Windermere’s fan argument, neglecting
such terms would reduce the global error order from two to one. However, we expect that
actually such terms will not critically sum up in the error accumulation. The reasons for
this conjecture are the following: Firstly, the terms in (3.20) contain the prefactor eiqtn/ε2 .
This is a complex number oscillating on the unit circle throughout the time steps. For
q ̸= 0, two consecutive numbers eiqtn/ε

2 and eiqtn+1/ε2 = eiqτ/ε
2
eiqtn/ε

2 do not point in the
same direction in the complex plane as long as a nonresonant step size is chosen, meaning
that

eiqτ/ε
2 ̸≈ 1, i.e., τ ̸≈ k

2πε2

q
for all k ∈ Z.

Secondly, the boundedness of the first time derivative of a solution ϕ = (ϕ−1, ϕ+1) of (2.13)
implies that z only varies slowly (in a sense that is made precise later on) in the course
of several time steps. The same holds for Bσ(δ, ζ)Π

ε
σ [z(tn)] since the operator Bσ(δ, ζ)Π

ε
σ

does not depend on n. Those two facts are later used in a summation-by-parts argument
(cf. proof of Thm. 4.5) to show that neglecting terms of the form (3.20) with nonzero
exponent in the prefactor, i.e. q ̸= 0, has indeed only little impact on the accuracy. Terms
of a similar structure that we will also omit are additionally found in I1σ(tn, ϕ(tn)).

Let us now establish our new method in detail. In each of the last three lines of I2σ,
defined in (3.16), we only keep the terms for the value of p for which the exponent in the
prefactor is zero. In the second line of I2σ, for example, we only keep the term for the value
of p for which j − σ + pj1 = 0. Since 1/j1 = j1 for j1 ∈ {−1,+1}, this is the case for
p = j1(σ − j). Thus, for each multi-index J ∈ J , there is exactly one value of p for which
the exponent is zero, whereas the terms for the other three values of p are omitted in our
simplified method.

Analogously, in the third and fourth line of I2σ, we only keep the term for p = j2(σ− j)
or p = j3(σ − j), respectively. In the second line of I1σ, we keep the term for the value of
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p for which j − σ + pj = 0, i.e. p = σj − 1. Thus, as before, we always keep exactly one
of four terms here. Overall, we replace I1σ(t, u) and I2σ(t, u) in the numerical flow (3.18) of
the full method by J1

σ(t, u)[u] and J2
σ(t, u)[u] where for u = (u−1, u+1) ∈ H2 the operators

J1
σ(t, u) and J2

σ(t, u) are given by

J1
σ(t, u)[v] =

∑
j∈{−1,1}

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ [Wvj ]

+
∑

j∈{−1,1}

Bσ(j − σ, σ − j)Πε
σ

[
WĜ

(σj−1)
j (u)[v]

]
, (3.22)

J2
σ(t, u)[v] =

3∑
j=−3
j odd

∑
J∈J
#J=j

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ

[
u∗−j1uj2vj3

]

+
3∑

j=−3
j odd

∑
J∈J
#J=j

Bσ(j − σ, σ − j)Πε
σ

[(
Ĝ

(j1(σ−j))
−j1

(u)[u]
)∗
uj2vj3

]

+

3∑
j=−3
j odd

∑
J∈J
#J=j

Bσ(j − σ, σ − j)Πε
σ

[
u∗−j1Ĝ

(j2(σ−j))
j2

(u)[u]vj3

]

+
3∑

j=−3
j odd

∑
J∈J
#J=j

Bσ(j − σ, σ − j)Πε
σ

[
u∗−j1uj2Ĝ

(j3(σ−j))
j3

(u)[v]
]
, (3.23)

v = (v−1, v+1) ∈ L2. The reason why we distinguished between the arguments u and v is
that now, for every u ∈ H2, J1

σ(t, u) and J2
σ(t, u) are linear operators. This will be crucial

in the error analysis.
After all, the nonresonant nested Picard iterative integrator (NRNPI) is given by the

recursion

ϕn+1 = ΦNRNPI(tn, ϕ
n)[ϕn], n = 0, 1, 2, . . .

with the numerical flow

ΦNRNPI(t, u)[v] =

(
e−iτDεv−1 − iJ1

−1(t, u)[v]− iJ2
−1(t, u)[v]

e+iτDεv+1 − iJ1
+1(t, u)[v]− iJ2

+1(t, u)[v]

)
(3.24)

for u ∈ H2 and v ∈ L2. Again, we do not express the dependency of ΦNRNPI on τ and ε
explicitly. The linearity of J1

σ(t, u) and J2
σ(t, u) directly implies the linearity of ΦNRNPI(t, u)

for fixed u ∈ H2.

Remark 3.4. The terms J1
σ and J2

σ have to be computed in every time step. They include
products of the numerical approximations ϕnσ with the potential and with themselves in the
nonlinearity. Those products have to be computed in physical space. The result has to
be transformed to Fourier space, since afterwards the projectors and the operators Aσ or
Bσ have to be applied. Considering the computational effort, (inverse) Fourier transforms
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are the dominating operations in each time step. It is thus crucial to reduce their number
as much as possible. In the second line of J1

σ and the last three lines of J2
σ, for each

j ∈ {−3,−1, 1, 3}, the respective operator is always identical. Consequently, by a reordering
of the sums, only two Fourier transforms per index j are required (one for the case σ = −1
and σ = +1 respectively). The same holds for the first lines of J1

σ and J2
σ.

Remark 3.5. Again, the method can easily be extended to time-dependent potentials W =
W (t, x). To do so, one can take the corresponding extension of the full NPI-2 from Re-
mark 3.2 and omit terms according to the strategies from above. Consequently, the same
additional assumptions on the potential W as in Remark 3.2 are required.

Remark 3.6. The techniques from this section can be used to construct similar time inte-
grators for other equations, such as the Klein-Gordon-Dirac system.

4 Convergence of the NRNPI

In this section, we analyze the convergence of the NRNPI. First, we discuss the local error.
In contrast to the NPI-2, the NRNPI involves local error terms which are only in O

(
τ2
)
,

but have a special structure in return. This will be the topic of the first lemma in this
section. Then, we state two technical lemmas concerning stability of the numerical flow.
The proofs of those lemmas are postponed to Section 6. Instead, we will continue by
presenting and proving our main theorem, which is a convergence result for the NRNPI.
In particular, we show that although the local error of the NRNPI is increased, its special
structure ensures that the global error is not affected in many cases (in a sense to be made
precise below). In all proofs, C always denotes a constant that may change from line to
line, but is independent of τ and ε.

The local error

ℓn+1 := ϕ(tn+1)−ΦNRNPI(tn, ϕ(tn))[ϕ(tn)]

of the NRNPI in the (n + 1)-st step can be decomposed into two parts: The local errors
ℓn+1
NPI of the full NPI-2 and those originating from omitting terms of the full method (3.17),

which we collect in ℓn+1
diff ,

ℓn+1 = ϕ(tn+1)−ΦNPI(tn, ϕ(tn))︸ ︷︷ ︸
=ℓn+1

NPI

+ΦNPI(tn, ϕ(tn))−ΦNRNPI(tn, ϕ(tn))[ϕ(tn)].︸ ︷︷ ︸
=:ℓn+1

diff

(4.1)

From (3.19), we have
∣∣∣∣∣∣ℓn+1

NPI

∣∣∣∣∣∣
L2 ≤ Cτ3. Comparing (3.18) and (3.24), we further find

ℓn+1
diff = i

(
J1
−1(tn, ϕ(tn))[ϕ(tn)]− I1−1(tn, ϕ(tn)) + J2

−1(tn, ϕ(tn))[ϕ(tn)]− I2−1(tn, ϕ(tn))
J1
+1(tn, ϕ(tn))[ϕ(tn)]− I1+1(tn, ϕ(tn)) + J2

+1(tn, ϕ(tn))[ϕ(tn)]− I2+1(tn, ϕ(tn))

)
.

This representation will allow to derive the following lemma concerning the structure and
properties of ℓn+1

diff , whose proof can be found in Section 6.



19

Lemma 4.1. Let Assumptions 2.1 hold. Further, Let ϕ be the exact solution of (2.13) and
ℓn+1
diff as above. Set Q = {−6,−4,−2, 2, 4, 6}. Then, we can write

ℓn+1
diff =

∑
q∈Q

τ2eiqtn/ε
2
En

q (4.2)

for some En
q ∈ H2 that fulfill∣∣∣∣∣∣En

q

∣∣∣∣∣∣
H2 ≤ C and

∣∣∣∣∣∣En+1
q − En

q

∣∣∣∣∣∣
L2 ≤ Cτ

for n = 0, 1, ..., ⌊T/τ⌋ with some constant C independent of τ , n and ε.

The next lemma addresses the stability of the numerical flow ΦNRNPI.

Lemma 4.2. Let Assumption 2.1 (A) hold. Then, for R > 0, we have

(i) |||ΦNRNPI(t, u)[v]|||L2 ≤ (1 + Cτ) |||v|||L2 , u ∈ B2(R), v ∈ L2,

(ii) |||(ΦNRNPI(t, u)− Id) [v]|||L2 ≤ Cτ |||v|||H2 , u ∈ B2(R), v ∈ H2,

(iii) |||ΦNRNPI(t, u)[v]−ΦNRNPI(t, ũ)[v]|||L2 ≤ Cτ |||u− ũ|||L2 , u, ũ, v ∈ B2(R),

for all t ≥ 0. In all cases, the constant C does depend on R, but not on τ and ε.

In preparation for the following lemma, we further define the (linear) operators Φn,k
NRNPI

for n, k ∈ N0 by

Φn,k
NRNPI[u] = ΦNRNPI(tn−1, ϕ

n−1)

[
ΦNRNPI(tn−2, ϕ

n−2)
[
. . . ΦNRNPI(tk, ϕ

k)
[
u
]]]

, k < n

Φn,k
NRNPI[u] = u, k ≥ n

for u ∈ L2. If u = ϕk is the numerical approximation after k steps, then application of
Φn,k

NRNPI with n > k corresponds to performing another n−k steps, such that Φn,k
NRNPI(ϕ

k) =
ϕn is the numerical approximation after n steps. However, note that even if u ̸= ϕk is an
arbitrary function, the numerical approximations ϕk, . . . , ϕn are used in the numerical flow
operators ΦNRNPI. In order to be able to state a stability estimate for Φn,k

NRNPI and in the
further error analysis, we require the following

Assumption 4.3. There is a constant τ0 independent of ε such that for all τ ≤ τ0 and
ε ∈ (0, 1), the numerical approximations ϕn remain uniformly bounded in H2:

ϕn ∈ B2(Mnum) for all n = 0, 1, ..., ⌊T/τ⌋

for some constant Mnum independent of τ and ε.

In fact, one can prove with a bootstrapping argument that this assumption is indeed
fulfilled if the step size is sufficiently small, cf. [16, 20]. This step size restriction is not
critical, since it is independent of ε.
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Lemma 4.4. Under Assumptions 2.1 (A) and 4.3, we have for all k, n ∈ N with k, n ≤
⌊T/τ⌋ that ∣∣∣∣∣∣∣∣∣Φn,k

NRNPI[u]
∣∣∣∣∣∣∣∣∣

L2
≤ eCtn |||u|||L2 for all u ∈ L2

for some constant C independent of n, k, τ and ε.

We are now in a position to state and prove an error estimate for the NRNPI, which is
the main result of this paper.

Theorem 4.5. Let Assumptions 2.1 and 4.3 hold and let τ0 be the constant from the
latter. Further, for ε ∈ (0, 1) arbitrary, let ϕ be the exact solution of (2.13) and let
ϕn be the numerical approximations of the NRNPI for any step size τ ≤ τ0 with τ /∈
{k
2πε

2, k3πε
2, k ∈ N}. Then, we have

|||ϕ(tn)− ϕn|||L2 ≤ C⋆

(
1 +

1

K(τ, ε)

)
τ2, n = 0, 1, ..., ⌊T/τ⌋,

for some constant C⋆ independent of τ and ε and with

K(τ, ε) := min
q∈{2,4,6}

∣∣∣eiqτ/ε2 − 1
∣∣∣ . (4.3)

According to (3.2), the theorem directly yields an error bound for the approximations
ψn ≈ ψ(tn) defined in (3.1):

Corollary 4.6. Under the assumptions of and with the constant C⋆ from Theorem 4.5, we
have

∥ψn − ψ(tn)∥L2 ≤ C⋆

(
1 +

1

K(τ, ε)

)
τ2, n = 0, 1, ..., ⌊T/τ⌋.

Before we continue with the proof of Theorem 4.5, it is crucial to note that the right-
hand side of the estimate contains the τ -dependent number 1/K(τ, ε), which might be
very large if an unsuitable step size is chosen. We now discuss to what extent ensuring
K(τ, ε) ̸≈ 0 is possible. For a fixed value of ε, we distinguish two cases. If τ ≥ π

4 ε
2, then

one can choose the step sizes

τ =
(2k − 1)

4
πε2, k ∈ N. (4.4)

It follows from (4.3) that K(τ, ε) =
√
2 for this choice of τ . One can check that this is the

maximal possible value, which is why we call the step sizes (4.4) optimal. On the other
hand, one should avoid the resonant step sizes

τ =
k

2
πε2 or τ =

k

3
πε2, k ∈ N, (4.5)

for which K(τ, ε) = 0. This is the reason why these step sizes were excluded in Theorem
4.5. For a step size in between the optimal and the resonant ones, the size of 1/K(τ, ε)
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and thus of the error bound depends on how close it is to a resonant step size. This is
illustrated in Figure 1 (a) in Section 5, where the function τ 7→ τ2

K(τ,ε) is plotted for ε = 0.01
together with markers of the optimal and the resonant step sizes. In practice, however, we
recommend replacing a given step size by the closest optimal step size, which is at most
π
4 ε

2 away.
If τ < π

4 ε
2, on the other hand, it is no longer possible to ensure that K(τ, ε) ̸≈ 0 since

K(τ, ε) → 0 for τ → 0. Instead, we can only show the lower bound

K(τ, ε) = min
q∈{2,4,6}

∣∣∣eiqτ/ε2 − 1
∣∣∣ = ∣∣∣ei2τ/ε2 − 1

∣∣∣ = 2 sin(τ/ε2) >
4
√
2

π

τ

ε2
,

where we used that sin(x) > 2
√
2

π x for x ∈ (0, π4 ). This implies(
1 +

1

K(τ, ε)

)
τ2 < τ2 +

π

4
√
2
ε2τ <

(
1 +

1√
2

)
π

4
ε2τ,

which means that the error of the NRNPI decreases only linearly, but in return, the error
constant is proportional to ε2. Altogether, we obtain the following

Corollary 4.7. In the setting of Corollary 4.6, we have

∥ψn − ψ(tn)∥L2 ≤ C⋆

(
1 +

1√
2

)
τ2 for optimal τ ≥ π

4
ε2,

∥ψn − ψ(tn)∥L2 ≤ C⋆

(
1 +

1√
2

)
π

4
ε2τ for τ <

π

4
ε2.

In the first case, the error of the NRNPI is not larger than the one of the full NPI-2,
even though many terms have been omitted from the numerical flow. Only if extremely
small errors of less than O

(
ε4
)

are required, the second case, where the NRNPI is inferior,
becomes relevant.

Proof of Theorem 4.5. Let en = ϕ(tn)−ϕn be the global error at time tn. The linearity of
ΦNRNPI(t, u) for fixed u allows to decompose en as

en = ϕ(tn)−ΦNRNPI(tn−1, ϕ
n−1)[ϕn−1] = ℓn + dn +ΦNRNPI(tn−1, ϕ

n−1)[en−1]

with ℓn = ϕ(tn)−ΦNRNPI(tn−1, ϕ(tn−1))[ϕ(tn−1)] being the local error and

dn := ΦNRNPI(tn−1, ϕ(tn−1))[ϕ(tn−1)]−ΦNRNPI(tn−1, ϕ
n−1)[ϕ(tn−1)] (4.6)

accounting for perturbations in the linear flow operator ΦNRNPI. Dissolving the recursion
formula yields

en = ℓn + dn +ΦNRNPI(tn−1, ϕ
n−1)

[
ℓn−1 + dn−1 +ΦNRNPI(tn−2, ϕ

n−2)[en−2]
]

= . . . =

n∑
k=1

Φn,k
NRNPI

[
ℓk
]
+

n∑
k=1

Φn,k
NRNPI

[
dk
]
. (4.7)
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Here, we used the definition and linearity of Φn,k
NRNPI and that e0 = ϕ(t0)− ϕ0 = 0. Again

using the linearity of Φn,k
NRNPI and the decomposition of the local error ℓk from (4.1), the

first sum can be decomposed to
n∑

k=1

Φn,k
NRNPI

[
ℓk
]
=

n∑
k=1

Φn,k
NRNPI

[
ℓkNPI

]
+

n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]
. (4.8)

Now, the several lemmas established before allow to derive suitable bounds for the norm
of each of the sums appearing in (4.7) or (4.8). In the first sum of (4.8), we can “afford”
to loose one τ since ℓkNPI is in O

(
τ3
)
. Thus, we can use triangle inequality together with

Lemma 4.4 to obtain∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

Φn,k
NRNPI

[
ℓkNPI

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤
n∑

k=1

∣∣∣∣∣∣∣∣∣Φn,k
NRNPI

[
ℓkNPI

]∣∣∣∣∣∣∣∣∣
L2

≤
n∑

k=1

eCtn
∣∣∣∣∣∣∣∣∣ℓkNPI

∣∣∣∣∣∣∣∣∣
L2

≤
n∑

k=1

CeCtnτ3 ≤ CT eCT τ2. (4.9)

To control the second sum in (4.8), however, we rely on cancellation of errors from different
time steps, such that a more sophisticated analysis is required here. Recalling the structure
of ℓkdiff from Lemma 4.1 and using summation by parts, we have

n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]
= τ2

∑
q∈Q

n∑
k=1

eiqtk−1/ε
2
Φn,k

NRNPI

[
Ek−1

q

]
= τ2

∑
q∈Q

Φn,n
NRNPI

[
En−1

q

] n∑
k=1

eiqtk−1/ε
2

+ τ2
∑
q∈Q

n−1∑
k=1

(
Φn,k

NRNPI

[
Ek−1

q

]
−Φn,k+1

NRNPI

[
Ek

q

]) k∑
j=1

eiqtj−1/ε
2
.

Since Φn,n
NRNPI[·] = Id, we obtain∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤ τ2
∑
q∈Q

∣∣∣∣∣∣En−1
q

∣∣∣∣∣∣
L2

∣∣∣∣∣
n∑

k=1

eiqtk−1/ε
2

∣∣∣∣∣
+ τ2

∑
q∈Q

n−1∑
k=1

∣∣∣∣∣∣∣∣∣Φn,k
NRNPI

[
Ek−1

q

]
−Φn,k+1

NRNPI

[
Ek

q

]∣∣∣∣∣∣∣∣∣
L2

∣∣∣∣∣∣
k∑

j=1

eiqtj−1/ε
2

∣∣∣∣∣∣ .
In the first term, only the complex numbers oscillating on the unit circle are summed up.
For nonresonant step sizes, the modulus of this sum does not grow with n since by the
geometric sum formula, we have∣∣∣∣∣

n∑
k=1

eiqtk−1/ε
2

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

eiqtk/ε
2

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

(
eiqτ/ε

2
)k

∣∣∣∣∣ =
∣∣∣∣∣eiqtn/ε

2 − 1

eiqτ/ε2 − 1

∣∣∣∣∣ ≤ 2∣∣eiqτ/ε2 − 1
∣∣ ≤ 2

K(τ, ε)
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for all q ∈ Q. Together with the uniform bound for the norm of En−1
q from Lemma 4.1,

we infer that the first term is in O
(

τ2

K(τ,ε)

)
. Further, using the properties of ΦNRNPI and

Φn,k
NRNPI from Lemmas 4.2 and 4.4, respectively, and the properties for the error components

Eq from Lemma 4.1, we obtain for k ≤ n− 1 that∣∣∣∣∣∣∣∣∣Φn,k
NRNPI

[
Ek−1

q

]
−Φn,k+1

NRNPI

[
Ek

q

]∣∣∣∣∣∣∣∣∣
L2

≤
∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ek−1

q

]
−Φn,k

NRNPI

[
Ek

q

]∣∣∣∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ek

q

]
−Φn,k+1

NRNPI

[
Ek

q

]∣∣∣∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣∣∣∣Φn,k

NRNPI

[
Ek−1

q − Ek
q

]∣∣∣∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣∣∣∣Φn,k+1

NRNPI

[
ΦNRNPI(tk, ϕ

k)
[
Ek

q

]
− Ek

q

]∣∣∣∣∣∣∣∣∣
L2

≤ eCtn
∣∣∣∣∣∣∣∣∣Ek−1

q − Ek
q

∣∣∣∣∣∣∣∣∣
L2

+ eCtn
∣∣∣∣∣∣∣∣∣(ΦNRNPI(tk, ϕ

k)− Id
) [
Ek

q

]∣∣∣∣∣∣∣∣∣
L2

≤ eCtnCτ + eCtnCτ
∣∣∣∣∣∣∣∣∣[Ek

q

]∣∣∣∣∣∣∣∣∣
H2

≤ CτeCT .

Overall, we have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

Φn,k
NRNPI

[
ℓkdiff

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤ τ2
∑
q∈Q

C
2

K(τ, ε)
+ τ2

∑
q∈Q

n−1∑
k=1

CτeCT 2

K(τ, ε)
≤ τ2

CT eCT

K(τ, ε)
.

(4.10)

Now, it remains to control the second sum in (4.7). Recall the definition of dk from (4.6).
Since ϕ(tk−1) ∈ B2(Mex) and ϕk−1 ∈ B2(Mnum) by assumptions 2.1 and 4.3, respectively,
we can use Lemma 4.2 (iii) with R = max{Mex,Mnum} to obtain

|||dk|||L2 ≤ Cτ
∣∣∣∣∣∣∣∣∣ϕ(tk−1)− ϕk−1

∣∣∣∣∣∣∣∣∣
L2

= Cτ
∣∣∣∣∣∣∣∣∣ek−1

∣∣∣∣∣∣∣∣∣
L2
.

Triangle inequality together with Lemma 4.4 then yields∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

Φn,k
NRNPI[d

k]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

≤ eCtn

n∑
k=1

∣∣∣∣∣∣∣∣∣dk∣∣∣∣∣∣∣∣∣
L2

≤ CeCT τ

n∑
k=1

∣∣∣∣∣∣∣∣∣ek−1
∣∣∣∣∣∣∣∣∣

L2
. (4.11)

Finally, combining (4.7) - (4.11), we have

|||en|||L2 ≤ Cτ2
(
1 +

1

K(τ, ε)

)
+ Cτ

n∑
k=1

∣∣∣∣∣∣∣∣∣ek−1
∣∣∣∣∣∣∣∣∣

L2
.

The discrete Gronwall Lemma inequality implies

|||en|||L2 ≤ Cτ2
(
1 +

1

K(τ, ε)

)
enCτ ≤ Cτ2

(
1 +

1

K(τ, ε)

)
eCT .
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Remark 4.8. Since the local errors of the NRNPI contain those of the NPI-2 (ℓkNPI)
and additionally the terms that have been omitted from it (ℓkdiff), the error analysis of the
NRNPI is more involved than of the full NPI-2. Nevertheless, we were able to present it
in detail in the proof above. This is worth mentioning since in the work [10], where the
authors presented the original version of the NPI-2, they refrained from an error analysis
due to the plethora of terms in the numerical flow. It was the structured formulation of
the NPI-2 and the NRNPI in (3.15)-(3.18) and (3.22)-(3.24), respectively, that made the
error analysis in this section manageable. In fact, Lemmas 4.2, 4.4 and 6.1 could easily
be extended to the NPI-2. A uniform second-order global error bound could then be proven
with standard techniques and without requiring summation by parts.

5 Numerical illustrations

In this section, we illustrate the results of our error analysis for the NRNPI by numerical
experiments. Furthermore, we compare the efficiency of the NRNPI and the NPI-2.

5.1 Problem setting and details about the numerical computations

For simplicity, we consider the NLDE in one space dimension, where it can be reduced to

∂tψ(t, x) = − i

ε2
T̃εψ(t, x)− iW̃ (t, x)ψ(t, x)− iF̃ (ψ)ψ(t, x), t > 0, x ∈ R

with a two-component solution ψ(t, x) ∈ C2 and

T̃ε = −iεσ1∂x + σ3, W̃ (t, x) = V (t, x)I2 −A1(t, x)σ1, F̃ (u) = |u|2 I2.

see e.g. [1]. To keep notation simple, we omit the tilde in the following. For this reduced
system, the construction of the NRNPI as well as the error analysis can be carried out in
exactly the same manner.

For the numerical computations, we have to replace the unbounded domain by a suffi-
ciently large, but bounded interval Ω = [a, b] and impose periodic boundary conditions as,
e.g., in [1, 2, 10]. For the space discretization, we define grid points xj = (a + b)/2 + jh,
j = −M, ...,M − 1, with mesh size h = (b− a)/2M for M = 128 and compute all spatial
derivatives by Fourier pseudospectral techniques.

The initial data, the potential functions and the interval Ω are chosen as in [1, 10], i.e.

ψ0
1(x) = e−x2/2, ψ0

2(x) = e−(x−1)2/2, V (x) =
1− x

1 + x2
, A1(x) =

(x+ 1)2

1 + x2

for x ∈ Ω = [−16, 16]. We consider time intervals [0, T ] with two slightly different values
of T which are specified below. All numerical computations on [0, T ] are carried out with
step sizes τ = T/N , where N ∈ N is the number of time steps. This means, in particular,
that not all real numbers are possible step sizes, which will be important later on. We
apply both the NPI-2 and the NRNPI to compute approximations ψ1, . . . , ψN via (3.1).
For all error plots, we then compare the approximations ψN at the final time tN = T with
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Figure 1: The behaviour of the function τ 7→ τ2

K(τ,ε) (left) compared to the error at time
T = 0.3360π of the NRNPI (right) for ε = 0.01. In both plots, the axis limits for the
step size τ are the same. The green dots depict the function values for the optimal step
sizes (4.4). Further, the vertical gray lines mark the resonant step sizes (4.5), where we
distinguish between the multiples of πε2 (dash-dotted) and the additional multiples of
πε2

2 (dashed) or πε2

3 (dotted). The black lines are first (solid) and second (dashed) order
reference lines.

a reference solution ψ(T ) of the NLDE. To compute the latter, we use the same spatial
grid and applied Matlab’s ode45 routine with very small absolute and relative tolerances.
All errors are measured in the L2-norm, which is approximated by ∥u∥2L2

≈
∑M−1

k=−M |ûk|2

for a periodic function u ∈
(
L2(Ω)

)2 with Fourier coefficients ûk ∈ C2, k ∈ Z.

5.2 Accuracy

First, we want to observe how the accuracy of the NRNPI depends on the step size τ .
While doing so, we pay special attention to the performance of the NRNPI for optimal
step sizes (4.4) and for resonant step sizes (4.5). This is why we choose T in such a way
that for ε ∈ {0.005, 0.01, 0.02}, many of the optimal and resonant step sizes are hit by
τ = T/N for some N ∈ N. A suitable choice is T = 0.336π ≈ 1. Then, for ε = 0.02, the
resonant step sizes τ = k

2πε
2 with k ∈ N have the form τ = T/N for some N ∈ N if

N =
2T

kπ
ε−2 =

T

2kπ
104 =

3360

2k
(5.1)

is an integer, which is true if k ∈ {1, . . . , 8, 10, 12, 14, 15, 16 . . .}. The same holds for
ε = 0.01 or ε = 0.005, because dividing ε by 2 in (5.1) simply corresponds to multiplying
N by 4. Similar considerations can be made for resonant step sizes of the form τ = k

3πε
2

and for the optimal step sizes (4.4).
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Figure 2: Left: L2-error of the NRNPI (solid) and the NPI-2 (dashed) at time T = 0.3360π
in dependency of the step size τ for three different values of ε. Right: L2-error of the
NRNPI at time T = 1 in dependency of ε for five different step sizes τ , namely τ0 = 0.02
and fractions thereof. The filled markers correspond to ε-values for which the respective
step size is optimal.

Figure 1 (b) shows the L2-error of the NRNPI for ε = 0.01 at the final time T = 0.336π
in dependency of the time step size τ . By comparing the red line with the black dashed
reference line, one can see that for τ ≥ π

4 ε
2, the error of the NRNPI is indeed proportional

to τ2 if optimal step sizes (represented by the green markers) are chosen. The error can,
however, be much larger for step sizes close to the resonant step sizes (depicted by the gray
vertical lines). For τ < π

4 ε
2 (i.e. left of the leftmost green marker), only linear convergence

is observed. This error behavior agrees perfectly with the Corollaries 4.6 and 4.7. What
comes as a surprise is that not all resonant step sizes seem to be harmful, because in
contrast to the function τ 7→ τ2

K(τ,ε) depicted in (a), the error plot in (b) does only have a
spike at some of the resonant step sizes. This interesting effect will be discussed below.

The way how this error behavior changes for other values of ε is illustrated in Fig-
ure 2 (a). The red line is the same as in Figure 1 (b), but the corresponding results for
ε = 0.02 (blue) and ε = 0.005 (yellow) are added. It can be seen that the error constant
of the linear convergence for τ < π

4 ε
2 decreases significantly with ε, which again corrob-

orates our error analysis; cf. Corollaries 4.6 and 4.7. The dashed lines in blue, red, and
yellow show the error of the full NPI-2. As expected, all of them almost coincide, because
the NPI-2 is uniformly accurate. Comparing the solid colored lines with the dashed ones
shows that for nonresonant step sizes the NRNPI has almost exactly the same accuracy
as the NPI-2, although a huge number of terms of the latter have been omitted in the
former. Only for very small step sizes, the accuracy of the NPI-2 is better, because then
the O

(
τε2

)
-errors of the NRNPI are larger than the O

(
τ2
)
-errors of the NPI-2. More

precisely, this is the case if τ < Cε2 for some constant C. In this experiment, the value
C ≈ 3π

4 can be observed. However, we emphasize that at the threshold τ = Cε2 the error
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has already been reduced to O
(
ε4
)
, which should be sufficient for most applications.

Figure 2 (b) illustrates how the error of the NRNPI scales for several fixed step sizes,
but varying values of ε. Here, the special choice of T made before is no longer necessary,
such that we use T = 1 instead. In the regime ε ≤

(
4τ
π

)1/2, i.e. for τ ≥ π
4 ε

2, only values
of ε have been chosen for which the respective step size is one of the optimal step sizes
τ = 2k−1

4 πε2 from Eq. (4.4), i.e. ε =
(

4τ
(2k−1)π

)1/2 for some k ∈ N. Those values of ε are
depicted by the filled markers. The numbers k = 1, 2, 3 (furthermost right filled markers)
and k = 6, 11, 21, 41, ... (other filled markers) were chosen for a suitable distribution on
the logarithmic axis. Apart from the one for k = 1, all markers for the same step size
are nearly at the same height, which again confirms that the error is independent of ε for
optimal step sizes τ ≥ π

4 ε
2, in accordance with Corollary 4.7. In contrast, in the regime

τ < π
4 ε

2 (empty markers), a comparison with the reference line yields that the error scales
quadratically with ε, as predicted by Corollary 4.7.

All in all, the numerical experiments agree nicely with the main results of our error
analysis. However, these experiments also suggest that in practice, the performance of the
NRNPI is even better than predicted by theory. The following three aspects are interesting
in this context.

Resonant but harmless step sizes. In view of Figure 1, it seems that not all resonant
step sizes (4.5) do indeed cause a large error. In fact, apart from the furthermost left, all
spikes appear at multiples of πε2, and there are no spikes at those multiples of πε2

2 or πε2

3
that are not a multiple of πε2 as well. Those step sizes had to be excluded such that the
terms of the form (3.20) for q = ±4 or q = ±6, respectively, do indeed have prefactors
pointing in different directions on the complex plane. As an example, we analyze the term
in the second line of (3.16). Here, one combination of indices leading to the value q = 6
in the exponent is J = (1, 1, 1), σ = −1 and p = 2. The corresponding term that has been
omitted for the flow of the NRNPI, evaluated for a solution u = ϕ(tn) =

(
ϕ−1(tn), ϕ+1(tn)

)
of the transformed Dirac equation, is

e6it/ε
2B−1(4, 2)Π

ε
−1

[(
Ĝ

(2)
−1(ϕ(tn))[ϕ(tn)]

)∗
ϕ+1(tn)ϕ+1(tn)

]
(5.2)

with

Ĝ
(2)
−1(ϕ(tn))[ϕ(tn)] = −iΠε

−1 [(ϕ+1(tn))
∗ϕ−1(tn)ϕ−1(tn)] .

Noting that ϕ−1 and ϕ+1 are in the range of the opposing projectors Πε
−1 and Πε

+1, respec-
tively, and considering an expansion of Πε

∓1 w.r.t. ε, it was shown in [8, Eq. (3.25) and
(3.26)], however, that

∥(ϕ+1(s))
∗ϕ−1(s)∥L2 ≤ Cε,

∥∥Πε
−1 [uϕ+1(s)]

∥∥
L2 ≤ Cε,

∥∥Πε
+1 [uϕ−1(s)]

∥∥
L2 ≤ Cε

for any s ∈ [0, T ], any sufficiently regular, scalar-valued function u, and a constant C
independent of ε. This yields∥∥∥Ĝ(2)

−1(ϕ(tn))[ϕ(tn)]
∥∥∥
L2

≤ Cε,
∥∥∥Πε

−1

[(
Ĝ

(2)
−1(ϕ(tn))[ϕ(tn)]

)∗
ϕ+1(tn)ϕ+1(tn)

]∥∥∥
L2

≤ Cε2.
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Thus, the terms in (5.2) are actually not only in O
(
τ2
)
, but even in O

(
τ2ε2

)
and hence

also in O
(
τ3
)

for τ ≥ π
4 ε

2. Consequently, in our error analysis, we do not rely on non-
accumulation of the error terms obtained by omitting terms of the form (5.2). All other
terms with q = 6 or q = −6 in the exponent can be analyzed in a similar way, which
explains the absence of spikes at

τ =
k

3
πε2, k ∈ N \ {3, 6, 9, . . .}

in Figures 1 (b) and 2 (a), and which implies that the corresponding step size restriction
is actually not necessary. A corresponding analysis for q = ±4, however, does not cover
all terms, such that we do not have a full explanation for the other missing spikes.

Bounded error for resonant step sizes. By definition of K(τ, ε), the function τ 7→
τ2/K(τ, ε) has a singularity at the resonant step sizes (4.5), which is illustrated in Fig-
ure 1 (a). Hence, Corollary 4.6 suggests that the error of the NRNPI would be unbounded
if a resonant step size was used. In contrast, Figure 1 (b) reveals that even at those res-
onant step sizes where spikes indeed appear, the error grows only to a finite level. The
reason is that two additional error bounds for the NRNPI could be derived that also hold
for the resonant step sizes. First, Lemma 4.1 implies that the local error of the NRNPI
is at least in O

(
τ2
)

for all step sizes τ . Without even considering the special structure of
the local error, a Lady Windermere’s fan argument yields a uniform (w.r.t. ε) first-order
global error bound. Indeed, the furthermost left large spikes for the different values of ε in
Figure 2 (a) could be capped by a first-order reference line. Secondly, an alternative error
bound can be derived by once more analyzing the norm of the operators Bσ(δ, ζ) contained
in the terms (3.20) that have been omitted from the numerical flow of the full NPI-2. By
the definition of Bσ(δ, ζ), cf. (3.14), and of the φ1-function, we have

Bσ(δ, ζ) =
ε2

iζ

∫ τ

0
eσi(τ−s)Dεeiδs/ε

2
(
eiζs/ε

2 − 1
)
ds

for ζ ̸= 0, such that an O
(
τε2

)
norm bound follows. In the case ζ = 0, the same bound

easily follows by integration by parts. Together with the local error terms from the full
NPI-2, the local error of the NRNPI can be shown to be in O

(
τε2 + τ3

)
, which in turn

can be used to derive the bound C(ε2 + τ2) for the global error. In particular, for τ ≤ ε
(including resonant τ), the error is limited by Cε2. This explains the constant height of
all spikes for a given value of ε.

Accuracy for non-optimal but nonresonant step sizes. Whilst the optimal step
sizes (4.4) provide a suitable choice for τ , many other nonresonant step sizes yield equally
good results.

5.3 Efficiency

In the convergence analysis and the illustrations before, we have seen that for optimal
step sizes in the regime τ ≥ π

4 ε
2, the NRNPI yields equally accurate results as the NPI-2
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Figure 3: L2-error of the NRNPI (solid, circles) and the NPI-2 (dashed, diamonds) at time
T = 1 in dependency of the computing time for two different values of ε.

applied with the same step size. However, since the numerical flow of the NRNPI was
obtained by omitting many terms of the flow of the NPI-2, each time step of the former
is significantly cheaper than of the latter. In other words, if a certain computing time is
available, more steps of the NRNPI can be conducted, yielding an improved accuracy. To
show this effect, we apply both methods for different step sizes and then evaluate the error
in dependency of the computing times required. In the regime τ ≥ π

4 ε
2, only nonresonant

step sizes are used. The results are depicted in Figure 3. A comparison of the constants
of the two second-order reference lines therein shows that for large step sizes, the error of
the NRNPI is approximately 3/16 = 18.75% of the one of the NPI-2 for a fixed computing
time. Conversely, to achieve a given accuracy which is not extremely high (i.e. errors not
smaller than ε4, up to a constant), the necessary computing time of the NRNPI is around√

3/16 ≈ 43.3% of that of the NPI-2. In fact, it can be checked that the numerical flow of
the NRNPI contains only around 32% of the terms of the flow of the NPI-2. The reason
why this does not quite correspond to the improvement in terms of computing time is
some computational overhead which is equally expensive for both methods, such as, e.g.,
the evaluation of all Ĝ(p)

σ -operators or the evolution of the kinetic part.
All in all, the NRNPI offers a significant efficiency gain as long as the desired accuracy is

not extremely high. Moreover, the substantial reduction of the number of terms facilitates
the implementation and in particular the debugging.

6 Proof of auxiliary lemmas

In this chapter, we present the proofs of the Lemmas 4.1, 4.2 and 4.4. In preparation
thereto, we prove an additional lemma concerning properties of the operators Ĝ(p)

σ in
Section 6.1. In several parts of the proofs, we will have to use that differences of two
identically-structured products of two or three functions can be related to differences of
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the individual functions by inserting intermediate terms. In particular, we have

u∗v − ũ∗ṽ = u∗ (v − ṽ) + (u− ũ)∗ ṽ, (6.1)
u∗vw − ũ∗ṽw̃ = u∗v (w − w̃) + u∗ (v − ṽ) w̃ + (u− ũ)∗ ṽw̃ (6.2)

for u, v, w, ũ, ṽ, w̃ ∈
(
L2(R3)

)4.
6.1 Properties of the operators Ĝ

(p)
σ

Lemma 6.1. Let Assumption 2.1 hold and let R > 0. For each u ∈ B2(R), p ∈
{−4,−2, 0, 2} and σ ∈ {−1, 1}, the operators Ĝ(p)

σ (u) are linear operators with the proper-
ties

(i)
∥∥∥Ĝ(p)

σ (u)[v]
∥∥∥
L2

≤ C

τ
|||v|||L2 for all v ∈ L2,

(ii)
∥∥∥Ĝ(p)

σ (u)[v]
∥∥∥
H2

≤ C

τ
|||v|||H2 for all v ∈ H2,

(iii)
∥∥∥Ĝ(p)

σ (u)[v]
∥∥∥
H2

≤ C |||v|||H4 for all v ∈ H4.

Moreover, the inequalities

(iv)
∥∥∥Ĝ(p)

σ (u)[u]− Ĝ(p)
σ (ũ)[ũ]

∥∥∥
L2

≤ C

τ
|||u− ũ|||L2 ,

(v)
∥∥∥Ĝ(p)

σ (u)[u]− Ĝ(p)
σ (ũ)[ũ]

∥∥∥
L2

≤ C |||u− ũ|||H2 ,

(vi)
∥∥∥Ĝ(p)

σ (u)[v]− Ĝ(p)
σ (ũ)[v]

∥∥∥
L2

≤ C |||u− ũ|||L2

hold for all u, ũ, v ∈ B2(R). In all cases, the constant C does depend on R, but not on τ
and ε.

Proof. (i) Let u = (u−1, u+1) ∈ B2(R) and v = (v−1, v+1) ∈ L2. Then, for three indices
j1, j2, j3 ∈ {−1,+1}, the inequalities (2.4) and (2.6) yield∥∥u∗j1uj2vj3∥∥L2 ≤ C2

S ∥uj1∥H2 ∥uj2∥H2 ∥vj3∥L2 ≤ C2
SR

2 ∥vj3∥L2 .

Together with the bound (2.7) for products with the potential W , the fact that∥∥Πε
∓1

∥∥ = 1, and the estimate (3.7) for the norm of D̂ε(τ), the assertion follows from
the definition of Ĝ(p)

σ .

(ii) As (i), but using that H2 is an algebra instead of inequalities (2.4) and (2.6).

(iii) As (ii), but using the estimate (3.8) instead of (3.7) for D̂ε(τ).
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(iv) Let u, ũ ∈ B2(R). First, note that with (3.7), we have∥∥∥σiD̂ε(τ)uσ − σiD̂ε(τ)ũσ

∥∥∥
L2

≤
∥∥∥D̂ε(τ) [uσ − ũσ]

∥∥∥
L2

≤ 1

τ
|||u− ũ|||L2 .

For three indices j1, j2, j3 ∈ {−1,+1}, a decomposition of the form 6.2 together with
the inequalities (2.4) and (2.6) imply that∥∥u∗j1uj2uj3 − ũ∗j1 ũj2 ũj3

∥∥
L2 ≤ 3C2

SR
2 |||u− ũ|||L2 .

On top of that, (2.7) yields

∥Wuj −Wũj∥L2 = ∥W (uj − ũj)∥L2 ≤ CW |||u− ũ|||L2

for j ∈ {−1,+1}. Now the assertion follows from
∥∥Πε

∓1

∥∥ = 1 and the definition of
Ĝ

(p)
σ .

(v) Instead of (3.7), we use the estimate (3.8) to obtain∥∥∥σiD̂ε(τ)uσ − σiD̂ε(τ)ũσ

∥∥∥
L2

≤
∥∥∥D̂ε(τ) [uσ − ũσ]

∥∥∥
L2

≤ 1

2
|||u− ũ|||H2 .

Considering that the L2-norm is bounded by H2-norm, the rest then follows exactly
as in (iii).

(vi) Let u, ũ, v ∈ B2(R). Since here Ĝ(p)
σ (u) and Ĝ(p)

σ (ũ) are applied to the same function
v, the terms including the operator D̂ε or the potential W vanish. For the remaining
terms, one can proceed similarly as in (iii).

6.2 Lemma 4.1: structure of the local error of the NRNPI

Proof of Lemma 4.1. Let σ ∈ {−1,+1}. The terms that have been omitted in J2
σ(tn, ϕ(tn))[ϕ(tn)]

compared to I2σ(tn, ϕ(tn)) are exactly those of the form (3.20) with q ̸= 0, i.e. q ∈ Q,
and with z given by (3.21). Those terms omitted in J1

σ(tn, ϕ(tn))[ϕ(tn)] compared to
I1σ(tn, ϕ(tn)) are also of the form (3.20) with q ∈ Q, but with

z(t) =WĜ
(p)
j (ϕ(t))[ϕ(t)] (6.3)

for some j ∈ {−1,+1}, p ∈ {−4,−2, 0, 2}. For each q ∈ Q, collecting all corresponding
terms of the form Bσ(δ, ζ)Π

ε
σ [z(tn)], combining those for σ = −1 and for σ = +1 in a tuple

and extracting the factor τ2 defines the functions En
q .

Considering that the time derivative of ϕ±1 is uniformly bounded w.r.t. ε inH2, Taylor’s
theorem yields ∥ϕj(tn+1)− ϕj(tn)∥H2 ≤ Cτ and thus also

∥ϕj(tn+1)− ϕj(tn)∥L2 ≤ Cτ (6.4)



32

with the constant C = CD from (2.15). Further, since for all t ∈ [0, T ], ∥ϕj(t)∥H4 ≤ Mex

by (2.10), we have ϕ(t) = (ϕ−1(t), ϕ+1(t)) ∈ B4(2Mex) ⊂ B2(2Mex). Now it follows from
Lemma 6.1 (v) that for j ∈ {−1,+1},∥∥∥Ĝ(p)

j (ϕ(tn+1))[ϕ(tn+1)]− Ĝ
(p)
j (ϕ(tn))[ϕ(tn)]

∥∥∥
L2

≤ C |||ϕ(tn+1)− ϕ(tn)|||H2 ≤ Cτ (6.5)

for some constant C which depends on Mex, but not on τ and ε.
Now, we first analyze the case where z is of the type (3.21). Regardless of whether

u = ϕσ or u = Ĝ
(p)
σ (ϕ(·))[ϕ(·)], from (2.10) and Lemma 6.1 (iii), we know that u(tn) ∈(

H2(R3)
)4 with uniform bound in ε and n. The same holds for v(tn) and w(tn) and thus

for z(tn). On top of that, the estimates (6.4) and (6.5) yield

∥u(tn+1)− u(tn)∥L2 ≤ Cτ

and the same estimate for the functions v and w. Consequently, for the difference

z(tn+1)− z(tn) = (u(tn+1))
∗v(tn+1)w(tn+1)− (u(tn))

∗v(tn)w(tn),

a decomposition of the form (6.2) together with the Sobolev inequalities (2.4) and (2.6)
yields

∥z(tn+1)− z(tn)∥L2 ≤ Cτ.

When z is of the form (6.3), the same estimate follows from (6.5) together with the bounds
for products with the potential (2.7). Since

∥∥Πε
∓1

∥∥ = 1 and since Bσ are linear operators
with norm proportional to τ2, we obtain

∥Bσ(δ, ζ)Π
ε
σ [z(tn)]∥H2 ≤ Cτ2, ∥Bσ(δ, ζ)Π

ε
σ [z(tn+1)]− Bσ(δ, ζ)Π

ε
σ [z(tn)]∥L2 ≤ Cτ3,

such that the assertion follows.

6.3 Lemma 4.2: stability of the numerical flow of the NRNPI

Proof of Lemma 4.2. (i) Let u ∈ B2(R) and v = (v−1, v+1) ∈ L2. Since eiστDε is an
isometry in L2, we obtain

|||ΦNRNPI(t, u)[v]|||L2 ≤
∑

σ∈{−1,+1}

(∥∥eσiτDεvσ
∥∥
L2 +

∥∥J1
σ(t, u)[v]

∥∥
L2 +

∥∥J2
σ(t, u)[v]

∥∥
L2

)
= |||v|||L2 +

∑
σ∈{−1,+1}

(∥∥J1
σ(t, u)[v]

∥∥
L2 +

∥∥J2
σ(t, u)[v]

∥∥
L2

)
.

Each addend of J1
σ(t, u)[v] and J2

σ(t, u)[v] contains an operator Aσ or Bσ. We know that
∥Aσ(δ)∥ ≤ Cτ and ∥Bσ(δ, ζ)∥ ≤ Cτ2 for all σ ∈ {−1,+1}, ζ, δ ∈ Z. According to Lemma
6.1 (i), we have

∥∥∥Ĝ(p)
σ (u)[v]

∥∥∥
L2

≤ C |||v|||L2 for some constant C that depends on R, but

not on τ . Using that u ∈ B2(R) together with the estimates (2.4), (2.6) and (2.7) yields∥∥J1
σ(t, u)[v]

∥∥
L2 ≤ Cτ |||v|||L2 ,

∥∥J2
σ(t, u)[v]

∥∥
L2 ≤ Cτ |||v|||L2
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for some constant C that depends on R, but not on τ . The assertion then follows.

(ii) Let u ∈ B2(R) and v = (v−1, v+1) ∈ H2. Then, we have

|||(ΦNRNPI(t, u)− Id) [v]|||L2 ≤
∑

σ∈{−1,+1}

(∥∥eσiτDεvσ − vσ
∥∥
L2 +

∥∥J1
σ(t, u)[v]

∥∥
L2 +

∥∥J2
σ(t, u)[v]

∥∥
L2

)
.

Since vσ ∈
(
H2(R3)

)4 for σ ∈ {−1,+1}, Lemma 3.1 yields∥∥eσiτDεvσ − vσ
∥∥
L2 ≤ Cτ ∥vσ∥H2 .

Moreover, we know from the proof of part (i) that∥∥J1
σ(t, u)[v]

∥∥
L2 ≤ Cτ |||v|||H2 ,

∥∥J2
σ(t, u)[v]

∥∥
L2 ≤ Cτ |||v|||H2

because |||v|||L2 ≤ |||v|||H2 . Altogether, the assertion follows.

(iii) Let u = (u−1, u+1), ũ = (ũ+1, ũ−1), v = (v−1, v+1) ∈ B2(R). Since in both
ΦNRNPI(t, u)[v] and ΦNRNPI(t, ũ)[v], the evolution operators e±iτDε act on the components
v−1 and v+1 of the same function v, we have

|||ΦNRNPI(t, u)[v]−ΦNRNPI(t, ũ)[v]|||L2 ≤
∑

σ∈{−1,+1}

(∥∥J1
σ(t, u)[v]− J1

σ(t, ũ)[v]
∥∥
L2

+
∥∥J2

σ(t, u)[v]− J2
σ(t, ũ)[v]

∥∥
L2

)
.

We proceed by discussing the second term first. Both J2
σ(t, u)[v] and J2

σ(t, ũ)[v] are given
by (3.23), only with u replaced by ũ in the latter case (whereas the function v in the
second argument is the same). Combing the corresponding double sums, the difference of
J2
σ(t, u)[v] and J2

σ(t, ũ)[v] consists of four double sums which we analyze individually. The
first one is given by

3∑
j=−3
j odd

∑
J∈J
#J=j

ei(j−σ)t/ε2Aσ(j − σ)Πε
σ

(
u∗−j1uj2 − ũ∗−j1 ũj2

)
vj3 . (6.6)

With (2.4) and the fact that ∥vj3∥H2 ≤ |||v|||H2 ≤ R, we obtain∥∥(u∗−j1uj2 − ũ∗−j1 ũj2
)
vj3

∥∥
L2 ≤ CSR

∥∥u∗−j1uj2 − ũ∗−j1 ũj2
∥∥
L2 .

A decomposition of the form (6.1) together with (2.6) and ∥uj∥H2 ≤ |||u|||H2 ≤ R for
j ∈ {−1,+1} leads to ∥∥u∗−j1uj2 − ũ∗−j1 ũj2

∥∥
L2 ≤ 2CSR |||u− ũ|||L2 .

Combining both estimates and considering that the operators Aσ and Πε
∓1 have norm

bounded by Cτ and 1, respectively, yields a bound of the form Cτ |||u− ũ|||L2 for the
L2-norm of the first double sum (6.6).
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The second double sum in the difference J2
σ(t, u)[v]− J2

σ(t, ũ)[v] is

3∑
j=−3
j odd

∑
J∈J
#J=j

Bσ(j − σ, σ − j)Πε
σ

[((
Ĝ

(j1(σ−j))
−j1

(u)[u]
)∗
uj2 −

(
Ĝ

(j1(σ−j))
−j1

(ũ)[ũ]
)∗
ũj2

)
vj3

]
.

First using a decomposition of the form (6.1) together with estimate (2.6) and then applying
Lemma 6.1 (ii) and (iv), we find∥∥∥(Ĝ(j1(σ−j))

−j1
(u)[u]

)∗
uj2 −

(
Ĝ

(j1(σ−j))
−j1

(ũ)[ũ]
)∗
ũj2

∥∥∥
L2

≤ CS

(∥∥∥Ĝ(j1(σ−j))
−j1

(u)[u]− Ĝ
(j1(σ−j))
−j1

(ũ)[ũ]
∥∥∥
L2

∥uj3∥H2 +
∥∥∥Ĝ(j1(σ−j))

−j1
(ũ)[ũ]

∥∥∥
H2

∥uj2 − ũj2∥L2

)
≤ C

τ
|||u− ũ|||L2

for some constant C dependent on R. Having established this bound, estimating the L2-
norm of the second double sum works in the same way as for the first one. The τ in the
denominator is not a problem, since it is compensated by the extra τ we get from the
bound of the norm of Bσ. Analogously, one can proceed for the third double sum in the
difference of J2

σ(t, u)[v] and J2
σ(t, ũ)[v].

In the fourth double sum

3∑
j=−3
j odd

∑
J∈J
#J=j

Bσ(j − σ, σ − j)Πε
σ

[
u∗−j1uj2Ĝ

(j3(σ−j))
j3

(u)[v]− ũ∗−j1 ũj2Ĝ
(j3(σ−j))
j3

(ũ)[v]
]
,

the functions u or ũ appear in all three factors of the products. Thus, a decomposition
of the form (6.2) instead of (6.1) is required here. Apart from that, the same arguments
as for the previous sums lead to a bound of the form Cτ |||u− ũ|||L2 for some constant C
independent of τ and ε.

It remains to analyze the difference of J1
σ(t, u)[v] and J1

σ(t, ũ)[v]. Each of them consist of
two sums, cf. Eq. (3.22). Since both J1

σ(t, u) and J1
σ(t, ũ) are applied to the same function

v, the first sums vanish in the difference. The difference of the remaining sums can be
treated similarly as those above.

6.4 Lemma 4.4: Stability of Φn,k
NRNPI

Proof of Lemma 4.4. Let u ∈ L2. For k ≥ n the assertion is trivial because Φn,k
NRNPI = Id.

For k < n, Φn,k
NRNPI is given by

Φn,k
NRNPI(u) = ΦNRNPI(tn−1, ϕ

n−1)

[
ΦNRNPI(tn−2, ϕ

n−2)
[
. . . ΦNRNPI(tk, ϕ

k)
[
u
]]]

.

Now, we can apply Lemma 4.2 (i) for ΦNRNPI(tk, ϕ
k), then for ΦNRNPI(tk+1, ϕ

k+1) and so
forth. The constant of the Lemma can be chosen identically each time by Assumption 4.3.
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Thus, we obtain∣∣∣∣∣∣∣∣∣Φn,k
NRNPI(u)

∣∣∣∣∣∣∣∣∣
L2

≤ (1 + Cτ)n−k |||u|||L2 ≤
(
1 +

Ctn
n

)n

|||u|||L2 ≤ eCtn |||u|||L2 .
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