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Aggregation of activity data on crop
management can induce large
uncertainties in estimates of regional
nitrogen budgets

Check for updates

Jaber Rahimi1,2 , EdwinHaas1, ClemensScheer1, DiegoGrados3, Diego Abalos3,MeshachOjo Aderele2,
Gitte Blicher-Mathiesen4 & Klaus Butterbach-Bahl1,2

A complete understanding of the nexus between productivity and sustainability of agricultural production
systemscalls for a comprehensiveassessment of the nitrogenbudget (NB). In our study, data from thewell-
monitored Danish Agricultural Watershed Monitoring Program (LOOP-program; 2013–2019) is used for a
quantitative inter-comparison of three different approaches to drive the process-based model
LandscapeDNDC on the regional scale. The aim is to assess how assumptions and simplifications about
farmmanagementactivitiesat a regional scale inducepreviouslyunquantifieduncertainties in thesimulation
of yieldsand theNBofcroppingsystems.Ourfindings reveal that theapproachbasedondetailedfield-level
management data (A) performs the best in simulation of yield (r2 = 0.93). In contrast, the other two different
data aggregation approaches (B: Sequential mono-cropping of six major crops with simulation results
averaged according to proportional area, and C: simulation of 20 most frequent crop rotations) have lower
correlations to the observed yields (r2 = 0.92 and 0.77, respectively) but are still statistically significant at
p<0.05 level. Notable differences arise between detailed and more aggregated crop system simulations
concerning theNB,particularlyconcerningN losses to theenvironment.Compared to thedetailedapproach
(A) (gaseous N fluxes: 24.3 kg-Nha−1 year−1; nitrate leaching: 14.7 kg-Nha−1 year−1), the aggregation
approachB leads to a31.4%over-estimation in total gaseousN fluxes (+7.6 kg-Nha−1 year−1), while nitrate
leaching shows a similar average with a distinct pattern. Conversely, employing aggregation approach C
leads to a 17.6% over-estimation in total gaseous fluxes (+4.3 kg-N ha−1 year−1) and a 204.9% over-
estimation in nitrate leaching (+30.2 kg-N ha−1 year−1). These findings suggest that management
representation should be chosen carefully because it can induce large uncertainties, especially when
simulating large-scale NBs or assessing the environmental impact of cropping management. This may
compromise the accuracyof national and international nutrient budgets, andprecludecomparisons among
different sources when the approaches for management representation differ.

The global agricultural sector is themain source of non-CO2 anthropogenic
greenhouse gases (GHGs)1. Croplands are a significant source of the potent
GHG nitrous oxide (N2O)

2–4, contributing approximately 78.6% to N2O
emissionsworldwide5. Nitrous oxide emissions fromcropping systemshave

increased at national and regional levels, primarily due to changes in
management practices, such as a substantial increase in the use of synthetic
nitrogen (N) fertilizers5,6. The Intergovernmental Panel on Climate Change
reports that alternative cropland nutrient management strategies can
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significantly reduce GHG emissions by 2050, potentially cutting emissions
by 0.03–0.7 GtCO2e per year for N2O, accounting for 0.17–4.1% of the total
land-based measures to mitigate climate change7. As one of the most
intensively farmed regions in the world8, Denmark provides an example of
how to balance concerns for agricultural production with environmental
protection goals. With more than 60% of its land used for agriculture and
food exports exceeding twice its national consumption9, Denmark has one
of themost developed environmental regulatory systems in theworld10, and
has made significant progress in reducing the consumption of synthetic
fertilizers since themid-1990s11,12. The countryhas set an ambitious national
target, which includes the agricultural sector, to reduce emissions by 70%
from 1990 levels by 2030 and achieve net-zero GHG emissions by 2050 at
the latest13. The fact that 89% of Denmark’s total N2O emissions originate
from agriculture, according to the Danish Emission Inventories for Agri-
culture from 1985 to 201814, underscores the urgency of implementing
interventions to reduce emissions. However, to identify feasible N2O miti-
gation options and the yield impact of improved management practices,
detailedmodelingapproachesof the carbon (C)andNbalancesof croplands
are critical.

In practice, the performanceof existing agroecosystemmodels remains
a question. Process-based models that simulate various biogeochemical
cycles, including C, N, and phosphorus (P), offer a cost-effective framework
to assess the effectiveness of differentmanagement practices quantitatively15

by estimatingGHGemissions sources and sinks.However, thesemodels are
often developed at a scale that does not align with the spatial extent and
resolution required by policymakers16. In addition, due to data limitations,
various assumptions are needed to aggregate field-scale information (e.g.,
management, soil, and climate variables) to a coarser resolution, raising
concerns about how aggregating detailed information on crop rotations,
field management, or soil properties may affect the uncertainty of simula-
tion results (e.g., yields and nitrogen budget (NB)).

Previous studies have examined the effect of aggregating soil and cli-
mate input data using various methods to minimize the errors associated
with this aggregation17–21. These studies revealed that the aggregation effect
is variable and strongly influenced by region, crop type, and agro-climatic
conditions. Especially in water-scarce regions, the aggregation of

precipitation and soil data resulted in significant deviations of simulated
biomass production and nitrate leaching losses from observed data (e.g.,
refs. 22–24).However, little is known about how spatial aggregation of field-
activity data, such as crop rotations and fertilization can affect simulated
NBsat the regional level. Tworecent studieshaveprovided some insight into
the importance of detailed activity data for deriving realistic yield andGHG
simulations: Constantin et al.25 highlighted the value ofmanagement inputs
for simulating winter wheat andmaize, including yield, evapotranspiration,
and drainage, while using different management scenarios and input
resolutions in Germany. Similarly, Butterbach‐Bahl et al.26 emphasized the
significance of activity data in identifying hotspot regions of CH4 and N2O
emissions from rice systems in Vietnam.

Since 1989,Denmarkhas implemented auniquemonitoringprogram to
quantify the effects of agricultural policies on nutrient leaching and transport,
called the LOOP-program (in Danish: Landovervågningsprogrammet).
These catchments are average and are not specifically representative, but they
cover awide range of soil types, climatic conditions, and agricultural practices
observed in Denmark. The collected datasets include comprehensive infor-
mation collected through annual farmer surveys, covering agricultural prac-
tices such as crop types, cropping calendars, the timing, type, and amount of
synthetic and organic fertilizer applications at field scale, and provide esti-
mates of the catchment NB using a semi-empirical approach27,28. Our inves-
tigation aims to evaluate the results of two common aggregation approaches
using the LandscapeDNDC (LDNDC) model: (1) the mono-cropping
approach (Fig. 1—Approach B) (e.g., refs. 29,30) and (2) the simulation of
dominating crop rotations only (Fig. 1—Approach C) (e.g., refs. 31,32), in
comparison to the detailed, actualfieldmanagement-driven approach of data
from individual fields (Fig. 1—Approach A). Our comprehensive assessment
uses reported crop yields andNbalances fromsixwell-monitored catchments
in the Denmark’s National Program for Monitoring Aquatic Environment
and Nature (NOVANA; ref. 33) from 2013 to 2019.

Results
Sub-field scale simulations (Approach A)
We used detailed field-level management data and sub-field soil informa-
tion to simulate realistic crop rotations for the 20 crops within the 6 studied
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Comparison of Different Aggrega�on Approaches                     

Post-Processing of Results for All Crops (20 Crops) from
2013 to 2019

Post-Processing of Major Crop Results (Table 1) Based 
on Yearly Frac�onal Cover from 2013 to 2019
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on Long Frac�onal Cover from 2013 to 2019

Process-based Modelling Framework   LandscapeDNDC
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Fig. 1 | Overview of the different aggregation approaches tested. Schematic
representation of the modeling process using different approaches. Approach A
utilizes detailed field-levelmanagement data. Approach B involves sequentialmono-

cropping of six major crops, with simulation results averaged based on proportional
area. Approach C simulates the 20 most dominant crop rotations in Denmark.
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catchments (LOOPs). These simulations (Approach A) comprehensively
represent agricultural practices and their effects on yield and NB over the
simulation period. The simulation results of LDNDC using approach A are
compared to the NOVANA reported values in Fig. 2. The underestimation
of total N inputs could be due to the inclusion of all areas in this approach,
which includesmarginal lands simulated as extensive grassland (not subject
to organic fertilization) in our calculations but excluded in the NOVANA
estimates. Therefore, our mean applied organic fertilization is consistently
lower than the reported values in all catchments (17.7 kg-N ha−1 year−1).
The harvest of N is also 14 kg-N ha−1 year−1 higher in the DNDC simula-
tions than in the NOVANA estimations, which may lead to differences in
overall mean N-use efficiency at the LOOP level (71% compared to 54%).
Furthermore, the input dataset we utilized for the N deposition differs from
the one used for the NOVANA estimations (see “Model input data”).
However, the primary advantage of the simulatedNB over the reported one
lies in the information it provides about N-loss, where NOVANA’s esti-
mates do not distinguish between gaseous and aquatic N loss. Furthermore,
NOVANA does not account for legacy effects and always set the annual N
balance to zero, i.e., no accumulation or depletion of ecosystemNpools can
occur. LDNDC simulationsmay provide amore detailed view of catchment
and ecosystemNbalances and losses, as the simulations account for changes
in soil N and biomass N of permanent crops and provide estimates of
compound-specific N-losses along gaseous or aquatic pathways.

Model simulations provide spatio-temporal variations of various NB
components at the sub-field level. This information is valuable for deter-
mining the contribution of each field to the overall NB, identifying hotspots
of N loss, and targeting mitigation options. The net N flux of the NB
assessment, N-use efficiency, and total N loss at the sub-field level (30.4 m)
using the detailed approach (A), covering the period 2013–2019 for all six
studied catchments, is illustrated in Fig. 3. As shown, even at the sub-field
level, differences inNB components are evident, mainly due to different soil
characteristics. These differences provide valuable insights for targeting site-
specific mitigation strategies, e.g., by introducing precision agriculture
approaches. Among the studied catchments, LOOP6 showed the highest N
loss, while LOOP2 showed the highest N-use efficiency during the study
period from 2013 to 2019. Regarding the total area covered by different
classes shown inFig. 3, across all catchments, ~30%of the total area (ranging
from 9% of the LOOP4 to 58% of the LOOP2) shows indication for N
depletion conditions as net N budget values were negative. Furthermore,
~43% of the entire area has a N-use efficiency ranging from 60% to 80%.

Comparing two alternative aggregation approaches
Yield. The results of comparing the two aggregation approaches with
detailed management simulations for yield are presented in Fig. 4, cov-
ering all LOOPs andmajor crops during the period 2013–2019 (to match

with the reported yield data observations). We present the coefficient of
determination (r2) values in two forms to allow meaningful comparisons
(long-term simulation: LTS, and annual simulation: YS), as approach C
does not provide annual results (see section “Comparison of aggregation
approaches”). The approach based on detailed field-level management
data (A) outperforms the others, with a superior LTS-r2 value of 0.93,
followed by approaches B and C with LTS-r2 values of 0.92 and 0.77,
respectively. Notably, when consideringYS-r2, approachA stillmaintains
superiority over approach B. All correlations were statistically significant
at the p < 0.05 level.

For simulations at the catchment scale using the detailed approach (A),
LOOP1 is the most accurate in yield simulation (YS-r2 = 0.77). On a crop
basis, the highest accuracy is achieved in the winter barley (WBAR) simu-
lations (YS-r2 = 0.78), while potato (POTA) yields show the lowest accuracy
(YS-r2 = 0.41). These discrepancies could be attributed to several factors,
including the relatively limited number of site measurements used for the
region-specific crop parameterization. However, it is important to note that
some of these uncertaintiesmay be due to the calibration process of the crop
parameters (i.e., not accounting for all the differences between different
cultivars) and, in part, to an overestimation of recorded yields, as discussed
by Blicher-Mathiesen et al.33. In addition, conversion factors used to
establish comparability between simulated and reported yields—such as
conversion from fresh weight to dry weight and carbon content to dry
weight—may contribute to the observed deviations between observations
and simulations.

Nbudget components. The simulated gaseous fluxes from approach A,
averaged over all LOOPs, consisted ofN2O emissions estimated at 1.5 kg-
N ha−1 year−1 (0.9–2.9), which is in the range of values previously
reported from fieldmeasurements at four representative agricultural sites
in Denmark (Foulum, Taastrup, Askov, and Vejen)34. Nitric oxide (NO)
emissions were estimated to be 0.6 kg-N ha−1 year−1 (0.3–1.0), dinitrogen
(N2) emissions were estimated to be 16.6 kg-N ha−1 year−1 (3.6–23.9),
and ammonia (NH3) emissions were estimated to be 5.6 kg-N ha−1 year−1

(4.6–7.7). Of these, gaseous N losses as N2 accounted for the largest
proportion (68.3%), followed byNH3 volatilization (23.1%), N2O (6.3%),
and NO (2.3%). The mean estimate for NO3 leaching was 14.7 kg-
N ha−1 year−1 (6.9–27.9). This amount is lower than field measurements
for the LOOP catchments, 31, 77, 47, 45, and 100 kg-N ha−1 year−1 for
LOOP1, 2, 3, 4, and 635,36. This discrepancy could be due to several factors,
including uncertainties in the timing and amount of irrigation in our
simulations and the reported values resulting from the upscaling of point
measurements to regional scales using empirical models. Since the
objective of our study is to compare different field management aggre-
gations, the uncertainties are consistent across all three approaches.

Fig. 2 | Differences in reported (LOOP) and simulated (approach A) NB para-
meters. The numbers in brackets represent the average of reported (NOVANA) and
simulated (LDNDC model) values for each component, along with their ranges for

the six LOOP catchments, in kg-N ha−1 year−1. TN In indicates the share of each
component from the total N input.
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Total N yield and N biomass export (straw and grass cut) reached
132.8 kg-N ha−1 year−1, with uncertainty ranging from 115.9 to 159.1 kg-
N ha−1 year−1.

Figure S.1 illustrates the NB through a diagram, showing the
cumulative flux contributions across all LOOPs and approaches. This
diagram offers an overview of the overall N balance, representing N
accumulation in the soil as the difference between all out-fluxes and all
in-fluxes. Among all the LOOPs, LOOP6 and LOOP7 show the highest

average (2013–2019) gaseous fluxes of 31.3 kg-N ha−1 year−1, followed
by LOOP1 (30.0 kg-N ha−1 year−1), which can be attributed to higher N
inputs compared to other LOOPs (Fig. S.1). However, other approa-
ches (B and C) result in a different pattern, with LOOP1 having the
highest gaseous N flux (LOOP1-approach B: 47.7 kg-N ha−1 year−1;
LOOP1-approach C: 43.0 kg-N ha−1 year−1). The peak of absolute
gaseous fluxes occurred in 2018 for LOOP7 (41.7 kg-N ha−1 year−1),
while the lowest absolute gaseous fluxes were observed in 2014 for

Fig. 4 | Observed and model-simulated yields of major crops across the studied
catchments (2013–2019) using three different approaches.WIWH winter wheat,
SBAR spring barley, RAPE rapeseed, WBAR winter barley, SICO silage corn, PEAS

peas, BEET sugar beet, POTA potato, OATS oats. LTS denotes outcomes corre-
sponding to long-term simulations (averaged over the 2013–2019 period), while YS
signifies results pertaining to individual years.

N-use efficiency (%)

LOOP 2 LOOP 3 LOOP 4 LOOP 6 LOOP 7

Net N budget (Kg - N ha   yr  )-1 -1

N loss (N  O, N  , NO, NO  , NH  )
(Kg - N ha   yr  )-1-1

2 2 3 3
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Fig. 3 | The net N flux of the NB assessment, N-use efficiency, and total N loss at sub-field level using the detailed, actual field management-driven approach (A)
(2013–2019 average, all 6 studied catchments). Positive net N budget values indicate increase in soil N storage over time.
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LOOP2 (6.3 kg-N ha−1 year−1). Regional differences in mean NO3

leaching among the five LOOP catchments indicate that LOOP2 has
the highest NO3 leaching (27.9 kg-N ha−1 year−1), while LOOP1 has the
lowest (6.9 kg-N ha−1 year−1). The highest absolute NO3 leaching was
recorded in 2016 for LOOP2 (35.6 kg-N ha−1 year−1).

Regarding total yield and biomass (straw and cut grass), LOOP7 and
LOOP1 have the highest average values, with 159.1 and 144.1 kg-
N ha−1 year−1, respectively. The highest absolute value was observed in 2015
for LOOP7 (184.5 kg-N ha−1 year−1). The lowest was attributed to drought
and low yields in 2018 for LOOP4 (91.7 kg-N ha−1 year−1).

All approaches in the LOOPs consistently agree to the overall N bal-
ance and simulate, on average, a pattern of N-accumulation in the soil for
2013–2019. However, themagnitude differs: approach C consistently yields
the highest N accumulation (20.8 kg-N ha−1 year−1), followed by approach
B (19.9 kg-N ha−1 year−1) and it should be noted that the annual base N
balance differs in magnitude and does not always accumulate. Using
approach A, the maximum N accumulation was observed in 2013 for
LOOP4 (46.6 kg-N ha−1 year−1), while, LOOP7 in 2015 showed the most
significant depletion (−23.6 kg-N ha−1 year−1). Analyzing the variations in
the overall N balance, the annual trends observed in the organic C and N
pools in the topsoil (30 cm) over the evaluation period are consistent,
showing an average annual carbon sequestration of 261.7 kg-C ha−1 year−1

(150.0–449.3) across all catchments. However, some years exhibit carbon
loss, which could be attributed to local climate or management practices.

Figure 5a illustrates theN fluxes comprising the nitrogen balance (NB)
simulated by approaches B andC compared to approachA, considering the
mean value for each component.

Our findings reveal that, using approach B, about 1.2% of the total
systemNoutflux is due toN2O emissions.However, compared to approach
A, total gaseous N losses are, on average 31.4% (+7.6 kg-N ha−1 year−1)
higher. Similarly, approach C overestimates gaseous N losses by an average
of 17.6% (+4.3 kg-N ha−1 year−1).

Regarding total yield and biomass, there are no notable differences
between approaches A–C, with approaches B and C both yielding a ~5.7%
higher estimate (~7.5 kg-N ha−1 year−1). For NO3 leaching, a remarkable
discrepancy is observed when applying approaches B and C compared to
approach A. Specifically, approach C tends to overestimate the contribution
of leached N by twice as much (44.9 kg-N ha−1 year−1 as compared to 14.7).
For approach B, the averages across all catchments remain the same, but the
pattern differs. This discrepancy is particularly noteworthy in countries such
as Denmark, where NO3 leaching is important due to the predominance of
sandy soils. These results provide valuable insights into the quantitative
assessment of the uncertainty introduced by each approach when aggre-
gating management activities for modeling NBs.

Fig. 5 | Comparative assessment of the three approaches in simulating N in- and
out-fluxes versus the detailed, actual field management-driven, approach (A).
a N fluxes for approaches A–C, averaged throughout 2013–2019; b the temporal
variation of NB components simulated by different approaches. All numbers are

expressed in kg-N ha−1 year−1, with each value representing the contribution of a
specific component from the total NB simulated by each of the three approaches.
The values between brackets represent the minimum and maximum across the
studied catchments.
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The temporal variation of NB components simulated by different
approaches from 2013 to 2019 is shown in Fig. 5b. As can be seen, approach
B effectively captures NB component anomalies. However, it systematically
overestimates gaseousN fluxes and underestimates other components. This
is mainly because approach B cannot account for carbon and N seques-
tration in the soil, leading to these discrepancies.

Discussion
When upscaling field activity data from individual fields to larger areas,
understanding the variability and uncertainties arising from input aggre-
gation becomes critical. An optimal resolution should balance providing
sufficient fine-scale detail to capture accurate spatial variability relevant to
the study objectives while conserving computational resources and sim-
plifying data compilation and model execution.

Our study systematically evaluated two dominant management sim-
plification approaches and compared themwith simulations involvingfield-
scale management in six catchments in Denmark. The evaluations were
carried out for both yield and NB simulations. The results underline that
although all three approaches show varying degrees of effectiveness in yield
simulation and overall NB estimation, significant differences emerge in the
simulation of individual NB components.

The insights gained from this study can serve as a guideline for
modelers tasked with selecting the appropriate spatial resolution for
regional process-basedmodeling andGHG inventory assessments. This
insight allows for understanding the trade-offs in advantages and dis-
advantages associated with choosing one of the two approaches, thus
helping to make informed decisions to achieve the desired modeling
results.

Methods
Case studies and NOVANA data overview
The case studies in this research comprise sixDanish catchments from the
National Monitoring Program for Water Environment and Nature,
NOVANA (LOOP-program; InDanish: Landovervågningsprogrammet).
These catchments represent the variation in predominant soil types, cli-
mate conditions, and agricultural practices observed within Denmark.

The monitoring program provides comprehensive information about
catchment-specific agricultural practices. This includes details about crop
types, the presence or absence of catch crops, cropping calendars and the
timing, type, and amount of synthetic and organic fertilizer applications.
Additionally, estimations for the NB for the entire cultivated area using a
semi-empirical approach, including fallow land, are also provided27,28.

In this dataset, N removal is based on reported crop yields provided
by farmers and corresponding standards for N content in the yields. The
N content for oats, winter and spring wheat, and barley is derived from
measured annual averages (e.g., ref. 37), while for other crops, it is based
on standards outlined by the National Committee for Cattle
(e.g., ref. 38). For this reason, there is uncertainty in calculating field N
surplus due to farmers’ variability in accurately reporting field yields
and applying standardized N content levels. For example, a comparison
of reported field yields and measured values from sold crops during
2000–2003 showed an r2 value ranging from 0.82 to 0.93 for winter
wheat, spring barley, beets, and grass39.

The same calculation scheme was applied for applying mineral and
manure fertilizer. These interviews employ relevant norms for livestock
manure production and nutrient content, as outlined in the “harmony rule”
(https://lbst.dk/landbrug/goedning/vejledning-om-goedsknings-og-
harmoniregler). InNOVANA,Nfixationwas computed by considering dry
matter, N content in the yield, and the proportion of fixedN in both harvest
yield and stubble/roots40. For fields with non-fixing crops, a background
fixation of 2 kg-N ha−1 was assumed. Permanent grasslands with a high
biodiversity of N-fixing plant species used a default value of 5 kg-N ha−1 for
N fixation.

Agriculture dominates the land use in all six catchments, accounting
for 73–99% of the LOOP’s total areas. Figure 6 and Table 1 provide an
overview of the characteristics of the six catchments and the major crops
grown in 2020. The average management (timing, fertilizing, and manur-
ing) for each catchment is provided in Fig. S.2.

Model input data
To feed themodel for the catchment scale LOOPsand to assess the impact of
different aggregation approaches (see section “Comparing two alternative

Fig. 6 | Location and characteristics of the agricultural monitoring catchments (LOOP1–4, 6, and 7). DMI represents the Climate ID of the Danish Meteorological
Institute (DMI). LU land use.
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aggregation approaches”) on yield estimates and NB, different sets of input
data have been prepared from the field level to the catchment level. The
main sources and methods to prepare such inputs are summarized below.

Information about crop types in agricultural areas and cropland
boundaries was obtained from the General FarmRegister (GLR inDanish),
covering the period from 2011 to 2020 at the field scale. For the agricultural
practices, the monitoring data of the LOOP-program for each catchment
encompasses a collection of detailed information on crop types, tillage and
plowing time, catch crop, irrigation, and time/amount/application method
of mineral and organic fertilizer at field level. Furthermore, this dataset
provides data on atmospheric N deposition, N deposited by grazing live-
stock, and total NB at the catchment scale, which were used in our

simulations and analysis33. The catchment-level inputs for themanagement
were prepared by averaging over year and crop type in each LOOP
catchment.

Soil characteristics including soil texture (Adhikari et al.41), soil organic
carbon (SOC), and bulk density (BD)42 at five standard soil depths of 0–5,
5–15, 15–30, 30–60, and60–100 cmwere taken as geographic raster datasets
with a 30.4 m resolution. Furthermore, the soil pH for the same depths and
at 100m resolution was obtained from Adhikari et al.43. The saturated
hydraulic conductivity estimations (KS)was calculated using a pedotransfer
function using relevant soil properties44,45. For the catchment-level soil
input, the dominant soil type within each catchment was employed to
characterize the soil properties (see Table 1). It is, however, important to

Table 1 | Fractional cover (%) of major crops (2011–2020), catchment elevations, climate (2013–2019), and soil information

Catchment Fractional cover (%) Elevation Climate
(2013–2019)

Soil

Crop 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 (m) Prec. Temp. Type Organic
C (0–30 cm)

(mm) (°C) g kg−1

LOOP1
Højvads Rende

BEET 27.4 24.2 29.5 15.7 19.2 14.1 23.6 25.0 12.2 31.6 3.3 650.3 9.8 80% Sandy loam
14% Clay

2.1
(0–22.2)

RAPE 2.2 4.9 1.9 2.1 1.4 6.0 7.2 9.9 0.1 1.9

SBAR 26.9 33.5 27.8 34.0 35.0 37.5 23.6 31.7 30.9 30.2

SICO 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.0

WIWH 35.6 28.0 32.6 44.6 37.2 34.7 39.1 28.2 51.4 28.0

GRASS 5.0 5.0 2.8 1.3 5.9 6.6 3.5 3.4 2.9 5.6

LOOP2
Odder Bæk

POTA 2.4 1.2 3.7 3.6 2.5 4.7 5.7 5.8 7.6 3.3 12.6 849.2 8.7 72% Coarse sand
17% Fine sand

3.3
(0–33.2)

RAPE 1.1 2.6 8.0 3.3 7.6 4.5 9.4 6.2 3.4 6.6

SBAR 19.7 21.3 14.6 16.5 29.1 28.5 19.0 25.6 19.1 22.8

SICO 20.7 21.2 18.3 18.2 17.6 0.0 14.5 8.1 15.6 27.7

WIWH 17.5 13.2 14.5 18.5 11.1 17.3 13.8 23.2 23.9 10.3

GRASS 31.2 32.0 33.3 30.5 23.3 34.5 22.2 21.4 18.7 19.5

LOOP3
Horndrup Bæk

OATS 3.7 1.7 0.9 0.0 2.6 4.8 1.8 17.2 6.2 9.1 39.8 806.1 9 70% Sand-mixed
clay
24% Clay-
mixed sand

1.7
(0–22.6)

RAPE 7.9 0.0 13.7 6.8 18.3 1.1 3.6 3.1 2.1 0.0

SBAR 12.3 15.9 42.1 17.1 18.9 31.6 25.8 24.0 12.4 27.0

WBAR 7.7 17.2 8.7 30.9 12.8 7.3 8.3 5.6 2.8 16.1

WIWH 45.6 39.5 13.4 27.4 13.6 27.9 29.5 22.7 32.7 17.2

GRASS 12.9 17.8 15.9 14.3 18.2 18.6 19.1 25.3 25.5 18.7

LOOP4
Lille Bæk

RAPE 11.1 7.9 18.7 9.1 20.2 6.8 3.4 10.3 4.9 17.7 7.4 804.9 9.7 86% Sand-mixed
clay
4% Clay-
mixed sand

1.3
(0.8–10.1)

SBAR 15.0 24.7 21.0 19.8 23.0 33.7 33.1 25.7 17.1 20.5

SICO 8.1 8.1 7.8 5.9 0.0 0.0 0.0 0.0 3.5 12.9

WBAR 6.8 8.2 12.8 13.5 6.9 1.4 5.7 1.4 5.5 1.6

WIWH 22.0 20.7 21.7 31.5 26.9 32.4 21.7 14.5 22.5 17.8

GRASS 18.9 12.6 6.4 7.3 5.0 14.1 16.6 23.7 24.9 11.2

LOOP6
Bolbro Bæk

PEAS 3.8 1.7 2.1 1.6 0.7 3.6 3.9 6.9 5.0 1.1 23.4 1003.5 9.2 67% Coarse sand
18% Clay-mixed
sand
14% Humus

4.0
(1–20.6)

SBAR 21.2 25.8 27.6 21.7 15.9 17.3 16.1 26.1 21.1 18.2

SICO 13.4 19.5 30.0 31.8 34.5 31.2 34.4 25.3 23.8 26.9

WBAR 7.2 1.4 3.2 3.6 2.8 3.7 5.9 0.0 0.0 0.7

WIWH 15.2 14.5 7.9 12.2 8.1 8.9 7.3 6.0 9.0 12.2

GRASS 25.1 28.1 21.5 23.4 25.2 24.9 21.5 18.2 29.8 26.5

LOOP7
Hule Bæk

PEAS 6.0 8.7 0.0 0.0 3.6 1.8 6.6 4.9 3.3 7.4 38.5 682.9 9.3 76% Sandy clay
20% Clay

1.8
(0–28.4)

RAPE 5.1 1.3 16.6 13.7 19.6 7.6 9.5 12.3 6.5 8.4

SBAR 26.2 43.2 30.6 24.7 24.4 33.1 26.3 31.6 19.0 26.0

WBAR 2.6 1.2 8.5 5.8 5.9 1.4 5.2 1.7 1.1 4.2

WIWH 38.4 28.6 27.0 38.2 30.6 35.1 35.0 11.5 35.5 24.7

GRASS 12.3 13.4 9.3 9.5 12.0 13.1 11.8 21.2 22.9 11.9
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mention that the high-resolution soil inputs used in this study can also be
subject to uncertainty, as already addressed in previous studies (e.g.,
refs. 41,46), which can affect the simulation accuracy. It is, however,
important tomention that the high-resolution soil inputs used in this study
can also be subject to uncertainty, as already addressed in previous studies
(e.g., refs. 41,46), which can affect the simulation accuracy.

The estimates from the regional-scale simulation of the atmospheric
chemical transport model, The Danish Eulerian Hemispheric Model, were
utilized as input for N deposition in our model47,48.

The climate data (10 × 10 km grid) included daily mean air tempera-
ture, global radiation, and precipitation. Data were taken from interpolated
daily climate informationprovidedby theDanishMeteorological Institute49.

LDNDCmodel and simulations set up
LDNDCis aprocess-basedmodeling framework that can simulateC,N, and
water processes in cropland, grassland, and forest ecosystems50. In this
framework, a set of differentmodules are used to simulate plant growth and
other processes: plant physiology (PlaMox)51,52, micro-climate
(CanopyECM)53, water balance (WatercycleDNDC)54,55, air chemistry
(airchemistryDNDC), and soil biogeochemistry (MeTrx)56. The model has
been parameterized, calibrated, and validated usingmeasurements gathered
from a wide range of ecosystems, including temperate regions57, tropical
areas56, and African savannahs58. It has been used for different purposes,
such as estimating yield gaps59, grassland productivity12, water balance60,
GHG emissions61, residuemanagement32, and nitrate leaching62. Themodel
has also been previously calibrated, validated, and used, for example, to
simulate SOC63, crop productivity, and soil GHG emissions64 in Denmark.

The simulations were driven by 1-m depth soil physical, chemical, and
hydrological properties, crop growth and development parameters, climate
variables, and, most importantly, management events (i.e., tilling, planting,
fertilization, harvest, and Irrigation) data from 2011 to 2020. To ensure
stability inC-Npools after soil initialization, the simulationswere started 10
years earlier (model spin-up)withmodel inputdata copied andextrapolated
from 2011–2020 to the spin-up period 2001–2010. Result data analysis was
performed for the period 2013–2019. For irrigated crops, irrigation was
assumed topreventwater stress, with an application rate of 30mmtriggered
by low soil moisture periods (four events, with an annual water dose of
1200m3 ha−1). Assumptions about the physicochemical characteristics of
pig and cattle slurry used as organic fertilizer are based on information
provided by Hamelin et al.65.

Comparison of aggregation approaches
Approach A. In this approach, we used all available high-resolution
information without aggregating any data, such that the soil database
(~30.4 m spatial resolution) determined the simulation resolution.
Therefore, themodelwas deployed at the sub-field level (aligningwith the
resolution of the soil database), incorporating availablemanagement data
at field scale, such as fertilizer type, amount, and management dates,
along with accurate crop rotation information for 20 main crops (SBAR
Spring barley, WIWH Winter wheat, VEGETABLE Vegetable, SICO
Silage corn, GRASS Grass, RAPE Rapeseed, PERG Perennial grass,
SPRINGRYE Spring rye,WBARWinter barley, PEASPea, POTAPotato,
OATS Oats, LOPE Ryegrass, WINTERRYE Winter Rye, BEET Sugar
beet, FABA Faba bean, SPWH Spring wheat, FOCO Food corn, TRSE
Triticale, FLOWER Flower). Subsequently, after applying the model
throughout the entire study period, the outcomes for the 2013–2019
timeframe were subjected to post-processing for comparison with other
approaches. It is worth noting that all the approaches utilize the same
crop and soil process parameterizations.

Approach B. In this approach, we aimed to reduce the complexity of the
catchments to six different mono-cropping systems occurring on a
representative soil for each catchment (i.e., running six mono-cropping
simulations in parallel and subsequently merging the results based on
area shares). Catchment-level management data (see section “Model

input data”) was utilized to condense the actual crop rotations to sixmain
crops and derive average management (timing, fertilizing, manuring,
etc.) for each catchment individually throughout the simulation period.
Subsequently, leveraging the fractional cover information of each major
crop in each year, the results were aggregated to their proportion during
post-processing and prepared for comparison.

Approach C. This approach is built upon representative major crop rota-
tions for Danish agriculture, as outlined by Rashid et al.66, deployed on the
representative soil for each catchment as in Approach B. These 20 crop
rotations include various combinations of all major crops within the six
LOOPs and feature diverse arrangements of cereals, industrial crops (POTA,
BEET, RAPE), legumes (PEAS), forage crops (SICO), GRASS, and PERG.
The crop rotations have been extrapolated to cover the simulation period,
and the catchment-level inputdata (see section “Model input data”) has been
used to define the management (timing, fertilizing, manuring, etc.) for each
rotation. The annual simulation results were subsequently averaged for the
main crops across all rotations and from 2013 to 2019 to provide average
results. Further, the averaged results were then post-processed based on the
long-term average fractional cover of each major crop in each LOOP. It is
important to note that this approach does not provide yearly results as the
rotation data lacks temporal information. To facilitate meaningful com-
parisons with other approaches, we aggregated and organized the data from
these other approaches into the same format.

The annual average amounts of synthetic and organic fertilizers used
for simulation by each approach are provided in Fig. S.1.
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