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Abstract. For bounded domains � with Lipschitz boundary �, we investigate boundary value problems
for elliptic operators with variable coefficients of fourth-order subject to Wentzell (or dynamic) boundary
conditions. Using form methods, we begin by showing general results for an even wider class of operators
of type

A =
(

B∗B 0
−N bB γ

)
,

where B is associated to a quadratic form b and N b an abstractly defined co-normal Neumann trace.
Even in this general setting, we prove generation of an analytic semigroup on the product space H :=
L2(�) × L2(�). Using recent results concerning weak co-normal traces, we apply our abstract theory to
the elliptic fourth-order case and are able to fully characterize the domain in terms of Sobolev regularity for
operators in divergence form B = − div Q∇ with Q ∈ C1,1(�,Rd×d ), also obtaining Hölder-regularity
of solutions. Finally, we also discuss asymptotic behavior and (eventual) positivity.

1. Introduction

Wentzell, or dynamic boundary conditions, appear in a multitude of physical ap-
plications and pose a mathematically challenging problem. Given a bounded domain
� with boundary �, they model the interchange of free energy of a physical system
between � and �. The main issue with modeling this interchange is that the energy
flux is represented by an integral over the domain, which cannot “see” the boundary as
it is a set of Lebesgue measure zero. This is usually resolved by considering functions
in a product space, e.g.,H := L2(�)× L2(�), and a related operatorA for which the
action in the interior of the domain and on the boundary is decoupled (cf. [1,3,15]).
The connection between interior and boundary is then encoded by a coupling condition
in the definition of the domain of A.
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A detailed discussion of a physical interpretation of these boundary conditions in
comparison to classical ones can be found in [19] for the heat and the wave equation.
Other instances where these boundary conditions occur are the Stefan problem with
surface tension (see [16, Section 1]), and climate models including coupling between
the deep ocean and the surface (see [13, Section 2]) where they incorporate the external
energy transported into the ocean by the sun. Furthermore, they are used in the Cahn–
Hilliard equation describing spinodal decomposition of binary polymer mixtures (see
[27, Section 1]) in order to model effects close to the boundary, e.g., that one of
the agents is more attracted to the boundary than the other, which might lead to
further separation effects. Contrary to the first examples whose leading part is given by
(variations of) the Laplacian, the Cahn–Hilliard equation is based on the Bi-Laplacian,
an operator of order 4 which fits into the setting of the present work.

We are going to consider a general class of operators. As prototype and main ap-
plication, we study the following system of fourth order:

∂t u + B(αB)u = 0 in (0,∞) × �, (1.1)

tr B(αB)u − β∂Q
ν (αB)u − βδ tr(αB)u − γ tr u = 0 on (0,∞) × �, (1.2)

∂Q
ν u + δ tr u = 0 on (0,∞) × �, (1.3)

u|t=0 = u0 in �. (1.4)

Here B is given by B = − div Q∇, where Q ∈ C1,1(�,Rd×d) is uniformly positive
definite and � is a Lipschitz domain. Let ∂

Q
ν denote its corresponding co-normal

derivative given by 〈ν, Q∇u〉 (cf. (3.2) below), and assume α, β, γ, δ to be bounded,
real-valued functions. The precise smoothness assumption of the coefficients will be
specified later on (cf. Hypotheses 2.9 and 3.1). In (1.1)–(1.4), it is implicitly assumed
that the initial value u0 is sufficiently smooth to have a trace on the boundary and that
this trace is used as an initial condition for u on the boundary.

Note that, as Eq. (1.1) is of fourth order with respect to x ∈ �, we have to impose
two boundary conditions. Here, we have chosen the Robin boundary condition (1.3)
in addition to the Wentzell boundary condition (1.2).

The main mathematical challenge in tackling Wentzell boundary conditions lies
in the fact that the elliptic operator that governs the equation in the interior itself
appears in the boundary condition, and the standard condition B(αB)u ∈ L2(�) is
not sufficient to guarantee existence of the trace. In order to decouple this system and
circumvent this issue, we rewrite the Wentzell boundary condition (1.2) as a dynamic
boundary condition using B(αB)u = −∂t u from (1.1). Then we rename u to u1 and
replace the time derivative ∂t u1 in the boundary condition by the time derivative ∂t u2
of an independent function u2 that lives on the boundary. Even though u2 is formally
independent of u1, we think of u2 as the trace of u1; this condition will be incorporated
into the domain of our operator D(A), later. We thus obtain the following decoupled
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version of (1.1)–(1.4):

∂t u1 + B(αB)u1 = 0 in (0,∞) × �, (1.5)

∂t u2 + β∂Q
ν (αB)u1 + βδ tr(αB)u1 + γ u2 = 0 on (0,∞) × �, (1.6)

∂Q
ν u1 + δu2 = 0 on (0,∞) × �, (1.7)

u1|t=0 = u1,0 in �, (1.8)

u2|t=0 = u2,0 on �. (1.9)

Note that, as u2 is independent of u1, we have to impose an additional initial condition
for u2. If, however, the initial value u0 in (1.4) is smooth enough, we can put u1,0 =
u0 and u2,0 = u0|� . However, this coupling condition for the initial value is not
mandatory. The Hilbert space theory established below will allow to prescribe non-
continuous initial data, even the extreme case of u1,0 = 0 and u2,0 ∈ L2(�) arbitrary
is allowed. This is especially useful to model situations where in the beginning the
entire energy only lives on the boundary and slowly dissipates into the interior of the
domain over time. Rewritten as a Cauchy problem, for u = (u1, u2) ∈ H we obtain

∂tu + Au = 0 for u(t, ·) inH, (1.10)

u|t=0 = u0 for u0 ∈ H, (1.11)

where A is given by
(

B(αB) 0

β(∂
Q
ν (αB) + δ tr(αB)) γ

)
(1.12)

on a suitable domain D(A) that incorporates (1.7) and the coupling condition u2 =
tr u1. In order to construct a solution for (1.5)–(1.9), the main idea is to obtain an
analytic semigroup (generated by −A), whose smoothing effects will allow us to
recover the original system withWentzell boundary conditions. Using this decoupling
idea and form methods to tackle Wentzell boundary conditions, has proven to be
a suitable approach for the second-order case, e.g., the Laplace operator subject to
Wentzell boundary conditions.A series of papers starting in 2003has showngeneration
results concerning an analytic semigroup for the decoupled system on L2(�)×L2(�),
using the classical Beurling–Deny criteria [3]. These results were then extended to
the L p-scale, and later also to general second-order elliptic operators on Lipschitz
domains, where also Hölder continuity of the solution was deduced, see [23] and [29].
Under additional smoothness assumptions also spaces of continuous functions were
considered in [3]; see also [14] and [4] where generation of an analytic semigroup
was shown in an abstract perturbation framework. For higher-order elliptic operators
the extension procedure to the L p-scale does not work, because the Beurling–Deny
criteria are in general not fulfilled (see also Proposition 4.15). Less results are available
and they typically rely on being in a smooth setting. For fourth-order equations with
sufficiently smooth coefficients in C4-domains, it was shown in [17, Theorem 2.1]
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that the related operator in the product space is essentially self-adjoint. For the Cahn–
Hilliard equation, classical well-posedness was shown in [27, Theorem 5.1] in the
L2-setting, and in [26, Theorem 2.1] in the L p-setting. Again the domain and the
coefficients were assumed to be (sufficiently) smooth, and the methods do not carry
over to Lipschitz domains.

In [11], the Lipschitz-case was solved for the Bi-Laplacian using weak Green’s
formulae and the theory of quasi-boundary triples [6, Chapter 8]. In the present paper,
however, we choose a more abstract approach which deals with a larger class of
systems and does not depend on the theory of boundary triples. It contains the results
of [11] as a special case, also giving a simpler proof employing recent developments
on co-normal derivatives in Lipschitz domains for operators with variable coefficients
[5].

To that end, in Sect. 2.1, we begin by addressing very general forms b whose asso-
ciated operators will take the role of B in (1.12). To proceed, we start by considering
the Neumann case δ = 0 and define an abstract Neumann trace N b that fits into the
form approach and is connected to Green’s second formula. Afterward, in Sect. 2.2, we
investigate the quadratic form a on the product space H = L2(�) × L2(�) to which
the operator A is associated. Based on the analysis of that form, we can show that
the operator A is self-adjoint and −A is the generator of a strongly continuous and
analytic semigroup (T(t))t≥0 (Theorem 2.12). This will also show that the operatorA
indeed governs a generalized version of (1.5)–(1.9) with δ = 0, given by (2.4)–(2.8).
Wewill explain that we can also obtain a solution of theWentzell system in the original
formulation generalizing (1.1)–(1.3) with initial condition (1.4). If u2,0 is not the trace
of u1,0, there are some subtleties concerning the initial values, see Remark 2.14. In
Sect. 3, we return to the main application where B is a second-order elliptic operator in
divergence form, identifying the associated operator B and its minimal and maximal
realization, as well as the normal traceN b (Sect. 3.2). In Sect. 3.3, we finally collect
our results for the fourth-order system, which culminate in Corollary 3.20 where we
precisely identify the operatorA and its domain in terms of Sobolev regularity. After
extending our results to the Robin case δ > 0, we obtain that the operator A indeed
governs the system precisely as formulated in (1.5)–(1.9).

In Sect. 4, we briefly discuss higher regularity for smoother domains and coefficients
(Sect. 4.1) before undertaking further investigations of the operator A in the original
setting. One of the main results of this section is Theorem 4.8, which states that for
every element (u1, u2) of D(A∞) the function u1 is Hölder continuous and u2 is the
trace of u1. As the semigroupT is analytic, it follows that for positive time the solution
of (1.5)–(1.9) is Hölder continuous and satisfies the Wentzell boundary condition in
a pointwise sense. Moreover, this result implies regularity of the eigenfunctions of
the operator A and is used later on. In Sect. 4.3, we show that the operator A has
compact resolvent and thus a decomposition into a basis consisting of eigenfunctions
of A. This allows us to describe the semigroup in terms of the eigenfunctions and
to characterize the asymptotic behavior of the semigroup. In particular, we study its
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positivity properties: It turns out that the generated semigroup is neither positive nor
L∞-contractive (Proposition 4.15) as the operator does not satisfy the Beurling–Deny
criteria. However, as shown for the for the semigroup generated by the Bi-Laplacian
in [11], in the case γ = δ = 0 our semigroup is again eventually (strongly) positive in
the sense of [9] and [8] (Theorem 4.18). We close the article by showing that the same
abstract approach can be used to obtain abstract results for higher-order operators,
e.g., (−
)4k .

2. The abstract setting

Aimof this section is to establish a solution theory forWentzell boundary conditions
for higher-order operators which can be represented by nested forms, i.e. two quadratic
forms where the operator associated to the first one is used to construct the second.
We fix the following setting:
Let � ⊂ R

d be a domain with Lipschitz boundary �. We denote the inner products
in L2(�) and L2(�) by

〈 f, g〉� :=
∫

�

f g dx and 〈 f, g〉� :=
∫

�

f g dS,

respectively, and write ‖ · ‖� and ‖ · ‖� for the induced norms. We denote the standard
Sobolev spaces by Hs(�) for s ≥ 0. By slight abuse of notation, we will also write

〈∇u,∇v〉� :=
∫

�

d∑
j=1

∂ j u∂ jv dx

whenever u, v ∈ H1(�). For fractional orders we may either use complex interpola-
tion, or, equivalently, restriction. For negative orders we employ duality. Additionally
for an elliptic operator of second-order B, we introduce the space Hs

B(�) for the
space of functions u ∈ Hs(�) such that Bu belongs to L2(�) (cf. Definition 3.12).
We endow Hs

B(�) with the canonical norm

‖u‖2Hs
B (�) := ‖u‖2Hs (�) + ‖Bu‖2� (u ∈ Hs

B(�)).

The Dirichlet-trace on C∞(�), defined by u �→ u|� , and its extension to any Sobolev
space Hs(�) for s > 1

2 is denoted by tr.
Taking a brief look back to theBi-Laplacian case (cf. [11]),where the forma(u, v) =

〈
Nu,
Nv〉 is considered on the domain

{u = (u1, u2) ∈ H | u1 ∈ D(
N ), u2 = tr u1},
we recall that its associated operator is given by

A =
(


2 0
−∂ν
 0

)
.
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In order to tackle the general system, in the forma,we are going to replace theNeumann
Laplacian
N by amore general operator BN . To that end, we introduce a second form
that somehow operates on a “lower level”. More precisely, 
N is naturally associated
to the form b(u, v) = 〈∇u,∇v〉� on L2(�)with form domain D(b) = H1(�), so we
may generalize this form. In order to distinguish between a and b terminologically,
we will call a the primary form and b the subsidiary form.

At first, we will establish our theory for quite general subsidiary quadratic forms
b whose associated operators are not necessarily differential operators in divergence
form or even of second order.

2.1. Abstract realizations of the lower-order operator

Recall, that if a form b : D(b) × D(b) → C (D(b) ⊂ H) is densely-defined,
semi-bounded by λ ∈ R, closed, and continuous in the sense of [24, Chapter 1], its
associated operator A satisfies that λ− A generates an analytic contraction semigroup
onH.We call such forms generating. Note that, in this terminology, b is semi-bounded
by λ if the shifted form bλ(u, v) = b(u, v) + λ 〈u, v〉H is accretive. Furthermore, A
will be self-adjoint if a is also symmetric.

Definition 2.1. Consider the Hilbert space H = L2(�). We call a form b : D(b) ×
D(b) → C admissible, if it is a generating, symmetric form on H such that for some
ρ ∈ (0, 1)

C∞
c (�) ⊆ (D(b), ‖ · ‖b) ⊆ H

1
2+ρ(�) (2.1)

holds, where the latter embedding is continuous and dense.

Remark 2.2. The continuous embedding into the space H1/2+ρ(�) is assumed to
ensure existence of the Dirichlet trace. The space H1/2+ρ(�) can be replaced by any
space on which the Dirichlet trace exists and is bounded, and its range embeds densely
into L2(�), as for example H1/2


 or some variant of it, if such an embedding of the
form domain is known. However, in this abstract setting, we want to avoid spaces
depending on specific operators.

Next, we introduce two operators, connected to the subsidiary form b. We think of
them as realizations of a certain “genera” operator B subject to Neumann or Dirichlet
boundary conditions. While this is indeed true in the setting of elliptic differential
operators on domains (cf. Bmax in Definition 3.12), we point out that in the abstract
setting considered here, it is unclear whichmanner to define such an operator would be
the most sensible. Therefore, in this section the operator B∗

0 will be used as a suitable
substitute for the formally undefined operator B, which only appears terminologically
in the following definition.

Definition 2.3. Let b : D(b) × D(b) → L2(�) be an admissible form.

(i) Denote by λb the maximal semi-bound λ ∈ R such that Re b(u, u) ≥ λ‖u‖2�,

i.e. we have ‖u‖2b = Re b(u, u) + (1 − λb)‖u‖2� for u ∈ D(b).
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(ii) The operator BN associated to b on L2(�) is called the Neumann realization of
B.

(iii) The Dirichlet realization of B, denoted by BD , is the associated operator to the
from bD , given by the restriction of b to {u ∈ D(b) | tr u = 0}.

Proposition 2.4. If b is an admissible form, then bD is generating and symmetric, so
BD is well defined and self-adjoint. Furthermore, we have

D(BN ) ∩ D(BD) = {u ∈ D(BN ) | tr u = 0} = D(BN ) ∩ H1/2+ρ
0 (�) (2.2)

and

BNu = BDu for u ∈ D(BD) ∩ D(BN ).

Proof. The restricted form bD is clearly symmetric, and densely defined as the test
functions still lie in D(bD). By definition, we have ‖ · ‖b = ‖ · ‖bD on D(bD), from
which continuity and semi-boundedness follow. In order to show that (D(bD), ‖.‖bD )
is complete as well, take a Cauchy-sequence un with respect to ‖ · ‖bD = ‖ · ‖b. As
b is a closed form, un converges to some u ∈ D(b), and by continuous embedding
also in H1/2+ρ(�). By continuity of the Dirichlet trace, the traces converge as well,
whence tr u = 0 and u ∈ D(bD) as desired. Hence it is also generating.
We verify the second part in (2.2) first: In Lipschitz domains we have the identity

{u ∈ Hs(�) | tr u = 0} = Hs
0 (�) for all s ∈ (1/2, 3/2) (cf. [5, Equation (3.7)]).

So we directly obtain D(BN ) ∩ H1/2+ρ
0 (�) = {u ∈ D(BN ) | tr u = 0} due to

D(BN ) ⊂ D(b) ⊂ H1/2+ρ(�).
For the remaining identity assume u ∈ D(BN ) with tr u = 0. Hence there is

an fN ∈ L2(�) such that, for all v ∈ D(b), 〈 fN , v〉� = b(u, v) holds. But now
u ∈ D(bD) and in particular for all v ∈ D(bD) ⊂ D(b), we have

〈 fN , v〉� = b(u, v) = bD(u, v),

which shows u ∈ D(BD) and BDu = fN = BNu. The converse is trivial. �

Remark 2.5. (i) Note that bD itself is not admissible, as D(bD) cannot be embedded
densely into H1/2+ρ(�) due to the continuity of the trace, which is the reason
why pure Dirichlet-Wentzell boundary conditions (without Neumann term) can
not be handled via this method.

(ii) In the following, we are going to assume that D(BD) ∩ D(BN ) is dense in
L2(�), which is useful to define realizations of B that are in a sense minimal
(or maximal) and still densely defined. We will see below, in Proposition 2.11,
that this is a very natural assumption for considering the primary form a, as it
will ensure that it will be densely defined as well. The simplest way to ensure
this density will be to demand that D(BD) ∩ D(BN ) contains the test functions.
However, this excludes the case of operators of the form − div Q∇ for Q only
in L∞(�,Rd×d). As we assume more regularity on Q in this article, anyway,
this will be no restriction for us, though.
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Next, we introduce two notions of generalized weak Neumann traces, the first of
which is connected to a generalization of Green’s first formula, while the second is
closer related to the abstract notion of the associated operator and Green’s second
formula.

Definition 2.6. Let b be an admissible form. Assume that D(BD) ∩ D(BN ) is dense
in L2(�). Define B0 = BN |D(BD)∩D(BN ). Let N

b : D(Nb) ⊆ L2(�) → L2(�) be
the linear operator defined by

D(Nb) := {u ∈ D(b) ∩ D(B∗
0 ) |

∃g ∈ L2(�)∀v ∈ D(b) : 〈
B∗
0u, v

〉
�

− b(u, v) = 〈g, tr v〉�}

and Nbu := g. Let furthermore N b : D(N ) ⊆ L2(�) → L2(�) be the linear
operator defined by

D(N b) := {u ∈ D(B∗
0 ) |

∃g ∈ L2(�)∀v ∈ D(BN ) : 〈
B∗
0u, v

〉
�

− 〈u, BNv〉� = 〈g, tr v〉�}

and N bu := g.

Wewant to point out a subtlety concerning the signs: In comparison to the usualweak
Neumann trace (cf. (3.2) below) Nb and N b generalize −∂ν , as B∗

0 is a generalized
version of −
.
We begin with a very simple observation that will prove to be quite useful to show

equality of different traces.

Lemma 2.7. Consider two linear operators S1 : D(S1) ⊆ V → W, S2 : D(S2) ⊆
V → W on vector spaces V,W. If S1 ⊆ S2, S1 is surjective, and ker(S2) ⊆ D(S1),
then S1 = S2.

Proof. Let u ∈ D(S2). As S1 is surjective there is some v ∈ D(S1)with S2v = S1v =
S2u. So u − v ∈ ker(S2) ⊆ D(S1) whence also u = v + (u − v) ∈ D(S1) and
S2u = S1u. This shows S2 ⊆ S1 and thus equality. �

We come to our first main result, which shows that the traces Nb andN b are well
defined, i.e. the assigned element g ∈ L2(�) is indeed unique in both cases.

Theorem 2.8. Let b be an admissible form. Assume that D(BD)∩ D(BN ) is dense in
L2(�). Then B0, BN , Nb, andN b (cf. Definitions 2.3 and 2.6) satisfy the following
properties.

(i) B0 is a densely defined, symmetric, and closed operator. Therefore, B∗
0 and B∗∗

0
are well defined and we have B0 ⊆ B∗

0 as well as B∗∗
0 = B0.

(ii) tr(D(BN )) is dense in L2(�).
(iii) Nb andN b are well defined, linear operators.We haveN b|D(b)∩D(N b) = Nb

and ker Nb = kerN b = D(BN ), which also shows that Nb and N b are
densely defined.
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(iv) If Nb is surjective, we have Nb = N b.

Proof. (i) The density follows by assumption, the closedness follows as both BD

and BN are closed by default (as b and bD are generating) and coincide on the
intersection. Furthermore, as a restriction of a self-adjoint operator, B0 has to be
symmetric.

(ii) Let f ∈ L2(�) and ε > 0. As Hρ(�) is dense in L2(�), we find a function
u� ∈ Hρ(�) with ‖u� − f ‖2� ≤ ε. Because tr : H1/2+ρ(�) → Hρ(�) is
bounded (denote its operator norm by M) and surjective (cf. [18, Equation 2.7]),
we find a function u� ∈ H1/2+ρ(�) with tr u� = u� . As b is admissible, the
domain of the subsidiary form D(b) is densely and continuously embedded in
H1/2+ρ(�). Hence, there is a function û� ∈ D(b) satisfying

‖û� − u�‖2H1/2+ρ(�)
≤ M−2ε.

As for any generating form it is known that the domain of the associated operator
is a form core (cf. [24, Lemma 1.25]), one may further approximate and even
find a function ū� ∈ D(BN ) such that

‖ū� − û�‖2H1/2+ρ(�)
≤ C‖ū� − û�‖2b ≤ M−2ε.

Altogether, we have

‖ tr ū� − f ‖2� ≤ 2‖ tr u� − f ‖2� + 2‖ tr u� − tr ū�‖2�
≤ 2ε + 2M2‖ū� − û� + û� − u�‖2H1/2+ρ(�)

≤ 10ε

as desired.
(iii) The linearity of the operators is obvious. Concerning the well-definedness, as-

sume there were two elements g1, g2 ∈ L2(�) satisfying the defining condi-
tions, respectively. Then we have 〈g1, tr v〉� = 〈g2, tr v〉� in particular for all
v ∈ D(BN ), and hence 〈g1 − g2, tr v〉� = 0. But as tr(D(BN )) is dense in
L2(�) due to (ii), this implies g1 = g2. For u ∈ D(b), v ∈ D(BN ) we have
b(u, v) = b(v, u) = 〈BNv, u〉� = 〈u, BNv〉� . This shows Nb ⊆ N b.
Concerning the restriction, we assume u ∈ D(N b) ∩ D(b). Then, as before,
there is a g ∈ L2(�) such that, for all v ∈ D(BN ) ⊆ D(b),

〈
B∗
0u, v

〉
�

−
〈u, BNv〉� = 〈g, tr v〉� holds. As u ∈ D(b) and v ∈ D(BN ), this implies the
L2(�)-function g also satisfies

〈
B∗
0u, v

〉
�

− b(u, v) = 〈g, tr v〉� (2.3)

for all v ∈ D(BN ). However, D(BN ) is a form core for b, so for any v ∈ D(b)

there is a sequence (vn)n ∈ D(BN ) with vn → v with respect to ‖ · ‖b and
due to the admissibility of b also in H1/2+ρ(�), whence the trace converges as
well. Using this approximation, Formula (2.3) can be extended to all v ∈ D(b),

which indeed proves N b|D(b)∩D(N b) = Nb. Next we show Nb (and thus
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N b) is densely defined. As B0 ⊆ BN and BN is self-adjoint, we have BN =
B∗
N ⊆ B∗

0 which exists due to (i). Hence for u ∈ D(BN ) (which is a dense
subset of L2(�)) we have

〈
B∗
0u, v

〉
�

− b(u, v) = 〈
B∗
0u, v

〉
�

− 〈u, BNv〉� =
〈BNu, v〉� − 〈u, BNv〉� = 0 for all v ∈ D(BN ). So Nbu = 0 for any u ∈
D(BN ). Furthermore, if u ∈ D(N b) andN bu = 0, then for all v ∈ D(BN )we
have

〈
B∗
0u, v

〉
�

−〈u, BNv〉� = 0. This, however, is the definition of u ∈ D(B∗
N )

and shows B∗
Nu = B∗

0u. As BN is self-adjoint, this means u ∈ D(BN ). Hence
D(BN ) ⊆ ker Nb ⊆ kerN b ⊆ D(BN ), which shows equality, and in particular
that both operators are densely defined.

(iv) This is an immediate consequence of (iii) and Lemma 2.7.
�

2.2. The system on the product space

Next we introduce a primary form, which will be connected to the generalized
system of (1.5)–(1.9), i.e

∂t u1 + B∗
0 (αBN )u1 = 0 in (0,∞) × �, (2.4)

∂t u2 − βN b(αBN )u1 + γ u2 = 0 on (0,∞) × �, (2.5)

N bu1 = 0 on (0,∞) × �, (2.6)

u1|t=0 = u1,0 in �, (2.7)

u2|t=0 = u2,0 on �. (2.8)

We define the following regularity assumptions for the coefficients.

Hypothesis 2.9. Let � ⊆ R
d be a bounded domain with Lipschitz boundary �. Con-

sider α ∈ L∞(�,R) and β, γ, δ ∈ L∞(�,R) such that there exists a constant η > 0
with α ≥ η almost everywhere on� and β ≥ η almost everywhere on�. Furthermore,
let δ ≥ 0.

Definition 2.10. Let b be an admissible form. Let BD and BN defined as in Defini-
tion 2.3 and assume Hypothesis 2.9.

(i) LetH := L2(�, λd)×L2(�, β−1dS) be the Hilbert space, where λd denotes the
d-dimensional Lebesgue measure and dS the surface measure on �, endowed
with the canonical inner product

〈u, v〉H = 〈u1, v1〉� + 〈u2, v2〉�,β , (2.9)

where u = (u1, u2), v = (v1, v2) ∈ H and

〈u2, v2〉�,β =
〈
β−1u2, v2

〉
�

=
∫

�

β−1(x)u2(x) · v2(x)dS.

(ii) Let D(BD) ∩ D(BN ) be dense in L2(�). Then, we define the primary form
a : D(a) × D(a) → C as

a(u, v) := 〈αBNu1, BNv1〉� + 〈γ u2, v2〉�,β
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for all u, v ∈ D(a) where

D(a) := {u = (u1, u2) ∈ H | u1 ∈ D(BN ), u2 = tr u1}.

Proposition 2.11. Let b be an admissible form. We assume Hypothesis 2.9 and the
density of D(BD) ∩ D(BN ) in L2(�). Then, the primary form a is densely defined.

Proof. We may assume without loss of generality that β ≡ 1, otherwise switch to
an equivalent norm. Next we exploit the density of D(BN ) ∩ D(BD) in L2(�). As(
D(BN ) ∩ D(BD)

) × {0} ⊆ D(a), we have L2(�) × {0} ⊆ D(a). In order to show
{0} × L2(�) ⊆ D(a), we use Theorem 2.8 (ii) which yields that tr D(BN ) is dense
in L2(�). Hence, given a function f ∈ L2(�) and some number ε > 0, there is
an element ū1 of D(BN ) such that ‖ tr ū1 − f ‖2� < ε. Finally, we pick a function
w ∈ D(BN )∩ D(BD) such that ‖ū1 −w‖2� ≤ ε and put u = (ū1 −w, tr(ū1 −w)) =
(ū1 − w, tr ū1). Then, by construction, we have

‖u − (0, f )‖2H = ‖ū1 − w‖2� + ‖ tr ū1 − f ‖2� ≤ 2ε.

As f was arbitrary, {0} × L2(�) ⊆ D(a). Since D(a) is a vector space, we may
combine our two results and obtain D(a) = H. �

Theorem 2.12. Let b be an admissible form. Assume that Hypothesis 2.9 holds and
that D(BD) ∩ D(BN ) is dense in L2(�). Then, the corresponding operators B0, BN ,
Nb, N b and the form a (cf. Definitions 2.3, 2.6, and 2.10) satisfy the following
properties.

(i) a is a generating, symmetric form. Hence the operator A associated to a on H

is self-adjoint and −A generates an analytic semigroup T on H.
(ii) A is given by

A =
(

B∗
0 (αBN ) 0

−βN b(αBN ) γ

)
(2.10)

on

D(A) = {u ∈ H | u1 ∈ D(BN ), αBNu1 ∈ D(N b), u2 = tr u1}.

(iii) In particular, for u0 = (u1,0, u2,0) ∈ H the Cauchy problem (2.4)–(2.8) pos-
sesses a unique solution, which is given by u(t) = T(t)(u1,0, u2,0) for t > 0. If
Nb is additionally surjective, we may replaceN b by Nb in (ii) and (2.4)–(2.8).

Proof. (i) We begin by showing that a is a generating, symmetric form. As b is
admissible, we have D(b) ⊆ H1/2+ρ(�), hence also D(BN ) ⊆ H1/2+ρ(�)

and the condition tr u1 = u2 makes sense. The density of D(a) has been shown
in Proposition 2.11. Because of γ ∈ L∞(�) the form is semi-bounded due to

a(u,u) = 〈√
αBNu1,

√
αBNu1

〉
�

+ 〈γ u2, u2〉�,β ≥ −‖γ ‖∞‖u‖2H.
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The symmetry is trivial as α, β, γ are real-valued. Next we consider the induced
norm ‖u‖2a = a(u,u) + (1 + ‖γ ‖∞)‖u‖2H. With respect to this norm the form
is continuous as

|a(u, v)| ≤ ‖√αBNu1‖�‖√αBNv1‖� + ‖γ ‖∞‖u2‖�,β‖v2‖�,β ≤ 2‖u‖a‖v‖a.
Note that bydefinitionwehave‖√αBNu1‖2 ≤ ‖u‖2a, aswell as‖γ ‖∞‖u2‖2�,β ≤
‖u‖2a. Finally, we show the closedness of the form. Let (un)n ⊆ D(a) be a ‖·‖a-
Cauchy sequence, where un = (un1, u

n
2). We have to prove that this sequence

converges with respect to ‖ · ‖a. Let us first note that because α is bounded from
below by η > 0, for a certain constant C , we have

‖u1‖2B ≤ 1

η
‖√αBNu1‖2� + ‖u1‖2� ≤ C‖u‖2a

whenever u = (u1, u2) ∈ D(a). It follows that (un1)n is a Cauchy sequence with
respect to ‖ ·‖B . As BN is closed, we find some u ∈ D(BN ) such that un1 → u in
L2(�) and BNun1 → BNu in L2(�). Next observe that for u ∈ D(BN ) ⊆ D(b),
by definition of the associated operator and Young’s inequality, we have

‖u‖2
H1/2+ρ(�)

≤ C‖u‖2b = C(b(u, u) + (1 − λb)‖u‖2�) = C((1 − λb)‖u‖2� + 〈BNu, u〉�)

≤ C̃(‖BNu‖2� + ‖u‖2�) = C̃‖u‖2B

for some constant C̃ ≥ 1. Combining this with the above, we observe that
un1 is also convergent in H1/2+ρ(�) whence, by the continuity of the trace,
un2 = tr un1 → tr u in L2(�). Setting u = (u, tr u), we see that u ∈ D(a) and
un → u with respect to ‖ · ‖a. This proves closedness of the form. Hence a

is a generating, symmetric form with a corresponding associated self-adjoint
operator A such that −A generates an analytic semigroup on H.

(ii) At first we define

C =
(

B∗
0 (αBN ) 0

−βN b(αBN ) γ

)

on

D(C) = {u ∈ H | u1 ∈ D(BN ), αBNu1 ∈ D(N b), u2 = tr u1}.
We want to show C = A. We begin by showing C ⊆ A. So let u ∈ D(C) ⊆
D(a), i.e. u1 ∈ D(BN ), αBNu1 ∈ D(N b) and tr u1 = u2. Then we have for
all v ∈ D(a)

a(u, v) = 〈αBNu1, BNv1〉� + 〈γ u2, v2〉�,β

= 〈
B∗
0 (αBNu1), v1

〉
�

−
〈
N b(αBNu1), tr v1

〉
�

+ 〈γ u2, v2〉�,β

= 〈
B∗
0 (αBNu1), v1

〉
�

+
〈
−βN b(αBNu1) + γ u2, v2

〉
�,β

= 〈Cu, v〉H .
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For the reverse direction let u ∈ D(A) and Au = f. Then u ∈ D(a) and for
any v ∈ D(a) we have a(u, v) = 〈f, v〉H. In particular, for all v ∈ D(B0) × {0}
(and thus for all v1 ∈ D(B0)) we have

〈 f1, v1〉� = 〈f, v〉H = a(u, v) = 〈αBNu1, BNv1〉 = 〈αBNu1, B0v1〉� .

This shows that αBNu1 is in D(B∗
0 ) and f1 = B∗

0 (αBNu1) by definition of the
adjoint. So for all v1 ∈ D(BN ) we have

〈 f2, tr v1〉�,β = a(u, v) − 〈 f1, v1〉�
= 〈αBNu1, BNv1〉� − 〈

B∗
0 (αBNu1), v1

〉
�

+ 〈γ u2, tr v1〉�,β

or〈
β−1( f2 − γ u2), tr v1

〉
�

= 〈αBNu1, BNv1〉� − 〈
B∗
0 (αBNu1), v1

〉
�

for all v1 ∈ D(BN ), which shows αBNu1 ∈ D(N b) (and u ∈ D(C )) as well
as

−N b(αBNu1) = β−1( f2 − γ u2)

or, equivalently, f2 = −βN b(αBNu1) + γ u2, which shows Cu = f = Au.

(iii) This follows from (i) and (ii) by standard semigroup theory. For the last part we
use Theorem 2.8 (iv).

�

Remark 2.13. Theorem2.12 (iii) states that the semigroupT governs the system (2.4)–
(2.8). We observe that u1 also solves the corresponding non-decoupled problem with
Wentzell boundary conditions

∂t u + B∗
0 (αBN )u = 0 in (0,∞) × �, (2.11)

tr B∗
0 (αBN )u + βN b(αBN )u − γ tr u = 0 on (0,∞) × �, (2.12)

N bu = 0 on (0,∞) × �, (2.13)

u|t=0 = u0 in �. (2.14)

As the semigroup is analytic, the solution is C∞ in time so that
(u(t))t>0 = (T(t)(u1,0, u2,0))t>0 satisfies Eqs. (2.4) and (2.5) in a classical (in time)
sense. Concerning the initial system (2.11)–(2.14), we immediately see that u = u1
solves Eqs. (2.11), (2.13) and (2.14).
The question remains in which way the Wentzell boundary condition (2.12) is

satisfied. But as u ∈ C((0,∞), D(A)2) due to the analyticity of the semigroup,
naturally for all t > 0 the functions u(t, ·) are in D(A2) and thus we have

tr B∗
0 (αBN )u = tr(Au)1 = (Au)2 = −βN b(αBN )u + γ tr u,

which shows (2.12). In fact, the analyticity even yields u(t, ·) ∈ D(A∞) for t > 0.
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Remark 2.14. Wepoint out that the system (2.11)–(2.14) has to be interpreted in such a
way that u0 is sufficiently smooth to have a trace, say u0 ∈ H1/2+ρ(�); in this setting,
the solutions of (2.11)–(2.14) are in a one-to-one correspondence with the solutions
of (2.4)–(2.8)with u1,0 = u0|� and u2,0 = u0|� . In our semigroup approach, however,
u2,0 can be chosen independently of u1,0 and, by the above, all of these solutions are
(distinct!) solutions of (2.11)–(2.14). In a way, choosing u2,0 different from tr u1,0
corresponds precisely to having some free energy on the boundary, which was a main
motivation to consider Wentzell boundary conditions in the first place.

3. Application to strongly elliptic operators in divergence form

In this section, we will specify the operator B to be a strongly elliptic second-order
operator in divergence form and return to the investigation of the system (1.1)–(1.4).
We consider δ = 0 at first and deal with the Robin case at the end of Sect. 3.3. We
begin by settling the precise regularity assumptions on the matrix Q and recalling
some facts concerning different realizations of co-normal traces.

3.1. Co-normal traces

Hypothesis 3.1. Assume Q ∈ C1,1(�,Rd×d) to be symmetric and uniformly positive
definite, which means there is some open superset �̃ ⊆ R

d containing � such that
Q ∈ C1,1(�̃,Rd×d) is symmetric and satisfies for some κQ > 0

〈Q(x)ξ, ξ 〉
Cd ≥ κQ |ξ |2 (x ∈ �̃, ξ ∈ C

d). (3.1)

Remark 3.2. The regularityQ ∈ C1,1(�̄,Rd×d) is not necessary for all the subsequent
steps, part of the theory can be done using onlyW 1,∞-regularity. However C1,1 is the
regularity from [5, Chapter 11], and thus used when we establish higher regularity and
a precise identification of the occurring traces and the domain of our operator. For a
finer distinction in regularity, we refer to [25, Hypothesis 2.5 and Section 3.1].

Definition 3.3. Let � ⊆ R
d be a Lipschitz domain with outward normal ν. We

consider the following notions of strong traces:

(i) For a real-valued, uniformly positive definite matrix Q ∈ W 1,∞(�̄,Rd×d), we
denote the co-normal Neumann trace of a function u ∈ C∞(�) by τ

Q
N u :=

ν · tr Q∇u, where we read the operator tr component-wise.
(ii) For any function δ ∈ L∞(�), we will call τ Q

δ = τ
Q
N +δ tr the (co-normal) Robin

trace.

It is known, that the Dirichlet trace extends by continuity to a bounded linear sur-
jective operator

tr : Hs(�) → Hs−1/2(�) for all s ∈
(
1

2
,
3

2

)
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(cf. [18, Equation (2.7)]). In fact, this operator is even a retraction, i.e. there ex-
ists a continuous right-inverse. Even for smooth domains, however, the continuity
of tr : Hs(�) → Hs−1/2(�) does not hold for the endpoint case s = 1

2 , see [21,
Theorem 1.9.5]. However, one can include the cases s = 1

2 and s = 3
2 by replacing

Hs(�) by Hs

(�). In particular, it was shown in [18, Lemma 2.3] that the smooth

trace extends to a retraction tr : H3/2

 (�) → H1(�).

Next we consider the weak definition of the (co-normal) Neumann trace.

D(∂Q
ν ) := {

u ∈ H1
div Q∇(�) | there exists a g ∈ L2(�) such that

〈div Q∇u, v〉� + 〈Q∇u,∇v〉� = 〈g, tr v〉� for all v ∈ H1(�)
}
,

(3.2)

where we set ∂
Q
ν u = g. Naturally, one wants to know whether ∂

Q
ν coincides with

an extension of τ
Q
N . For Q = Id one has ∂ν = τN : H3/2


 (�) → L2(�), see [18,
Lemma 2.4]. For Q �= Id the properties of such a possible extension were much less
clear for some time. In the recent preprint [5], those issues were resolved. We recall
their central result for our case ( [5, Corollary 11.28]) adapted to the notation we are
going to use.

Lemma 3.4. Let � ⊆ R
d be a Lipschitz domain. Let B be a formal second-order

differential operator acting on elements in L2(�) in a distributional sense via

Bu =
d∑

i, j=1

∂i qi j (x)∂ j u,

where the matrix Q = (qi j ) is given as in Hypothesis 3.1. Let B denote its L2(�)-
realization (cf. Definition 3.12 below). Then, the co-normal Neumann trace defined
by u �→ ν · tr(Q∇u) for smooth functions extends uniquely to

γ s
Q : Hs

B(�) → Hs−3/2(�) (3.3)

for all s ∈ [ 12 , 3
2 ], forming a compatible family in s. Furthermore, for all s ∈ [ 12 , 3

2 ],
we have the following:

(i) The generalizedNeumann traces in (3.3) are surjective. In fact, there are bounded
linear operators

ϒ s
Q : Hs−3/2(�) → Hs

B(�), (3.4)

which are also compatible with each other for different s, and right inverses to
the Neumann trace, meaning for all ψ ∈ Hs−3/2(�) we have γ s

Q(ϒ s
Qψ) = ψ .

(ii) For any f ∈ Hs
B(�) and h ∈ H2−s

B (�) the following Green’s formula holds:
〈
tr h, γ s

Q f
〉
H3/2−s (�)×(H3/2−s (�))′

−
〈
γ s
Qh, tr f

〉
Hs−1/2(�)×(H1/2−s (�))′

= 〈h, B f 〉� − 〈Bh, f 〉� .
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(iii) ker(γ s
Q) ⊆ H3/2(�), ker(tr) ⊆ H3/2(�), and for any u ∈ H1/2

B (�) with either
γ s
Qu = 0 or tr u = 0, there is some C > 0 such that

‖u‖2H3/2(�)
≤ C‖u‖2� + ‖Bu‖2�.

Proof. This is [5, Corollary 11.25 and 11.28]. �

We are going to verify the compatibility to the weak formulation ∂
Q
ν in Theo-

rem 3.14, later.

3.2. On the second-order operator

With the trace results from the last section, we are going to be able to identify the
operator A for the case B = − div Q∇, and to fully describe its domain in precise
terms of Sobolev regularity. The underlying subsidiary form is given as follows.

Definition 3.5. Assume Hypothesis 3.1. Set D(b) := H1(�), and let b : D(b) ×
D(b) → C be given by

b(u, v) = 〈Q∇u,∇v〉� (3.5)

for u, v ∈ D(b). Also, set bD(u, v) := b(u, v) for u, v ∈ D(bD) = H1
0 (�).

Lemma 3.6. Assume Hypothesis 3.1. Then the subsidiary form b (cf. Definition 3.5)
is admissible in the sense of Definition 2.1, whence BD and BN are well defined
in the sense of Definition 2.3. Furthermore, we have C∞

c (�) ⊆ D(BN ) ∩ D(BD).
Hence, the intersection D(BN ) ∩ D(BD) lies dense in L2(�) and the assumptions of
Definition 2.6 and Theorem 2.8 are satisfied, as well.

Proof. We choose ρ = 1/2 in Eq. (2.1) and have C∞
c (�) ⊆ D(b) = H1(�), whence

the form b is also densely defined. It is accretive, as Q is uniformly positive definite.
As Q is also bounded, we have

‖u‖2H1 ≤ b(u, u) + ‖u‖2� ≤ C‖u‖H1 .

So b is closed and continuous, and therefore b is generating. It is symmetric, as Q is
symmetric and real-valued.Hence theNeumann realization BN , as the associated oper-
ator to b, and the Dirichlet realization, as the associated operator to bD = b|H1

0 (�), are

well defined andwehave D(BN )∩H1
0 (�) = D(BD)∩D(BN ) (cf. Proposition 2.4).As

C∞
c (�) ⊆ H1

0 (�) we only need to show that C∞
c (�) ⊆ D(BN ). So let ϕ ∈ C∞

c (�),
which implies that Q∇ϕ ∈ (H1(�)d) as C1,1(�,Rd×d) ⊂ W 1,∞(�,Rd×d). Now,
we may use the following version of Green’s formula taken from [5, Corollary 4.5],
which holds for their case of ε = 1/2, as 
 maps from H1(�) to H−1(�). For all
v ∈ D(b) = H1(�) we have that

〈Q∇ϕ,∇v〉� + 〈div Q∇ϕ, v〉� = 〈ν · tr Q∇ϕ, tr v〉� = 0
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as ∇ϕ = 0 close to the boundary, which shows

b(ϕ, v) = 〈− div Q∇ϕ, v〉�
for all v ∈ D(b) and thus ϕ ∈ D(BN ) and BNϕ = − div Q∇ϕ. �

So we may define B0, B∗
0 , N

b, andN b as stated in Theorem 2.8. Furthermore, the
next Lemma shows that we are in the situation where Nb = N b holds.

Lemma 3.7. AssumeHypothesis 3.1. Let b be the admissible form fromDefinition 3.5.
Then the corresponding operator Nb (cf. Definition 2.6) is surjective.

Proof. The surjectivity of Nb is a special case of [23, Lemma 3.8]. There it is shown
that for any g ∈ L2(�) there is a u ∈ H1(�) and a λ ∈ R such that for all v ∈ C1(�)

wehave b(u, v)+〈λu, v〉� = 〈g, tr v〉� . Approximation in H1(�) yields this result for
all v ∈ H1(�).Hence u ∈ D(B∗

0 ) as for v ∈ D(B0)we have−〈λu, v〉� = b(u, v) =
〈u, BNv〉� = 〈u, B0v〉� and B∗

0u = −λu, so u ∈ D(Nb) and −Nbu = g. �

Next we show that the operator B∗
0 is in some sense the maximal L2-realization of

− div Q∇, and −Nb coincides with the usual co-normal derivative ∂ν , which extends
ν · tr Q∇. So we begin by verifying that both operators act as desired on smooth
functions.

Proposition 3.8. Assume Hypothesis 3.1. Let b be the admissible form from Defini-
tion 3.5 and B0, Nb be the corresponding induced operators in the sense of Defini-
tion 2.6. Then, if ϕ ∈ C∞(�), we have B∗

0ϕ = − div Q∇ϕ and Nbϕ = −ν · tr Q∇ϕ.

Proof. For any function ϕ ∈ C∞(�), so as seen above Q∇ϕ is an element of
(H1(�))d . So again by [5, Corollary 4.5], for all v ∈ H1(�), we have

〈Q∇ϕ,∇v〉� + 〈div Q∇ϕ, v〉� = 〈ν · tr Q∇ϕ, tr v〉� .

This means, for all functions v ∈ D(B0) ⊆ D(BN ), that

〈− div Qϕ, v〉� = 〈Q∇ϕ,∇v〉� = b(ϕ, v) = 〈ϕ, B0v〉� ,

which shows ϕ ∈ D(B∗
0 ) and B∗

0ϕ = − div Q∇ϕ. Furthermore, we even have ϕ ∈
D(Nb) and Nbϕ = −ν · tr Q∇ϕ. �

We point out that div Q∇ does not map test functions onto test functions. Hence,
there is no distributional realization of that operator and the largest space we can
work on is H−2(�), the dual of H2

0 (�), whence we use the L2(�)-realization of that
version. To that end, we establish an elliptic regularity result onRd on the level of test
functions.
In the following we denote by BUCs(�) the space of uniformly bounded continuous
functions whose derivatives are continuous and uniformly bounded up to order s, as
well.
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Lemma 3.9. Let Q satisfy Hypothesis 3.1. Then, there is a symmetric, uniformly
positive definite extension Q̂ ∈ BUC1(Rd ,Rd×d)of Q.Furthermore, for all s ∈ [0, 2],
there is a λ0 > 1 such that for any λ ≥ λ0 there exists Cλ > 0 for which

‖ϕ‖Hs (Rd ) ≤ Cλ‖(λ − div Q̂∇)ϕ‖Hs−2(Rd )

holds for all ϕ ∈ C∞
c (�).

Proof. We first construct the extension. As Q is uniformly positive definite in some
open superset �̃which contains�, there is aC∞-domain�′ with� ⊆ �′ ⊆ �̃,which
can be constructed by approximation with mollified functions in the supremum norm.
As �′ is smooth with smooth boundary �′, there is a small tubular neighborhood

�′
ε = {x ∈ R

d | dist(x, �′) < ε}
of �′, which can be parameterized by the normal vector, i.e. there is a smooth bijective
map

γ : (−ε, ε) × �′ → �′
ε; (h, x ′) �→ γ (h, x ′) := x ′ + h · ∂ν(x

′).

Choosing ε > 0 small enough, it is possible to guarantee �′
ε ∈ �̃\�, so Q is defined

on�′ ∪ �′
ε. For the extension, letψ ∈ C∞(R, [0, 1]) be a strictly decreasing function

satisfying ψ = 1 on (−∞, −ε
2 ) and ψ = 0 on ( ε

2 ,∞). Then, we obtain ϕ ∈ C∞(Rd)

by setting ϕ = 1 on �′\�′
ε, ϕ = 0 on R

d \ (�′
ε ∪ �′), and ϕ(x) := ψ(h) for

x = γ (h, x ′) ∈ �′
ε. Hence, we can define Q̂(x) = (1 − ϕ(x))Q(x∗) + ϕ(x)Q(x)

for an arbitrary but fixed x∗ ∈ �, and the new matrix Q̂ ∈ BUC1(Rd ,Rd×d) still
satisfies (3.1) as the set of uniform positive definite matrices is convex.

For the ellipticity estimate, we use parabolic theory from [12]. The constructed
extension Q̂ satisfies their assumption (S2) (its entries are BUC1(Rd)-functionswhich
are constant for large |x |), and a simple calculation shows that due to the uniform
positive definiteness, the resulting operator λ − div Q∇ is also parameter-elliptic.
Hence the assumptions of [12, Lemma3.14] are satisfied forσ = 0 and r = �|s−1|� =
1 and, we obtain the estimate in the λ-dependent spaces by [12, Lemma 3.14]. As the
constant is allowed to dependonλ, this finishes the proof aswe switch toλ-independent
spaces. �

Remark 3.10. A thorough comparison of regularities will show that a strict application
of [12, Lemma 3.14] would need qi j ∈ BUC2(�). However, as our operator is in
divergence form, the coefficients do not need to be multipliers in Hs−2(Rd) but only
in Hs−1(Rd), whence one can deduce that BUC1(�) is actually sufficient as |s−1| ≤ 1
in our case. For details (cf. [25, Section 7.2.1]).

Nowwe can show that the “minimal” realization of− div∇Q is well defined and its
domain is given by H2

0 (�). In this context we understand minimality in the sense that
it is the smallest closed operator that acts like− div∇Q on the space of test functions.
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Proposition 3.11. Assume Hypothesis 3.1. Let b be the admissible form from Defini-
tion 3.5 and let B0 and BN be the corresponding induced operators in the sense of
Definitions 2.3 and 2.6. Let Bmin be the closure of

BN |C∞
c (�) = B0|C∞

c (�) = (− div∇Q)|C∞
c (�).

Then the following holds.

(i) Bmin is well defined (i.e. the closure of the underlying graph yields a single-
valued operator).

(ii) On the space C∞
c (�) the graph norm ‖u‖� + ‖B∗

0u‖� is equivalent to the full
H2(�)-norm, whence D(Bmin) = H2

0 (�).
(iii) We have (− div Q∇)|H2

0 (�) = Bmin = B0|H2
0 (�).

Proof. (i) The operators BN |C∞
c (�) and B0|C∞

c (�) are closable due to the self-
adjointness of BN . Thus Bmin is well defined.

(ii) Let ϕ ∈ C∞
c (�) be an arbitrary test function. Then B∗

0ϕ = − div Q∇ϕ by
Proposition 3.8 and thus ‖ϕ‖2�+‖B∗

0ϕ‖2� ≤ ‖ϕ‖H2(�).For the reverse inequality
we use the matrix Q̂ from Lemma 3.9. To that end, we extend ϕ by zero to the
whole space and write e0ϕ for this extension. Choose any fixed λ > λ0 where λ0

is taken from Lemma 3.9. Then we have (λ − div Q̂∇)e0ϕ = −e0(div Q∇ϕ) +
e0(λϕ), as supp(div Q∇ϕ) ⊆ suppϕ ⊆ �. Now Lemma 3.9 with s = 2 yields
there is some Cλ > 0 such that

‖ϕ‖H2(�) = ‖e0ϕ‖H2(Rd ) ≤ Cλ

(‖e0(div Q∇ϕ)‖Rd + λ‖e0ϕ‖Rd

)
≤ λCλ(‖B∗

0ϕ‖� + ‖ϕ‖�),

with Cλ independent of the choice of ϕ. Thus we have

H2
0 (�) = C∞

c (�)
‖·‖H2(�) = C∞

c (�)
‖·‖D(B∗

0 ) = D(Bmin).

(iii) As Bmin is closed, the first equality follows straight-forward. Now let u ∈
H2
0 (�) = D(Bmin) ⊆ D(bD). Then there is a sequence of test functions such

that ϕn → u with respect to the H2(�)-norm. For ϕn we have for all v ∈ H1(�)

〈Q∇ϕn,∇v〉� = 〈− div Q∇ϕn, v〉� .

Due toH2-convergence this alsoholds foru, anddiv Q∇ϕn converges to div Q∇u ∈
L2(�). So by definition u ∈ D(BN ) ∩ D(BD) = D(B0) and B0u = BNu =
− div Q∇u = Bminu, which shows Bmin ⊂ B0.

�
Now we use duality to define Bmax. Recall that for a function u ∈ L2(�), the

induced regular distribution [u] acts on a function ϕ via [u](ϕ) = 〈u, ϕ〉�.
Definition 3.12. Assume Hypothesis 3.1. Let B : L2(�) → (H2

0 (�))′ be defined
by

Bu(ϕ) := 〈u,− div Q∇ϕ〉
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for all ϕ ∈ H2
0 (�), and define Bmax as its L2(�)-realization, i.e. we let

D(Bmax) := {u ∈ L2(�) | Bu ∈ (L2(�))′},
and identify Bmaxu with g ∈ L2(�), where g is the unique element for which
(Bu)(ϕ) = [g](ϕ) holds.

It can also be verified that this definition is compatible with the representations
Bu = −∑

i, j ∂i qi j∂ j u = − div Q∇u, where each derivative is considered as weak

derivative, and themultiplicationwith the coefficients in H−1(�) (cf. [25,Lemma3.17]).
Now we can characterize Bmax by duality as follows:

Proposition 3.13. Assume Hypothesis 3.1. Let b be the admissible subsidiary form
defined as in Definition 3.5 and let B0, Bmin, Bmax be the corresponding induced
operators (cf. Definitions 2.6, 3.12, and Proposition 3.11). Then, we have Bmax =
(B0|H2

0 (�))
∗ = B∗

min, as well as B∗
max = Bmin. In particular, this shows that Bmax is

closed.

Proof. Let u ∈ D(Bmax). This, equivalently, means u ∈ L2(�) and there is an f ∈
L2(�) such that 〈 f, ϕ〉� = Bu(ϕ) = 〈u,− div Q∇ϕ〉� = 〈u, B0ϕ〉� for all ϕ ∈
H2
0 (�). By definition this means u ∈ D((B0|H2

0 (�))
∗) and f = (B0|H2

0 (�))
∗u. The

second assertion follows directly as Bmin is closed and the restriction of the self-adjoint
operator BN , and therefore symmetric. �
In a final step we remove the restriction to H2

0 by showing that the smooth functions
are actually a core of Bmax.
To that end, we restate the definition of the spaces Hs

B(�) from (cf. Sect. 3.1) in
a more precise manner by setting Hs

B(�) := {u ∈ Hs(�) | Bu ∈ L2(�)} for
s ≥ 0 equipped with the norm ‖u‖Hs (�) + ‖Bmaxu‖�, and in particular we have
D(Bmax) = H0

B(�). We will also write ‖ · ‖B instead of ‖ · ‖D(Bmax) or ‖ · ‖H0
B (�). It

might be more accurate to call those spaces Hs
Bmax

(�), but we refrain from doing so
for sake of readability, also emphasizing the fact that Bmax actually takes the role of
the abstract operator B that remained undefined in Sect. 2.

Furthermore, we even may explicitly characterize D(Nb) and Nb as we are in the
setting of [5, Chapter 11.4], whence we have Lemma 3.4 at our disposal and existence,
continuity, and surjectivity of γ s

Q : Hs
B(�) → Hs−3/2(�) is assured for all s ∈ [ 12 , 3

2 ].
All those Neumann traces are continuous extensions of ν · tr Q∇ onC∞(�) to Hs

B(�)

by the density which we also ascertain below.

Theorem 3.14. Assume Hypothesis 3.1. Let b be the admissible subsidiary form
defined as in Definition 3.5 and let B0, BD, BN , Bmin, Bmax, Nb be the corresponding
induced operators (cf. Definitions 2.3, 2.6, 3.12, and Proposition 3.11). Let ∂

Q
ν and

γ
3/2
Q be the weak and strong Neumann traces from (3.2) and (3.3). Then we have:

(i) For all s ≥ 0, the space C∞(�) is dense in Hs
B(�).

(ii) We have B0 = Bmin (i.e. D(B0) = H2
0 (�) and C∞

c (�) is a core of B0) and
B∗
0 = Bmax.
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(iii) We have Nb = −∂
Q
ν = −γ

3/2
Q , so in particular D(Nb) = D(∂

Q
ν ) = H3/2

B (�).

(iv) D(BD) ⊆ H3/2
B (�), D(BN ) ⊆ H3/2

B (�).

Proof. (i) In the case s ≥ 2 the space Hs
B(�) coincides with Hs(�). The cases

s ∈ [0, 2) will follow by adapting the proof of [5, Lemma 2.13], where this
density was shown for B = 
. Consider Ḣ s(�) := {u ∈ Hs(Rd) | supp u ∈ �}
(cf. [5, Section 2.3]) and the map

ι : Hs
B(�) → Hs(�) × L2(�), u �→ ι(u) = (u, Bmaxu),

which is an isometric isomorphism from Hs
B(�) to the closed subspace ι(Hs

B(�))

as Bmax is a closed operator. Let� be any functional in (Hs
B(�))′, then�◦ ι−1 is

a linear, bounded functional on ι(Hs
B(�)),which can be extended to a functional

�̂ ∈ (Hs(�) × L2(�))′ = Ḣ−s(�) × L2(�) using Hahn-Banach’s theorem.
Hence, by [5, p.27–29], there are representatives h1 ∈ Ḣ−s(�), h2 ∈ L2(�)

such that, given any u ∈ Hs
B(�), for any F ∈ Hs(Rd), G ∈ L2(Rd) satisfying

F |� = u and G|� = Bmaxu we have

�(u) = 〈h1, F〉H−s (Rd )×Hs (Rd ) +
〈
e0h2,G

〉
Rd

.

Note that for s = 0, we may replace Ḣ0(�) with the zero extension of L2(�)-
functions and the dual pairing with the standard inner product on L2(�). In
particular, if we take u = ϕ|�, for any ϕ ∈ C∞

c (Rd), we obtain

�(ϕ|�) = 〈h1, ϕ〉H−s (Rd )×Hs (Rd ) +
〈
e0h2,− div Q̂∇ϕ

〉
Rd

due to (− div Q̂∇ϕ)|� = (− div Q∇ϕ)|� = B∗
0ϕ|� = Bmaxϕ|� by Proposi-

tion 3.8, where Q̂ once more denotes the extended matrix from Lemma 3.9.
In order to show the desired density, we assume that for any ϕ ∈ C∞(�) we
had �(ϕ) = 0, and deduce that this implies � = 0. By definition, however,
�(ϕ) = 0 means that we have

〈h1, ϕ〉H−s (Rd )×Hs (Rd ) =
〈
e0h2, div Q̂∇ϕ

〉
Rd

= (div Q̂∇e0h2)(ϕ)

for all ϕ ∈ C∞
c (Rd) and by density for all ϕ ∈ H2(Rd). At first we consider

− div Q̂∇e0h2 = (− div ◦mQ̂ ◦ ∇)(e0h2) as an element of H−2(Rd) consisting

of the separate mappings ∇ : L2(Rd) → (H−1(Rd))d , mQ̂ : (H−1(Rd))d →
(H−1(Rd))d , and div : (H−1(Rd))d → H−2(Rd) where mQ̂ denotes the

multiplication with Q̂ in H−1(Rd). With the usual identification of dual spaces,
we obtain〈

div Q̂∇e0h2, ϕ
〉
H−2(Rd )×H2(Rd )

= (div Q̂∇e0h2)(ϕ)

= 〈h1, ϕ〉H−s (Rd )×Hs (Rd ) .
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So h1 = div Q̂∇e0h2 ∈ H−2(Rd), or for some largeλ ≥ λ0 also−h1+λe0h2 =
(λ − div Q̂∇)e0h2. Now by Lemma 3.9 applied with 2 − s ∈ (0, 2], we have

‖e0h2‖H2−s (Rd ) ≤ Cλ‖λe0h2 − h1‖H−s (Rd ),

which shows that e0h2 ∈ H2−s(Rd) and as supp e0h2 ∈ �, also e0h2 ∈
Ḣ2−s(�).

However the space of zero extensions of C∞
c (�) lies dense in Ḣ2−s(�) (cf. [5,

(2.82)]), and there is a sequence of functions (ψn)n ⊆ C∞
c (�) such that e0ψn

converges to e0h2 in H2−s(Rd), which shows that div Q̂∇e0ψn converges to
div Q̂∇e0h2 = h1 in H−s(Rd). But then, for any u ∈ Hs

B(�) and F ∈ Hs(Rd)

such that F |� = u, we obtain

�(u) = 〈h1, F〉H−s (Rd )×Hs (Rd ) +
〈
e0h2, e

0Bmaxu
〉
Rd

= lim
n→∞

〈
div Q∇e0ψn, F

〉
H−s (Rd )×Hs (Rd )

+ 〈ψn, Bmaxu〉�
= lim

n→∞ −〈Bminψn, u〉� + 〈
ψn, B

∗
minu

〉
�

= 0.

Hence, � already vanishes on Hs
B(�); and we have shown that �|C∞(�) = 0

implies � = 0, which yields the desired density by a standard corollary to
Hahn–Banach.

(ii) Let v ∈ D(B0) and u ∈ D(Bmax) be arbitrary. Because of (i) there is a sequence
of functions ϕn in C∞(�) such that B∗

0ϕn → Bmaxu and ϕn → u in L2(�).

Hence for all v ∈ D(B0) we have

0 =
〈
−Nbϕn, tr v

〉
�

=
〈
−N bϕn, tr v

〉
�

= 〈
v, B∗

0ϕn
〉
�

− 〈B0v, ϕn〉� → 〈v, Bmaxu〉� − 〈B0v, u〉� ,

so

〈v, Bmaxu〉� − 〈B0v, u〉� = 0

for all u ∈ D(Bmax). This shows v ∈ D(B∗
max) and B0v = B∗

maxv = Bminv,

which together with Propositions 3.11 (iii) and 3.13 shows that B0 = Bmin and
B∗
0 = Bmax as claimed.

(iii) Nb = −∂
Q
ν follows from B∗

0 = Bmax and the definition of the weak co-

normal (3.2).We show γ
3/2
Q ⊆ −Nb ⊆ γ 1

Q first. So let u ∈ H3/2
B (�).By (i) there

is a sequence (ϕn)n ⊆ C∞(�) that converges to u in H3/2
B (�). As in the proof

of Proposition 3.8 we have 〈Bmaxϕn, v〉� −b(ϕn, v) = 〈−ν · tr Q∇ϕn, tr v〉� =
〈−γ

3/2
Q ϕn, tr v〉� for all v ∈ H1(�). Hence, as the sequence (ϕn)n in particular

converges in H1
B(�), we may take the limit and obtain for all v ∈ H1(�)

〈Bmaxu, v〉� − b(u, v) = lim
n→∞ 〈Bmaxϕn, v〉� − b(ϕn, v)

= lim
n→∞

〈
−γ

3/2
Q ϕn, tr v

〉
�

=
〈
−γ

3/2
Q u, tr v

〉
�

.
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As γ
3/2
Q u ∈ L2(�), by definition we have u ∈ D(Nb) and Nbu = −γ

3/2
Q u. For

the second inclusion let u ∈ D(Nb), then for all v ∈ H1(�) we have

〈Bmaxu, v〉� − b(u, v) =
〈
Nbu, tr v

〉
�

=
〈
Nbu, tr v

〉
H−1/2(�)×H1/2(�)

as v ∈ H1(�) and theDirichlet tracemaps continuously from H1(�) to H1/2(�)

(see Definition 3.3).
Next, recall that D(Nb) ⊆ H1

B(�) by definition. Using the density of C∞(�)

in H1
B(�), we find a sequence (ϕn)n ⊆ C∞(�) that converges in H1

B(�) toward
u. So continuity of γ 1

Q from H1(�) to H−1/2(�) yields

〈Bmaxu, v〉� − b(u, v) = lim
n→∞ 〈Bmaxϕn, v〉� − b(ϕn, v)

= lim
n→∞

〈
−γ 1

Qϕn, tr v
〉
�

= lim
n→∞

〈
−γ 1

Qϕn, tr v
〉
H−1/2(�)×H1/2(�)

=
〈
−γ 1

Qu, tr v
〉
H−1/2(�)×H1/2(�)

.

Hence we have
〈
Nbu, tr v

〉
H−1/2(�)×H1/2(�)

=
〈
−γ 1

Qu, tr v
〉
H−1/2(�)×H1/2(�)

for all v ∈ H1(�). As the Dirichlet trace is surjective onto H1/2(�), we obtain

〈
Nbu, ψ

〉
H−1/2(�)×H1/2(�)

=
〈
−γ 1

Qu, ψ
〉
H−1/2(�)×H1/2(�)

for all ψ ∈ H1/2(�) by taking any solution of tr v = ψ . Thus −γ 1
Qu = Nbu

on H−1/2(�), which in particular yields ker γ 3/2
Q ⊆ ker Nb ⊆ ker γ 1

Q . By

Lemma 3.4 we have ker γ s
Q ⊆ H3/2

B = D(γ
3/2
Q ) for all s ∈ [ 12 , 3

2 ]. As γ
3/2
Q is

also surjective onto L2(�), we have Nb = γ
3/2
Q by Proposition 2.7.

(iv) This follows from Lemma 3.4, once more. We have that u ∈ H1
B(�) and either

tr u = 0 or γ s
Qu = 0 for any s ∈ [ 12 , 3

2 ] implies u ∈ H3/2
B (�).

�

3.3. On the fourth-order system

Applying the above results to the primary form a and its associated operator we
obtain the following solution theorems for fourth-order system with Wentzell bound-
ary conditions. We are able to solve the following system, as Nb is surjective by
Lemma 3.7.
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Theorem 3.15. AssumeHypotheses 2.9 and 3.1. LetH = L2(�, λd)×L2(�, β−1dS)

and B = − div∇Q. Then for u0 = (u1,0, u2,0) ∈ H the Cauchy problem

∂t u1 + B(αB)u1 = 0 in (0,∞) × �, (3.6)

∂t u2 + β∂Q
ν (αB)u1 + γ u2 = 0 on (0,∞) × �, (3.7)

∂Q
ν u1 = 0 on (0,∞) × �, (3.8)

u1|t=0 = u1,0 in �, (3.9)

u2|t=0 = u2,0 on � (3.10)

possesses a unique solution, which is given byu(t) = T(t)(u1,0, u2,0) for t > 0where
T(t) is the analytic semigroup generated by −A given as in (2.10). Furthermore, we
have

D(A) = {u ∈ H | u1 ∈ H3/2
B (�), α div Q∇u1 ∈ H3/2

B (�), tr u1 = u2, γ
3/2
Q u1 = 0}.

Proof. This is a direct consequence of Theorems 2.8 and 2.12, whose assumptions are
validated by Lemmata 3.6 and 3.7. The identification of the operators and characteri-
zation of the domain follow from Theorem 3.14. �
Remark 3.16. As in Remark 2.13, we observe that u1 also solves the corresponding
non-decoupled problem with Wentzell boundary conditions

∂t u + B(αB)u = 0 in (0,∞) × �, (3.11)

tr B(αB∇)u − β∂Q
ν (αB)u − γ tr u = 0 on (0,∞) × �, (3.12)

∂Q
ν u = 0 on (0,∞) × �, (3.13)

u|t=0 = u0 in �. (3.14)

Finally, we also want to add the case δ > 0. The main idea is to compare the
machinery of the form b with that of bδ defined by

bδ(u, v) = 〈Q∇u,∇v〉� + 〈δu, v〉� (3.15)

for 0 ≤ δ ∈ L∞(�) on D(bδ) = H1(�).

Proposition 3.17. Under Hypotheses 2.9 and 3.1, the subsidiary form bδ (defined via
(3.15)) is admissible. We denote its associated operator by BN ,δ .

Proof. As 0 ≤ δ ∈ L∞(�), the calculations are similar to the proof of Lemma 3.6.
Note that the norm ‖ · ‖bδ

is also equivalent to the full H1(�)-norm as the trace is
continuous from H1(�) to L2(�). �
Under the given smoothness conditions we have C∞

c (�) ⊆ D(BN ,δ) similar as in
Lemma 3.6 due to the fact that b = bδ for test functions. Naturally, one can consider
the restriction of the form to H1

0 (�) once more, but there the form also coincides with
the previous form bD , so the Dirichlet realization is independent of δ. This also shows
that also D(BN ,δ) ∩ D(BD,δ) is dense in L2(�) and Theorem 2.8 is applicable to bδ ,
as well.
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Theorem 3.18. AssumeHypotheses2.9 and3.1.LetH = L2(�, λd)×L2(�, β−1dS),
and b and bδ be the admissible subsidiary forms defined viaDefinition 3.5 and Formula
(3.15), respectively. Let B0, Bmin, Bmax, Nb be the corresponding induced operators
with respect to b; and B0,δ , Bmin,δ , Bmax,δ , Nbδ be the corresponding induced oper-
ators with respect to bδ (cf. Definitions 2.6, 3.12, and Proposition 3.11). Also let aδ

denote the primary form corresponding to bδ (cf. Definition 2.10 (ii)). Let ∂
Q
ν and

γ
3/2
Q be the weak and strong Neumann traces from (3.2) and (3.3). Then, we have the

following results.

(i) Nbδ is surjective.
(ii) B0,δ = B0, and (B0,δ)

∗ = Bmax,δ = Bmax = B∗
0 = − div Q∇ considered as

L2-realization of a map from L2(�) to H−2(�).
(iii) Nbδ = −γ

3/2
Q − δ · tr, and the operator associated to aδ on H is given by

Aδ =
(

div Q∇(α div Q∇) 0

−β(γ
3/2
Q + δ tr)(α div Q∇) γ

)
(3.16)

on

D(Aδ) = {u ∈ H | u1 ∈ H3/2
B (�),α div Q∇u1 ∈ H3/2

B (�),

tr u1 = u2, γ
3/2
Q u1 + δ tr u1 = 0}.

Proof. (i) The surjectivity of Nbδ follows from [23, Lemma 3.7/3.8], just as in the
Neumann case, because the theory there also contains the Robin case (cf. [23,
Equation (2.3)]). So Nbδ = N bδ .

(ii) For u ∈ H1
0 and f ∈ L2(�) we have 〈 f, v〉� = 〈Q∇u,∇v〉� for all v ∈ H1(�)

if and only if we have 〈 f, v〉� = 〈Q∇u,∇v〉� +〈δ tr u, tr v〉� for all v ∈ H1(�)

due to tr u = 0. Thus D(BN ) ∩ H1
0 = D(BN ,δ) ∩ H1

0 and the operators BN and
BN ,δ coincide there, which shows B0 = B0,δ . Taking adjoints, this carries over
to B∗

0 . As B0,δ = B0 = (− div Q∇)|H2
0
we also have Bu = Bδu, so also their

L2-realizations Bmax and Bmax,δ must coincide.
(iii) Due to the surjectivity shown in (i) we have N bδ = Nbδ by Theorem 2.8 (iv).

Next we show Nbδ = Nb − δ tr u. Assume u ∈ D(Nb). Hence u ∈ H1(�)

and for all v ∈ H1(�) we have
〈
Nbu, tr v

〉
�

= 〈
B∗
0u, v

〉
�

− b(u, v). So,
equivalently,

〈
Nb − δ tr u, tr v

〉
�

= 〈
(B0,δ)

∗u, v
〉
�

− bδ(u, v), which shows

D(Nb) = D(Nbδ ) and Nbδ = Nb − δ tr = −γ
3/2
Q − δ tr by Theorem 3.14 (iii).

Furthermore, by Theorem 2.12, the associated operator Aδ is given by

Aδ =
(

(B0,δ)
∗(αBN ,δ) 0

−βN bδ (αBN ,δ) γ

)

on

D(Aδ) = {u ∈ H | u1 ∈ D(BN ,δ), αBN ,δu1 ∈ D(N bδ ), u2 = tr u1}.
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Using (i), (ii) andTheorem3.14 (iii) and (iv) yields the result.Note that ker Nbδ =
D(BN ,δ) because of Theorem 2.8 (iii) applied to bδ.

�

Remark 3.19. After having verified H3/2
B (�)-regularity for the trace Nb, it can be

deduced that (L2(�), tr, Nbδ ) actually is a quasi-boundary triple for the operator
Bmax|D(Nb) in the sense of [7], which generalizes the results from their Section 4.2 to
Lipschitz domains. A detailed proof can be found in [25, Section 3.4].

We may finally collect the main result for our original system (1.5)–(1.9). The
notations Nb and γ

3/2
Q were useful in context with the general theory. In the following,

however, we will write ∂
Q
ν , again, which is closer to classical notation. Note that due

to our results we have ∂
Q
ν = γ

3/2
Q = −Nb = −N b, anyway.

Theorem 3.20. AssumeHypotheses 2.9 and3.1. LetH = L2(�, λd)×L2(�, β−1dS).
Write B = − div Q∇ and ∂

Q
ν for the unique extension of ν · tr Q∇ to H3/2(�). Then

for u0 = (u1,0, u2,0) ∈ H the Cauchy problem

∂t u1 + B(αB)u1 = 0 in (0,∞) × �, (3.17)

∂t u2 + β∂Q
ν (αB)u1 + βδ tr(αB)u1 + γ u2 = 0 on (0,∞) × �, (3.18)

∂Q
ν u1 + δu2 = 0 on (0,∞) × �, (3.19)

u1|t=0 = u1,0 in �, (3.20)

u2|t=0 = u2,0 on � (3.21)

possesses a unique solution, which is given by u(t) = T(t)(u1,0, u2,0) where T(t) is
the analytic semigroup generated by−Aδ given as in (3.16). For t > 0, we have u(t) ∈
D(A∞

δ ), whence u1 solves the original system with Wentzell boundary conditions
given by

∂t u + B(αB)u = 0 in (0,∞) × �, (3.22)

tr B(αB)u − β∂Q
ν (αB)u − βδ tr(αB)u − γ tr u = 0 on (0,∞) × �, (3.23)

∂Q
ν u + δ tr u = 0 on (0,∞) × �, (3.24)

u|t=0 = u0 in �. (3.25)

4. Further properties of the solution in the fourth-order case

In this section, we present results concerning regularity and long-time behavior of
our solution. We begin with a regularity result in a smoother situation. Then we return
to our situation with Lipschitz domains and rougher coefficients.
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4.1. Higher regularity for smoother cases

Even with smooth coefficients and boundary, we cannot expect that for u ∈ D(A)

the first component u1 belongs to H4(�). However, using the theory of [12], we can
deduce u1 ∈ H7/2(�).

To that end let us recall the notion of parameter-ellipticity. Therein, we use the
standard form

(
λ+A
B

)
for parameter-elliptic boundary value problems for a moment,

which is not to be confused with our operators A and B.

Definition 4.1. Let � ⊆ C be a closed sector in the complex plane with vertex at
the origin. Using the standard convention D := −i∇ for parabolic boundary value
problems, let A and B = (B1, ..., Bm) be formally given by

A(x, D) :=
∑

|α|≤2m

aα(x)Dα and Bj (x, D) :=
∑

|β|≤m j

bβ(x) tr Dβ ( j = 1, . . . ,m),

where m j < 2m

(i) We define the principal symbols of A and Bj as

a0(x, ξ) :=
∑

|α|=2m

aα(x)ξα and b0, j (x, ξ) :=
∑

|β|=m j

b jβ(x)ξβ ( j = 1, . . . ,m),

respectively.
(ii) We call the family λ − A(x, D) parameter-elliptic in � if the principal symbol

a0(x, ξ) satisfies

|λ − a0(x, ξ)| ≥ C
(|λ| + |ξ |2m)

(x ∈ �, λ ∈ �, ξ ∈ R
d , (ξ, λ) �= 0) (4.1)

for some constant C > 0.
(iii) The boundary value problem

(
λ+A
B

)
is called parameter-elliptic in � if λ −

A(x, D) is parameter-elliptic in�, and the Shapiro–Lopatinskii condition holds,
i.e.:
Let x0 ∈ ∂� be an arbitrary point of the boundary; rewrite the boundary value
problem (λ−a0(x0, D), b0,1(x0, D), . . . , b0,m(x0, D)) in the coordinate system
associated with x0 obtained from the original one by a rotation after which the
positive xd -axis has the direction of the interior normal to ∂� at x0. Then, for
all ξ ′ ∈ R

d−1 and λ ∈ � with (ξ ′, λ) �= 0, the trivial solution w = 0 is the only
stable solution of the ordinary differential equation on the half-line

(λ − a0(x0, ξ
′, Dd))w(xd) = 0 (xd ∈ (0,∞)),

b0, j (x0, ξ
′, Dd)w(0) = 0 ( j = 1, . . . ,m).

So we rewrite our system as a parameter-elliptic boundary value problem. Recall
that any solution of (1.5)–(1.9) satisfies u ∈ D(A), which shows B(αB)u1 ∈ L2(�),
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β∂
Q
ν (αB)u1 ∈ L2, and ∂

Q
ν u1 + δ tr u1 = 0. Thus the first component of any solution

of (1.5)–(1.9) in particular satisfies

λu1 + B(αB)u1 = f := λu1 + B(αB)u1 in (0,∞) × �, (4.2)

−β∂Q
ν (αB)u1 = g := −β∂Q

ν (αB)u1 on (0,∞) × �, (4.3)

∂Q
ν u1 + δ tr u1 = 0 on (0,∞) × � (4.4)

with ( f, g) ∈ H = L2(�) × L2(�). It remains to check that all assumptions of
[12, Corollary 4.10] are satisfied for this system, where we have τ = m j + 1/p and
thus �|r ′|� = �|k′

1|� + 1 = 1, �|k′
2|� + 1 = 3. In order to ensure aα ∈ BUC1(�),

b1β ∈ BUC1(�), and b2β ∈ BUC3(�), and the sufficient boundary regularity, we
make the following assumptions, which also imply Hypotheses 2.9 and 3.1.

Hypothesis 4.2. Let Q ∈ BUC4(�̄,Rd×d) be symmetric and uniformly positive def-
inite, which means there is some open superset �̃ ⊆ R

d containing � such that
Q ∈ BUC4(�̃,Rd×d) is symmetric and satisfies for some κQ > 0

〈Q(x)ξ, ξ 〉
Cd ≥ κQ |ξ |2 (x ∈ �̃, ξ ∈ C

d).

Let α ∈ BUC3(�), β ∈ BUC1(�), and δ ∈ BUC3(�), such that there exists a
constant η > 0 with α ≥ η almost everywhere on � and β ≥ η almost everywhere on
�. Furthermore, let δ ≥ 0.

The final assumption to check is parameter-ellipticity:

Lemma 4.3. AssumingHypothesis4.2 the system

⎛
⎜⎝

λ + BαB

−β∂
Q
ν (αB)

∂
Q
ν + δ tr

⎞
⎟⎠ is parameter-elliptic

in �θ for θ ∈ (0, π).

Proof. The parameter-ellipticity for the family λ + BαB is simple as we have

a0(x, ξ) := symb0[BαB](x, ξ) =
∑
j,k

(ξ j q jk(x)ξk)α(x)
∑
j ′,k′

(ξ j ′q j ′k′(x)ξk′) > 0

for all |ξ | �= 0 as the matrix Q = (q jk) jk is symmetric and uniformly positive defi-
nite. Note for the first line that all the terms where the derivative hits the coefficient
are of lower order. Hence, we can exploit homogeneity and boundedness of the do-
main, which shows parameter-ellipticity in any closed sector that does not contain the
negative real line.
A similar calculation shows

a′(x, ξ) := symb0[B](x, ξ) =
∑
j ′,k′

ξ j ′q j ′k′(x)ξk′ ,

b0,1(x, ξ) := symb0[−β∂Q
ν (αB)](x, ξ) = iβ(x)

∑
k

qdkξkα(x)a′(x, ξ),

b0,2(x, ξ) := symb0[∂Q
ν ](x, ξ) = −i

∑
k

qdk(x)ξk .
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In order to verify the Shapiro–Lopatinskii condition, we need to show that the ODE
below only has the trivial solution. For this, the operators are locally transformed
into the half-space at every fixed point x0 ∈ �. It is a known fact that this coor-
dinate transformation leaves the coefficients of the main symbol invariant (cf. [30,
Satz 10.3]). Furthermore, we would like to note that, as we only consider a fixed x0,
the coefficients commute with all derivatives and we can simply pass from divergence
to non-divergence form, which shows we may investigate the system (4.5) below. We
write � = (

ξ ′
−i∂d

)
, where ξ = (ξ ′, ξd) ∈ R

d as usual, and interpret the first compo-
nents as multiplication, so �w = (ξ1w, . . . , ξd−1w,−i∂dw). Then, for xd ∈ (0,∞),
and λ ∈ �θ , ξ ′ ∈ R

d−1 satisfying (λ, ξ ′) �= 0, we assume

(λ + a0(x0, �))w(xd) = 0,

b0,1(x0, �)w(0) = 0,

b0,2(x0, �)w(0) = 0.

(4.5)

Note that integration by parts yields

〈∑
j

� j u, v

〉

L2(0,∞)

=
〈
u,

∑
j

� jv

〉

L2(0,∞)

− iud(0) · vd(0).

Multiplying the first line with w in L2((0,∞)) and using integration by parts and
(4.5), we obtain

0 = |λ|‖w‖2L2(0,∞)
+

∑
j,k

〈
� j q jk(x0)�kα(x0)a

′(x0, �)w,w
〉
L2(0,∞)

= |λ|‖w‖2L2(0,∞)
+

∑
j.k

〈
q jk(x0)�kα(x0)a

′(x0, �)w,� jw
〉
L2(0,∞)

− β−1(x0)b0,1(x0, �)w(0) · w(0)

= |λ|‖w‖2L2(0,∞)
+

∑
j,k

〈
�kα(x0)a

′(x0, �)w, q jk(x0)� jw
〉
L2(0,∞)

= |λ|‖w‖2L2(0,∞)
+

〈
α(x0)a

′(x0, �)w,
∑
k, j

� j qk j (x0)�kw

〉

L2(0,∞)

− α(x0)a
′(x0, �)w(0) · b0,2(x0, �)w(0)

= |λ|‖w‖2L2(0,∞)
+ ‖√α(x0)a

′(x0, �)w‖2L2(0,∞)
.

Note that we used that the matrix Q = (q jk) is symmetric and real-valued and that
α > 0, β > 0. If λ �= 0, this implies that w = 0 as desired, since �θ ⊆ C\(−∞, 0).

If λ = 0, and thus by assumption ξ ′ �= 0, we have a′(x0, �)w = 0.
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Multiplying with w in L2(0,∞) once more, we obtain

0 =
∑
j ′,k′

〈
� j ′q j ′k′(x0)�k′w,w

〉
L2(0,∞)

=
∑
j ′,k′

〈
q j ′k′(x0)�k′w,� j ′w

〉
L2(0,∞)

+ b0,2(x0, �)w(0) · w(0)

=
∑
j ′,k′

〈
q j ′k′(x0)�k′w,� j ′w

〉
L2(0,∞)

=
∫ ∞

0
〈Q(�w)(xd), (�w)(xd)〉Cd dxd ≥ κQ

∫ ∞

0
|(�w)(xd)|2dxd

= κQ(|ξ ′|2‖w‖2L2(0,∞)
+ ‖∂dw‖2L2(0,∞)

).

In the last step we used that Q is uniformly positive definite (cf. (3.1)). As ξ ′ �= 0,
we also have w = 0 in this case. Hence altogether the system is parameter-elliptic in
every sector smaller than π . �

This shows H7/2-regularity of any solution:

Corollary 4.4. Assume Hypothesis 4.2. Let H be as in Definition 2.10 (i) and set
B := − div Q∇. Then the domain of Aδ (cf. Formula (3.16)) is given by

D(Aδ) = {u ∈ H | u1 ∈ H7/2(�), B(αB)u1 ∈ L2(�), ∂
Q
ν + δ tr u1 = 0, u2 = tr u1}.

Proof. Due to Hypothesis 4.2 and Lemma 4.3 all assumptions of [12, Corollary 4.10]
are satisfied, hence we obtain

‖u1‖H7/2
λ (�)

≤ ‖ f ‖L2(�) + ‖g‖B0
22,λ(�) < ∞

due to B0
22,λ(�) = L2

λ(�) = L2(�). �

4.2. Hölder regularity

We show next that on Lipschitz domains and with coefficients as in Hypotheses 2.9
and 3.1 the solution u(t, ·) = (u1(t, ·), u2(t, ·)) of (1.1)–(1.4) satisfies that u1(t, ·) is
Hölder continuous for every t > 0. This implies that tr u1(t, ·) = u2(t, ·) also holds
in a classical sense.
Recall that T(t) maps H into D(A∞

δ ) for any t > 0 as it is analytic. It is not
to be expected, however, that u(t, ·) ∈ D(A∞

δ ) implies u1(t, ·) ∈ H3/2+ε(�) for
any ε > 0, as such a gain in differentiability does not even necessarily hold for the
much simpler Neumann Laplacian due to possible non-convex corners (cf. [20]). So
Hölder-continuity cannot be derived by Sobolev embedding directly in high dimen-
sions. However, we can use a bootstrapping idea on the integrability.
To that end we use the regular spaces L p(�) and L p(�) where the coefficient β

is not included, and write ‖ · ‖�,p and ‖ · ‖�,p for the occurring norms, respectively.
In the case p = 2, the index is dropped. Note that the L p-spaces are nested as our
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domain� is bounded. Furthermore, recall thatC0,ϑ (�) refers to the space ofϑ-Hölder
continuous functions on�, and note that every function u ∈ C0,ϑ (�) can be extended
uniquely to a (Hölder) continuous function on �.
As a preparation, we establish some further results concerning weak solutions of

the inhomogeneous Neumann problem

(λ − div Q∇)u = f̃ in �,

∂Q
ν u = g̃ on �.

(4.6)

Proposition 4.5. Assume Hypotheses 2.9 and 3.1 and let B = − div∇Q. For f̃ ∈
L2(�), g̃ ∈ L2(�) the following holds.

(i) For λ > 0, (4.6) has a unique weak solution, by which we mean a function
u ∈ H1(�) such that

bλ(u, v) = 〈Q∇u,∇v〉� + 〈λu, v〉� = 〈 f̃ , v〉� + 〈g̃, tr v〉� (4.7)

for all v ∈ H1(�). Furthermore, u ∈ H3/2
B (�), and we have the estimate

‖u‖2
H3/2
B (�)

≤ C(‖ f̃ ‖2� + ‖g̃‖2�).

(ii) Let f̃ ∈ Ld/2+ε(�), g̃ ∈ Ld−1+ε(�) for some ε > 0. Then, for any λ ∈ R,
any weak solution of (4.6) satisfies u ∈ C0,ϑ (�) for some ϑ ∈ (0, 1) and the
estimate

‖u‖C0,ϑ (�) ≤ C
(‖u‖� + ‖ f̃ ‖

�, d2 +ε
+ ‖g̃‖�,d−1+ε

)
. (4.8)

If λ > 0, we can drop the ‖u‖�-term on the right-hand side.
(iii) Let f̃ ∈ L p(�), g̃ ∈ L p(�) for some p > 2. Then, for λ > 0, the unique

solution u of (4.6) satisfies (u, tr u) ∈ Lϕ(p)(�) × Lϕ(p)(�) and

‖u‖�,ϕ(p) + ‖ tr u‖�,ϕ(p) ≤ C0

(
‖ f̃ ‖�,p + ‖g̃‖�,p

)
(4.9)

where

ϕ(p) :=
{

d−2
d−p p if p ∈ (2, d),

∞ if p ∈ [d,∞).

Proof. (i) We construct a solution candidate by collecting properties of a weak
solution. At first we observe that for any such weak solution u ∈ H1(�) we
have, given any v ∈ D(B0) ⊆ D(BN ),

〈u, B0v〉� = b(u, v) = bλ(u, v) − λ 〈u, v〉� =
〈
f̃ − λu, v

〉
�

.

Hence u ∈ D(B∗
0 ) and f̃ = (λ + B∗

0 )u. By Theorem 3.14 (ii), we also have
(λ+Bmax)u = (λ+B∗

0u) = f̃ by, so the first line of (4.6) holds in L2(�), where
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− div Q∇ is seen as L2(�)-realization of an object in H−2(�). Furthermore,
for all v ∈ H1(�) we obtain

〈−B∗
0u, v

〉
�

+ b(u, v) =
〈
− f̃ , v

〉
�

+ bλ(u, v) = 〈g̃, tr v〉� ,

which shows u ∈ D(Nb) and −Nbu = g̃. However, Theorem 3.14 (iii) yields
D(Nb) = H3/2

B (�) and γ
3/2
Q u = ∂

Q
ν u = −Nbu = g̃. So when we subtract v =

ϒ
3/2
N g̃ where ϒ

3/2
N is the continuous right-inverse of γ

3/2
Q from Lemma 3.4 (i),

the difference u − v solves the Neumann problem

(λ − div Q∇)(u − v) = f̃ + div Q∇v − λv in �,

γ
3/2
Q (u − v) = 0 on �.

(4.10)

Thus u − v ∈ D(BN ), as well as (λ − div Q∇)(u − v) = (λ + BN )(u − v).
In conclusion, we have shown that any weak solution of (4.6) satisfies (λ +
BN )(u − v) = f̃ + div Q∇v −λv. Hence, a suitable solution candidate is given
by ũ := (λ + BN )−1( f̃ + div Q∇ϒ

3/2
N g̃ − λϒ

3/2
N g̃) + ϒ

3/2
N g̃, which is well

defined due to (−∞, 0) ∈ ρ(BN ).
Finally, we verify ũ indeed is a solution and satisfies the regularity estimate. By
Lemma 3.4 (iii), we have

‖ũ − v‖2
H3/2
B (�)

≤ C(‖ũ − v‖2� + ‖BN (ũ − v)‖�)

= C‖ũ − v‖2BN

= C‖(λ + BN )−1( f̃ + div Q∇v − λv)‖2BN

≤ C
(‖ f̃ ‖2� + ‖v‖2

H3/2
B (�)

)

(where the constant C is generic) and thus by the above and the continuity of
ϒ

3/2
N

‖ũ‖2
H3/2
B (�)

≤ C
(‖ f̃ ‖2� + ‖v‖2

H3/2
B (�)

) ≤ C(‖ f̃ ‖2� + ‖g̃‖2�).

Now, naturally, ũ solves (4.6) in a strong sense by construction. By definition of
−Nb = ∂

Q
ν it also satisfies (4.7) and is in particular a weak solution with all the

desired properties.
The uniqueness is straightforward: If we had two weak solutions u, w ∈ H1(�)

satisfying (4.7) for all v ∈ H1(�), we would have bλ(u − w, v) = 0 for all
v ∈ H1(�). Now λ + BN is the associated operator to bλ, whence u − w in
D(BN ) and (λ + BN )(u − w) = 0. Again, by (−∞, 0) ⊆ ρ(BN ), we have
u − w = 0.

(ii) This is [22, Theorem 3.1.6] applied to A(x, u, p) = Q · p, a(x, u, p) = λu.
Note that their Assumption 2.9.1 is satisfied, and we are in the situation of [22,
Remark 3.1.7]. If λ > 0, we can estimate

‖u‖� ≤ ‖u‖
H3/2
B (�)

≤ C(‖ f̃ ‖2� + ‖g̃‖2�) ≤ C(‖ f̃ ‖2d
2 +ε,�

+ ‖g̃‖2d−1+ε,�).
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(iii) Let λ > 0. By (i) and (ii) the unique solution satisfies the two estimates

‖u‖�,2 + ‖ tr u‖�,2 ≤ C‖u‖
H3/2
B (�)

≤ C
(‖ f̃ ‖�,2 + ‖g̃‖�,2

)
, (4.11)

as well as

‖u‖�,∞ + ‖ tr u‖�,∞ ≤ ‖u‖C0,ϑ (�) ≤ C
(‖ f̃ ‖�,d + ‖g̃‖�,d

)
. (4.12)

More precisely, the solution operator Rλ that maps ( f̃ , g̃) to (u, tr u) is well
defined and continuous from X0 := L2(�) × L2(�) to Y0 := L2(�) × L2(�)

as well as from X1 := Ld(�)× Ld(�) to Y1 := L∞(�)× L∞(�). By complex
interpolation, we obtain that Rλ is also continuous from [X0, X1]θ to [Y0,Y1]θ
for all θ ∈ (0, 1). To identify the interpolation spaces, recall from [28, Theo-
rem 1.18.1] that complex interpolation of tuples of L p-spaces yields the tuple
of interpolated spaces in the sense of

[L p0(�) × Lq0(�), L p1(�) × Lq1(�)]θ
= [L p0(�), L p1(�)]θ × [Lq0(�) × Lq1(�)]θ

for all p0, p1, q0, q1 ∈ [1,∞]. Moreover, we have the equality [L p0(�),

L p1(�)]θ = L p(�) (and a similar equality for �) for 1
p = 1−θ

p0
+ θ

p1
in the

sense of equivalent norms, see [28, Theorem 1.18.6/2]. From this, we obtain for
all θ ∈ (0, 1) the continuity of Rλ : Xθ → Yθ where Xθ := L p(�)×L p(�) and
Yθ := Lϕ(p)(�) × Lϕ(p)(�) with p and ϕ(p) being defined by 1

p = 1−θ
2 + θ

d

and 1
ϕ(p) = 1−θ

2 . For p ∈ (2, d), the first equation yields θ = d(p−2)
(d−2)p , and the

second equation gives

ϕ(p) = 2

1 − θ
= d − 2

d − p
p.

This proves the assertion for p ∈ (2, d). For p ≥ d the statement follows directly
from (4.12).

�

However, the estimate we actually would like to make use of would be of type (4.9)
for solutions of the inhomogeneous Robin problem with λ = 0, i.e.

− div Q∇u = f in �,

∂Q
ν u + δ tr u = g on �,

(4.13)

because in order to obtain higher regularity for the Wentzell problem we decouple it
into two underlying Robin problems of precisely that form. Though Hölder continuity
for the Robin case is also established in [22, Example 4.2.7], this is not helpful in
our situation, since an explicit estimate of type (4.8) is not given there due to the
complexity of the bootstrapping argument, and we cannot deduce (4.9), as before.
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To avoid this obstacle, we rewrite the Robin problem into a Neumann problem, to
which we apply Proposition 4.5. The price we pay is that the solution u appears on
the right-hand side and we have to assume a priori that its integrability is as high as
the data’s.

Lemma 4.6. Assume Hypotheses 2.9 and 3.1. Let d ≥ 2, p ∈ (2,∞). Let B =
− div∇Q. Then, there is a constant C0 > 0 such that whenever u ∈ H3/2

B (�) is
a weak solution of (4.13) with f, u ∈ L p(�), as well as g, tr u ∈ L p(�), we have
(u, tr u) ∈ Lϕ(p)(�) × Lϕ(p)(�) and

‖u‖�,ϕ(p) + ‖ tr u‖�,ϕ(p) ≤ C0

(
‖u‖�,p + ‖ f ‖�,p + ‖g‖�,p + ‖ tr u‖�,p

)

where

ϕ(p) :=
{

d−2
d−p p if p ∈ (2, d),

∞ if p ∈ [d,∞).
(4.14)

Proof. Let u ∈ H1(�) be a weak solution of (4.13). Then, given any v ∈ D(B0) ⊆
D(BN ),

〈u, B0v〉� = b(u, v) = bδ(u, v) = 〈 f, v〉� .

Hence, u ∈ D(B∗
0 ), f = B∗

0u = (B0,δ)
∗u by Theorem 3.18 (ii). Once more, we have

Bmaxu = B∗
0u = f by Theorem 3.14 (ii), so the first line of (4.13) holds in L2(�),

where − div Q∇ is seen as L2(�)-realization of an object in H−2(�). Furthermore,
for all v ∈ H1(�) we obtain〈−(B0,δ)

∗u, v
〉
�

+ bδ(u, v) = 〈g, tr v〉�
for all v ∈ H1(�), which shows u ∈ D(Nbδ ) and (by Theorem 3.18) −Nbδu =
∂
Q
ν u+ δ tr u = g. Therefore, u also solves (4.6) with λ = 1, f̃ = f +u ∈ L2(�), and
g̃ = g− δ tr u ∈ L2(�), whence it must coincide with this problem’s unique solution.
Hence, Proposition 4.5 is applicable and as, due to the extra assumption, (u, tr u) is
also an element of L p(�) × L p(�), so is ( f̃ , g̃). Then, by Proposition 4.5 we have

‖u‖�,ϕ(p) + ‖ tr u‖�,ϕ(p) ≤ C
(
‖ f̃ ‖�,p + ‖g̃‖�,p

)

≤ C0

(
‖u‖�,p + ‖ f ‖�,p + ‖g‖�,p + ‖ tr u‖�,p

)

as desired. �
We obtain the following corollary about the integrability of elements of D(Aδ),

where ϕ(r) is defined as in (4.14).

Corollary 4.7. AssumeHypotheses2.9 and3.1 and letH = L2(�, λd)×L2(�, β−1dS).
Take B = − div∇Q and let Aδ be given by (3.16). Let r > 2. If u ∈ D(Aδ) ∩
(Lr (�)×Lr (�)),Aδu ∈ Lr (�)×Lr (�) and (α div Q∇u1, trα div Q∇u1) ∈ Lr (�)×
Lr (�), thenu ∈ Lϕ(r)(�)×Lϕ(r)(�) and (α div Q∇u1, trα div Q∇u1) ∈ Lϕ(r)(�)×
Lϕ(r)(�).
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Proof. By Theorem 3.18, we have for u ∈ D(Aδ)

(Aδu)1 = div Q∇α(div Q∇u1),

(Aδu)2 = −β(∂Q
ν + δ tr)(α div Q∇u1) + γ u2.

Thus, if u satisfies the assumption of this corollary, then w = −α div Q∇u1 solves
the inhomogeneous Robin problem

− div Q∇w = (Aδu)1 ∈ Lr (�)

(∂Q
ν + tr δ)w = β−1(Aδu)2 − β−1γ u2 ∈ Lr (�).

As (α div Q∇u1, trα div Q∇u1) ∈ Lr (�) × Lr (�) by assumption, so is (w, trw).
Hence, byLemma4.6, (w, trw) ∈ Lϕ(r)(�)×Lϕ(r)(�),which also implies div Q∇u1 ∈
Lϕ(r)(�) as the functions α, α−1 are bounded. Naturally Lϕ(r)(�) ⊆ Lr (�). Since
u ∈ D(Aδ) ∩ (Lr (�) × Lr (�)), we also know that (∂Q

ν + δ tr)u1 = 0 and (u, tr u) =
(u1, u2) ∈ Lr (�) × Lr (�), whence u1 solves the homogeneous Robin problem

− div Q∇u1 = − div Q∇u1 ∈ Lr (�),

(∂Q
ν + δ tr)u1 = 0 ∈ Lr (�).

Applying Lemma 4.6 once more yields u1 ∈ Lϕ(r)(�) and u2 = tr u1 ∈ Lϕ(r)(�), as
claimed. �

We can now prove the main result of this section.

Theorem 4.8. AssumeHypotheses 2.9 and3.1and letH = L2(�, λd)×L2(�, β−1dS).
Let Aδ be defined as in (3.16). Then, there is a ϑ ∈ (0, 1), such that for any
u ∈ D(A∞

δ ), its first component u1 is an element of C0,ϑ (�). In particular, this
shows Hölder continuity of u1(t, ·) for t > 0 due to the analyticity of the semigroup
T generated by −Aδ .

Proof. Let u ∈ D(Aδ). Then u1, α div Q∇u1 ∈ H3/2

 (�) ⊆ H1(�). Furthermore,

tr u1, tr(α div Q∇u1) ∈ H1(�). By Sobolev embedding (see [2, Theorem 4.12]), we

obtain H1 ⊆ L
2d
d−2 . Hence, for d ≤ 4, we have H1 ⊆ Ld , which shows

D(Aδ) ⊆ {u ∈ Ld(�) × Ld(�) | (
α div Q∇u1, tr(α div Q∇u1)

) ∈ Ld(�) × Ld(�)}.

If d ≥ 5, we have u1, α div Q∇u1 ∈ L
2d
d−2 (�) and tr u1, tr(α div Q∇u1) ∈ L

2d
d−2 (�).

This shows

D(Aδ) ⊆ {u ∈ Lr1(�) × Lr1(�) | (
α div Q∇u1, tr(α div Q∇u1)

) ∈ Lr1(�) × Lr1(�)}

for r1 = 2d
d−2 . Inductively, we obtain

D(Ak
δ ) ⊆ {u ∈ Lrk (�) × Lrk (�) | (

α div Q∇u1, tr(α div Q∇u1)
) ∈ Lrk (�) × Lrk (�)},
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where rk = ϕ(rk−1) = ϕk−1( 2d
d−2 ). Indeed, assume this statement is true for some k

and consider u ∈ D(Ak+1
δ ). Then u ∈ D(Ak

δ ) ⊆ D(Aδ) andAδu ∈ D(Ak
δ ). By in-

duction hypothesis,u,Aδu ∈ Lrk (�)×Lrk (�), and
(
α div Q∇u1, tr(α div Q∇u1)

) ∈
Lrk (�)×Lrk (�).Hence,Corollary 4.7 yieldsu ∈ Lϕ(rk )(�)×Lϕ(rk )(�) = Lrk+1(�)×
Lrk+1(�) as well as

(
α div Q∇u1, tr(α div Q∇u1)

) ∈ Lϕ(rk )(�) × Lϕ(rk )(�) = Lrk+1(�) × Lrk+1(�).

From the structure of the map ϕ it is clear that (rk)k∈N is an increasing sequence that
tends to ∞. Hence for all d ∈ N we have found a k0 ∈ N such that

D(A
k0
δ ) ⊆ {u ∈ Ld(�) × Ld(�) | (

α div Q∇u1, tr(α div Q∇u1)
) ∈ Ld(�) × Ld(�)}.

For any such u ∈ D(A
k0
δ ), we have − div Q∇u1 = − div Q∇u1 =: f̃ ∈ Ld(�) as

well as ∂
Q
ν u1 = −δ tr u1 =: g̃ ∈ Ld(�) due to α ∈ L∞(�), δ ∈ L∞(�). Thus u1 is

a weak solution of (4.6) for λ = 0, and Proposition 4.5 (ii) implies u1 ∈ C0,ϑ (�) as
claimed. �

Remark 4.9. The proof of Theorem 4.8 actually yields a number k0 ∈ N, depending
only on the dimension d, such that u ∈ D(A

k0
δ ) implies u1 ∈ C0,ϑ (�). The number

k0 we calculated there is not sharp, but the embedding certainly does not hold for
dimensions that are too large.
For example, for the case of Neumann boundary conditions, i.e. δ = 0, we can

verify D(A) ⊆ C0,ϑ (�) for d ≤ 6, simply as α div Q∇u1 ∈ H3/2(�) ⊆ L
2d
d−3 (�) ⊆

Ld/2+ε(�) from which the assertions follows from Proposition 4.5 (ii) for λ = 0 (cf.
[2, Theorem 7.34]).
But, at least for constant Q and α it is quite simple to construct functions in D(A)

which are not Hölder continuous for d ≥ 8. As Sobolev embeddings are sharp, we
know that for d ≥ 8 the Sobolev space H4(�) is not contained in L∞(�). Now,
let �′ be a smooth domain contained in �. Let v be a function that lives in H4(�′)
but not in L∞(�′). As �′ is smooth there exists an extension of v (denoted by v

again) to H4(Rd), which still cannot be in L∞(Rd). Now let ϕ ∈ C∞
c (�) such that

ϕ = 1 on �′. Then the function u = ϕ · v ∈ H4(�)\L∞(�). Moreover, it satisfies
the Neumann boundary condition ∂νu = 0 as it is compactly supported on �. Hence
(u, tr u) ∈ D(A) (as all the other regularity conditions are implied by H4-regularity
because Q and α are constant). However, (u, tr u) �∈ L∞(�) × L∞(�), so u cannot
be Hölder continuous.

4.3. Asymptotic behavior and eventual (strong) positivity

In this section, we derive asymptotic properties of our solution.We are going to skip
the proofs whenever neither variable coefficients nor extra Robin-term are relevant and
the ideas can be carried over directly from [11, Chapter 6], as is the case for the next
two results.
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Lemma 4.10. Assume Hypotheses 2.9 and 3.1. Then, the operatorAδ (cf. (3.16)) has
compact resolvent.

Corollary 4.11. Assume Hypotheses 2.9 and 3.1. There exists an orthonormal basis
(en)n of H = L2(�, λd) × L2(�, β−1dS) consisting of eigenfunctions of Aδ , say
Aδen = λnen , where the sequence λn is increasing to ∞, allowing the representation

Aδf =
∞∑
k=1

λk 〈f, ek〉H ek

for all f ∈ D(Aδ). Moreover, as en ∈ D(A∞
δ ), it has a Hölder continuous representa-

tive in the sense that there exists a function en ∈ C0,ϑ (�) such that en = (en|�, en|�).
Finally, for all f ∈ H, the semigroup T can be represented as

u(t) = (u1(t), u2(t)) = T(t)f =
∞∑
k=1

e−λk t 〈f, ek〉H ek . (4.15)

Lemma 4.12. Assume Hypotheses 2.9 and 3.1. LetAδ be given by (3.16). Then, the
following holds.

(i) Ifγ = 0 almost everywhere, thenker(Aδ) ⊆ span(1�,1�) and
∫
�

δ| tr u1|2dS =
0.

(ii) If γ = 0, δ = 0 almost everywhere, then λ1 = 0 and ker(A) = span(1�,1�).

(iii) If γ, δ ≥ 0 and either γ > 0 or δ > 0 on a set of positive surface measure, then
λ1 > 0 and we have ker(Aδ) = {0}.

(iv) If
∫
�

γ dS < 0, then λ1 < 0.

Proof. In cases (i)–(iii), we have γ, δ ≥ 0. Hence, aδ is accretive, so we have λ1 ≥ 0.
Thus, whether λ1 = 0 or λ1 > 0 depends only on ker(Aδ).

(i) Suppose γ = 0 almost everywhere, then u ∈ ker(Aδ) implies u1 ∈ ker(BN ,δ).
More precisely, let u ∈ ker(Aδ) ⊆ D(Aδ) ⊆ D(aδ). Then

0 = 〈Aδu,u〉H = aδ(u,u) =
∫

�

α|BN ,δu1|2dx .

It follows that α|BN ,δu1|2 = 0 and hence, since α(x) ≥ η, u1 ∈ ker(BN ,δ). This
means

0 = 〈Q∇u1,∇u1〉� + 〈δu1, u1〉� = ‖√Q∇u1‖2� + ‖√δ tr u1‖2

and shows∇u1 = 0,whence u1 is constant (and, therefore, also u2 = tr u1).Moreover,∫
�

δ| tr u1|2dS = 0.
(ii) If δ = 0, naturally also the converse holds as BN1� = − div Q∇1� = 0 and

the constant functions satisfy the Neumann boundary condition, which shows λ1 = 0.
(iii) If γ = 0, δ > 0 on a set of positive surface measure �0, due to (i), u1 is

still constant. But now, we also find a set of positive measure �ε ⊆ � where δ > ε.
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However, if we had u = c �= 0 by (i), this would yield

0 =
∫

�

δ| tr u1|2dS ≥
∫

�ε

δ| tr u1|2dS ≥ εc2S(�ε) > 0.

Analogously, if γ > 0 on a set of positive measure and u ∈ ker(Aδ), we calculate

0 = 〈Aδu,u〉H = a(u,u) =
∫

�

α|
u1|2dx +
∫

�

β−1γ |u2|2dS

≥
∫

�ε

β−1γ c2 dS ≥ ‖β‖−1∞ εc2S(�ε) > 0,

another contradiction.
(iv) Plugging (1�,1�) ∈ D(aδ) into the usual Rayleigh quotient, we obtain a

negative value as
∫
�

β−1γ dS < 0, and thus λ1 < 0. �
This yields the following asymptotic behavior of the semigroup T.

Theorem 4.13. AssumeHypotheses2.9 and3.1.LetH = L2(�, λd)×L2(�, β−1dS),
Aδ be given by (3.16), andT be the semigroup generated by−Aδ . Then the following
holds.

(i) If γ = 0, δ = 0 almost everywhere, then ‖T(t)f − f̄‖H ≤ e−λ2t‖f‖H for all
f ∈ H, where

f̄ := 1

λd(�) + ∫
�

β−1dS

(∫
�

f1dx +
∫

�

β−1 f2dS

)
(1�,1�),

and λ2 > 0 is the second eigenvalue of A.
(ii) If γ, δ ≥ 0 and γ > 0 or δ > 0 on a set of positive measure, then ‖T(t)f‖H ≤

e−λ1t‖f‖H holds for all f ∈ H. Thus, in this case, the semigroup T is exponen-
tially stable.

(iii) If
∫
�

γ dS < 0, then ‖T(t)‖L(H) = e−λ1t → ∞ as t → ∞.

Proof. For (i) observe that in this case λ1 = 0 and f̄ = e−λ1t 〈f, e1〉He1 in view of
Lemma 4.12. Thus (4.15) and Parseval’s identity yield

‖T(t)f − f̄‖2H =
∞∑
k=2

e−λk t |〈f, ek〉H|2 ≤
∞∑
k=2

e−λ2t |〈f, ek〉H|2 ≤ e−λ2t‖ f ‖2H.

This proves (i). In case (ii), we have λ1 > 0 (see again Lemma 4.12), and (ii) follows
by a similar computation. (iii) follows by considering an eigenvalue corresponding to
the eigenvalue λ1. �
Remark 4.14. For our following positivity investigations, we consider the space H =
L2(� ∪̇ �,μ), where μ is given byμ(A) = ∫

A∩�
1 dλ+∫

A∩�
β−1dS, with positivity

cone

H+ := {u ∈ H | u(x) ≥ 0 μ-a.e}. (4.16)

Once can easily show that H can be identified with our Hilbert space H = L2(�) ×
L2(�, β−1dS) from Definition 2.10 (i), and u with u = (u1, u2).
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Proposition 4.15. Assume Hypotheses 2.9 and 3.1, as well as γ ≥ 0. LetAδ be given
by (3.16). Then the semigroup T generated by −Aδ is real, but neither positive nor
L∞-contractive.

Proof. The same arguments as in [11, Lemma 3.5] work as Robin and Neumann
boundary conditions are equal for test functions. Note that γ ≥ 0 is assumed, as the
invariance criteria from [24] used there are stated for accretive forms only. �
Again however, we may show that the semigroup T is eventually strongly positive

in the sense of [9], [10] and [8], as the critical ingredient is the Hölder continuity
established in the previous section also for the variable coefficient case. We recall a
simplified version of the definition from [8, Section 1] and the criterion used there.

Definition 4.16. Let (�,μ) be a σ -finite measure space and T a real C0-semigroup
on the space H = L2(�,μ) with positivity cone H+ given in the sense of (4.16).
Then, T is called eventually strongly positive if there is some time t0 > 0 such that for
all f ∈ H+\{0} and t ≥ t0 there is some ε > 0 for which T (t) f ≥ ε holds μ-almost
everywhere.

Theorem 4.17. Let (�,μ) be a σ -finite measure space and T a real C0-semigroup
generated by a self-adjoint operator A on H = L2(�,μ). If D(A∞) ⊆ L∞(�,μ),
then the following assertions are equivalent:

(i) T is eventually strongly positive.
(ii) ker(s(A)− A) is one-dimensional and contains a vector v such that v ≥ ε holds

μ-almost everywhere for some ε > 0.

Theorem 4.18. Assume Hypotheses 2.9 and 3.1, and additionally that γ = δ = 0.
Let A be given by (3.16) (for δ = 0). Then T, the semigroup generated by −A, is
eventually strongly positive in the sense of Definition 4.16.

Proof. We apply Theorem 4.17 for H defined as in Remark 4.14 and A = −A. As
β, β−1 are bounded, L∞(� ∪̇ �,μ) can be identified with L∞(�) × L∞(�). T is
real as a consequence of Proposition 4.15, and the operator A is self-adjoint due to
the symmetry of the form (see Theorem 2.12). Finally, we have that D(A∞) embeds
into L∞(�) × L∞(�) by Theorem 4.8. Now, to deduce eventual strong positivity,
we only have to verify assertion (ii) of Theorem 4.17. But this a direct consequence
of Lemma 4.12 (ii) that yields s(−A) = λ1 = 0 as γ = 0, δ = 0, and (1�,1�) ∈
ker(A). �
For a counterexample for eventual positivity in the case γ > 0, δ = 0, Q = Id we

refer the reader to [11, Section 7].

5. Application to systems of higher order

In this short excursion, we point out that the abstract theory established in Chapter 2
is not necessarily restricted to problems of order 4, though identification of the abstract
operators and regularity characterizations can be more difficult.
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Proposition 5.1. Let � ⊂ R
d be a bounded Lipschitz domain, H = L2(�), and let


N denote the Neumann Laplacian. For k ∈ N consider the form bk = 〈

ku,
kv

〉
�

on D(bk) = D(
k
N ). Then bk is admissible and BN = 
2k

N , whence also C∞
c (�) ⊂

D(BN ) ∩ D(BD) is satisfied, and we are in the situation of Theorem 2.12 and Re-
mark 2.13.

Proof. The form bk is symmetric and accretive by default. We have ‖u‖2bk = ‖u‖2� +
‖
ku‖2�. As 
k

N is a closed operator. D(
k
N ) is a Hilbert space with respect to

the graph norm and hence the form is closed. The continuity follows from Cauchy–
Schwarz’s inequality. Thus bk is generating and its associated operator BN is self-
adjoint. We have C∞

c (�) ⊆ D(
k
N ) ⊆ D(
N ) ⊆ H1(�) and may choose ρ = 1/2

in (2.1). For the last embedding we calculate ‖u‖2
H1(�)

= 〈
u, u〉� ≤ C(‖u‖2� +
‖
u‖2�). That D(
k

N ) is continuously embedded in D(
N ) follows by the closed
graph theorem applied to the identity id: D(
N

k ) → D(
N ). D(
k
N ) is also dense

in H1(�) due to [24, Proof of Lemma 1.25] and the analyticity of the semigroup. We
begin by showing that BN coincides with 
2k distributionally. Let u ∈ D(BN ) and
v ∈ C∞

c (�) ⊂ D(
2k
N ), then 〈 f, ϕ〉 = 〈


k
Nu,
k

Nϕ
〉 = 〈

(
k
N )∗u,
k

Nϕ
〉 = 〈

u,
2kϕ
〉

as
kϕ ∈ D(
k
N ).Hence f = 
2ku as
N and thus
k

N is self-adjoint. So D(BN ) ⊂
{u ∈ D(
k

N ) | 
2k
N u ∈ L2(�)}. On the other hand D(
2k

N ) ⊂ D(BN ) as for the
same reason for u ∈ D(
2k

N ) the relation
〈

2k

N u, v
〉 = 〈


k
Nu,
k

Nv
〉
holds for all

v ∈ D(
k
N ). So 
2k

N ⊂ BN = B∗
N ⊂ (
2k

N )∗ = 
2k
N . �

Nowwe obtain D(B0) = D(BD)∩D(BN ) = D(BN )∩H1
0 (�) by Proposition 2.4.

Thus D(B0) = {u ∈ D(
2k
N ) | tr u = 0}. Now for u ∈ D(B∗

0 ), there is a f ∈ L2(�)

such that for all v ∈ D(B0) we have 〈u, B0v〉 = 〈
u,
2kv

〉 = 〈 f, v〉�, so B∗
0 is a

restriction of the maximal L2-realization of the distribution 
2k .
Hence (taking α = β = 1, γ = δ = 0 in Remark 2.13) we can find a solution of

the system

∂t u + 
4ku = 0 in (0,∞) × �, (5.1)

tr
4ku + N bk (
2k)u = 0 on (0,∞) × �, (5.2)

N bk u = 0 on (0,∞) × �, (5.3)

u|t=0 = u0 in �, (5.4)

where N bk is given by the abstract definition

D(N bk ) := {u ∈ D(B∗
0 ) |

∃g ∈ L2(�)∀v ∈ D(
2k
N ) :

〈

2ku, v

〉
�

−
〈
u,
2kv

〉
�

= 〈g, tr v〉�}

and N bk = g. The identification of N bk is more difficult here, but some progress
can be made using the theory of quasi-boundary triples (cf. [7], [6, Chapter 8.6]).

For all u ∈ H0

(�) and v ∈ D(
N ) we have

〈
u, v〉� − 〈u,
v〉� = 〈τ̃Nu, tr v〉G′
0×G0

, (5.5)
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where τ̃N is the extension of the Neumann trace from H0

(�) to the spaceG′

0 introduce
there, which is the dual space of tr D(
N ) equipped with a Hilbert space structure.
For this version of Green’s formula also see [11, Proposition 2.4]. This allows us to
characterize N bk at least on a subset of D(B∗

0 ). Let

V = {u ∈ L2(�) | 
2ku,
2k−1u ∈ L2(�),
 j u ∈ ker τ̃N , for j = 0, ..., 2k − 2}.

Lemma 5.2. Let � ⊂ R
d be a bounded Lipschitz domain, H = L2(�), let bk be

the admissible form from Proposition 5.1, andN bk the corresponding trace operator
in the sense of Definition 2.6. Let u ∈ D(N bk ) ∩ V , then 
 j u ∈ H3/2


 (�) for
j = 0, ..., 2k − 1 and N bk u = ∂ν


2k−1u.

Proof. As we have 
 j u ∈ L2(�) for j = 0, ..., 2k and D(B0) ⊂ D(BN ) = D(
2k
N )

for u ∈ D(N bk ) ∩ V and v ∈ D(
2k
N ) we have

〈g, tr v〉 =
〈

2ku, v

〉
�

−
〈
u,
2kv

〉
�

=
2k−1∑
j=0

〈
τ̃N
 j u, tr
2k−1− jv

〉
G′
0×G0

=
〈
τ̃N
2k−1u, tr v

〉
G′
0×G0

.

Now as D(
2k
N ) is dense in H1(�), tr D(
2k

N ) is dense in L2(�). Thus we have
g = τ̃N
2k−1u ∈ L2(�) and

〈

2ku, v

〉
�

−
〈

2k−1u,
v

〉
�

=
〈
τ̃N
2k−1u, tr v

〉
G′
0×G0

= 〈g, tr v〉�

for all v ∈ D(
2k
N ), and by approximation also for all v ∈ D(
N ) (as D(
2k

N ) is

a core of 
N ). Finally, we obtain 
2k−1u ∈ H3/2

 (�) and N bk u = ∂ν


2k−1u for

u ∈ D(N bk ) ∩ V by [11, Proposition 2.4 (ii)] and similarly 
 j u ∈ H3/2

 (�) for all

j = 0, ..., 2k − 1. �
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