KIT | KIT-Bibliothek | Impressum | Datenschutz

Automated Deep Neural Network Inference Partitioning for Distributed Embedded Systems

Kreß, Fabian ORCID iD icon 1; El Annabi, El Mahdi 2; Hotfilter, Tim ORCID iD icon 1; Hoefer, Julian ORCID iD icon 1; Harbaum, Tanja ORCID iD icon 1; Becker, Jürgen 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Distributed systems can be found in various applications, e.g., in robotics or autonomous driving, to achieve higher flexibility and robustness. Thereby, data flow centric applications such as Deep Neural Network (DNN) inference benefit from partitioning the workload over multiple compute nodes in terms of performance and energy-efficiency. However, mapping large models on distributed embedded systems is a complex task, due to low latency and high throughput requirements combined with strict energy and memory constraints. In this paper, we present a novel approach for hardware-aware layer scheduling of DNN inference in distributed embedded systems. Therefore, our proposed framework uses a graph-based algorithm to automatically find beneficial partitioning points in a given DNN. Each of these is evaluated based on several essential system metrics such as accuracy and memory utilization, while considering the respective system constraints. We demonstrate our approach in terms of the impact of inference partitioning on various performance metrics of six different DNNs. As an example, we can achieve a 47.5% throughput increase for EfficientNet-B0 inference partitioned onto two platforms while observing high energy-efficiency.


Download
Originalveröffentlichung
DOI: 10.1109/ISVLSI61997.2024.00019
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.07.2024
Sprache Englisch
Identifikator ISBN: 979-83-503-5411-9
KITopen-ID: 1000175923
Erschienen in 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 1st-3rd July 2024, Knoxville
Veranstaltung IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), Knoxville, TN, USA, 01.07.2024 – 03.07.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 39–44
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page