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Abstract

Cyber-Physical Systems (CPSs) are highly complex systems inte-
grating computational and physical processes and consist of many
interdependent and composed parts. Engineers from different do-
mains, e.g., mechanical, electrical, and software engineering, coop-
erate to develop and deploy new CPSs. Engineers often only work
on task-specific artifacts and models to reduce the complexity of
the overall CPS. These models and artifacts form different views on
the CPS, which must be kept consistent to enable development and
system analysis. However, this inter-view consistency management
lacks tool support and remains a tedious manual task. Hence, this
results in late integration risks and may even lead to failed prod-
ucts during deployment. To manage consistency between models,
artifacts, and views sufficiently, we need an understanding of the
available notions of consistency and their properties. We need to
identify, classify, formalize, and relate notions of consistency from
different domains to derive a common definition for a consistency-
aware, view-based development process for CPSs. This vision paper
presents a set of existing notions of consistency we can build on
and outline our vision towards consistency-aware CPS engineering.
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1 Introduction

Cyber-Physical Systems (CPSs) are systems that combine hardware
and software components to integrate computational and physi-
cal processes [22]. This term summarizes many highly complex
systems, from cars, trains, and aircraft to production and smart
home systems. Engineers from different domains, e.g., mechanical,
electrical, and software engineering, cooperate to fulfill various
design, analysis, and quality assurance tasks to design and deploy
new CPSs [9]. Engineers use specialized processes and tools during
development to counter the high complexity of interdependent and
composed parts to complete specific system synthesis and analy-
sis tasks. These processes and tools are often domain-specific and
capture domain and task-specific models, artifacts, and data of the
CPS, increasing the overall complexity of CPS engineering [9]. As a
result, developers of one discipline may not understand the impact
of design decisions made by developers of another discipline. Thus,
as the various models are related, the risk of inconsistencies among
the different engineering artifacts increases, hindering the system’s
production, meaningful quality analyses or release.

Currently, researchers investigate the adoption of view-based
approaches and tools to manage this complexity [26]. Engineers
often only work on a smaller set of artifacts and models to complete
their tasks. Hence, each artifact or model provides a task-specific
view on the same CPS. During development, these task-specific
and domain-specific views are usually not independent and have
many dependencies among them. For instance, a component in one
model depends on a module in another model to work correctly, or
the behavior described in one model must fulfill another model’s
behavior specification. Different views are often involved when
designing, i.e., synthesizing, analyzing, testing, and verifying a
CPS. Thus, these views must be kept consistent to a certain extent
during development to ensure various requirements and avoid
delays caused by inconsistencies [1].

Preserving consistency among multiple models, artifacts, and
views is difficult because consistency is often defined informally. Ex-
isting works on views, view types, meta-modeling, and the theory
of a Single Underlying Model (SUM) [3, 12, 27, 30] are a good basis
for dealing with the complexity and view consistency in the design
of CPS. A SUM captures the portrayed information of all views
on a system in a centralized full-domain-spanning model [3, 7, 8].
Similar ideas have been applied successfully in other domains. For
instance, in database systems, it is common to have several views on
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a single underlying database. Inconsistencies between the views are
known as data anomalies [16], which are solved via data integration
and repair [4] techniques. If the database views are consistent with
the single underlying database, they are also consistent with each
other. Transferring consistency management of views from data-
base systems to CPSs remains challenging, as CPSs dependencies
semantically go beyond key relationships between database tables.
Also, previous studies showed that approaches utilizing centralized
full-domain-spanning models, such as a SUM, do not scale to the
necessary number of models and views in CPS engineering [24].

Therefore, we argue that the Virtual Single Underlying Model (V-
SUM) approach [19], where several dependent models are coupled
via consistency preservation rules, is better suited for cross-domain
engineering processes and tools in CPS engineering [9]. A V-SUM
allows engineers to develop CPS in different views and design
spaces. Hence, the models within the V-SUM are not edited directly
but through their respective views. To ensure that the models in a
V-SUM remain free of contradictions, the V-SUM assists engineers
in managing view consistency using consistency specifications [28].
These specifications are executed automatically and request user
interaction where appropriate [19].

Currently, normative rule-based consistency specifications [28]
are used for V-SUM construction [19, 21]. However, other notions of
consistency and methods for specifying consistency relations exist
in model-based engineering [6, 10, 19, 23]. Unfortunately, a com-
prehensive overview of the available notions of consistency, their
formalization, and their properties is missing. Yet, such an overview
and understanding is necessary to develop a single framework of
consistency notions that can also be integrated into a view-based
development process for CPSs. Thus, with our research, we aim to
answer the following research questions:

RQ1 How can the different paradigms for specifying consistency
relations be combined in a single formal framework of con-
sistency notions?

RQ2 How can such a framework of consistency notions be ap-
plied in a V-SUM to enable consistency-aware, view-based
development of CPS?

While projects in consistency-aware CPS engineering may start
with the existing rule-based normative notion of consistency, we
need to investigate other possible notions, such as those based
on model theory and denotational semantics, where consistency
amounts to the existence of an implementation realizing all specifi-
cations [6]. Thus, we first aim to comprehensively classify different
notions of consistency and their properties. We then want to for-
malize and relate these different notions of consistency to enable
an appropriate selection of consistency notions. Finally, we aim to
implement our formal consistency framework with Vitruvius [19]
and investigate its effects on achieving the needed consistency in
CPS engineering.

In the remainder of the paper, we first motivate the need for
consistency-aware CPS engineering using an example, highlight-
ing possible inconsistencies, in Section 2. In Section 3, we describe
consistency as a multidimensional problem and outline our first
attempt at classifying consistency notions. We present our vision to-
wards consistency-aware CPS engineering and our research agenda
in Section 4. We conclude the paper and outline immediate next
steps towards our goal in Section 5.
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2 Illustrative Example

We use the engineering process of an electric car’s braking system
to illustrate and motivate different kinds of consistency relations in
CPSs. We present an abstract representation of the braking system,
as we cannot address all potential models, artifacts, parts, depen-
dencies, and workflows of the different domains involved in the
example. Figure 1 shows the abstracted view of the braking system.

The main brake of the electric car is a recuperating electrical
brake system. This brake is coupled with a secondary mechanical
brake system for safety reasons. Due to the multiplicity, complexity,
and variety of subsystems, developing such a brake system requires
the collaboration of multiple engineers from various disciplines [9].
Each engineer is responsible for a specific part of the braking sys-
tem, developing their models or artifacts. We consider the following
models, representing different views of the overall brake system.
A mechanical engineer designs a Computer-aided design (CAD)
model of the brake, including the physical dimensions, assembly,
and materials used. An electrical engineer works on the E/E archi-
tecture, specifying the brake controller and its connection to the
car’s overall E/E topology, as well as cable dimensions and wiring
layout. A software engineer programs the brake controller using a
model-driven approach based on a control automaton for formal
verification. The brake controller streams sensor data to the car’s
Central Monitoring Unit (CMU). In the later stages of development,
a team of mechanics builds physical prototypes of the brake system.
These prototypes are used for testing purposes according to the
specifications of the Q/A expert. Concurrently, the management
team advertises the new car model using renderings from the CAD
models and functional claims from the test results. The multidisci-
plinary nature of the involved models, artifacts, and views makes
keeping them consistent during development challenging.

With this simplified example, we illustrate multiple consistency
relations. For instance, the Electrical Brake Controller (EBC) and
the CMU share interfaces for communication that must be kept
consistent. Both parts are developed independently, but changing
the CMU’s interface data format requires adapting the brake con-
troller’s sent sensor values and vice versa. Similarly, configuration
values in the EBC determine the maximum brake force and, thus, the
amount of electrical power the recuperation mechanism provides.
A change in these values by the software engineer requires the elec-
trical engineer to reevaluate the E/E architecture to ensure that the
wires withstand the imposed electrical currents. These examples
correspond to inter-model (and inter-domain) consistency relations,
whose specifications should allow propagating changes within (the
set of) artifacts and models involved to ensure consistency.

Models and artifacts may also form hierarchies that must be
consistent. For instance, the CAD model of the electrical brake is
part of the CAD model of the overall car, maintained in parallel
by other engineers. A change in the brake system dimensions may
corrupt this top-level assembly model. If this happens, engineering
teams of related car parts need to consult on how to recover a sound
assembly based on the new dimensions of the brake, i.e., to restore
consistency between the various CAD models.

The renderings of the car’s CAD models are used for communica-
tion by the management team. While the latest update is desirable
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Figure 1: An electrical car braking system example illustrates the need for consistency-aware CPS engineering.

for communication, the car’s renderings are usually only recom-
puted after significant modifications. As a result, inconsistencies
might temporarily exist between the CAD models designed by en-
gineers and the derived rendering used by the management team.
While the previous examples were only between the structural prop-
erties of the models, consistency might also relate to the behavioral
properties of the models. For instance, if the electrical brake reaches
a certain threshold temperature, the mechanical brake must be acti-
vated as support. In this example, the assertion can only be verified
by analyzing the possible traces describing the system’s temporal
evolution. This example illustrates that consistency also arises at
the semantic level and not only at the syntactic one.

The shown consistency relations are only described abstractly,
omitting most technical details. However, it already shows that
consistency relations span different kinds of models, artifacts, and
views, capturing different types of information. These consistency
relations need to be unified to ensure that CPSs can be effectively
developed. We argue that solving each consistency problem inde-
pendently, without a common formal framework, is not feasible.
Therefore, we aim to formalize and relate these multiple notions
of consistency and their properties, ultimately deriving a unified
definition of consistency for consistency-aware CPS engineering.

3 Multidimensional Consistency

The models within the V-SUM [19] are not edited directly but indi-
rectly via the views engineers interact with. These models describe
the system under development and must be free of contradictions to
ensure its integrity. Thus, the primary goal is to ensure or preserve
the consistency of a set of models within the V-SUM [19].

A view can be understood as a projection from certain models of
the V-SUM. When a change is made in a view, it is first propagated
to the models from which the view is derived. Then, additional
modifications may need to be propagated across the models of
the V-SUM to preserve their consistency. Since the engineers only
edit views, the propagation of changes within the V-SUM must be

automated. In particular, we need to know which models require
modification and what specific changes should be applied. One
plausible solution is to establish relations between models, such
that whenever a model is modified, its related models can be kept
in relation. Therefore, we are formally encoding consistency as a
relation between models, thus dealing with intermodel consistency
rather than intra-model consistency. Then, for a model m; of a
metamodel M, consistency describe which other models my, ms,
..., my are allowed for the metamodels My, Ms, ..., M.

Given this definition of consistency, we aim to develop a so-
lution that can check and, if necessary, repair consistency when
dealing with many large models. A prerequisite to building such
an automated solution is a thorough understanding of the prac-
ticalities of a relational notion of consistency. When we claimed
that we wanted to deal with intermodel consistency rather than
intramodel consistency, we already hinted at the multiplicity of
meanings attached to the notion of consistency. For instance, the
V-SUM construction [19] rely on normative rule-based consistency
specifications [28], which we can further classify as the use of
syntactic qualitative binary normative consistency relations. More
precisely, we argue that consistency is a multidimensional notion
based on (at least) the following dichotomies: (1) syntax vs. seman-
tics, (2) qualitative vs. quantitative, (3) binary vs. multi-ary, and
(4) normative vs. descriptive.

Consistency can relate model elements, making syntactic con-
nections between the models via their structures or values derived
from computations based on the models. For instance, interface
formats illustrated in Section 2 with the interfaces shared by the
EBC and the CMU or the configuration and numerical values stored
in the EBC yield syntactic consistency. Conversely, the consistency
derived via refinement or bisimulation properties on the automata
describing the mechanical and electrical brake systems is semantic.
A more formal view on the relation between (syntactical) model
consistency and semantics-based consistency is discussed in [25].
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When consistency is viewed as a relation, then models are ei-
ther consistent or inconsistent [1]. Thus, relational consistency
is qualitative, i.e., a binary measure where consistency is either
true or false. Then consistency consists of a quality that must be
maintained, such as in the consistency problems from Section 2.
However, at least temporarily living with consistency is unavoid-
able to prevent information loss [1, 11]. Therefore, qualitative con-
sistency is desirable for repair or recovery from inconsistencies.
Quantitative consistency allows for measuring and tracking incon-
sistencies, providing a spectrum or degree to which a set of models
are consistent [17]. Quantitative consistency assumes that a pair of
models can be gradually consistent rather than just consistent or
inconsistent. Gradual consistency can be based on the number of
constraint violations. Thus, consistency decreasing, maintaining,
and improving operations can be classified [20].

Approaches based on model transformations such as triple graph
grammars [2, 14, 15] or bidirectional transformation [5, 13] con-
sider consistency as a binary relation and consistency needs to be
maintained for pairs of models. Klare and Gleitze [18] proposed
the commonalities language to handle multi-ary relations between
models, formalized as comprehensive systems [29]. Consistency
is normative when established as a standard without preexisting
references, essentially built out of thin air, and claimed as a defini-
tion. However, consistency can also be related to or built upon an
already existing normative definition. In this case, consistency is
descriptive as it describes how consistency is achieved based on
predefined standards.

While some dimensions might be missing to fully grasp the com-
plexity of the various notions of consistency, we can already claim
that we need a shift from syntactic qualitative binary normative
consistency. For instance, while syntactic consistency is suited for
a tool that needs to edit models efficiently, only semantic consis-
tency can allow formal reasoning and remains the key to proving
non-violation of consistency. Semantics refers to information not
stored in the model but derived from it, which provides additional
insights that cannot be grasped only via syntactical manipulations.
Similarly, quantitative consistency acknowledges that consistency
might not be absolute, thus allowing for repair based on increas-
ing consistency. Real-world challenges in CPS engineering often
require consistency to include elements from more than two mod-
els. For example, an Electronic Control Unit (ECU) has a logical
view, a functional view, an electronic layout view, and a mechanical
construction view for the electronic circuit. These views need to be
kept consistent, as a logical change can lead to a different circuit
layout, which is also constrained by possible physical dimensions
of the ECU. In a sense, multi-ary consistency reduces circular de-
pendencies induced by iterative propagation inherent to binary
consistency. Only descriptive consistency enables the comparison
of various definitions of consistency. Finally, some semantics-based
model-theoretic foundations of consistency would allow for a shift
towards descriptive specifications, enabling the study of consistency
through the classical notion of correctness as behavior refinement.

As a result, we obtain a hypercube of consistency, where each
dimension describes such a dichotomy. Each dichotomy yields an
orthogonal dimension such that each alternative can be studied
independently. Figure 2 shows a restriction of the hypercube to the
three dimensions: normative-descriptive, syntax-semantics, and
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Figure 2: The hypercube of consistency notions

qualitative-quantitative. The cube illustrates the goal of shifting
from syntactic qualitative normative consistency to semantic quan-
titative descriptive consistency. Each edge of the cube can be studied
and solved separately, meaning that the green arrow can, in practice,
be obtained through various walks on the cube.

4 Vision of consistency-aware Cyber-Physical
Systems engineering

Many software engineering solutions, e.g., model analysis, model-
ing version and variants, etc., can also be applied to meta-model-
based artifacts of non-software artifacts. We envision consistency
management for CPS engineering to be built on existing techniques
from Model-Driven Software Engineering (MDSE), such as meta-
modeling, model transformations, and mapping semantic domains
from models using formal methods. This transfer and application
of MDSE methods to non-software artifacts form a new opportu-
nity for both the discipline of software engineering and systems
engineering. Hence, consistency-aware CPS engineering could be
the basis of a new form of systems engineering where adopted
software engineering-inspired methods are integrated and form
a new generation of systems engineering methods, i.e., Advanced
Systems Engineering [1].

Research Agenda: We must first understand the various ap-
proaches to defining consistency in order to design consistency
management solutions. For instance, most approaches to consis-
tency management approaches assume rule-based qualitative bi-
nary consistency relations. However, incorporating model-theoretic
foundations (in the logical meaning of the word model) into the
notion of consistency would shift normative specifications to de-
scriptive ones and, therefore, relate models through their meaning,
enabling classical correctness methods based on behavior refine-
ment. Investigating the various notions of consistency means for-
malizing them to describe their properties and differences, which
should lead to a comprehensive classification of the various notions.

While building this classification, we also plan to investigate
some of its components further. In particular, semantic-based ap-
proaches to consistency, being very valuable for studying the cor-
rectness of model transformations, should be made intuitive and
compositional. One goal consists of the possibility of providing
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easy-to-understand counter-examples as witnesses for inconsis-
tencies. We expect denotational semantics to improve the state of
the art for reasoning about consistency. Model-theoretic semantics
should become a first-class citizen in the modeling approach to
ensure that consistency analyses are proven sound and complete.
We plan to investigate if correct consistency preservation rules can
be derived from model-theoretic definitions of consistency.
Similarly, when consistency is considered a qualitative property,
then models are either consistent or inconsistent. However, when
models are inconsistent, we need to quantify how inconsistent they
are. Measuring inconsistency in terms of inconsistent syntactical
or semantical units may not prove sufficient. Inconsistencies must
be represented as a form of technical debt, allowing an a priori
estimation of the difficulty of repair operations. To this end, we plan
to investigate metrics assessing inconsistencies between models.

5 Conclusion

This paper outlines our vision towards consistency-aware Cyber-
Physical Systems (CPSs) engineering. Engineers of different do-
mains work on their specific domain and task-specific models and
artifacts. We understand such models and artifacts as views on
the overall CPSs, which must be kept consistent to ensure various
requirements and avoid delays caused by inconsistencies.

We work towards a view-based development process for CPSs.
We utilize the existing Virtual Single Underlying Model (V-SUM) ap-
proach, where the different models and artifacts are related via con-
sistency relations. However, many different notions of consistency
are available, and there is no understanding of their consequences
for CPS engineering. Thus, we aim to establish a comprehensive,
multidimensional classification of consistency notions, formalize
and relate them and their properties, implement our formal con-
sistency framework within a V-SUM, and investigate its effects on
achieving consistency in CPS engineering. We envision that such
a framework can offer a shared understanding of the results of
currently separated communities, including software verification,
model-driven systems engineering and formal semantics.

We presented a research agenda toward formalizing and relating
different notions of consistency in CPS engineering. For immediate
next steps, exploring existing properties of already established
notions of consistency remains important. Thus, we first need to
find existing notions of consistency by surveying the literature.
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